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Abstract

We introduce a suite of S-Plus functions and C code in order to perform a wavelet analysis of
covariance and correlation between two time series. The necessary functions are described and
used to analyze the recorded height of ocean waves measured by two different instruments in
Cape Henry near Virginia Beach, Virginia. The bivariate spectral analysis of Percival (1994) is
also provided in order to compare and contrast the wavelet methodology with classical Fourier
techniques.
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1 Introduction

The wavelet transform has been used extensively in the various fields of Statistics, such as, non-
parametric regression, classification, and time series analysis. With respect to the latter field, the
emphasis has been mostly on univariate time series. The discrete wavelet transform (DWT) was
introduced by Lindsay, Percival, and Rothrock (1996) in order to analyze bivariate time series and
expanded upon in Whitcher (1998). Several software routines were developed while working on my
thesis and are provided here so that other researchers may easily implement a wavelet analysis of
covariance for bivariate time series.

Two example data sets are used to illustrate the implementation of these routines and were
taken from Percival (1994). They are available over the World Wide Web at

http://1lib.stat.cmu.edu/datasets/saubts
or through the WaveCov software package at
http://1ib.stat.cmu.edu/S/wavecov

After downloading the software, follow the instructions on unpacking it as given in the shar archive.
First, the C code must be compiled and included as a shared library into S-Plus. This is done using
the following commands:

## Code to make a shared library in S-PLUS Version 3.4 Release 1 for
## Silicon Graphics Iris, IRIX 5.3 : 1996

ISHLIB -o Sdwt.so Sdwt.c

progs _ c("dwt", "idwt", "modwt", "imodwt")
dyn.load.shared("./Sdwt.sc", symbols=symbol.C(progs))

The compilation of the shared library need only be performed once, but the inclusion of the shared
library using dyn.load.shared() must be performed each time an S-Plus session is instigated
(although one may include this line in the .First () function).

The two series, of length N = 4096, are displayed in Figure 1 and are a recorded measurement
of the height of ocean waves as a function of time by two different instruments. One instrument
was a wire wave gauge, while the other was an infrared wave gauge. The sampling frequency for
both instruments was 30 samples per second, so the sampling period is At = 1/30 second.

2 Analysis of Variance

2.1 Spectral Techniques

Before performing a bivariate analysis, either spectral or wavelet, let us first look at each time series
individually. The usual quantity to measure the variance of a time series is the spectral density
function, as estimated by the periodogram (Percival and Walden 1993, Ch. 6). Suppose the time

series X;, t =1,..., N, is a realization of a portion of a zero mean stationary process with sdf S{-)

and autocovariance sequence {s;}. Let {§£-p )} — §)(.), where 3% is the usual biased estimator

of the autocovariance sequence; i.e.,
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Figure 1: Plot of height of ocean waves versus time as measured by a wire wave gauge and an
infrared wave gauge. Both series were collected at a rate of 30 samples per second. There are
N = 4096 values in each serijes.

and 3% = 0 for [7] > N. The method of moments spectral estimator is the periodogram
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The periodogram has its share of problems, so it may be more appropriate to use an alternative to
the periodogram, such as a multitaper spectral estimator
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where {hex |t =1,..., N}, k ranges from 0 to K — 1, is a set of K orthonormal data tapers; i.e.,
>N, hejhep =1 1f j =kand 0if j # k. Examples of common data tapers are the sine tapers
(Riedel and Sidorenko 1995) and discrete prolate spheroidal sequences (dpss) data tapers (Slepian
1978; Thomson 1982; Percival and Walden 1993, Ch. 8). Sine tapers were designed to minimize
the spectral window bias and can be approximated well using the following closed form expression

1
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In contrast, the dpss data tapers minimize the spectral window sidelobes, using a resolution band-
width parameter W, and must be calculated using techniques such as inverse iteration, numerical
integration or a tridiagonal formulation (Percival and Walden 1993, Ch. 8). The role of any data ta-
per is to protect against leakage, and all the sine tapers provide moderate leakage protection where
the dpss data tapers offer adjustable leakage protection throngh the parameter W. In practice
there is little difference in the multitaper spectral estimators when using either data taper. Fig-
ure 2 shows the multitaper spectral estimates for the wire and infrared wave gauges using 6 dpss
data tapers (NW = 4).
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Figure 2: Multitaper spectral estimate S gimt )( -} for the wire (solid line) and infrared (dotted line)
wave gauges based upon 6 dpss data tapers.

2.2 Wavelet Techniques

It has been shown that the wavelet variance v%(};) can decompose the variance of a time series
on a scale by scale basis, instead of the frequency by frequency basis used the spectrum (Percival
1995). The wavelet variance is defined to be the variance of the wavelet coefficients associated with
scale A; = 27~1. This is equivalent to the expected value of the squared wavelet coefficients, since
they are assumed to have zero mean (this is assured if the number of vanishing moments for the
wavelet filter is chosen to be large enough). The DWT coefficients of Xj,..., Xy are denoted by
W}f) for j =1,...,J and t = 1,...,N/2/. The wavelet variance is estimated using the DWT
coefficients for scale A; = 2771 via
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where ﬁj = N/¥ — L} and L} = [(L - 2)(1 - 277)]. Constructing an estimator of the wavelet
variance using a variation of the DWT, the maximal overlap DWT (MODWT), has been shown
to be superior to that of the DWT-based estimator (Percival 1995). The MODWT coefficients of

X1,...,Xn are denoted by W;f) forj=1,...,Jandt=1,...,N. The wavelet variance estimated
by the MODWT coefficients for scale A; is given by

A0 =+ 5 iz

Nj =1,

where ]V_,- = N -L; and Lj = (27 — 1)(L — 1). Figure 3 gives the MODWT estimator of wavelet
variance for the wire and infrared wave gauges using the Daubechies extremal phase wavelet filter
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of length L = 4 (Daubechies 1992, Ch. 6). We will denote this wavelet filter by D(4) from now on.
It was computed in S-Plus by first obtaining the MODWT coefficients of each time series, applying
“brick wall” boundary conditions, and then applying the wavelet variance estimating procedure:

## Compute the MODWT for each series using the D(4) wavelet filter
wire.modwt.d4 _ modwt{wire, wavelet = "d4", n.levels = 9)
ir.modwt.d4 _ modwt(ir, wavelet = "d4", n.levels = 9)

## Impose "brick wall" boundary conditions
wire.modwt.d4.bw _ modwt.brick.wall(wire.modwt.d4, wavelet = "d4", N = 4096)
ir.modwt.d4.bw _ modwt.brick.wall{ir.modwt.d4, wavelet = "da", N = 4096)

## Compute the wavelet variance for each series
wire.modwt.d4.var _ wave.var(wire.modwt.d4.bw)
ir.modwt.d4.var _ wave.var(ir.modwt.d4.bw)

A special plotting routine plot.var() was used to produce this particular figure (its usage can
be found in the S-Plus code provided). Notice that the infrared wave gauge exhibits significantly
greater wavelet variance for the first four scales, associated with changes of 1/30, 2/30, 4/30, and
8/30 second.

Estimated Wavelet Variance (D(4) MODWT)
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Figure 3: MODWT estimator of the wavelet variance 7%();) using a D(4) wavelet filter. The
shaded bars give approximate 95% confidence intervals on the estimates. The x-axis is plotted
in decreasing frequencies so that scales associated with high-frequency are at the left and scales
associated with low frequency (f — 0) are at the right.



3 Analysis of Covariance

3.1 Spectral Techniques

The following material closely follows an introduction to bivariate spectral analysis in Percival
(1994), and is a natural extension of univariate topics found in Percival and Walden (1993) using
similar notation. A more thorough introduction to multivariate spectral analysis can be found in,
for example, Koopmans (1974), Priestley (1981) and Brillinger (1981).

Let X;,Y;, t=1,..., N, be a realization of a portion of a zero mean stationary process {X;, Y;}
with cross spectrum Sxy(-) and autospectra Sx (-} and Sy (-}, respectively. Just as the periodogram
was used in the univariate case (Section 2), the cross periodogram

N=-1
()?2, (f) = z CT,Xye—';Z'JrfT

r=—(N-1)

is utilized here to estimate the cross spectrum. The sample cross covariance sequence is defined to
be
Crxy = XiYeys,
t

where the summation goes from¢t=1to N—7forr > 0and fromf=1—7to N for r < 0. The
cross periodogram can also be written in a more computationally friendly form as

N * ¢ N
(p) L(f) = (Z X, e—i21rft) (Z Y, e—i27rft) ,
t=1 t=1

where the asterisk denotes complex conjugation.
The multitaper estimator of the cross spectrum is given by

N * /N
(mt}(f) 7 (z hk'tXte—dxft) (Z: hk,tne—ﬂrﬂ) ,

t=1 t=1

where {hy .} is the kth-order data taper for a sequence of length N normalized such that 3 h , =
1, £k =1,...,K (cf. Section 2). Thus, the multitaper estimators for the phase spectrum and
magnitude squared coherence are given by

E) gm) (mt) 55|
V() =arg {350(N)} and |32 = R

respectively. The phase spectrum dn)_(,:f;i)() takes on values between —7 and 7 and, hence, is modulo
2m. This can lead to discontinuities around 7. Priestley (1981, p. 709) describes a method to avoid
these discontinuities - by simultaneously plotting the original estimate and translated versions of
it.

3.2 Wavelet Covariance and Cross-covariance

Let X; and Y;, £ = 1,..., N be defined as before. For N > L;, we can define an unbiased estimator
Fxy(A;) of the wavelet covariance based upon the MODWT via

N
. _ X))
'YXY(’\J:]_V";; () ( s
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Figure 4: The estimated msc |1b‘(,?;f)(-)| and estimated phase spectrum :fa(;;ﬁ)(-) versus frequency

(0 < f £ 1 Hz) between the wire and infrared wave gauges using 6 dpss data tapers. The two
vertical lines are at f = 0.04 Hz and f = 0.34 Hz, a frequency band of interest in Percival (1994).
The phase spectrum is plotted using Priestley’s recommendation.

Note, the estimator does not include any coefficients that make explicit use of the periodic boundary
conditions. We can construct a biased estimator of the wavelet covariance by simply including the
MODWT wavelet coefficients affected by the boundary and renormalizing.

If we are strictly interested in Gaussian processes, we can re-express the variance of the wavelet
covariance (see Whitcher (1998) for details) by

V.
Vi A A ~ TJ,

a-r{'YXY( J)} Nj

for large N;, where

1 1

2 2

vi= [ SixNsiv () df + [ Sav (D) &, (1)

-3 -3

This will allow us to easily construct approximate confidence intervals for the MODWT estimator of
the wavelet covariance. For non-Gaussian processes, Serroukh and Walden (1998) use a multitaper
spectral estimator at frequency zero of the product of the two processes S; xy(0) to obtain V;.

Figure 5 shows the MODWT estimator of wavelet covariance between the wire and infrared
wave gauges. They were computed using the previously obtained MODWT coefficients with “brick
wall” boundary conditions:

## Compute MODWT estimator of wavelet covariance
wire.ir.modwt.d4.cov _ wave.cov{wire.modwt.d4.bw, ir.modwt.d2.bw)

A special plotting routine plot.cov() was used to produce the fizure. The two signals are virtually
unrelated for small scales (high frequencies) and become highly associated for scales of 16/30 to
128/30 seconds. This corresponds with the results from the analysis of wavelet variance.



Estimated Wavelet Covariance (D(4) MODWT)
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Figure 5: MODWT estimators of wavelet covariance xy(A;) for the wire and infrared wave gauges
with approximate 95% confidence intervals.

Estimation of the wavelet cross-covariance follows directly from the biased estimator of the
usual cross-covariance (Priestley 1981, pp. 692-693). For N > L;, we can define a biased estimator
Fr.xv (A;) of the wavelet covariance based upon the MODWT via

NI FOTD,,  r=0. -1

It Jit+r
;FT!XY(AJ-)E }%Zt— Lj—= W(X)Wj'(r'l)'f’ T= —'1,..-,_(Nj - 1);
0, otherwise.

The bias is due to the denominator 1 /ﬁj remaining constant for all lags. We are still not using
wavelet coefficients which make use of the periodic boundary conditions.

The formula for an approximate 100(1 — 2p)% confidence interval of the MODWT estimator
of the wavelet covariance was established (although incorrectly, as previously noted in Serroukh
and Walden (1998)) in Lindsay, Percival, and Rothrock (1996). First, the periodogram and cross-
periodogram are used to produce estimators of the univariate and bivariate spectra given in Equa-
tion (1). Next, define the biased estimator of the autocovariance sequence associated with the scale
A; MODWT wavelet coefficients of {X;} by

(m 1 S (X) T (X)
sfr.x= Wie Wik

with a similar definition for {s(P ) v}- The corresponding biased estimator of the cross covariance
sequence associated with the 5cale Aj MODWT wavelet coefficients of {X,,Y;} by

Alp) . 1 X))
C.S:p‘r!XY = N WJ(| )W.T(!t"'f’
A 4
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where the summation goes from ¢t = L; — 1 to N~1 -7 for 7 > 0 and from ¢ = Li-1-7to
N -1 for 7 < 0. We appeal to Parseval’s relation to obtain an estimator for V; that uses only the
autocovariance and cross-covariance sequences instead of the autospectra and cross spectrum; i.e.

y “(pﬂ)xg(po)v S o 1 R e
v, = 20X0Y Z Exiivts T [C]
7=1 T-—(ﬁj—l)

The estimator 173- is unbiased when the periodogram is used to estimate the spectra (Whitcher 1998).
Under the assumption that the spectral estimates are close to the true values, an approximate
100(1 — 2p)% confidence interval for yxy(};) is

lil YV,
Ixy (A;) — d~1(1 - =2 Ay + 371 - 2L,
Fxy (A5) (1-p) 7, Ixy(A;) (1-p) 7,

where ®~(p) is the p x 100% percentage point for the standard normal distribution.

Estimated Wavelet Correlation (D(4) MODWT)
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Figure 6: MODWT estimators of wavelet correlation sxy();) for the wire and infrared wave gauges
with approximate 95% confidence intervals using Fisher’s z-transformation.

3.3 Wavelet Correlation and Cross-correlation

Given the covariance doesn’t take into account the variation of the univariate time series, a natural
next-step is to introduce the concept of wavelet correlation. As with the usual estimator for
correlation in time series, the wavelet correlation is simply made up of the wavelet covariance for
{X:,Y;} and wavelet variances for {X:} and {Y;}, the MODWT estimator of the wavelet cross-
correlation is simply )

. _  rxv(X;

pT,XY(AJ) = Dx()\j)ﬁY(Aj) r
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where 4, xy(A;) is the wavelet covariance, and #%(A;) and 52 ();) are the wavelet variances. When
7 = 0 we obtain the MODWT estimator of the wavelet correlation between {X;,Y:}.

Given the non-normality of the correlation coefficient for small sample sizes, a nonlinear trans-
formation is sometimes required — Fisher’s z-transformation (Fisher 1915; Kotz, Johnson, and Read
1982, Volume 3). Let

1 1+p) -1
E _l — —_—
h(p) = 7 log (1 s = tanh™ " (p)

define the transformation. For the estimated correlation coefficient p, based on n independent
samples, v/n — 3(h(5) —~ h(p)) has approximately a N(0,1) distribution.
An approximate 100(1 — 2p)% confidence interval for pxy(A;) based on the MODWT is given

by

N;—3 \/ﬁj—:}

where N; = N; — L and L; = [(L-2)(1 - 277)] is the number of DWT wavelet coefficients
associated with scale ;. Note that we are using the number of wavelet coefficients as if the point
estimates has been computed using the DWT. This is because, under the assumptions of Fisher’s
z-transformation, the denominator should consist of the number of independent samples used in
constructing the correlation coefficient. Since we are using the MODWT wavelet coefficients this
assumption is clearly violated. If the DWT wavelet coefficients were utilized instead, then we could
reasonably assume independence of the wavelet coefficients within each scale.

Figure 6 gives the MODWT estimator of wavelet correlation (lag 0) between the wire and
infrared wave gauges. The approximate 95% confidence intervals were computed using Fisher’s
z-transformation. This is implemented using the following line of S-Plus code:

wire.ir.modwt.d4.cor _ wave.cor{wire.modwt.d4.bw, ir.modwt.d4.bw, N = 4096)

We now see a much more informative picture of the association between the two wave gauges. The
first scale (1/30 second) now exhibits significant negative correlation, while scales from 16/30 second
on exhibit significant positive correlations. Scales of 64/30 and 128/30 second show the highest
amount of association, as with Figure 5, but the confidence intervals are significantly decreased
given the amount of variability in the estimated wavelet variances. Because of the non-linear
transform, these confidence intervals need not be symimetric.

Figure 7 gives the MODWT estimator of wavelet cross-correlation (+1024 lags) between the
wire and infrared wave gauges. The following S-Plus code establishes a maximum number of lags
to be estimated, then a for-loop is initiated for scales j = 1,...,9 using spin.cor() (the final two
lines makes the output into a nice data frame with appropriate names):

Imax _ 1024; J _ 9

wire.ir.cross.cor _ NULL

for(i in 1:J) {
blah _ spin.cor(as.data.frame(wire.modwt.d4.bw}[,i],

as.data.frame(ir.modwt.d4.bw) [,i], lmax)

wire.ir.cross.cor _ cbind(wire.ir.cross.cor, blah)

}

wire.ir.cross.cor _ as.data.frame(wire.ir.cross.cor)

names(wire.ir.cross.cor) _ paste("d", 1:J, sep="")

The figure was plotted using stack.plot() (a standard function provided with S+WAVELETS)
with the option same.scale=T so that all plots are put on the same y-axis. From the plot of wavelet
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Estimated Wavelet Cross-Correlation (D(4) MODWT)
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Figure 7: MODWT estimator of wavelet cross-correlation Pxy(A;) between the wire and infrared
wave gauges.

correlation, the wavelet cross-correlation for scales 2/30, 4/30 and 8/30 second (d1,d2,d3 in the
figure} show little association. The first scale (1/30 second) contains a burst of non-zero coefficients
at small positive and negative lags and then symmetric bursts around :£11 seconds. This is not
visible through bivariate spectral analysis. For higher scales, the wavelet cross-correlation is an
approximately even function with the exception of scale \g.

Percival (1994) used the estimated phase spectrum to determine a delay between the two wave
gauges of approximately —5/30 seconds. The likely reason for this was that the wave gauges were
6 meters apart and the prevalent direction of the waves being approximately perpendicular to a
line drawn between the two gauges. The appropriate scale(s) of wavelet coefficients is Ay and Ag
which correspond with pass-bands 0.12 SfZ£023and0.6< f<0.12 Hz, respectively. The lags
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4 Conclusions

We have introduced a suite of wavelet estimators for the variance, covariance, and correlation for
bivariate time series. Approximate confidence intervals are also provided for all three types of
estimator. Some S+ WAVELETS functions are utilized in order to expedite computations and also
display some of the results. These functions will hopefully allow researchers in any field to more
easily analyze time series using wavelets.

This research was performed while the author was a graduate student at the University of
Washington, Department of Statistics, under the supervision of Peter Guttorp and Donald B.
Percival.
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