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Abstract

Birnbaum (1948) introduced the notion of peakedness about @ of a random variable T, defined
by P(|T - 8| < €), € > 0. What seems to be not well-known is that, for a consistent estimator
T, of 6, its peakedness does not necessarily converge to 1 monotonically in n. In this article
some known results on how the peakedness of the sample mean behaves as a function of »
are recalled. Also, new results concerning the peakedness of the median and the interquartile
range are presented.

1 Introduction

Suppose X, ..., X, are a sample from a distribution with finite variance and one wants
to estimate ¢ = £X; based on (Xi,...,X.). Then it is, of course, well-known that
X, = (X7 Xi)/n is a consistent estimator of y, i.e., for all € > 0,

px, () = P(|Xn —p| <€) =1 asn— oo. (1.1)

What seems to be less well-known and is seldom, if ever, mentioned when the subject
of consistency is discussed in a course, is that pg, (¢) does not necessarily converge to
one monotonically in n. Thus, judging the accuracy of X,, by pg_(€), € > 0, a larger n
might give a worse estimator.

In this article we first recall in Section 2 some known results on how pg_ (¢) behaves as
a function of n. Then, in Section 3, we present new results on this question for the case
where the median or the midrange are used to estimate the median or the mean of X.
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2 Results for X,, and some generalizations

Birnbaum (1948) calls
pre)=P(IT -0l <e) e>0

the peakedness (with respect to ) of T and calls T more peaked than § when pr(e) >
ps(e) for all € > 0. He proves several properties of the peakedness and gives, e.g.,
conditions under which, for the same 6 and the same sample size, one of two sample
means is more peaked than the other.

Proschan (1965) gives several results on the behaviour of pr, (¢) as a function of n where
T, is a convex combination of X;,..., X, a sample from a distribution F'. He supposes
that F' has a density which is symmetric with respect to 8 and is logconcave on the
support of F. In particular, Proschan shows that for such a distribution pg () is, for
each £ > 0, strictly increasing in n (i.e., of course, for those ¢ > 0 which are in the
interior of the support of X; — 8).

Proschan also gives an example where pgz, _(€) is not increasing in n. In fact, he gives a
distribution for which X, is more peaked about 0 than (X; + X;)/2. This distribution
is the convolution of a distribution with a symmetric (about zero) logconcave density
and a Cauchy distribution with median zero. Then, for ¢ strictly increasing and convex
on (0,00) with ¢(z) = ¢(—z) for all z, #(X,) is more peaked with respect to zero than
(#(X1) + d(X3))/2. Of course, for this case X, does not converge to zero in probability,
so the result might not be too surprising. However, Dharmadhikari and Joag-Dev (1988,
p. 171-172) show that, e.g., for the density

f(e) = 3Tel < 1)+ {1 < 2l <),

X1 is more peaked with respect to zero than (X; + X>)/2. And for this distribution
(1.1) clearly holds.

The results of Proschan (1965) have been extended to the multivariate case by Olkin
and Tong (1987) (see also Dharmadhikari and Joag-Dev (1988, Theorem 7.11)).

3 The case of the median and the midrange

Assume that X;,..., X, is a sample from a distribution function with a density and
that n is odd. Let M, be the median of Xi,..., X, let M = [m;,ms] be the set of
medians of the distribution of X; and let F' be the distribution function of X,. Then
the following theorem holds.

Theorem 3.1 Under the above conditions, the peakedness of M, — m is, for m € M
and € > 0 such that % < F(m +¢) < 1, strictly increasing in n.



Proof. Assume without loss of generality that m = 0. First note that, for z € (—o00, 00),

(n—1)/2 . . 1 Flz) ,_,
P(M, = (n)F 1—-F = (1 — ) .
(M, > x) i§=0: ; (=) () 5 (H;I’nzll) /0 T (1—t)°T dt

So, as a function of y = F(z),0 <y < 1,

d yz (1—y)s
—P(M, >z)=— .
&y ( ) =

Putting Q.(y) = P(M, > &) — P(M,2 > z), this gives

2! . ! e .
flhrc) -yt ~ T (1-y)T

ey R

d
@Qn(m)

= -7 (e -0 - () ).

()’

This last expression is, for 0 < y < 1, > 0,=0, < 0 if and only if

>
_ 2 B n+l1 1 s l 2 )
which is equivalent to
<
1 1
|y‘§’{§}°=§vm+”‘-

So, Qa(y) is increasing on (3 — ¢, } + ¢) and decreasing on (0, — ¢) and on (% + ¢, 1).
Combining this with the fact that, for all n,

1 fory=0
P(M,>z)={ 1 fory=1
0 fory=1,

shows that

>0 for z such that 1 < F(z) <1
P(M, > z) — P(My42 > )
<0 for z such that 0 < F(z) < 3,
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which proves the result. O

Note, from Theorem 3.1, that the conditions on F for the median to have increasing
peakedness in n are much weaker than those for the mean. All one needs for the median
is a density, while for the mean a logconcave symmetric density is needed in the proofs.

But in order for the median to be a consistent estimator of the population median, the
condition f(F~1(3)) > 0 is needed.

Now take the case of a sample X;,..., X, from a uniform distribution on the interval
[0 — 1,60 + 1] and let S, be the midrange of this sample, i.e.

S, = 1 (mm)& +ma,xX)

2 1<i<n

Then the following theorem holds.

Theorem 3.2 The peakedness of S, with respect to 0 is sirictly increasing in n for
n > 2 and each € € (0,1).

Proof. Suppose, without loss of generality, that § = 0. Then the joint density of
min<i<» ¥; and maxi<icn i at (z,y) is, for n > 2, given by

M Dy —apr —1<z<y<t
So, for -1 <t <0,

(1+1t)"
2

— t 2-x
P(m1nY+ma.xY;<2t)=M/1dm/ (y — )" dy =

1<i<n 1<i<n 2n
and, for 0 <t <1,

1-1¢)"
P(mmY+ma.xY<2t)—1-P(mmY+maxY,§ 2)=1—u

1<i<n <isn <ikn 2 }

which gives, for |¢] < 1,
P15, <t)=1-(1-1%)",

from which the results follows immediately. O

Remark

Note that, in quoting Proschan’s (1965) results, we ask for the distribution function F
to have a density f which is logconcave on the support of F, while Proschan asks for

this density to be a Pdlya frequency function of order 2 (PF,). However, it was shown
by Schoenberg (1951) that

fis PFy <= f is logconcave on the support of F',
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so the two conditions are equivalent.
Further note that Ibragimov (1956) showed that, for a distribution function F with a
density f,

f is strongly unimodal <= f is logconcave on the support of F,

where a density is strictly unimodal if its convolution with all unimodal densities is
unimodal. So, the condition of logconcavity of f can also be replaced by the condition
of its strict unimodality. For more results on Pdlya frequency functions see e.g. Marshall
and Olkin (1979, Chapter 18) and Karlin (1968).
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