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The contact process was introduced and studied by Harris (1974). It
for the spread of an infection or —more generally-
z° At each time t > 0, each site can be in on
healthy. The state of the site z € 2¢
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Abstract

A d-dimensional contact process is a simplified model for the spread of a
biological organism or an infection on the lattice Z9. At each time ¢ > 0, every
point of the lattice (or site) is either infected or healthy. As time passes, a healthy
site is infected with Poisson rate A by each of its 2d immediate neighbors which
is itself infected; an infected site recovers and becomes healthy with Poisson
rate 1. The processes involved are independent. If the process starts with a set
A C Z%of infected sites at time ¢ = 0, then the infection continues forever with a
positive probability iff A exceeds a certain critical value. Such a process is called
supercritical.

Consider the supercritical contact process starting with a single infected site
at the origin, conditioned on surviving forever. We develop a technique for
embedding this conditional process for large ¢ in a contact process starting at a
large time s with all sites of the lattice infected. This allows us to show that the
covariances for the conditional process fall off faster than any negative power of
the distance, provided that this distance is at most of the order ¢.

The results obtained in this paper will enable us to study the statistical
problem of estimating the parameter A. This will be the subject of a companion
paper Fiocco and van Zwet (1999).

Introduction

&(z),where

is a simple model
a biological population on the lattice
e of two possible states: infected or
at time ¢ will be indicated by a random variable



1 if z is infected

(1.1) &lz) = { 0 if z is healthy
The function & : 2% — {0, 1} gives the state of the process at time ¢t. It is a {0,1}-
valued random field over Z4.

The evolution of this random field in time is described by the following dynamics.
A healthy site is infected with rate A by each of its 2d immediate neighbors which is
itself infected; an infected site recovers with rate 1. Given the configuration & at time
t, the processes involved are independent until a change occurs.

It is sometimes convenient to represent the state of the contact process at time ¢
by the set of infected sites rather than by the function & : z¢ — {0,1}. Usually this
set is also denoted by &,. Thus, by an abuse of notation,

={zez®: &z)=1}.

It remains to specify the initial state of the process at time ¢ = 0. If this is
deterministic it will be given by the set A C z? of infected sites at tlme t = 0 and
we denote this contact process by {¢2 : ¢t > 0}. For example, {ft : t >0} or
{Et{O} : t > 0} will denote the process starting with every site infected, or with infection
only at the origin. Obviously £ = A for any A. The initial set of infected sites may
also be chosen at random according to a probability measure a, and in this case we
indicate the contact process by {£* : t > 0}. If we do not want to specify the initial
state of the process at all, we simply write {£; : t > 0}.

The proba.bility distribution of the state of the processes £ and && at time ¢ will
be denoted by u# and ug respectwely Obv1ously, s = «. Probability measures
on the state space H = {0,1}%", such as uf! and ug, are defined on the g-algebra B
generated by the ‘rectangles’ {n € H : n(x) = 1}. This is also the o-algebra of Borel
sets if we equip the state space H = {0,1}2’ with the product topology. For a rigorous
construction of the contact process we refer the reader to Liggett (1985).

When considering the contact process, the first question that comes to mind is
whether the distribution uf of £# will converge weakly to a limit measure u# ast — oo.
Since we employ the product topology on the state space H,

it =t it pf{Bcz? . BoF}- L uyrM{Bcz*: BDOF}

for every finite set F' C Z% In terms of functions p = Ip, the set {B C 2¢: B D> F}
corresponds to the cylinder set {n € {0,1}%" : n(z) = 1,2 € F}. Thus weak conver-
gence is equivalent to convergence in distribution of the ﬁnite dimensional projections
{eMa) :x € F}.

To address the convergence of u#, we appeal to Liggett {1985) for the case d = 1
and to Bezuidenhout & Grimmett (1990) and Durrett & Griffeath (1982) for d > 2.
First of all there exists a critical value A4 such that for A < Ag4, the contact process dies
out with probability 1, regardless of its initial state at time ¢ = 0 (subcritical case). If
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d¢ denotes the distribution on {0, 1}'*""I that assigns probability 1 to the empty set, we
have for every A C Z¢ in the subcritical case

pf 8 if A< Ay

Note that § = “all healthy” is a trap .

In the supercritical case when A > );, the contact process £ survives forever with
positive probability for every non-empty set A C Z9. It survives forever with probability
1if A is infinite. It is easy to show that the distribution 2’ of the process £2° that
starts with all sites infected, converges weakly to the so-called upper invariant measure
v = v,. Here ‘invariant’ refers to the fact that the contact process {& : t > 0} with v
as initial measure is stationary; in particular, the distribution iy of & is independent
of t. Also, both {¢Z° : ¢ > 0} and {€¢ : t > 0} are spatially translation invariant in
the sense that the distribution of {c® &, : t > 0} is independent of the shift ¢ € z¢
Here {c}® & ={c+z:z € &} is the Minkovski sum. F inally, for A > A4, v, assigns
probability 0 to the empty set.

For a general non empty initial state A the convergence issue is decided by the
complete convergence theorem. Define the random hitting time

(1.2) =inf{t: =0}, Acz?,
with the convention that 7 = co if ¢4 # 0 for all £ > 0.

Theorem 1.1 Let AC 2% and A > Ay . Then, ast — oo

(1.3) ut = P(7* < 00)ép + P(74 = co)v, .

Thus, given that the process &8 survives, it tends in distribution to » — vy, the
weight assigned to v being the probability of survival starting from A. For a proof for
d = 1 see Liggett (1985), Chapter VI, Theorem 2.28; for d > 1 see Durrett & Griffeath
(1982), Bezuidenhout & Grimmett (1990), Theorem 4, and Durrett (1991).

If A > Xy and A = z¢ the process ‘Stzd survives forever with probability 1 and
converges exponentially to the limit process, i.e. for positive C and ¥ and all ¢ > 0,

(1.4) 0 <P (z) =1) = P("(x) = 1) < Ce

(Durrett (1991)).

A second major result concerning the contact process is the so-called shape theorem.
'To formulate this result we first have to describe the graphical representation of contact
processes due to Harris (1978). This is a particular coupling of all contact processes of
a given dimension d and with a given value of A, but with every possible initial state
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A or initial distribution . Consider space-time Z9 x [0, 00). For every site z € Z% we
define on the line z x [0, c0) a Poisson process with rate 1; for every ordered pair (z, y)
of neighboring sites in Z? we define a Poisson process with rate A. All of these Poisson
processes are independent.

We now draw a picture of Z% x [0, 00) where for each site z € Z9 we remove the
points of the corresponding Poisson process with rate 1 from the line z x [0, 00); for
each ordered pair of neighboring sites (z,y) we draw an arrow going perpendicularly
from the line z x [0, c0) to the line y x [0, 00) at the points of the Poisson process with
rate A corresponding to the pair-(z,y). For any set A C 2% define £/ to be the set of
sites that can be reached by starting at time 0 at some site in A and travelling to time
¢ along unbroken segments of lines z x [0,00) in the direction of increasing time, as
well as arrows. Clearly, {£/ : ¢t > 0} is distributed as a contact process with initial set
A. By choosing the initial set at random with distribution e, we define {£* : ¢t > 0}.
The obvious beauty of this construction is that for two initial sets of infected points
A C B, we have £ C £F for all t. Whenever needed we shall assume that all
contact processes are coupled according to the graphical construction.

The contact process has the property of reversibility or self-duality. If, in the
graphical representation, time is run backwards and all arrows representing infection
of one site by another, are reversed, then the new graphical representation has precisely
the same probabilistic structure as the original one. In particular

(15) PENB#0)=PEPNA#0), forall ABCz%andt>0 .
With A = {0} and B = z° this yields
P(r” > 1) = P(¢7'(0) = 1)
and letting ¢ — co in the supercritical case, this reduces to
P(rl% = 00) = P(/(0) = 1) .
Combining this with (1.4) we see that if A > Ay,
(1.6) Pt < 7% < 00) < Ce™

(cf. Durrett (1991)).
Let us write

(1.7) t(z) = inf{t : & (z) = 1}

for the first infection time of the site z when starting the process with a single infected
site at the origin. Let | - | denote the L> norm on R® and define

(1.8) H ={yek:3zezwith [z —y| <1/2 and t(z) < ¢}
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and
(1.9) K,={yer’:3zezwith |z —y| <1/2 and % z) = 2(z)}

H; and K; are the unions of the unit cubes centered respectively at sites that were
infected at some time prior to ¢, or where the two processes §t{°} and §fd are equal at
time t. We now formulate the shape theorem, while reminding the reader that ft{o} and

£2° are defined by the graphical construction.

Theorem 1.2 There exists a bounded conver subset U of R® with the oTigin as an
interior point such that for any ¢ € (0,1),

(1.10) (1—-e)U c tY(H, N K,}) ctlH, ¢ (1 +¢e)U eventually,
almost surely on the event {7{0} = oo} where ‘St{O} survives forever.

For a proof for d = 1 we refer to Durrett (1980); for d > 1 one may follow Bezuiden-
hout and Grimmett (1990) and Durrett (1991).

The shape theorem says that the two processes Et{o} and §f‘d may be coupled together
in such way that conditional on the survival of the process Et{o}, they agree almost surely
on a region which is asymptotically convex and whose diameter increases linearly in
time.

Having described these well-known facts concerning the contact process, we now
list the main results of the present paper. At this point we should stress that we
shall only be concerned with the supercritical case, i. e. in the remainder
of this paper we shall tacitly assume that X\ > A\ . First of all we strengthen
the lower inclusion in Theorem 1.2 as follows

Theorem 1.3 For any ¢ € (0,1) and r > 0, there erists a posttive number A, . such
that for everyt >0,

(1.11) ]P((l — MU C HNK, |+ = oo) >1— A4

For statistical purposes a drawback of Theorems 1.2 and 1.3 is that the set U -and
sometimes also the time ¢- are unknown and the experimenter only observes the set
5% It is therefore of interest to show that on {7{% = oo} the convex hull C(é}{o} ) of
the set of infected sites has the same asymptotic shape tU as H;N K, and H,.

Theorem 1.4 For every e € (0,1),
(1.12) (1—e)tU c C(&f™) € (1 + )tU eventually,

a.s.on the set {7 = oo},



We can also obtain a probability bound for C (ft{o}) corresponding to Theorem 1.3 for
H,NK;.

Theorem 1.5 For any 0 < e < 1 and r > 0, there exists a positive number A, such
that for everyt > 0

IP((I — U c (el | 0 = oo) >1- At

At first sight, these theorems would seem to suggest that for large ¢ we can approx-
imate the conditional probability of an event concerning the process Et{ e N(1— el
given {r{% = oo} by computing the unconditional probability of the same event for
the process £ M (1 — €)tU. Unfortunately this is false. Conditional probabilities for

o (1-€)tU given {7{% = 00} can be approximated by conditional probabilities for
§t 29N (1 — €)tU given {r{® = oo}. However, the latter probabilities are as intractable
as the former and since 0 < IP(r{% = o) < 1, we have no guarantee a priori that
they will be close to the unconditional probablhtles for ft N(1—e€)tU, unless of course
these converge to zero as t tends to infinity. It follows that as long as we are concerned
with statements concerning convergence in probability - that is about probabilities
converging to zero - for the &% N (1—extlU process conditioned on {7{% = co}, we
may compute unconditionally for the process 5: N (1 — ¢)tU. However, as soon as
we are after results concerning limit distributions of statistics related to the process
%N (- €)tU conditioned on {7{% = 0o}, then results like Theorems 1.2 and 1.3 are
not much help.

To remedy this 31tuat10n we shall provide a different coupling. For A > )y, let

denote the process E conditioned on {7{% = co}. In Theorem 1.6 we couple the

process §t d1rectly to a process ffs which starts at time s instead of time 0. For large
s and (t — s), the theorem provides a probability bound for equality of the processes
on the set (1 — €)tU, as well as for each individual site in (1 — €)¢tU separately.

Theorem 1.6 Foreverye € (0,1) andr > 0 there exist numbers A, and A, . depending
on € and (r,€) respectively, such that for s a (t — s) > A,

(1.13) ]P( Dna-gw = & na- e)tU)
— s*
> 1—A,,e(s -+ (t—s)") .
Moreover for every x € (1 — e)tU
(1.14) P(E”7 () = @) 21- 4, (s7+-9).



Before formulating our results concerning the decaying correlations we need to
introduce some notation. Let H = {0, 1}zd denote the state space for the contact
process. For f : H = R and z € Z¢ define

8s(a) = sup{1£(n) = F(Q)] 7, € H and n(y) = (o) for all y # 2},

(1.15)
1= 2" As(=) .

T€Zd

For Ry, R; C Z° let d(R,, R,) denote the L'-distance of R, and R,, thus

d
AR, Ro) = ol o —vl= il o 2 le—ul

Let
(1.16) Dgp={f:H =R |f|]l < oo, f(n) depends on n only through nN R} ,

i.e. Dg is the class of functions f with ||f || < co such that f(n) depends on 7 only
through n(z) with z € R.

First we show that the correlations between the states of sites for the process ffd
decay exponentially fast in the distance between them. This follows easily from known
results.

Theorem 1.7 There ezist positive numbers v and C such that for every Ry, R, C Z%,
f€Dg, g€ Dg,, andt >0,

(1.17) [eov (£(€7),9€)| < CUPLAghe R0,

Our final result deals with decaying correlations for the Zf“} process. The proof is
based on the embedding of Theorem 1.6.

Theorem 1.8 For every € € (0,1) and r > 0 there exists a positive number A, such
that for allt > 0 and all f and g satisfying

f € Dp, with Ry C (1 —e)tUN2zZ?,

g € Dg, with Ry C z¢ .

(1.18)

cov( &™), 9E™N)| < Are 171 Ngl (@(Rs, Ba) 1 0)"
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It is interesting to compare Theorem 1.8 with Theorem 1.7. The bound in Theorem
1.8 is a power bound as compared with the exponential bound in Theorem 1.7, which
is due to the fact that we have been content with a moment bound in Theorem 2.1.
This is a relatively unimportant difference for most purposes. More interestingly, the
bound of Theorem 1.8 is in terms of d{(R;, Ra) A t) instead of d(R;, Ry). But this is
to be expected. If d(R;, Ry) is of larger order than ¢, then at least one of the sets
R, or Ry would be far outside the set tU/ and there would be no correlation except
if H; would extend far beyond tU. All we know about this possibility is that it can
occur with probability O(e~7*) by Lemma 3.1. It is therefore hardly surprising that
the covariance bound in (1.18) should depend on ¢ rather than on d(Ri, R,) in this
case.

For technical reasons these results will be proved in a different order than they
are presented above. In Section 2 we begin with the proof of Theorem 1.7 which is
then used to obtain the moment inequality of Theorem 2.1 which lies at the root of
all probability bounds in this paper. Theorem 1.3 is proved next in Section 3. Section
4 is devoted to the results concermng C (ft ) of Theorems 1.4 and 1.5. In Section 5

we first prove the embedding of ft } of Theorem 1.6 with the aid of Theorem 1.3, and

then obtain Theorem 1.8 on the decaying correlations for EEO}.

In a companion paper Fiocco and van Zwet (1999) these probabilistic results will
be used for a stud of the estimation problem for the para.meter A of the supercritical
contact process ft . Based on a single observation of f,, at a single unknown time
t, we obtain an est1mator )\{0} of A which is strongly consistent and asymptotically
normal as t = co. To establish these results, we have to apply a law of large numbers
and a central limit theorem to Xt{o} and the results of the present paper - in particular

The({)or}ems 1.4, 1.6 and 1.8 - play a crucial role in establishing the central limit behavior
of A}

2 A moment inequality

In this section we prove Theorem 1.7 as well as an inequality for the central moments
of certain functions of {-‘fd that will play a central role in the remainder of this paper.

Proof. of Theorem 1.7. By changing one coordinate at a time, we see that for two
configurations n,{ € H,

(2.1) |f(n) —f(C)| < 2 As(®) hmyxa) -

zczd

We w1sh to bound |Ef(£2") —IEf(£Y)] and without loss of generality we may assume
that £2° and &7 are coupled according to the graphical representation, so that £2(z) >



¥(z) for all z € Z4. Because both {fzd and £/ are translation invariant, we find
t i [4

B2 - Bre| < B8 - &)
< T AP0 #6@) = 1IP(€°0) ££0)

= IAIP(£0) = 1,60 =0) = IAI(PE© =1 - PE© =1).

Inequality (1.4) yields

<Chflle™ .

(2.2) B - B

Now (1.17) follows by applying Theorem 4.20 in Chapter 1 of Liggett (1985) and the
lemma is proved.

For A C z9, define the total number of infected sites in the set A at time ¢ as

(2.3) n(A) = Y &(z)

rEA
The cardinality of a set A C Z? will be denoted by |A|.
Lemma 2.1 Ffor any k = 1,2, ..., there exists a number Cy > 0 such that for every
AcCzlandt>0,

2k
(2.4) e E(nf“(A) - mnf‘(A)) < CilAJ* .

Proof. Let R = max d(z;, {21, ..,2j_1,Zj41, .., T2k }) and write py, as
i

i =B(SE@-B@) = . T BII(E) - Bee)

€A r1€A TR EA i=1

We have, for the proper j =1, 2,..., 2k,

J 2902 — IBEE (1 Z 280\ — RE% (1.
B 11 (e - B en)| = (e - B8 @) 1T (€ - B ')

)~ B (=)

con(6F'e), T1 (62

i=1,i#j

< 2Cke™ R |



where the inequality follows from Theorem 1.7 with

|

2k

II (tzd(ﬂ:f)—]EEfd(:v,-))H‘$2k, and [¢¥(z;)] =1

i=1i%j

Hence

por < 2Ck Z Z e "R

T1€EA Top €A

Notice that the distance d(z;, {z1, .., £j—1, Tj+1, .., T2 }) = 0 unless z; occurs only once
in the sequence zj, ..., T2z.

Let m; denote the number of sites that occur j times in the sequence of sites
Z1, ..., Zar. Define, for my, ..., mgr with Zfiljmj =2kand r >0,

Fony....my (T) = number of sequences 1, ..., Ty € A with given my,...,mox and R < 1.

Then Fp,....m, (0) =0 and for r > 0,

7 (r) < Cl |Ajmatmst-| AT p4 T if my even
ma,.mg\T) = Cl’» |A|m2+m3+...|A[21;—1 ,_,.d-(-ﬂlzj-'l—) if my odd

where d is the dimension of the contact process and Cj, is an appropriate positive
constant. This bound for F,; . m,.(r) is computed by noting that the (ms +ms + ...)
sites which occur more than once can be chosen anywhere in A without contributing
to R, which accounts for the factor |A|™2+*™s+- The m, sites which occur only once,
however, have to be chosen within a distance r from another member of z,, ..., 2, and
this gives rise to a factor |A| 379 or |A|™5 r4™5" for even or odd m,. Finally the
combinatorics of the situation refers to ordering 2k sites and can therefore be bounded
by C;i.

If m; is odd, then (m3 4+ m4 +...) > 0 as > _jm; = 2k and as a result,

i

—1 1 9my + 2
i +mg+mg+.. = ——-|-m1+ me + (m3+ )
2 2 2
< _1+m1+.‘2m2-;3(nra,~,+...)Sk_1 ,

while if m; is even,
my
?+m2+m3+...§k.

Hence, if we define

Fn(r) = number of sequences x,,...,2or € Awithm;=mand R<r
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then

Cy |Al* r4% if m even
Fa(r) < m
r) "{ cr AR 4 i moodd

For 7 > 0, let F(r) be the number of sequences z,,...,zox € A with R < r, so that

2%
F(r) =Y Fn(r).

m=0

Summing the terms with even or odd values of m separately we obtain for » > 0,

k k
F(r) = Zng(r)+z_:1ng 1(7)

s=0
k k
S CﬂAlk Zrds + CflAlk 1 Zrds
5=0 s=1
<

k
2C1|AlF Z rds
s=0

< CUAp e

H

i

where C” is an appropriately chosen constant. As F(0) = 0,

Haj: < 2Ck Z: Z € e

z1€A Tor €A

Wk e (F(r +1) = F(r))

r=0

= 20k (é T VE(r) — 3 e"""F('r))

r=]

IA

IAlk i(e-q’(r-—l) _ e—-yr),rdk

r=1

i

< Cy

o
= CMAfF(e -1) 3 e rrk

r=1

IA

CilAlF .
for an appropriate C; > 0. O

A more general version of Lemma 2.1 may be formulated as follows. Let g : H — R
satisfy g € Dp,,,,, where Byo,) is an L™-ball, i.e. a hypercube centered at the origin
with sides 2r. Hence g(n) depends on 7 only through #(x) with z in a fixed hypercube
Byosy C R?. For a € 2 let ;1 denote a shifted version of n with ,n(z) = n{a + ) for
all z € Z¢ and define g, : H — R by g,(n) = g(un) for n € H. Note that g, € Dg,, -
Lemma 2.1 can now easily be generalized as follows
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Theorem 2.1 Forany k =1,2,... and r > 0 there exists a number Crr > 0 such that
for every AC 2% g€ D, and t >0,

(25) B( 2 (56) - Boule?)) < Curlal™ 141

acA

Proof. The proof goes through the same counting argument we have employed for
proving Lemma 2.1 and uses the fact that d(B,,, Bs,) > d(a,b) — 4r as well as the
inequality If - gl < 2||7ll - Ngll (cf. Liggett (1985), page 41). =

Recall the definition of the random hitting time for the process £/,
T =inf{t: =0} , Acz®
We shall need the following corollary.

Corollary 2.1 For any r > 0 there exists a number C, > 0 such that for every A C z¢
and t > 0,

(2.6) P(nf’(A) < 1/2Enf'(4)) < C,|A| ",
(2.7) P(r* < o0) < C.|A|™"

Proof. It is obviously enough to prove the corollary for integer k = 1,2..., instead of
real r > 0. Applying the self-duality property (1.5) for B = Z¢ we find

P(r* < t) = PN A =0) = P(n?"(4) = 0) .
Since the process §,Zd is translation invariant, the graphical construction yields

EnZ‘(4) = gmf?‘(O) = |AJEEZ"(0) > |A] IE¢”(0)

where the right-hand side is independent of ¢. Therefore for every ¢t > 0 and k = 1,2, ...

P(r* < t) = P(nf"(4) = 0)

< P(nf*(A) < 1/2[En?(4))

< P(|nF'(4) - Br(4)| 2 1/2B0'(4))
22k

Hak 22k!£2k -k
< < <

< B A < EEQpHar < G4l
by Lemma 2.1. This implies

P(r4 < o0) < Gyl A|™*

because the bound does not depend on ¢ . O
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3 A probability bound

In this section we shall prove Theorem 1.3. We proceed as follows. We first need to
bound the probability that H, is not contained in the ball By for large ¢. As a
second step we establish a probability bound for the first infection time ¢(x). Together,
these results allow us to prove Theorem 1.3.

Lemma 3.1 Let By} = {y: |y — x| < r} be the hypercube with side 2r centered at
x. There exist positive numbers ¢, C and vy such that for allt > 0

(31) ]P(Hg C B{O,ct}) > 1- CC_‘rt 5
Proof. Compare the contact process with Richardson’s growth process and apply the

result in Durrett (1988), Chapter 1. o.

Let E}O} = (6?71 = 00) denote the conditional process ¢ given that
7 = inf{t : £% = 0} = co0. Denote by P and TE the conditional probability and
expectation respectively, given that &% survives forever, i.e. P(-) = P(:]7% = o0)
and E(-) = E(:|71% = c0).

We shall also have to extend the definition of t(z) in (1.7) to z € R? by letting t(z)
be the first infection time of the point in Z? closest to z. Thus for z € R?,

(32) t(z) = minfe(y) y € 2 by — 2l < 53
or equivalently

(3.3) t{(z) =inf{t:z € H} .

Note that this definition of ¢(z) for z € R? implies that

(3.4) Ho={zer:tzx) <t} .
Moreover by (3.4), inequality (3.1) can be inverted to yield
(3.5) ]P(t(:r) > @) > 1 - Celielie

Before formulating the next lemma we need to mention some results that have been
proved by Durrett & Griffeath (1982). They showed that positive ¢, C and « exist such
that

(3.6) P(B(a,cty € Hyzyerasz for some t > 0) < Ce™™ |

(3.7) P(Bizcty ¢ Kiz)seare for some t > 0) < Ce™
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for every = € R? and positive I. Notice that by choosing z = 0 and ¢ = |y||/c for y € 24
in (3.6) we obtain

(3.8) TP-(t(y) < @ +1 forallye Rd)z 1-Ce™ .
Moreover there exists a finite function u : R — R such that for every z € R?,
t —
(3.9) Jim (7:&) =u(z) P a s

The set U in the shape theorem is defined by
(3.10) U={zer:pu(z) <1}

Lemma 3.2 For every z € R® and every positive r and €, there exists a positive number
Az re such that for alln=1,2, ..,

(3.11) P(M2) > ua) +e) < Aupe n

Proof. As t(0) = 0 and p(0) = 0, the lemma is trivial for z = 0. Assume therefore
that = # 0. Durrett & Griffeath (1982) proved that under IP we have for all z, y € R?,

(3-12) t(z +y) <tz) +s(y) +v(z,y)

where s(y) is an appropriately chosen copy of ¢(y), independent of ¢(z), and v(z,y) is
an error term such that

(3.13) E(v*(z,y)) < C(Jz] + 1)
and
(3.14) P(o(z,y) 2 Cla]}) < Ae~ellt,

with C, A and a positive constants. In (3.12) we substitute mz and (n — m)zx for «
and y respectively, where z € R*, z # 0 and 1 < m < n are integers. This yields

(3.15) t(nz) < t(mz) + s((n — m)z) + v(mz, (n — m)z)
Fix z # 0 in RY and define

(3.16) on = an(z) = B(t(nz)) .

Clearly (3.13) ensures that for C, = CY2(|z[/? + 1),

(3.17) El|v(mz, (n — m)z)| < [C(||mx|| + 1)]% <Ct (]|m1:]|% + 1) < Cymt .
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It follows from (3.15) that for n > m > 1,

(3.18) n < G + G + Cam?

Write n =km 41 with k =1,2,.. and 0 < I < m —~ 1. Tterate (3.18) to obtain
(3.19) an < kam + a; + Cohm?

Notice that for m = 1, (3.19) yields a, < na; + Cpn so that a,/n is bounded by
(a1 + C;) for all n. Also from (3.19),

an < km am 4 DaX{icigm-1} & I kam%
n n m n n
k 1

. +C"(n +m"1/2)

a . .
Let m; 00 andn; — oo be sequences such that —= — liminf, % and
7

a—:fi — limsup, 2. Moreover, suppose that m; < n; for all § and that =X — 0 as
£l £)

j — oo. This is always possible because we can ”thin out ” n; as much as we want.

Replacing m and n in (3.20) by m; and n; and letting § — oo, we find

. a .. oG
limsup — < lim inf —
n n n

and hence

exists. Since a,/n is bounded, a is finite and obviously @(0) = 0. Moreover (3.5)
implies that

IP( (n:c) II.’C||) Ce—-,m”xli/c
n
and hence afz) > 0for z #0 .
Having proved that IEt(nz)/n — a = a(z) for all z € R, we return to (3.15). Fix
r # 0, € > 0 and take mg sufficiently large to ensure that

s

- for all m > my = my(z, €)

€
8
For 1 <m < n we write vy n-m for v(mz, (n — m)z) and rewrite (3.15) as

(3.21) t(nz) = t(mz)+s{(n — m)z) + Yiunem » Yin-m < Umn-m -
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Notice that Y, n—m is bounded above by vp, ,—, but may have large negative values.
However (3.21) does imply that

(3.22) Eym,n m=— Qp — Am — dp—-m

which allows us to deal with this problem. For n = 1,2,..., write Z, for t(nz),
(Zl(i), éi), ...) for independent copies of (Z, Z5, ...) and F, for the conditional distribu-
tion function of Z, — IEZ, given {71% = co}. Take n = km +{ with0 <! < m — 1.
By (3.21)

1— Fp(en) =P(Z, - EZ, > en)
= PU(ZD —EBZn) + (22 —BZa_n) + Yeunem — BYmnm) > €n)
< P((ZW —EBZ,) + (22, ~BZ,_m) + Vmnm > €1+ Gn — G — Gnm)

Now (3.14) yields

1/4

F('Urn.n—fi'm > Dmm%) < Ae—a’,m
for positive D, = Clz]'/?, o, = a|z|"* and i = 1,2, ..., k. Hence

1/4

1-Fuen) <1—-Fo*Fy_nlen+ap — Gm — Gnem — $m1/2) + Ae~ %™

where * denotes the convolution of the distribution functions F, and F,,_,,. Applying
this argument to F,,_,, instead of F,, we find for every z € R,

1 - Fo_pen+ap — am — Gyem — Dom/? — 2)

< 1—-Fp*Fy am(en+a, — 24, — Gp_am — 2D.m'/? — z) + Ae—%m*

It follows that
1— F,(en) < ” [1 = From(en + an — Gm — Gnem — Demt’? — 2)|dF(2) + A~ %™

o ]
< [1 — Frn % Fy_om(en + an — 2ap — @p_om — 2D, mY? — z) + Ae‘°="‘m]dFm(z)

-0
+  Aeom!
= 1= Fp % Fp % Fo_gm(en + ap — 26 — Gp_gm — 2D,m?) + 242%™

4

Repeating this procedure we arrive at
1— Fo(en) < 1— FX % Fi(en + an — kam — a; — kDym??) + kAe™=m*
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where F¥ denotes the k-fold convolution of Fi,.
For m > mo(z, €), we have a,, < (a+¢/8)m and a, > (@ — ¢/8)n. We noted earlier

that a, < (a1 + Cg)n for all n. It follows that for n > 4(a1(z) + Co)m/e,

en — ¢/8(n+ km) + a(n — km) — a;

(3/4)en + al — (a1 + C: )l

(3/4)en — (a; + Cz)m >

en+ap, — kaym —

AV AV

2

Moreover, for m > mq(z,€) = (16D2/€e?) v mo(z,¢€), we have kD,mM? < Dynm~Y? <
en/4 and hence

(3.23)
k
<B(3 (28 ~Ezn) + (2" - E2) 2 Sn) + Akeoim
i=1
provided m > my(z, €) and n > A(z, €)m with A(z,€) =1 v 4(a,(z) + Cy)/e .
Next we bound the moments of S5 (2l —EZ,) + (2 Z*+1 _EZ) of even order
2r. We have

k 2r
B(3 (2 - BZn) + (2 - F2)) =

i=1

D (r?: E[1(29 - Bz, (20 - Bz,

1‘_
where the summation 3.* runs over all non-negative integers v1, ..., Vg1 with sum 2r.

Now a term for which even a single ; equals 1 vanishes because the (Zy”, @ z. (’), .) are
independent. For the remaining terms, the expectation may be bounded as follows:

k
(28 —EZ,)*(2* - Bz | <

i=1

k. 0 _ 2r vif2r 12 vi‘,‘_i
H(]E'Z};)—IEZ,,, ) (B|z(+ - Bz, )
1
. _ 2ry L=vp f2r 4 L j2ry RLf2r
= (]ElZm—IE}Zm ) (1E|Z,-1Ez, )

< o (EZZ") lvpi1/2r (I—E-ler) Viy1/2r

<27 (Ez?,;’ v Esz) :
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It follows that

k 2r
E(Z(Zfi’ ~EZn) + (28 - Ez,)) <
i=1
(3.24)
(2r1) 22(EZZ vIEZF) > ™1,

where 3** indicates summation over non-negative integers vy, ..., which are not
equal to 1 and sum to 2r. The number of terms in this sum is bounded by A,(k+1)",
where A, depends only on r. Remembering that Z,, = t(mz), we find that (3.8)
1mphes that for all m, P(Z,, > U_le + 2?) < Ce™*. Hence EZ¥ < C,,m?* and
EZF < Cp i < Cpom?®. Together with (3.24) and the Markov inequality this yields
for k >1

k
(3.25) ﬁ(z(zg~Ezm)+(z,(’°+”-71§z,) : )< Comes ™

i=1

kf‘ 2r
nzr S Cz,r,ek Tk .

Combining this with (3.23) we find that for every £ # 0, r > 0 and ¢ > 0,

1/4

P(Z,—TEZ,) >en) < Cprek™ + Ake o™ ,

provided m > m;(z,¢) and n > A(z,e)m. Throughout we have n = km +1, 0 <[ <
m — 1 and as n > m, we have k > 1. Choosing m = [n’] for some small § and and
k ~ n'=? we find that for every z # 0 in B¢, r > 0 and € > 0, there exists A, > 0
such that

P(t(nz) > Et(nz) + en) < Ay n™"
As Et(nz)/n — a(z) the proof of the lemma is completed if we show that a(z) = u(z)

for all £ # 0 in R°.
Once more we use (3.8) to obtain

(t( x) > l= Iernz)SC'trz"’z

This implies that

E(@ - @)J' N uzu/cﬁ(@ > s)ds
_ fO“IP( (f:v) I=} +v) o

o0
S[ Ce'"’(”")llzd'v -0 as n—= o0
0
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As t{nz)/n — p(z) P -as. (cf. Durrett 1988), this ensures that p(z) < |z||/c for all
z. Hence by the dominated convergence theorem,

(1) B ) 2 o),

n
S0
— — +
IEt(na:) _ (t(m:) B u_xﬂ) +1E(t(m:) . M) L u(z) .
n n ¢ n c
It follows that oz) = u(z) for all z, which completes the proof . m

Remark 3.1 We have considered in Lemma 3.2 the limiting behavior of ¢(nz)/n as n
runs through the integers 1,2... The same results will hold for t(sz)/s for real s — oo,
to wit for z € R¢ and s € R,

Y, —— = #la)
(3.26)
t
IP(LSS@' 2 ,u(:c) + f) S Az,r,e 87 -

The proof is straightforward. One simply replaces the integers 1 < m < n with
n==km+I[, 0<I<m-1Dby thereal numbers 1 <u < w with w = ku + v for integer
kand 0 <v <u.

Proof of Theorem 1.3. From the obvious linearity of ¢ on lines through the origin
and the definition of U in (3.10), it follows that

(3.27) ze(l-eU=pu(z)<l-e€.

Because U is compact we can cover (1—¢)U by a finite number of balls B; = Bz, c(1-u(z:))/2}
i =1,2,.,N, where all z; € (1 — €)U, so that p(z;) < (1 - ¢) by (3.27). Invok-
ing (3.11) with ¢ replaced by ¢/4, we see that for every i = 1,2.., N, we have with
P — probability > 1 — Az rea 5775

t(s.’I},t) + 1;].21(33_5)3 + 2 < 3(#(1;1.) 4+ %) + !’_—_g_(.x_’.)s + 2
5 8 €
3.2 = Zulz)+ =+ — 2
(3.28) 2p(m,)+2 + 4s+l

€
< s—-s+1%.
= 5 4
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By taking = sz; and t = s(1—-pu(z;))/2 in (3.6) we find that for every i = 1,2, ..., N(e),
P(sB; C H, forall s>0)>1—Ce™

(srt:.-)+—-—‘—]_"’2(:')s+l2

where $B; = B(sz, cs(1-p(z:))/2}- Hence for > = (¢/4)s inequality (3.28) and the mono-
tonicity of H, in ¢ imply that

N, N(e)
F(LJ sB; C H‘) 21- CN(E) 6—7(”)”2/2 - EAzi,r,e/'I sT2>1- Ar,es_r .
i=1 =1

As Ui sB; D (1 — €)sU, we arrive at
(3.29) P((1-esUCH)>1— A, s

for every positive ¢, r and s.

Things are a bit more complicated for K, because it is not monotone in 5. Recall
inequality (3.7)

(3.30) F(B{x,ct} C Kygypeqe forall t>0)>1- Ce ™.

Since the event involved is that Bizety C Kyzyyeqiz for all ¢ > 0, this also includes
random times T > 0. For this random time we choose

T = (s(1- z) —t(sz;)) v O

and obtain

(3'31) -ﬂs(B{sx;,cT} C Kf.(sa:.-)+T+lz) >1- Ce™.
According to (3.11) with € replaced by ¢/4 we know that
(3.32) ?_(SSLJ < plz) +§

on a set of IP-probability at least 1 — A, . /4 s™". Since p(z;) <1 -¢, (3.32) yields
€ € € €s
S = > = = = =) > = >
3(1 4) t(sxi) = S(l 4 lu(xl) 4) — 2 = 0 )

so that T > 0 and hence

(3.33) T = s(1 - ¢/4) — t(sz;)

But this implies

(3.34) T=c(s(1~ )~ t(sz)) > es(l— 7 - plz) ~ )
> cs——-—-—l — g(a:,) .
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again because u(z;} <1 —¢. This, in turn, ensures that

(3.35) B{sz‘.,c';p} o> B sB;

{sxi,cs——l—l-“z(r)} -

Notice that we are now using the monotonicity of B(s,} in r. Finally (3.33) implies
that for 12 = (¢/4)s,

(3.36) toz) + T+ P =s(1- )+ =s.
Combining these matters we see that
P(sB; C K,) > 1—Ce™ /2 — Apas™
and hence for every ¢ > 0, s > 0 and r > 0,
(3.37) P(l-esUCK,)>21-A, 5.
Together (3.29) and (3.37) prove Theorem 1.3. ]

4 The asymptotic shape of the convex hull

In this section we prove a shape theorem for the convex hull C( 2[0}) of the set of infected
sites 1 (cf. Theorem 1.4).

Definition 4.1 A convez polytope is a set which is the convez hull of a finite number
of points.

Lemma 4.1 For every 0 < € < 1/2, there exists a convex polytope P C R? such that
3
(4.1) (1-2UcCPcC(l- —f)U.

Proof. By Theorem 33 in Chapter 4 of Eggleston (1958) we have, for every

§ > 0, a convex polytope P containing (1 — 2¢)U and contained in a d-neighborhood
{z : d(z,(1 — 2¢)U) < 8} of (1 — 2¢)U. Here d is L' distance. Since 0 is an interior
point of U, this d-neighborhood of (1 — 2¢)U is contained in (1 - 3¢/2)U for sufﬁmently
small 4.

Let z,, 2, ..., T be the extreme points of a convex polytope P satisfying (4.1). For
each of these points z; we define a set

(4.2) Ai={z:3 >0, zi—nlz—z)e PIN(1-¢)U.

The set A; is the intersection of (1 — €)U and the exterior cone of P at x;, and as
P C (1 - 3¢/2)U, we see that A; contains an open set in R¢. For any B C R%, let C(B)
denote the convex hull of B. We have
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Lemma 4.2 Ifz] € A;, fori=1, ...k, then
(4.3) P cc({z,...z.}).

Proof. If z; € A, then z; —n(z] — z,) € P, or
k
(1 +n)xr —nzy =Y Ma;

for some 7 > 0, A; > 0 for each j, and 23—1 A; = 1. Hence

i . Aj
o=tz +> —2 .
! (1+T]—/\1) ! J-Z:zl‘l‘??_)\l]
and because i + Z'"_g Aj = {1+ n—Xy), this implies that z; € C({2}, z2, ..., 2;}), and
as a result P C C({ml,xz,. ,:c;,})
Suppose that P C C({z{,..,z},_|, Zm, ..., Tx }), 50 that

~ iz — Zm) € P CC({2], -, 2!y |, Zm, T })
Then

P T

,,-':i m—1 XJ k
Ty = ————— 7' -+ _"—,..—:IT’- +
" AP v S AP Y vy

A
+i7 =

for some 77 > 0, Aj > 0 for each j, and 5¥_1A; = 1. This implies that z,, €
C({z}, .-, Trm, Tm1, -, Tx }) and as a result P C C({z}, ..., %0, Tme1, -, Ti} ). Induction
yields P C C({z], .. ,:ck}) O

Proof of Theorem 1.4. On the set where &% survives forever, H; C (1 + €)tU
eventually a.s. by Theorem 1.2. Since U is convex, this implies that C (Ht) (1+€)tU.

In view of the definition of H; in (1.7)-(1.8), &[° } C H, and hence C(£{%) ¢ C(Hy).
Combining this we arrive at

(4.4) CES™ ceH) c (1 +eU

eventually a.s. on the set where ft{"} survives forever. This establishes the almost sure
upper bound for C(£) in (1.12).

To obtain the lower bound in (1.12) we begin by noting that (2.6) ensures that for
everyr>0and¢=1,2,..,k,

lP( “(t4;) < §]En, (tA,)) < GltAilp < Gt~ .
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Here
|Alp = |[AnzY

denotes the discrete cardinality of a set A C R? and the final inequality follows from
the fact that for fixed ¢, Ay, ..., A are fixed subsets of R? with non-empty interiors. In
view of the graphical representation we have for ¢ =1,...,k and { > m,,

1 1
% En?(t4) > 3 Bni(tA]) = 5 |tAdp BE'(0) > cat?
It follows that for t > m,,
(4.5) P(n®(tA;) < ct?) < Crt ™

for appropriately chosen positive ¢, and C, . and integer m, > 0. Hence for m > m,,

P(nfd(tAi) =0 for some t € [m,m+1)) <
Crem™ + P(n?*(tA;) = 0 for some t € [m,m+1) | nﬁf(mAi) > cem?) .

The latter conditional probability is bounded by the probability that the maximum of
[ccmd] + 1 independent standard exponential waiting times is smaller than 1, i.e.

P(n?’(t4;) = 0 for some t € [m,m+1)) < Cprem™ + (1 - e 1yeem
and choosing dr > 2 we see that the Borel-Cantelli lemma implies that for i = 1, .., k,
(4.6) nZ(tA;) #£0 eventually a.s.

QObviously this also holds for i = 1,2, .., k simultanecusly.

By (4.2), tA; C (1—¢)tU fori =1, .., k, and hence, Theorem 1.2 implies that on the
set {710 = oo}, £i”(z) = €#°(z) eventually a.s. for all z € tA; for i = 1,..,k. Hence,
(4.6) ensures that on the set where % survives forever,

(4.7) n§°}(tA,-) #0 fori=1,..k eventually a.s.

If n§°} (tA;) # 0 for ¢ = 1,.., k, then each of the sets tA; contains a point of EfO} and by
(4.1)-(4.3) this implies that

(4.8) (1—26)tU C tP c C(¢{™) .

In view of (4.7), (4.8) holds eventnally a.s. on the set where !;’t{c'} survives forever. Since
€ is arbitrary the lemma is proved. m
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Proof of Theorem 1.5. In the proof of Theorem 1.4 we note that (4.5) implies that

1
P (249 =01 7 = 00) < gy — 5 P (t4) = 0)
1
< —~dr — U t—d‘r‘
- ]P(T{O} = 00) Cret C”e

for an appropriate C}, > 0 as the process is supercritical. Invoking Theorem 1.3, we
arrive at

P(n{”(tA) #0 fori=1,..,k [T =00) 21 - Cl ™ — A, ¢t

Copying the remainder of the proof of Theorem 1.4 we obtain instead of (4.8) a probabil-
ity bound for C (Et{o} ), which is the statement of Theorem 1.5. (]

5 Spatially decaying correlations for the conditional
contact process Eto}

In this section we deal with a coupling of the process EED} and €2, for which they are
equal on (1 — €)tU with overwhelming probability for large s and ¢ — s (cf. Theorem
1.6). Then we use this coupling results to show that for the conditional process far
away sites develop almost independently (cf. Theorem 1.8).

For the proof of Theorems 1.6 and 1.8 we need some auxiliary results. Choose
€€ (0,1) and 0 < s < . The set U is compact and we can cover (1 — €)sU by a finite
number of sets of the form U, , = {z € B¢ : 5 € U}, where z; € (1 - €)sU and
p = (t—s)e/4. Let N be the smallest number of such sets needed to cover (1—e¢)sU and

N

let | JU; with U; = Uy, , be such a minimal covering of (1—¢)sU. If (t—s)e/4 > (1—¢)s,
i=1

we have N =1 and Uy = Uy, = pU. If (t — s)e/4 < (1 — €)s, then N is of the order of

(s/(t — s))%. Hence in general

d
(5.1) N< C‘(E_j_s) +1

for an appropriate C, > 0 depending only on e.
Define U; = U; N (1 — €)sU, so that

N
(5.2) U Ui=(1-¢€sU.

i=1
If (t—s)e/4 > (1—€)sand hence N =1and U; = (t —s)(e/4)U, then U, =(1-¢)sU.
For large s > A, the number of lattice points in {/; will be proportional to s%. For
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(t — s)e/4 < (1 —€)s, the |U;|p will be proportional to (¢ — siifort—s> Al Ttis
not hard to see that this is also true for |U;|p. Combining all of this we find that there
exists A, > 0 and ¢, > 0 such that for ¢ = 1,.., N,

(5.3) |Uilp > ces A (t — sN? if sa(t—s)> A
For s > 0 we now define three related processes. To define the first process we begin

by choosing any version of {EEO} : t < s} where EEO} is distributed as gf‘” conditional
on {7{% = co}. Define

—(0} .
- ift<s
(5.4) {&,t >0} = { f%m}
s ift>s

Here &; > denotes a contact process starting at time t = 0 with a set of infected sites
—EO}. This process is constructed according to a graphical representation. Thus & is
distributed up to time s as a process §t{°} conditioned on surviving forever, but after
time s this conditioning is dropped.

Next we extend the definition of ZEO} to times t > s. Let 7 = inf{¢ : £ =0} On
the set {7 = oo} where £ survives forever we take EEO} = £ for t > s. On the set
{7 < 0o} we may define {EEO} : t > s} in any way we like, provided that the conditional
distribution of {Efo} .t > s} given {T < oo} is the same as the conditional distribution
of {£% . ¢ > 5} given {7 = oo}. Obviously the process (2 . ¢ > 0} is distributed as
{52[0}',,.{0} = oo} as the notation suggests. Moreover, our construction implies that for
an appropriate constant C' > 0,

PED £ for some t20) < S PE” = AP(r <)
AZD
]P(ﬁ{o} =A A 1-{0} =] oo) A
= * P <

1
0= o0)

IA

]P(.fio} = A)IP(TA < 00)
P(r g;a
P(s < 7% < 00)

< t _—t8
Pr@ o) SO °

because &{o} is supercritical and (1.6) holds. Hence
(5.5) PE® =& forall t>0)21-Ce™
The third process is a process {&' : ¢ > s} defined by
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(5.6) g = €& for t>s

0}
Here {¢7° : t > 0} is defined by the same graphical construction as {¢°* :t>0)}and
hence

{0}

e c ftzd or
(5.7) £ CE&, forall t> s

We now show that at time s, E, = Eﬁo} contains many infected sites in the set U;.
Let

A7) = 3% ()

:!:EE"

be the number of infected sites in U; for the E{O} —process at time s. Because I~I,- -
(1 —€)sU, Theorem 1.3 and (2.6) imply that for any r > 0 and i = 1,2,..., N,

P(rO(T) < 3B (0)) = P(nP(O) < JBnZ(0) | 7 = oo)
< P(nF') < 7B (G) | 7 = 00) + Aus
1 74,55 1 za,= ) -
- . A .
P(r 0 = oo)]P(ns (Ui < 2IE"“ (T3] + Are s
< G |[7,~|5" + Ape 57"

In view of the graphical representation, ]Efszd(O) > IE¢¥(0) which is independent of s,
and hence

3 A AR RTAS )
> 2 |0io BE(0) 2 a [Tl
for some a > 0. It follows that for any r > 0,
(5.8) P (U:) < a |Tilp) < CL |Tilp" + Ape 5"

Now let {£;",£ > s} denote a contact process that starts at time s with (_EO} NT;) as
the set of infected sites. We define these processes by the same graphical construction
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as {& :t > s} and {&, : t > s}. Since the initial sets of infected sites at time s for
these three processes are ordered because

(5.9) e ZEO} NU; c _f[’} =¢ce =2%
we have
(5.10) sCgcé  foralt>s

Define 7% = inf{t: &' = 0}. In view of (5.8) and (2.7) we find that for any r > 0,
(5.11) P(r% = 00) > 1 — Are s ~ C |Uilp" — Cra™ |5

If 7% = oo, i.e. if £ survives forever, then one of the processes that starts at time s

with a single infected site at some y € EEO} N U; and is defined by the same graphical
construction, must survive forever. For this particular random y Theorem 1.3 ensures
that for any ¢ > sand r > 0,

P{e0In( e (-2 -90) = en(e-gDe-au) 1 = oo}
> 1Ay (t—8)7"

where £} is the process starting at y at time s. Because el g2, (5.10)-(5.11)
imply that unconditionally

612 Plan(wr e - 26— 9v)=en(twe -2 )]
>1—Arep (s +(t—8)")— ¢, \Uilp

However, this is true for some unknown random y € U;. We therefore need the following
lemma

Lemma 5.1 For every y € U; and e € (0,1),

(5.13) {y}®(1—¢/2)(t—-s)UD U (1—eft—s)U.

Proof. Choose a point z € U; @ (1—¢)(t—s)U. As U; C U; = U, , with z; € (1—¢)sU
and p = (¢/4)(t — s), we can write £ a3 T = Z; + (e/4)(t — s)u' + (1 — e)(t — s)v
with «,v € U. Similarly y € U; can be written as y = z; + (e/4)(t — s)u" with
u" € U. Hence z —y = (e/4)(t — s)(u' — u") + (1 — €){t — s)v. As the set U is
symmetric about the origin, v” € U implies —u" € U and in view of the fact that
Uis convex, v —u" e U U = 2U, so v —u" = 2u with v € U. It follows that
z—y = (e/2)(t—s)u+(1—e)(t—s)v € (e/2)(t—s)U(L—e€)(t—5)U = (1—¢/2)(t—5)U,
again because of the convexity of U. a8

Combining (5.12) and Lemma 5.1 we find
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Lemma 5.2 For every € € (0,1) and r > 0 there exist positive numbers A, and C.
such that for everyi=1,2,...,N and 0 < 5 < t,

(5.14) Jp{a A ((7,. & (1— )t - s)U) —¢n (ﬁ,- @ (1 -6t ~ s)U)}
21-An(s"+(—-5)T")-C, |5r:|13r

By inequality (5.5) and as e~ is of smaller order than s~" for any r > 0, we may
replace & by Efo} in (5.14) if we also replace A, by a larger constant. By (5.6) we

may also replace & by £Z°, for t > s. Combining this with (5.3), we have proved the
following theorem.

Theorem 5.1 For every € € (0,1) and r > 0 there exist positive numbers A, and A,
depending on € and (r, €) respectively, such that for s a (t — s) > A,

(5.15) JP{‘f"} n ('UT,- ® (1— )t - s)U) = €' n (fL- & (1 — )t s)U)}
> 1—A s+ (t—35)"")
fori=1,2,..N.

Now we have all the tools we need for proving Theorems 1.6 and 1.8.

Proof of Theorem 1.6 The probability that Et{o} equals £2°, on every U;@(1—¢)(t—s)U
fori=1,2,. Nisatleast 1 - NA, (s~ +(t—s)™"). With a somewhat changed value of
rand A, , thisis at least 1 — A, (s™"+5%¢—35)"") because (5.1) holds and (¢ —s) > A.,.

But if a{u} = ¢ on every U; @ (1 — €)(t - s)U, then Ej‘” =¢2 on

N N
U: @ (1 — e)(t — s)U] = (U U)e(1-e)(t—s)U .

i=] i=1

In view of (5.2) and the convexity of U this set equals

(1-esUd(1-¢€)(t—s)U=(1-eilU,

N
which proves (1.13). The proof of (1.14) is immediate because | J[U;&(1—€)(t—s)U] =
i=1

(1-€)tU, so z € (1 — €)tU implies that £ must be in T; & (1 — €)(t — s)U for some i. O

Proof of Theorem 1.8 Without loss of generality we replace f{-) by f(-) — f(n) for

a fixed n € H. The effect of this is to ensure that |f|| < ||f||. Let &, Et{O} and £, denote
the processes defined above. In this proof we write d* for d(R,, Rz).
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By (5.5) we have
(5.16) EfE™9E") - Ef(€)e(E)| < 20151 - lgle™ .

Fix € € (0,1) and r > 0. Choose s € (0,¢) with

] t—s < —

(5.17) §< 30

where ¢ is the constant in Lemma 3.1 if the L*°-ball Byg ) is replaced by the L'-ball
é{g'cg} which is obviously possible. Hence

(518) IP(H,{_S C é{o'd-/;)'}) 2 ]P(Hd‘/3c C é{o,d‘/:ﬂ}) 2 1-— Ce_(‘)’/3c)d-

where Byp 3 = {z € R® : |z| < p} denotes an L'-ball in R.

In the graphical representation we have Et(:c) = 1if a site in &, at time s is connected
to a site z at time t by a chain of infection. We now construct a process &; by defining
£:(z) for each z € Z% in the same way as &(z), but now ignoring chains of infection
passing through any site y ¢ B{:r, 4-/3} at any time in the interval [s, t]. Thus

1 if there is a chain of infection from (£, 5) to (z,t)
passing only through sites in B{g4-/3y during the
&(z) = time interval [s, ],
0 otherwise.

Thus in defining & (z) we ignore the influence of infected sites outside E’{m,d- /3} between
times s and ¢t. Let £, denote the event that all chains of infection starting at any site
in 2% at time s end ending at x at time ¢, passes only through sites in E'{z_d‘ /3y during
the time interval [s,t]. Reversing time and the direction of the infection arrows, the
self-duality of the graphical construction yields

PE) > PR <t-s)+PE@ >t-s5, | &7 C Buarm)

0<u<t—s
= 1-PEr >t-s, | €2 ¢ Brasy)
0<u<t—s
> 1-P( U & ¢ Boes)
0<u<t—s

2z I IP(Ht—s ¢ é{z,d‘/s}) > 1- Ce—('nyc)d'
by (5.18). Obviously, £;(z) = &(z) on &, and hence
(5.19) P (z) = &(z) 21— Ce B3 forallze z¢ .
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As f € Dg, and g € Dpg,, it follows from (2.1) that

[B£(E)9(E) - B£€)o(€D)
< ol |7 - £(60)| + 171 E|s@) - o(6))
<lol T 840) PE@) # 6@) + 11 T Ayfa) PE() # €(@)

€M zER,

and by (5.19}

620 [BfE)9E) ~BAE)oEn] < (I91- 171 +151- Nol) et/

For the £* -process, chains of infection determining £ N Ry and £ N R, pass only
through sites in R, & B{o a3} and Ry @ B{g =3} durlng [s,t]. Because d(Ry, Rp) = d*,
these sets of sites are disjoint. This implies that given &,, the random sets & NRy and
£ N Ry are conditionally independent because they depend on two disjoint subsets of a
collection of independent Poisson processes. As f € Dg, and g € Dpg,, we have shown
that

(5.21) Elf(€)9(€)IE] = BIFEIELEGEE] -
Continuing with the right-hand side of (5.21), we may write
B(El/(€)E)EE)E) = E(EEE - Elo€)E])
+ B(E(f(E) - FEIE] . Elo(€)I&])

Because ¢, is clearly independent of z}'; = éo}’ the first term on the right equals

Ef(&)E(Eg(E)IE) = Bf(E) Eg(E)) |

and the second term is bounded in absolute value by

<lal X As(e) P& () # &(2))

zER;

I9lE|£(€7) - £(£)

< Igl - RA(Cet7 4 0™ 4 A (57 + (= 5)7))
by (5.19), (5.5), (5.6), (1.14) and because R; C (1 —¢)tU. Note that by (5.17) we may

absorb the first two remainder terms in the third one with A, . replaced by a larger
AL .. Combining all of this with (5.21) we obtain

(5.22) [Ef(&)9(€) — Ef (&) Eg(E})

SAre-lgh- AN+ (E—5)7")

30



Again by (5.6) and (1.14) and the fact that Ry € (1 — €)tU,

< ArelFUs™ 4+ (E—8)7)

[Es) - BAE™)
and by (5.19) and (5.5),
[Eoter) - Eg(€l™)] < ol (Ceo + ce)
It follows that

|IEf(€§)IEg(€3‘) ~EBfEMEeE™)| <

(5.23)
A 1AMl + (6= 9)77) + 171 Igl (Cem0r 4 o)

Combining (5.16), (5.20), (5.22) and (5.23) we find after some simplification of
remainder terms

cov(FE™), 9@™)| < At U1 UFN- (7 + (= 9)7) +
C"- 11 Rgl(e 9 &)

It remains to choose s € (0,t) subject to t — s < d*/3c as required by (5.17). Taking

t—s t
— = — A =
3¢ 2

and writing d(R,, Rp) for d* again, we obtain

cov(FE), 9@E™)| < AL 17K Lol (@R, Re) 1) +

(5.24)
A-1f] - lgll emotdRiR 2O

for appropriate positive Ay, A and . We may simplify (5.24) further by replacing

|1 and |g| by §f} and fig]l to arrive at

cov(£E™), 9@™)| < 4 171 -Noll (@R Ba) n 1)

which is the statement of Theorem 1.8. [
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