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0
Heavy—Tailed Distributions

There is no unique definition of a heavy—tailed distribution and there cannot exist
a universal notion of heavy-tailedness. Indeed, this notion only makes sense in the
context of the model we consider. What we usually expect when we talk about
“heavy—tailed phenomena” is some kind of different qualitative behaviour of the
underlying model, i.e. some deviation from the “normal behaviour”, which is caused
by the extremes of the sample.

For example, the central limit theorem for iid sums with Gaussian limit distri-
bution holds for an enormous variety of distribution: all we need is a finite variance
of the summands. A deviation from the central limit theorem can occur only if the
variance of the summands is infinite. For a long time, this kind of distribution has
been considered as exceptionally strange although infinite variance stable distribu-
tions, as the only limit distributions for sums of iid random variables apart from the
normal distribution, have been intensively studied for decades. Only in the last few
years infinite variance variables have been accepted as realistic models for various
phenomena: the magnitude of earthquake aftershocks, the lengths of transmitted
files, on and off periods of computers, the claim sizes in catastrophe insurance, and
many others.

In these notes, we are mainly interested in maxima and sums of iid random
variables and in related models of insurance mathematics. I have chosen the latter
field of application because of my personal interests; alternatively one could have
taken renewal theory, branching, queuing where one often faces the same problems
and, up to a change of notation, sometimes even uses the same models. In the
context mentioned, heavy-tailed distributions are roughly those whose tails decay
to zero slower than at an expontial rate. The exponential distribution is usually
considered as the borderline between heavy and light tails. In the following two
tables we contrast “light—" and “heavy—tailed” distributions which are important
for applications.

Two classes of heavy—tailed distribution have been most successful: the distri-
butions with regularly varying tails and the subexponential distributions. One of
the aims of these notes is to explain why these classes are “natural” in the context
of sums and extremes of iid and weakly dependent random variables. I did not
have enough time to include a section about the weak convergence of point pro-
cesses generated from heavy—tailed distribution although point process techniques
are extremely valuable for heavy—tailed modelling, in particular, in the presence
of dependence in the underlying point sequence. Point process techniques allow
one to handle not only the extremes of dependent sequences but also functionals
of sum—type of dependent stationary sequences, including the sample mean, the
sample autocovariances and sample autocorrelalions. Fortunately, monographs like
Leadbetter, Lindgren and Rootzén [66], Resnick [100] or Falk, Hiisler and Reiss [38]
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treat the convergence of point processes in the context of the extreme value theory
for dependent sequences. The exciting theory for sum—type functionals such as the
sample autocovariances and sample autocorrelations for depedent non-linear sta-
tionary sequences with regularly varying finite-dimensional distributions has been
treated quite recently in various papers. To name a few: Davis and Hsing [23],
Davis and Resnick [26], Davis and Mikosch [24], Davis et al. [25]; see also the
recent survey by Resnick [101].

These notes were written for the Workshop “Heavy tails and queues” held at the
EURANDOM Institute in Eindhoven in April 1999. Parts of the text were adapted
from the corresponding chapters in Embrechts, Kliippelberg and Mikosch [34] and
cannot replace the complexity of the latter monograph. Other parts of the notes
were adapted from recent publications with various of my coauthors, in particular,
with B. Basrak, M. Braverman, R.A. Davis, A.V. Nagaev, G. Samorodnitsky, A.
Stegeman and C. Starica; see the list of references.

Groningen, April 1999



Name Tail F =1 — F or density f | Parameters
Exponential F(z)=e\® A>0
Gamma, f(z) = il zo e P a, >0
I(c)
Weibull F(z)=e c>0,7>1
Truncated normal | f(z) = /2 e=v"/2 —
Any distribution with bounded support
Table 0.0.1 “Light—tailed” distributions.
Name Tail F or density f Parameters
1 2 2
Lognormal z) = ——eInz=w)7/(207) ER, o0>0
g fl@) = 70— I
(e
Pareto F(z) = ( r ) a, k>0
K+
— K &
Burr F(z) = ( ) a,k,7>0
K+ x7

Benktander- | F(z) = (1 +2(8/a)Inz) a,f>0
typefI e—ﬁ(ln z)?—(a+1)Inz
Benktander— | F(z) = e®/Pg=(1=F)e—a 2?/8 a>0
type-1I 0<p<l
Weibull F(z) =e™c* c>0

0<r<l1
Loggamma flz) = o (Inz)P~tg=o-t a,f>0

ING) ’

Truncated F(z) = P(|X| > 2) l<a<?2
a—stable where X is a—stable

Table 0.0.2 “Heavy—tailed” distributions.
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1

Regular Variation

1.1 Definition

In various fields of applied mathematics we observe power law behaviour. Power
laws usually occur in perturbed form. To describe the deviation from pure power
laws, the notion of regular variation was introduced.

Definition 1.1.1 (Karamata [60]) A positive measurable function f is called reg-
ularly varying (at infinity) with index o € R if

e It is defined on some neighbourhood [xo,00) of infinity.

lim f(tz)
T @)

=t forallt>0. (1.1)

If a =0, f is said to be slowly varying (at infinity).

Remark 1.1.2 The definition of regular variation can be relaxed in various ways.
For example, it suffices to require that the limit in (1.1) exists, is positive and finite
for all t > 0. Then the limiting function x satisfies the relation x(ts) = x(t)x(s)
which implies that y is a power function.

Remark 1.1.3 It is easy to see that every regularly varying function f of index «
has representation

fl2) = 2 L(z),

where L is some slowly varying function.

Remark 1.1.4 Regular variation of a function f can also be defined at any point
zo € R by requiring that f(zo —2z~!) is regularly varying at infinity. In what follows
we usually deal with regular variation at infinity.

Remark 1.1.5 An encyclopaedic treatment of regular variation can be found in
Bingham, Goldie and Teugels [6]. A useful survey of regular variation is given in
Seneta [105]. There exist various other books which contain surveys on regularly
varying functions and their properties; see for example Feller [39], Ibragimov and
Linnik [58], Resnick [100], Embrechts, Kliippelberg and Mikosch [34].
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Example 1.1.6 Typical examples of slowly varying functions are positive constants
or functions converging to a positive constant, logarithms and iterated logarithms.
For instance for all real a the functions

z,z%n(1 +z), (zln(1 4+ z))*, z%In(ln(e + z))
are regularly varying at oo with index a. The following examples are not regularly

varying

2 +sing, eln0+a)l

where [-] stands for integer part. In Theorem 1.2.1 below we give a general represen-
tation of regularly varying functions. It is perhaps interesting to note that a slowly
varying function L may exhibit infinite oscillation in that it can happen that

liminf L(z) =0 and limsupL(z) = co.

Z—00 T—00

An example is given by

L(z) = exp {(ln(l + z))'/? cos ((ln(l + w))l/z)} i

1.2 Basic Properties

In this section we collect some of the most important properties of regularly varying
functions.

Theorem 1.2.1 (Representation theorem)
A positive measurable function L on [zg,00) is slowly varying if and only if it can

be written in the form
L(z) = c(z) exp {/ # dy} , (1.2)

where c(-) is a measurable non—negative function such that lim, , c(x) = ¢y €
(0,00) and e(z) = 0 as x — oo.

Remark 1.2.2 From the representation theorem it is clear that a regularly varying
function f with index « has representation

o) =atewyenn | [ Wy}

where ¢(-) and &(-) are as above.

Remark 1.2.3 From the representation theorem we may conclude that for regu-
larly varying f with index a # 0, as z — o0,

oo if a>0,

) —
1) { 0 if a<0.
Moreover, if L is slowly varying then for every ¢ > 0

x °L(z) -0 and z°L(xz) > oo asz — oo.

The latter property gives some intuitive meaning to the notion of “slow variation”.
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An important result is the fact that convergence in (1.1) is uniform on each compact
subset of (0, 00).

Theorem 1.2.4 (Uniform convergence theorem for regularly varying functions)
If f is regularly varying with index « (in the case a > 0, assuming f bounded on
each interval (0,z], © > 0), then for 0 < a < b < oo,

lim f(tz)
N )
(a) on each [a,b] if « =0,

=1t%, uniformly int

(b) on each (0,b] if @ > 0,
(¢) on each [a,00) if a < 0. O
In what follows, for any positive functions f and g,
f(z) ~g(z) asz— x4

means that
lim —= =1.
v—a1 g(z)

In applications the following question is of importance. Suppose f is regularly
varying with index a. Can one find a smooth regularly varying function f; with the
same index so that f(z) ~ fi(x) as © — co? In the representation (1.2) we have
a certain flexibility in constructing the functions ¢ and €. By taking the function ¢
for instance constant, we already have a (partial) positive answer to the above
question. Much more can however be obtained as can be seen from the following
result by Adamovic; see Bingham et al. [6], Proposition 1.3.4.

Proposition 1.2.5 (Smooth versions of slow variation)

Suppose L is slowly varying, then there exists a slowly varying function L, € C*
(the space of infinitely differentiable functions) so that L(x) ~ Ly(z) as x — oo. If
L is eventually monotone, so is L.

The following result of Karamata is often applicable. It essentially says that inte-
grals of regularly varying functions are again regularly varying, or more precisely,
one can take the slowly varying function out of the integral.

Theorem 1.2.6 (Karamata’s theorem)
Let L be slowly varying and locally bounded in [xg,00) for some xg > 0. Then

(a) for a > —1,

/taunm~4a+n*wwiu@, T = 0o,

Zo

(b) for a < —1,
o0
/)WLwﬁN—m+D4ﬂHM@,w%m.
x
Remark 1.2.7 The result remains true for « = —1 in the sense that then

1 T L(t

—/ th%oo, T — 00,

L(z) J,, t
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and [, (L(t)/t)dt is slowly varying. If [ (L(t)/t)dt < oo then
L/ @dt%oo, r — 00,
L(z) J, t

and [*°(L(t)/t)dt is slowly varying.

Remark 1.2.8 The conclusions of Karamata’s theorem can alternatively be for-
mulated as follows. Supppose f is regularly varying with index « and f is locally
bounded on [z, 00) for some zg > 0. Then

(a’) for a > —1,

W Taf@ arl
(b)) for a < —1,

oy de S 1

g0 zf(x) a+1

Whenever a # —1 and the limit relations in either (a’) or (b’) hold for some positive
function f, locally bounded on some interval [zg,0), zg > 0, then f is regularly
varying with index .

The following result is crucial for the differentiation of regularly varying functions.

Theorem 1.2.9 (Monotone density theorem)
Let U(z) = fox u(y)dy (or f;o u(y) dy) where u is ultimately monotone (i.e. u is
monotone on (z,00) for some z > 0). If
U(z) ~cx® L(z), x— o0,

with ¢ > 0, a € R and L is slowly varying, then

u(z) ~ caxr® 'L(z), = — o00.
For ¢ =0 the above relations are interpreted as U(z) = o(x*L(x)) and u(z) =
o(z* 1L(x)).

The applicability of regular variation is further enhanced by Karamata’s Taube-
rian theorem for Laplace—Stieltjes transforms.

Theorem 1.2.10 (Karamata’s Tauberian theorem)
Let U be a non—decreasing, right—continuous function defined on [0,00). If L is
slowly varying, ¢ > 0, a > 0, then the following are equivalent:

(a) U(z) ~cx® L(z)/T(1+a), x— oo,

(b) G(s) = [ e s dU(z) ~cs™ L(1/s), s10.

When ¢ =0, (a) is to be interpreted as U(x) = o(z™ L(x)) as x — oo; similarly
for (b). u

This is a remarkable result in that not only the power coefficient « is preserved after
taking Laplace—Stieltjes transforms but even the slowly varying function L. From
either (a) or (b) in the case ¢ > 0, it follows that

(¢) U(x) ~u(l/z)/T1+a), x—oc.

A surprising result is that the converse (i.e. (¢) implies (a) and (b)) also holds. This
so—called Mercerian theorem is discussed in Bingham et al. [6], p. 274. Various ex-
tensions of the above result exist; see for instance Bingham et al. [6], Theorems 1.7.6
and 8.1.6.
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1.3 Regularly Varying Random Variables

The notion of regular variation appears in a natural way in various fields of applied
probability, so in queuing theory, extreme value theory, renewal theory, theory
of summation of random variables, point process theory. In those areas, random
variables (and more generally, random vectors) with regularly varying tails have
plenty of applications.

In what follows, we write

Fx(z)=P(X <z), z€eR,
for the distribution function of any random variable X and

Fx(r)=1-Fx(z), z€R,
for its right tail.

Definition 1.3.1 (Regularly varying random variable/distribution)

A non-negative random variable X and its distribution are said to be regularly
varying with index a > 0 if the right distribution tail Fx is reqularly varying with
inder —a.

For convenience we recall here the basic properties of regularly varying functions
in terms of regularly varying distributions. For proofs and further references see
Bingham et al. [6].

Proposition 1.3.2 (Regularly varying distributions)
Suppose F' is a distribution function with F(x) < 1 for all x > 0.

(a) If the sequences (an) and (xy,) satisfy an/any1 — 1, &, — 00, and if for some
real function g and all X from a dense subset of (0, 00),

lim a, F (Az,) = g(A) € (0,00),

n—oo
then g(A\) = A= for some a > 0 and F is reqularly varying.

(b) Suppose F is absolutely continuous with density f such that for some a >0,
lim, 0z f(2)/F () = a. Then f is reqularly varying with index —(1 + «)

and consequently F is reqularly varying with index —a.

(¢) Suppose the density f of F is reqularly varying with index —(1 + «) for some
a>0. Thenlim, o z f(z)/F(z) = a. The latter statement also holds if F is
reqularly varying with index —a for some o > 0 and the density f is ultimately
monotone.

(d) Suppose X is a reqularly varying non—negative random variable with index

a>0. Then
EXP < oo if B<a,

EXP = oo if B>a.
(e) Suppose F is regularly varying with index —« for some o > 0, 3 > a.. Then

lim ??Flz) -«
z—y00 foz yﬁ dF(y) a

The converse also holds in the case that 3 > «. If B = a one can only conclude
that F(x) = o(z~*L(x)) for some slowly varying L.
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(f) The following are equivalent:
(1) Oz y2 dF (y) is slowly varying,
(2) F(z) =0 (a7 [y y?dF(y)), = — oo.

Remark 1.3.3 The statements (b), (c), (e) and (f) above are special cases of the
general version of Karamata’s theorem and the monotone density theorem. For
more general formulations of (e) and (f) see Bingham et al. [6], p. 331. Relations
(e) and (f) are important in the analysis of the domain of attraction of stable laws;
see for instance Section 1.4.1.

1.3.1 Closure Properties

One of the reasons for the popularity of regularly varying functions in probability
theory is the following elementary property of regularly varying random variables.

Lemma 1.3.4 (Convolution closure of regularly varying distributions)
Let X andY be two independent, reqularly varying, non—negative random variables
with index o > 0. Then X +Y is reqularly varying with index o and

PX+Y>a)~PX>z)+PY >z) asxz— .
Proof. Using {X +Y >z} D {X >z} U{Y > z} one easily checks that
PX+Y >z)>[P(X>z)+PY >2)](1-0(1)) .
If 0 < 6 < 1/2, then from
{X+Y >z} c{X>0-0)z}u{Y >1—-90)z}U{X > dz,Y >z},
it follows that
P(X +Y > x)
< PX>0-¥8)z)+PY >(1-08z)+ P(X >dz) P(Y > dx)
= [P(X>(1-8)z)+P(Y > (1-08z)](1+o(1)).

Hence
- P(X +Y > x)
1 < 1 f

= BR% P(X >z)+ P(Y > )
. P(X +Y > x)

< 1

= ‘ﬂso‘ip P(X >z)+ P(Y > )

S (1 _6)—6!’

which proves the result upon letting § | 0.

Remark 1.3.5 If X and Y are non—negative, not necessarily independent random
variables such that P(Y > z) = o(P(X > z)) and X is regularly varying with index
a, then P(X +Y > z) ~ P(X > z) as ¢ — oo. This follows along the lines of the
proof of Lemma 1.3.4. In particular, if X and Y are regularly varying with index
ax and ay, respectively, and if ax < ay, then X + Y is regularly varying with
index ax.

An immediate consequence is the following result.
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Corollary 1.3.6 Let X, Xy,...,X,, be iid non—negative reqularly varying random
variables and
Sn=X14+--+X,, n>1.

Then
PXi++Xp,>2)~nP(X>x) asz — o0. (1.3)
Remark 1.3.7 Relation (1.3) has an intuitive interpretation. Let

M,= max X;, n>1.

i=1,...,n
Then it is easily seen that for every n > 1,
P(S, >z)~nP(X >zx)~P(M, > zx).

This means that, for large z, the event {S, > x} is essentially due to the event
{M,, > z}. The relation P(M,, > z) ~ nP(X > z) as ¢ — oo also implies that M,
is regularly varying with the same index as X. This is another closure property of
the class of regularly varying random variables.

Another immediate consequence of Lemma 1.3.4 is the following

Corollary 1.3.8 Let X, X1,..., X, be iid non—negative reqularly varying random
variables with index o and vy, ...,1Y, be non—negative constants. Then

PhXy 4+ 4+ ¢nXn>z) ~ P(X >2) (7 +--+45)

Under additional conditions, this result can be extended for infinite series
o0
Y =3 vX;,
=0

where (X,,) is an iid sequence of regularly varying random variables and (¢;) is a se-
quence of non-negative numbers. The ;s then have to satisfy a certain summability
condition in order to ensure the almost sure convergence of Y. Various conditions
on (1) can be found in the literature; see for example Embrechts et al. [34], Lemma
A3.26. The weakest conditions on (¢);) can be found in recent work by Mikosch and
Samorodnitsky [79].

In applications one often has to deal with products of independent random
variables where one of them is regularly varying.

Proposition 1.3.9 Let £ and n be independent non—negative random variables.

(a) Assume that & and 1 are both reqularly varying with index o > 0. Then &n is
reqularly varying with index o > 0.

(b) Assume that € is regularly varying with index o and En®T¢ < oo for some
€ > 0. Then &n is regularly varying with index a > 0. Moreover,

Pn>xz)~En* P(§>1x) asx — 0.

Remark 1.3.10 Part 2 was proved by Breiman [13]. Part 1 follows from Cline
[18]. He also proved that if X; and X, are iid satisfying a tail balance condition for
some o > 0:

PXy>z)~px “L(z) and P(X; <—-x)~qxz “L(z), asz— oo,
where L is slowly varying, 1 — ¢ = p € [0,1] and if E|X;|* = oo, then X;X; is
regularly varying with index a and

lim P(X Xy > )
z—00 P(|X1X2| > ZL')

:p2+q2-
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1.4 Applications

Regular variation of the tails of a distribution appears as a natural condition in
various theoretical results of probability theory. To name a few: domain of attrac-
tion conditions for sums of independent random variables, maximum domains of
attraction, stationary solutions to stochastic recurrence equations are characterised
via regular variation. In what follows, we consider some of these results.

1.4.1 Stable Distributions and Their Domains of Attraction
Stable Distributions

Consider a sequence of independent random variables X, X, X, ... with common
distribution F'. Consider the random walk

S():O, Sn:X1+"'+Xn, TLZl,
with step size distribution F'. It is a natural question to ask:
What are the possible limit laws of the standardised random walk

a;'(Sp —bn), n>1, (1.4)

n
for properly chosen deterministic an, > 0 and b, € R?
The well-known answer is that the only limit laws must be a—stable.

Definition 1.4.1 (Stable random variable/distribution)

A random wvariable Y and its distribution are said to be stable if for iid copies
Y1,Ys of Y and all choices of non-negative constants cy,co there exist numbers
a=a(cy,ca) >0 and b =b(c1,c) € R such that the following identity in law holds:

01Y1+02Y22L7,Y+b.

Remark 1.4.2 If X is stable, for every n > 1 we can find constants a,, > 0 and
by € R such that S, < a, X + by.

It is convenient to describe the stable distributions by their characteristic functions.

Theorem 1.4.3 (Spectral representation of a stable law)
A stable random variable X has characteristic function

ox (t) = Eexp{iXt} = exp {iyt — c|t|*(1 —iBsign (¢) 2(t,))}, t€ER,

where 7y is a real constant, ¢ >0, a € (0,2], 8 € [-1,1], and

tan(%) if a#l,

z(t,a) = 9
—=1Inlt| i a=1.
T

Remark 1.4.4 Since « is the parameter which determines the essential properties
of a stable distribution it is common to refer to a—stable distributions and random
variables. From the characteristic function we see that 2—stable distributions are
the Gaussian ones. Although the a—stable distributions with a < 2 have densities,
in general they cannot be expressed in terms of elementary functions. One of the
few exceptions is the symmetric 1-stable distribution. It is the Cauchy law.
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Remark 1.4.5 As for Laplace—Stieltjes transforms there exist Tauberian and Mer-
cerian theorems (see Theorem 1.2.10) for characteristic functions as well. The be-
haviour of the characteristic function ¢x (t) in some neighbourhood of the origin
can be translated into the tail behaviour of the distribution F' of X. In particular,
for a < 2 power law behaviour of the characteristic function at zero implies power
law behaviour of the tails, i.e. for any a—stable random variable X there exist
non-negative constants p,q with p+ ¢ > 0 and ¢, > 0 such that

P X>z)~pcox® and PX<—-z)~qecqz @ asz — o0.

In particular, a—stable random variables with o < 2 have infinite variance.

Domains of Attraction

It is also natural to ask:

Which conditions on F' ensure that the standardised random walk (1.4) converges
in distribution to a given a—stable random variable?

Before we answer this question we introduce some further notion:

Definition 1.4.6 (Domain of attraction)

We say that the random variable X and its distribution F belong to the domain of
attraction of the a—stable distribution G, if there exist constants a,, > 0, b, € R
such that

a;l (Sn — bn) i)G’a, n — 0o,
holds.

If we are interested only in the fact that X (or F') is attracted by some a-stable
law whose concrete form is not of interest we will simply write X € DA(a) (or
F € DA(a)).

The following result characterises the domain of attraction of a stable law com-
pletely in terms of regular variation.

Theorem 1.4.7 (Characterisation of domain of attraction)

(a) The distribution F' belongs to the domain of attraction of a normal law if and

only if
| varw
ly|<z

s slowly varying.

(b) The distribution F belongs to the domain of attraction of an a—stable law for
some a < 2 if and only if

_ q+o(1) — :p-l-o(l)

F(-z) L(z), F(x) L(z), x— o0,

% %

where L 1is slowly varying and p, q are mon—negative constants such that
p+q>0.

First we study the case a = 2 more in detail. If EX? < oo then

/ y>dF(y) = EX?, 1z — o0,
ly| <=z
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hence X € DA(2). Moreover, by Proposition 1.3.2(f) we conclude that slow varia-
tion of fly|<x y?dF (y) is equivalent to the tail condition

Glz)=P(X|>z)=0 <x2/ y? dF(y)) , T —00. (1.5)

|<z
Thus we derived

Corollary 1.4.8 (Domain of attraction of a normal distribution)
A random variable X is in the domain of attraction of a normal law if and only if
one of the following conditions holds:

(a) EX? < oo,
(b) EX? = o0 and (1.5).
The situation is completely different for o < 2: X € DA(«) implies that
G(z)=2 “L(z), x>0, (1.6)
for a slowly varying function L and

2—04, T —00. (1.7)
a

a:2G(a7)/ /|y|<z y>dF(y) =

The latter follows from Proposition 1.3.2(e). Hence the second moment of X is
infinite. The regular variation of P(|X| > z) is closely related to regular variation
of the tails of the limiting a—stable distribution; see Remark 1.4.5.

Relation (1.6) and Corollary 1.4.8 show that the domain of attraction of the
normal distribution is much more general than the domain of attraction of an a—
stable law with exponent av < 2. We see that DA(2) contains at least all distributions
that have a second finite moment.

From Corollary 1.4.8 and from (1.6) we conclude the following about the mo-
ments of distributions in DA(«):

Corollary 1.4.9 (Moments of distributions in DA(«))
If X € DA(a) then
E|X]® < oo foré<a,
E|X]° = oo ford>aanda<2.

In particular,
var(X) = oo fora<2,
EX| < o fora>1,
E|X| = oo fora<l.

Note that E|X|* = fooo P(]X|* > z)dz < oo is possible for certain X € DA(«), but
E|X|* = oo for an a—stable X for a < 2.

Notes and Comments

The theory above is classical and can be found in detail in Araujo and Giné [1],
Bingham et al. [6], Feller [39], Gnedenko and Kolmogorov [44], Ibragimov and
Linnik [58], Loéve [71] and many other textbooks.

There exists some more specialised literature on stable distributions and stable
processes. Mijnheer [77] is one of the first monographs on the topic. Zolotarev
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[113] covers a wide range of interesting properties of stable distributions, including
asymptotic expansions of the stable densities and many useful representations and
transformation formulae. Some limit theory for distributions in the domain of
attraction of a stable law is given in Christoph and Wolf [17]. An encyclopaedic
treatment of stable laws, multivariate stable distributions and stable processes can
be found in Samorodnitsky and Taqqu [104]; see also Kwapieri and Woyczyniski [65]
and Janicki and Weron [59]. The latter book also deals with numerical aspects, in
particular the simulation of stable random variables and processes.

Recently there have been some efforts to obtain efficient methods for the nu-
merical calculation of stable densities. This has been a problem for many years
and was one of the reasons that practitioners expressed doubts about the applica-
bility of stable distributions for modelling purposes. McCulloch and Panton [74]
and Nolan [90, 91] provided tables and software for calculating stable densities for
a large variety of parameters « and 8. Their methods allow one to determine those
densities for small and moderate arguments with high accuracy; the determination
of the densities in their tails needs further investigation.

1.4.2 Extreme Value Distributions and Their Domains of At-
traction

Extreme Value Distributions

As in Section 1.4.1, consider a sequence of independent random variables X, X1, X5,
X3, ... with common distribution F'. Consider the sequence of partial maxima

M; = X1, Mn:'_max X, n>2.

i=1,...,n
As for sums of iid random variables, it is a natural question to ask:

What are the possible limit laws of the standardised maxima

' (M, —d,), n>1, (1.8)

n
for properly chosen deterministic ¢, > 0 and d,, € R?
The well-known answer is that the only limit laws must be max—stable.

Definition 1.4.10 (Max—stable distribution)
A non—degenerate random variable X and its distribution are called max—stable if
they satisfy the relation

My 2te, X +d,, n>2, (1.9)
for iid X, X1, X, ..., appropriate constants ¢, > 0, d, € R.
Assume for the moment that (X,,) is a sequence of iid max—stable random variables.

Then (1.9) may be rewritten as follows

et (M, —dy) £ X (1.10)

n

We conclude that every max—stable distribution is a limit distribution for maxima
of iid random variables. Moreover, max—stable distributions are the only limit laws
for normalised maxima.

Theorem 1.4.11 (Limit property of max—stable laws)
The class of maz—stable distributions coincides with the class of all possible (non—
degenerate) limit laws for (properly normalised) mazima of iid random variables.
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For a proof via the convergence to types theorem see for example Resnick [100]; cf.
Embrechts et al. [34], Theorem 3.2.2.
The following result is the basis of classical extreme value theory.

Theorem 1.4.12 (Fisher-Tippett theorem, limit laws for maxima)
Let (X,) be a sequence of iid random wvariables. If there exist constants ¢, > 0,
d, € R and some non—degenerate distribution H such that

e (M, —dy) -5 H, (1.11)

n

then H belongs to the type of one of the following three distribution functions:

, ) _ 0, z <0
Fréchet: O,(r) = { exp {—279}, >0 a>0.
Weibull:  Wo(x) = { PR w00
1, x>0
Gumbel: Alz) = exp{—-e*}, zeR.

Sketch of the proof. Though a full proof is rather technical, we would like to
show how the three limit—types appear; the main ingredient is the convergence to
types theorem. Indeed, (1.11) implies that for all ¢ > 0,

FIM) (cpupa + djpyg) = H(z), 7€ R,
where [] denotes the integer part. However,
FIr (e + dy) = (F™ (cat + dn)) ™" = H (),

so that by the convergence to types theorem there exist functions y(t) > 0, §(t) € R
satisfying

dn —dpp
lim —2 =(t), lim#:(s(t), t>0,
n— 00 C[nt] n— 00 C{nt]
and
H'(z) = H(y(t)x +6(t)). (1.12)
It is not difficult to deduce from (1.12) that for s,¢ > 0
v(st) =v(s)v(t), &(st) =~(t)d(s) +6(t). (1.13)

The solution of the functional equations (1.12) and (1.13) leads to the three types A,
®,, U,. Details of the proof are for instance to be found in Resnick [100], Propo-
sition 0.3. O

Remark 1.4.13 The limit law in (1.11) is unique only up to affine transformations.
If the limit appears as H (cz + d), i.e.

lim P (c;' (M, —d,) <z)=H(czx +d),
n—o0
then H(z) is also a limit under a simple change of the constants ¢, and d,:

lim P (5;1 (Mn - Jn) < a:) - H(z)

n—0o0

with é, = ¢,/c and cin =d, —dey,/c. The convergence to types theorem shows
precisely how affine transformations, weak convergence and types are related.
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Remark 1.4.14 Though, for modelling purposes, the types of A, ®, and ¥, are
very different, from a mathematical point of view they are closely linked. Indeed,
one immediately verifies the following properties. Suppose X > 0, then the following
are equivalent:

e X has distribution .
e In X* has distribution A.
e — X! has distribution ¥,.

Definition 1.4.15 (Extreme value distribution and extremal random variable)
The distributions ®, ¥, and A as presented in Theorem 1.4.12 are called standard
extreme value distributions, random variables with these distributions are standard
extremal random variables. Distributions of the types of ®,, ¥, and A are extreme
value distributions; the random variables with these distributions are extremal ran-
dom variables.

By Theorem 1.4.11, the extreme value distributions are precisely the max—stable
distributions. Hence if X is an extremal random variable it satisfies (1.10). In
particular, the three cases in Theorem 1.4.12 correspond to

[~

Fréchet: M, =n'/* X

4

Weibull: M, £ n-t/oX

Gumbel: M, ZX +lnn.

Remark 1.4.16 It is not difficult to see that the Fréchet distribution ®, is reg-
ularly varying with index a. Moreover, the Weibull distribution ¥, has regularly
varying right tail at zero with index —a.

Maximum Domains of Attraction

We learnt from Remark 1.4.16 that two kinds of extreme value distributions have
regularly varying right tails: the Fréchet distribution ®, and the Weibull distribu-
tion ¥,. This suggests that domains of attraction of these distribution have a close
connection with regular variation as well.

As before, we ask the question:

Which conditions on F ensure that the standardised partial mazima (1.8) converge
in distribution to a given extremal random variable?

As for partial sums and stable distributions, we can introduce domains of attraction.

Definition 1.4.17 (Maximum domain of attraction)

We say that the random variable X and its distribution F belong to the maximum
domain of attraction of the extreme value distribution H if there exist constants
cnp >0, d, € R such that

—1
n

c (Mn—dn)i>H as n — 0o

holds. We write X € MDA (H) (F € MDA(H)).

Remark 1.4.18 Notice that thedextreme value distribution functions are continu-
ous on R, hence ¢, (M, — d,) — H is equivalent to

lim P (M, <cpyx+dy,)= lim F"(cpz+d,) =H(z), zekR.

n— o0 n—o0
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Having the last remark in mind, the following result is not difficult to derive. It
will be quite useful in what follows.

Proposition 1.4.19 (Characterisation of MDA (H))
The distribution F belongs to the mazimum domain of attraction of the extreme
value distribution H with constants ¢, > 0, d, € R if and only if

lim nF (c,x+d,) =—InH(z), =€R.

n—o0
When H(x) = 0 the limit is interpreted as oo.

For every standard extreme value distribution one can characterise its maximum
domain of attraction. Using the concept of regular variation this is not too difficult
for the Fréchet distribution ®, and the Weibull distribution ¥,. The maximum
domain of attraction of the Gumbel distribution A is not so easily characterised; it
consists of distribution functions whose right tail decreases to zero faster than any
power function.

MDA of the Fréchet Distribution &,
Recall the definition of the Fréchet distribution ®,. By Taylor expansion,

1-%,(x) = l—exp{—x*a} ~x %, x— o0,
hence the tail of ®, decreases like a power law. We ask:
How far away can we move from a power tail and still remain in MDA(®,)?

We show that the maximum domain of attraction of ®, consists of distribution
functions F' whose right tail is regularly varying with index —a.

Theorem 1.4.20 (Maximum domain of attraction of ®,)
The distribution F' belongs to the mazimum domain of attraction of ®q, a > 0, if
and only if F(x) = x=*L(x) for some slowly varying function L.
If F € MDA(®,,), then
M, -5 3, (1.14)

where the constants c,, can be chosen as the (1 —n~1)—quantile of F:
cn=F"(1-n"") = inf{zeR:Flz)>1-n""}
= inf{zeR: (1/F)(z) > n}

= (1/F)" ().

Remark 1.4.21 Notice that this result implies in particular that for every F in
MDA (®,,), the right distribution endpoint # = co. Furthermore, the constants ¢,
form a regularly varying sequence, more precisely, ¢, = n'/®L;(n) for some slowly
varying function L;.

Proof. Let F be regularly varying with index —a for some a > 0. By the choice
of ¢, and regular variation,

F(cy) ~n~t, n — 0o, (1.15)
and hence F(c,) — 0 giving ¢, — oco. For z > 0,

nF (c,x) ~ F%((ccna;)

—

=z %, n—o0.
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For z < 0, immediately F™(c,z) < F™(0) — 0, since regular variation requires that
F(0) < 1. By Proposition 1.4.19, F' € MDA(®,,).

Conversely, assume that lim,_, o F™(cpz + dy) = @4 (z) for all z > 0 and appropri-
ate ¢, > 0, d, € R. This leads to

lim Fn(c[ns]x + d[ns]) = Qi{/s(x) = @a(sl/ax)a §>0,z>0.

n— o0

By the convergence to types theorem (see Resnick [100]),
Clns]/Cn =+ st/ and (d[ns] - dn) Jen — 0.

Hence (¢;,) is a regularly varying sequence in the sense mentioned above, in particu-
lar ¢, = 0o. Assume first that d,, = 0, then nf(cnm) — 2% g0 that I is regularly
varying with index —a because of Proposition 1.3.2(a). The case d,, # 0 is more
involved, indeed one has to show that dy, /¢, — 0. If the latter holds one can repeat
the above argument by replacing d,, by 0. For details on this, see Bingham et al. [6],
Theorem 8.13.2, or de Haan [52], Theorem 2.3.1. Resnick [100], Proposition 1.11,
contains an alternative argument. O

The domain MDA (®,,) contains “very heavy—tailed distributions” in the sense that
E(XT)% = oo for § > a. Notice that X € DA(G,,) for some a-stable distribution
Gq with a <2 and P(X > z) ~ ¢ P(|X| > z), ¢ >0, as ¢ — oo (i.e. this distribu-
tion is not totally skewed to the left) imply that X € MDA(®,). If F € MDA(®,,)
for some a > 2 and EX? < oo, then F is in the domain of attraction of the normal
distribution, i.e. (X,,) satisfies the CLT.

We conclude with some examples.

Example 1.4.22 (Pareto-like distributions)
— Pareto
— Cauchy
— Burr
— Stable with exponent o < 2.

All these distributions are Pareto-like in the sense that their right tails are of the
form

F(z) ~Kz™®, z— o0,
for some K, o > 0. Obviously F is regularly varying with index a which implies
that F' € MDA(®,). Then
(Kn)~Y* M, % &,

Example 1.4.23 (Loggamma distribution)
The loggamma distribution has tail

af—1

B—1,,—«
F(ﬁ)(lnal:) x %, r—=o00, af>0. (1.16)

F(x) ~

Hence F is regularly varying with index —a which is equivalent to F' € MDA(®,,).
The constants ¢, can be chosen as

1/«

cn ~ ((0(8)) *(Inn)” 'n)

Hence
—1/a

((C(8)) " (inn)?~'n)

M, — &,.
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MDA of the Weibull Distribution ¥,

An important, though not at all obvious fact is that all distribution functions F' in
MDA (¥ ,) have finite right endpoint r. As was already indicated in Remark 1.4.14,
¥, and ®, are closely related, indeed

U (—27') =@u(z), z>0.

Therefore we may expect that also MDA (¥,) and MDA (®,,) will be closely related.
The following theorem confirms this.

Theorem 1.4.24 (Maximum domain of attraction of ¥,)

The distribution F' belongs to the mazimum domain of attraction of ¥q, a >0, if
and only if xp < 0o and F(zp — 2z~ 1) = 2 *L(x) for some slowly varying func-
tion L.

If F € MDA(%9,,), then

et (M,, —zp) 4, v,,

n
where the ¢, s can be chosen as ¢, = xp — F< (1 —n~"') and d, = zF.
We conclude this section with some examples of prominent MDA (¥, )-members.

Example 1.4.25 (Uniform distribution on (0, 1))
Obviously, zr =1 and F(1 —2~') =2~'. Then by Theorem 1.4.24 we obtain
F € MDA(¥,). Since F(1—n"1') =n~', we choose ¢, =n~!. This implies in
particular

n(M, —1) -5 0, .

Example 1.4.26 (Power law behaviour at the finite right endpoint)
Let F be a distribution function with finite right endpoint zr and distribution tail

F@)=K(@p—2)", zp—K'Y*<z<zp, Ka>0.
By Theorem 1.4.24 this ensures that F' € MDA(¥,). The constants c, can be
chosen such that F(zr — ¢,) =n~', ie. ¢, = (nK)~"/® and, in particular,
(nK)'/* (M, —zp) -4 0, .

Example 1.4.27 (Beta distribution)
The beta distribution is absolutely continuous with density

T(a+b)

f(w)zmwa_l(l—w)b_l, O<z<l, a,b>0.

Notice that f(1 — z~1) is regularly varying with index —(b — 1) and hence, by Kara-
mata’s theorem (Theorem 1.2.6),

F(l-z) = / Fly) dy = / TRy dy ~ e (- 2.

_wfl
Hence F(1 —z™') is regularly varying with index —b and

[(a+b)

Tty

(1—xz), z11.

Thus the beta distribution is tail-equivalent to a distribution with power law be-
haviour at zgp = 1.
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MDA of the Gumbel Distribution A

The maximum domain of attraction of the Gumbel distribution A(x) = exp{e™"},
z € R, contains a large variety of distributions with finite or infinite right endpoint.
This maximum domain of attraction cannot be characterised by a simple regular
variation condition. However, the necessary and sufficient conditions given below
to some extent remind us the representation of regularly varying functions; see
Theorem 1.2.1.

For a proof of the following result we refer to Resnick [100], Corollary 1.7 and
Proposition 1.9.

Theorem 1.4.28 (Characterisation I of MDA(A))
The distribution F with right endpoint xp < oo belongs to the mazximum domain of
attraction of A if and only if there exists some z < x such that F has representation

F(w):c(w)exp{—/:%dt}, s<w<ar,

where ¢ and g are measurable functions satisfying c(x) — ¢ >0, g(x) > 1 asz 1T zp,

and a(x) is a positive, absolutely continuous function (with respect to Lebesgue
measure) with density o' (z) having limg4,, a'(xz) = 0.

A possible choice for the function a is

" F(t)
a(z) = = dt, r<zp, (1.17)
. Fl(x)
Remark 1.4.29 For a random variable X the function a(z) as defined in (1.17) is
nothing but the mean excess function

az)=EX —-z|X>z), z<zp.
Another characterisation of MDA (A) is the following.

Theorem 1.4.30 (Characterisation II of MDA(A))
The distribution F' belongs to the mazimum domain of attraction of A if and only
if there exists some positive function a such that

Fle +fi@) _

lim =e ", teR.

=ty F(z)
holds. A possible choice is a = a as given in (1.17)

The proof of this result is for instance to be found in de Haan [52], Theorem 2.5.1.

Although MDA (A) cannnot be characterised by standard regular variation con-
ditions it is closely related to rapid variation. Recall that a positive measurable
function h on [0, 00) is rapidly varying with index —oo if

. h(tx) 0 ift>1,
lim =
z—oo h(x) ~ ifo<t<l.

An example is given by h(z) = e®. We mention that various results for regularly

varying functions can be extended to rapidly varying functions, for example the
representation theorem and Karamata’s theorem. See de Haan [52]. It is not difficult
to see that all power moments of a distribution with rapidly varying tails exist and
are finite,

Corollary 1.4.31 (Existence of moments)

Assume that the random variable X has distribution F' € MDA(A) with infinite right
endpoint. Then F is rapidly varying In particular, E(X1T)* < oo for every a > 0,
where X = max(0, X).
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Notes and Comments

Extreme value theory is a classical topic in probability theory and mathematical
statistics. Its origins go back to Fisher and Tippett [42]. Since then a large number
of books and articles on extreme value theory has appeared. The interested reader
may, for instance, consult the following textbooks: Falk, Hiisler and Reiss [38],
Gumbel [51], Leadbetter, Lindgren and Rootzén [66], Reiss [99] and Resnick [100].

Theorem 1.4.12 marked the beginning of extreme value theory as one of the
central topics in probability theory and statistics. The limit laws for maxima were
derived by Fisher and Tippett [42]. A first rigorous proof is due to Gnedenko [43].
De Haan [52] subsequently applied regular variation as an analytical tool. His work
has been of great importance for the development of modern extreme value theory.

1.4.3 Stochastic Recurrence Equations
Probabilistic Properties

We consider a sequence (X;) of random variables satisfying the stochastic recurrence
equation (SRE)

Xi=A4Xy 1+ By, tei, (1.18)

where the sequence ((A¢, Bt)) is supposed to be iid. We assume that (X;) is a causal
strictly stationary solution of (1.18).

There exist various results about the existence of a strictly stationary solution
to (1.18); see for example Kesten [61], Vervaat [111], Grincevicius [49], Brandt [11],
Bougerol and Picard [9]. Below we give a sufficient condition which remains valid
for ergodic sequences ((A,, By)) (see Brandt [11]) and which is close to necessity
(see Babillot et al. [4]).

Theorem 1.4.32 (Existence of stationary solution)
Assume —oo < Eln|A| < 0 and EIn™ |B| < co. Then the series

o0
X, = Z Ap - Ap_ps1 By (1.19)
k=0

converges a.s., and the so—defined process (X,,) is the unique causal strictly station-
ary solution of (1.18).

Remark 1.4.33 A glance at formula (1.19) convinces one that products of A;s and
Bys are the main ingredients to the stationary solution of (1.18). Assuming the A;s
and Bys positive for the moment, one can see that the distribution of X is determined
by exponentials of sums of the form E?:n7k+1 In A;. The condition Eln A < 0
ensures that these sums constitute a random walk with negative drift, and therefore
the products Iy = A, -+ Ap_k11 in (1.19) decay to zero at an exponential rate.
This implies the a.s. summability of the infinite series. The right tail of X is
essentially determined by the products Iy as well. Indeed, if P(A > 1) > 0, Il
may exceed 1 finitely often with positive probability. It turns out that the tail of
X is then basically determined by the distribution of exp{max; InII;}, and so a
renewal argument for determining the distribution of a random walk with negative
drift can be applied. Below (Theorem 1.4.35) we will see that this naive argument
can be made precise.

Remark 1.4.34 The Markov chain (X,,) satisfies a mixing condition under quite
general conditions as for example provided in Meyn and Tweedie [76]. In particular,
for the SRE in (1.18), suppose there exists an ¢ € (0,1] such that E|A|° < 1 and
E|B|° < 0o. Then there exists a unique stationary solution to (1.18) and the Markov
chain (X,,) is geometrically ergodic.
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Under general conditions, the stationary solution to the stochastic recurrence equa-
tion (1.18) satisfies a regular variation condition. This follows from work by Kesten
[61]; see also Goldie [45] and Grey [48]. We state a modification of Kesten’s funda-
mental result (Theorems 3 and 4 in [61]).

Theorem 1.4.35 (Kesten’s theorem)
Let (A,) be an iid sequence of non—negative random variables satisfying:

e For some e >0, FA® < 1.
e A has a density with support [0,00).

e There exists a kg > 0 such that

1< EA™ and E(A§ln" A) <oo.

Then there exists a unique solution k1 € (0, ko] to the equation 1 = EA"!.

If (X,,) is the stationary solution to the SRE in (1.18) with coefficients (A,) satisfy-
ing the above conditions and B is non-negative with EB™ < oo, then X is regularly
varying with indexr Kq.

Remark 1.4.36 There are extensions of Theorem 1.4.35 to general A and B and
to the multivariate case. Without the positivity constraints, the required conditions
can be quite cumbersome. See Kesten [61] and Le Page [67].

Remark 1.4.37 Resnick and Willekens [102] considered SREs under slightly dif-
ferent conditions than those imposed in Theorem 1.4.35. They assume that (X;)
satisfies (1.18) with the additional condition that A; and B; are independent for
every t, that B is regularly varying with index a and E|A|*"¢ < oo for some € > 0.
Then X is also regularly varying with index a. Notice that the moment condition
for B in Theorem 1.4.35 is not satisfied for this model.

GARCH models

Log-returns X; = In P, — In P,_; of foreign exchange rates, stock indices and share
prices Py, t = 1,2,..., typically share the following features:

e The frequency of large and small values (relative to the range of the data) is
rather high, suggesting that the data do not come from a normal, but from a
heavy—tailed distribution.

e Exceedances of high thresholds occur in clusters, which indicates that there
is dependence in the tails.

Various models have been proposed in order to describe these empiricially observed
features. Among them, models of the type

Xt:O'tZt, tEZ,

have become particularly popular. Here (Z;) is a sequence of iid symmetric ran-
dom variables with EZ? = 1. One often assumes the Z;s to be standard normal.
Moreover, the sequence (o) consists of non—negative random variables such that
Z; and oy are independent for every fixed ¢. Models of this type include the ARCH
(autoregressive conditionally heteroscedasticity) and GARCH (generalised ARCH)
family; see for example Engle [36] for their definitions and properties. In what fol-
lows, we often write o for a generic random variable with the distribution of o1, X
for a generic random variable with the distribution of X, etc.
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We restrict ourselves to one particular model which has very often been used in
applications: the GARCH(1,1) process. It is defined by specifying o, as follows:

of =apg+Bioi o X =aoto; (Bi+aZ,), teL.

The parameters ag, a; and [3; are non—negative.

Despite its simplicity, the stationary GARCH(1, 1) process is believed to capture
various of the empirically observed properties of log—returns. For example, the
stationary GARCH(1, 1) processes can exhibit heavy—tailed marginal distributions
of power law type and hence they could be appropriate tools to model the heavier-
than-normal tails of the financial data. This follows from Kesten’s Theorem 1.4.35.

The GARCH(1,1) can be considered in the much wider context of SREs of type
(1.18). Observe that o satisfies the recurrence equation

Ut2 =ag + 0371(01Z371 + ﬂl) ) teZ ) (120)
which is of the same type as (1.18), with X; = 07, A; = a1 Z7 | + /1 and By = .

From Theorem 1.4.32, in combination with Babillot et al. [4] or Bougerol and
Picard [10] one can derive the following result:

Corollary 1.4.38 The conditions
ao >0 and Eln(anZ?+ p1) <0 (1.21)
are necessary and sufficient for stationarity of (07).
Remark 1.4.39 Notice that stationarity of o7 implies stationarity of the sequence
(X2, 0})=0} (Z},1), teZ.
By construction of the sequence (X), stationarity of the sequence ((X¢, o)) follows.

In what follows, we always assume that condition (1.21) is satisfied. Then a sta-
tionary version of ((Xy,04)) exists.

Kesten’s Theorem 1.4.35 immediately yields the following result for the tails of
X and o.

Corollary 1.4.40 Assume Z has a density with unbounded support, (1.21) holds,
Elon Z2 + 1"/ > 1 and E|Z|" In" |Z| < 00 for some ko > 0.
A) There exists a number k1 € (0, ko] which is the unique solution of the equation
E(Z? +3)"/? =1, (1.22)
and there exists a positive constant co = co(o, a1, 51) such that
Plo>xz)~coz™™ asz— .
B) If E|Z|"1%¢ < 0o for some € > 0, then
P(|X| > z) ~ E|Z|** P(o > ). (1.23)

Proof. Part A follows from an application of Theorem 1.4.35 to the SRE (1.20).
Equation (1.23) is a consequence of Breiman’s result; see Proposition 1.3.9. O

Remark 1.4.41 The exact value of the constant cg is given in Goldie [45].
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Remark 1.4.42 Under the assumptions of Theorem 1.4.40, c; = 0 is not a possible
parameter choice.

Remark 1.4.43 Assume in addition to the conditions of Theorem 1.4.40 that
EZ? = 1, E|Z|*™¢ < oo for some ¢ > 0 and a; + 3; = 1. Then (1.22) has the
unique solution x; = 2. This implies that P(|X| > z) ~ ¢ 272 for some ¢ > 0 and,
in turn, that EX? = co. GARCH(1, 1) models fitted to real log-returns frequently
have parameters «; and 3; such that a; + 31 is close to 1. This indicates that
one deals with time series models with extremely heavy tails. This fact led Engle
and Bollerslev [37] to the introduction of the IGARCH (integrated GARCH) model.
Mikosch and Starica [80, 81] give a critical analysis of IGARCH. In particular, they
explain in [81] that the aq + 1 = 1 effect can be due GARCH(1, 1) misspecification
in presence of non—stationarity in real-life data.

Notes and Comments

In addition to the literature mentioned, an introduction to one—dimensional SREs
can be found in Embrechts et al. [34], Section 8.4. There Kesten’s theorem is
proved in the particular case of an ARCH process. The general one-dimensional
case is masterly treated in Goldie [45]. Kesten’s theorem is remarkable insofar
that light—tailed input (the sequence ((A:, B:))) causes heavy—tailed output (the
stationary solution (X;) of (1.18)). This is in contrast to linear processes where
only heavy—tailed input (innovations) can cause heavy—tailed output.

The case of general GARCH processes is treated in Davis, Mikosch and Basrak
[25]. An approach similar to GARCH(1, 1) is possible for bilinear processes; they
can also exhibit power law tails for light—tailed innovations; see Basrak, Davis and
Mikosch [5] and Turkman and Turkman [109].

1.4.4 Estimation of a Regularly Varying Tail

Among the statistical estimators for the parameter « of a regularly varying tail
F(x) = 2~ °L(x), Hill’s estimator has become particularly popular. In what follows
we explain the rationale behind it.

Suppose X1,...,X, are iid with distribution F satisfying F(z) = z~“L(z),
x >0, for a slowly varying function L and some a > 0. For many applications
the knowledge of the index « is of major importance. If for instance o < 2 then
EX? = co. This case is often observed in the modelling of insurance data; see for
instance Hogg and Klugman [57]. Empirical studies on the tails of daily log-returns
in finance have indicated that one frequently encounters values o between 3 and
4; see for instance Guillaume et al. [50], Longin [72] or Loretan and Phillips [73].
Information of the latter type implies that, whereas covariances of such data would
be well defined, the construction of confidence intervals for the sample autocovari-
ances and autocorrelations on the basis of asymptotic (central limit) theory may be
questionable as typically a finite fourth moment condition is asked for.

The Hill estimator of « essentially takes on the following form:

-1
~ ~ 1
am =g . Zln Xjm—InXpp , (1.24)
j=1
where k = k(n) — oo in an appropriate way and

Xn,nS"'SXl,n:Mn

denote the order statistics of the sample X7, ..., X,,. This means that an increasing
sequence of upper order statistics is used. One of the interesting facts concerning
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(1.24) is that various asymptotically equivalent versions of @) can be derived
through essentially different methods, showing that the Hill estimator is very nat-
ural. Below we discuss some derivations.

The MLE Approach (Hill [56])

Assume for the moment that X is a random variable with distribution F' so that
for a > 0

P(X>z)=F(x)=2"%, z>1.
Then it immediately follows that Y = In X has distribution

PY >y =e*, y>0,

i.e. Y is Ezp(a) and hence the MLE of « is given by

—1 —1
o 1 n 1 n
G, =Y, = =Y X | = (oY X,
j=1 j=1
A trivial generalisation concerns
F(z)=Cz™®, 2>u>0, (1.25)

with u known. If we interpret (1.25) as fully specified, i.e. C' = u®, then we imme-
diately obtain as MLE of a

-1 -1

1 o X; 1 o
~ ],n — )
n n ]'21 n (T) “n 1'21 In X, —Inu : (1.26)

Now we often do not have the precise parametric information of these examples,
but in the spirit of MDA(®,) we assume that F' behaves like a Pareto distribution
function above a certain known threshold u say. Let

K=card{i: X;p >u,i=1,...,n}. (1.27)

Conditionally on the event { K = k}, maximum likelihood estimation of o and C' in
(1.25) reduces to maximising the joint density of (X ,...,X1,). One can show
that

Fximr X (@hs o 1)

k

! - .

- (ni-k)!(l_cm’;a) Fetak e Y, u<m <<
i=1

A straightforward calculation yields the conditional MLEs

-1 —1
k k
~(H) 1 Xjin — 1 .
akm = EZIH <m> = EzlnXg,n_lnXk,n
J=1 ’ J=1
~ ko alm
Crn = n k,’;‘"

So Hill’s estimator has the same form as the MLE in the exact model underlying
(1.26) but now having the deterministic u replaced by the random threshold Xy, p,
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where k is defined through (1.27). We also immediately obtain an estimate for the
tail F(x)

Fa) =L () (1.25)

and for the p—quantile

~(H)
n QX m

T, = (E(l —p))_l/ Xk, - (1.29)

From (1.28) we obtain an estimator of the excess distribution function Fy(z — u),
x > u, by using Fy(x —u) =1— F(z)/F(u).

The Regular Variation Approach (de Haan [53])

This approach is based on a a suitable reformulation of the regular variation con-
dition on the right tail. Indeed F' is regularly varying with index —« if and only
if
F
im _(ta?)
t—o00 F(t)

:a’,‘ia, l’>0

Using partial integration, we obtain

/too(lna: —1Int)dF(z) = /too Fl) dz,

X

so that by Karamata’s Theorem 1.2.6,

1 ° 1
W/t (Inz ~Inf) dF(@) =, - o00. (1.30)

How do we find an estimator from this result? Two choices have to be made:

(a) replace F by an estimator, the obvious candidate here is the empirical distri-
bution function

1 & 1«
Fu(z) =~ Y Iixi<a) = n > (X <o)
i=1 i=1

(b) replace t by an appropriate high, data dependent level (recall t — 00); we take
t = Xk, for some k = k(n).

The choice of ¢ is motivated by the fact that Xy, == oo provided k = k(n) — oo
and k/n — 0. From (1.30) the following estimator results

k—1

1 ° 1
- 1 —InX dF, = — InX;, —InX

which, modulo the factor k — 1, is again of the form (a #))~! in (1.24). Notice that
the change from k to k — 1 is asymptotically negligible.

We summarise as follows.
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Suppose X1, ..., X, are iid with distribution such that F is regularly varying
with index —a for some a > 0. Then a natural estimator for « is provided
by Hill’s estimator

-1
k
1
an = - S X, —In X, : (1.31)

j=1

where k = k(n) satisfies k — oo and k = o(n).

Below we summarise the main properties of the Hill estimator.

Theorem 1.4.44 (Properties of the Hill estimator)
Suppose (X,,) is strictly stationary with marginal distribution F satisfying for some
a > 0 and slowly varying L,

F(z)=P(X >z)=2"%L(z), x>0.

Let a) = &,gfln) be the Hill estimator (1.31).
(a) (Weak consistency) Assume that one of the following conditions is satisfied:
o (X)) is iid,
o (X)) is weakly dependent,

e (X)) is a linear process.

If k = o0, k/n — 0 for n — oo, then
a® L q.

(b) (Strong consistency) If k/n — 0, k/Inlnn — oo for n — oo and (X,,) is an
iid sequence, then
alm 2 o

(¢) (Asymptotic normality) If further conditions on k and F are satisfied and
(X,) is an iid sequence, then

Vi (@ —a) -4 N (0,07) . 0

Notes and Comments

There exists a whole industry on tail and quantile estimation. In particular, there
exist many different estimators of the parameter a. Next to Hill’s estimator, the
Pickands and the Dekkers—Einmahl-de Haan estimators are most popular. As Hill’s
estimator, they are constructed from the upper order statistics in the sample. Their
derivation is based on similar ideas as above, i.e. on reformulations of the regular
variation condition. Moreover, the latter estimators can also be used in the more
general context of estimating the extreme value index.

Although the tail estimators seem to be fine at the first sight their practical
implementation requires a lot of experience and skill.

e One has to choose the right number k(n) of upper order statistics. This is an
art. Or some kind of educated guessing.
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e One needs large sample sizes. A couple of hundred data is usually not enough.
Indeed, since « is a tail parameter only the very large values in the sample
can tell us about the size of a, and in small samples there are not sufficiently
many large values.

e Deviations from pure power laws make these estimators extremely unreliable.
This can be shown by simulations and also theoretically. Although, in princi-
ple, the theory allows one to adjust the estimators by using the concrete form
of the slowly varying function, in practice we never know what these functions
are.

e The mentioned estimators behave poorly when the data are dependent. Al-
though for all these cases theoretical solutions have been found in the sense
that the asymptotic estimation theory (consistency and asymptotic normal-
ity) works even for weakly dependent stationary data, simulation studies show
that the estimation of a is becoming even more a problem for dependent data.

An honest discussion of tail estimation procedures can be found in Embrechts
et al. [34], Chapter 6. There one can also find a large number of references.

1.5 Multivariate Regular Variation

This section is based on Davis et al. [25].

If one wants to deal with dependence and regular variation it is necessary to
introduce the notion of regular variation of random vectors or multivariate regular
variation.

Recall that a one-dimensional non-negative random variable X and its distribu-
tion are said to be regularly varying if the tail distribution can be written as

P(X >z)=2"%L(z), z>0. (1.32)

This relation can be extended to the multivariate setting in very different ways. We
consider some of the possible definitions.

In what follows, we write a < b,a < b,a > b, etc., where <, <, >, ... refer to
the natural (componentwise) partial ordering in R?. We say that the vector x is
positive (x > 0) if each of its components is positive. We also use the following
notation:

e=(1,...,1), 0=(0,...,0), [a,b]={x:a<x<Db}.

Unless stated otherwise, we assume in what follows that X is positive with probabil-
ity 1. However, in such cases we will choose the state space D = [0, 0]\ {0}.

Condition R1. The following limit exists and is finite for all x > 0:

i FX €t[0,x])
o P(X €t[0,e])

where the complements are taken in the state space D.

Condition R2. There exist a > 0 and a random vector ® with values in
S =877 N0, 00)¢
such that the following limit exists for all > 0:

P(X|>tz,X/|X|€-) » _
® Po (- t 1.
PIX[> 1) — o (), — 00, (1.33)
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where — denotes vague convergence on the Borel o-field of Sifl and Pg is the
distribution of ©.

Condition R3. There exist a non-zero Radon measure u on D and a relatively
compact Borel set £ C D such that

P(Xet') v

P(XEtE) p’()a t— o0,

pe( - ) =

where —— denotes vague convergence on the Borel o-field of D.

Condition R4. The following limit exists and is finite for all x > 0:

in P((x,X) > t) -

5 P((e,X) > 1)

Remark 1.5.1 Conditions R1 and R2 are frequently used in extreme value theory
in order to characterize maximum domains of attractions of extreme value distribu-
tions; see for example Resnick [100]. They are also used for the characterization of
domains of attractions of stable laws in the theory of sums for independent random
vectors; see for example Araujo and Giné [1]. Condition R3 has been introduced
by Meerschaert [75] in the context of regularly varying measures. Condition R4
was used by Kesten [61] in order to characterize the tail behaviour of solutions to
stochastic recurrence equations; see Section 1.4.3.

Remark 1.5.2 If R3 holds there exists an a > 0 such that p(vS) = v=*u(S) for
every Borel set S C D and v > 0. If one uses polar coordinates (r,0) = (|x|,x/|x|)
then it is convenient to describe the measure p as ar~* ldr x Pg(df), where Pg
is a probability measure on the Borel o-field of Sfl. The case a = 0 corresponds
to the measure (..} (dr) x Pe(df), where ex denotes Dirac measure at x.

Remark 1.5.3 R1-R4 can be formally extended to the case @ = co. For example,
R2 can be formulated as follows: For a given Pg-continuity set S, the left-hand
side probability in (1.33) converges to 0 or co according as x € (0,1) or z > 1. For
d =1, the case @ = 0o corresponds to rapid variation; see Bingham et al. [6].

Remark 1.5.4 The limits in R1-R4 can be compared by choosing in R3 the par-
ticular sets:

e for R1: E =[0,¢€]°,

o for R2: E={x>0:x/]x| € ST, |x| > 1},

e for Rd: E={y:(y,e) > 1}
Remark 1.5.5 If R3 holds for some set FE, it holds for any bounded Borel set
E C D with u(0F) = 0. It is also straightforward to show that this condition is
equivalent to the existence of a Radon measure v on D and a sequence (ay,), a, — 00

such that
nP(a,'Xe ) -5 v(-), (1.34)

where v is a measure with the property that v(E) > 0 for at least one relatively
compact set £ C D. The other conditions can be represented similarly.

Theorem 1.5.6 Conditions R1-R/ are equivalent.
Remark 1.5.7 One can show that R2 and R3 are equivalent on the enlarged state
space D = Kd\{O} provided one replaces Sffl with §¢71 in R2.

In view of Theorem 1.5.6 and Remark 1.5.7 we adopt the following definition for
regular variation:

Definition 1.5.8 The random vector X with values in R? is said to be regularly
varying with index « and spectral measure Pg if condition R2 holds.
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1.5.1 Functions of regularly varying vectors

In what follows we consider a regularly varying random vector X > 0 with index
a > 0 and spectral measure Pg. We consider suitable transformations of X such
that the transformed vector is again regularly varying.

Our first result tells us that regular variation is preserved under power transfor-
mations. Define for any vector x > 0 and p > 0,

xP = (af,...,2h).

Proposition 1.5.9 Assume X is regularly varying in the sense of R2 where | - |
denotes the maz-norm. For every p > 0, XP is regularly varying with index a/p
and spectral measure Pgy.

Our next theorem extends Breiman’s [13] result for products of independent random
variables to the case d > 1. Recall from Proposition 1.3.9 that for any independent
non-negative random variables £ and n such that £ is regularly varying with index
a and En®*¢ < oo for some € > 0,

Pn>zx)~En*P >x). (1.35)

In view of (1.34) and Remark 1.5.5 the regular variation condition can be formulated
as follows: there exists a sequence (a,) and a measure y on D such that

P(a,*Xe") ,

where — denotes vague convergence on the Borel o-field of D.
The multivariate version of Breiman’s result reads as follows.

Proposition 1.5.10 Let A be a random q X d matriz, positive with probability 1
and independent of X which vector satisfies (1.34). Also assume that E||A||" < oo
for some v > a. Then

nP(a;"AX € ) <5 fi(-) == Eluo A7 ()],
where — denotes vague convergence on the Borel o-field of D and A~ is the
inverse image of A.
Remark 1.5.11 Assume that B is a d-dimensional random vector such that
P(IB| > z) =o(P(|X| >x)) asz — o0

and the conditions of Proposition 1.5.10 hold. Then AX + B is regularly varying
with the same limit measure fi. Moreover, if B itself is regularly varying with index
a and independent of AX, then AX + B is regularly varying with index a. This
follows from the fact that (AX, B) is regularly varying.

In what follows, X = (X1, ..., X4) may assume values in RZ.

Proposition 1.5.12 Let X be regularly varying with index o« and Yy,...,Y; be
independent random variables such that E|Y;|*T¢ < oo for somee >0,i=1,...,d.
Then (Y1X1,...,Y4Xy) is reqularly varying with indez .

A particular consequence is the following.

Proposition 1.5.13 Let e = (e1,...,&4) be a vector of iid Bernoulli random vari-
ables such that P(e;y = £1) = 0.5. Also assume that ¢ and X are independent.
Then' Y = (e1X1,...,e4Xq) is reqularly varying with index o and spectral measure

P(51017---75d9d)'
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Here is a result about the regular variation of products of dependent random vari-
ables.

Proposition 1.5.14 If X is reqularly varying, For every h = 1,...,d, the random
vector XX is regularly varying with index o /2.

Remark 1.5.15 Notice that in the dependent case the product of regularly vary-
ing random variables is regularly varying with index «/2. This is in contrast to
Proposition 1.3.9 for products of independent random variables which says that
this product is regularly varying with index a. In the independent case, the vector
© from definition (1.33) is concentrated on the axes. This implies that the limit in
(1.33) is the null measure.
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Subexponential Distributions

2.1 Definition

Let X, X1, X5, ... be iid non—negative random variables. From Corollary 1.3.6 and
Remark 1.3.7 we learnt that, for regularly varying X,
P(S,>z)~nP(X>z)~P(M,>z) asx—ooforn=2,3,..., (2.1)
where
S, =X1+---+X, and M, = max X;.
i=1,...,n
The intuitive interpretation of (2.1) is that the maximum M, of X, ..., X,, makes

a major contribution to its sum: exceedances of high thresholds by the sum S,
are due to the exceedance of this threshold by the largest value in the sample.
This interpretation suggests one way of defining a “heavy—tailed” distribution: the
tail of the sum is essentialy determined by the tail of the maximum. This intu-
itive approach leads to the definition of a sufficiently large class of “heavy-tailed”
distributions.

Definition 2.1.1 (Subexponential distribution)

A non-negative random variable X and its distribution is said to be subexponential
if #id copies X; of X satisfy relation (2.1). The class of subexpenential distributions
is denoted by S.

Remark 2.1.2 Chistyakov [15] proved that (2.1) holds for all n > 2 if and only if
it holds for n = 2. Embrechts and Goldie [30] showed that (2.1) holds for all n > 2
if it holds for some n > 2. Moreover, it suffices to require that the relation

lim su Pl >2)
m_mop nP(X >z) ~

holds for some n > 2; see Lemmas 1.3.4 and A3.14 in Embrechts et al. [34].

Notes and Comments

The class of subexponential distributions was independently introduced by Chist-
yakov [15] and Chover, Ney and Wainger [16] mainly in the context of branching
processes. An early textbook treatment is given in Athreya and Ney [3]. An in-
dependent introduction of & through questions in queuing theory is to be found
in Borovkov [7, 8]; see also Pakes [92]. The importance of S as a useful class of
heavy—tailed distribution functions in the context of applied probability in general,
and insurance mathemactics in particular, was realised early on by Teugels [107].
A recent survey paper is Goldie and Kliippelberg [46]. A textbook treatment of
subexponential distributions is given in Embrechts et al. [34].



36 CHAPTER 2.

2.2 Basic Properties

In what follows, we give some of the elementary properties of subexponential dis-
tributions. The following is Lemma 1.3.5 of Embrechts et al. [34].

Lemma 2.2.1 (Basic properties of subexponential distributions)

(a) If F € S, then uniformly on compact y—sets of (0, 00),

lim

(b) If (2.2) holds then, for all € > 0,

e?F(z) = 00, = —00.

(¢) If F €S then, given € > 0, there exists a finite constant K so that for all
n>2,

e (2)
F()

<K(l+¢", z2>0. (2.3)

Proof. (a) For z >y > 0, by straightforward calculation,

() vz — 1) * Fz — 1)
T — /0 Ty O+ /y T 1O
> 14 F) + LC=Y) (5) - F(y).

F(x)

Thus, for z large enough so that F'(z) — F(y) # 0,

Fa—y) _ (F=) .
1< <<m> —1—F(y>> (F(z) — F(y)) "

In the latter estimate, the right-hand side tends to 1 as £ — oo. The property (2.2)
is equivalent to saying that F o In is slowly varying so that uniform convergence
follows from the uniform convergence theorem for regularly varying functions; see
Theorem 1.2.4.

(b) By (a), F oln is slowly varying. But then the conclusion that °F(lnx) — oo
as ¢ — oo follows immediately from the representation theorem for slowly varying
functions; see Theorem 1.2.1.

(c) Let an = sup,>g Fn*(z)/F(z). Using the relation

FOii@) _ | F(@) = P (@)
_ T Fnx(z —t)
= 1+ /0 T ) dF(t)

() (R e,
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we obtain, for every T < oo,

0<z<T

*F(z—y) F(z —y)
v [ AW

"z —y)
Qp < 14 sup / ——— dF
+1 . T F@ (y)

F(z) - F*(x)
< 1+ Ap+a, sup ————-2
> T n zzg F(ZI})
where Ar = (F(T))~' < co. Now since F' € S we can, given any ¢ > 0, choose T
such that

ant1 <14+ Ar+a,(1+¢).

Hence
an <(1+Ar) et (1+2)",

implying (2.3). m|

Remark 2.2.2 Lemma 2.2.1(b) justifies the name subexponential for F' € S; in-
deed F'(z) decays to 0 slower than any exponential e =% for ¢ > 0. Furthermore,
since for any € > 0:

| erar@ 2 T,y 2o,
Y

it follows from Lemma 2.2.1(b) that for F' € S, the moment generating function
of F' does not exist in any neighbourhood of zero.. Therefore the Laplace—Stielt-
jes transform of a subexponential distribution function has an essential singularity
at 0. This result was first proved by Chistyakov [15], Theorem 2. As follows from
the proof of Lemma 2.2.1(b) the latter property holds true for the larger class of
distribution functions satisfying (2.2).

Remark 2.2.3 Condition (2.2) can be taken as another definition for a “heavy-
tailed distribution“. Notice that for some random variable X with distribution F
relation (2.2) can be rewritten as

F
lim P(X>z4y|X>g) = lim L&Y

=1, y>0.
Intuitively this means that if X ever exceeds a large value then it is likely to exceed

any larger value as well. Notice that the “light-tailed” exponential distribution
with F'(z) = exp{—Az}, z > 0, for some A > 0, satisfies

F
lim M:e‘*y, y>0.

2.3 Examples

We have already established that the class of distributions with regularly varying
right tail is a subset of S; see Corollary 1.3.6, and that the exponential distribution
does not belong to S; see Remark 2.2.3.

What can be said about classes “in between”, such as for example the important
class of Weibull-type variables where F(x) ~ exp{—z"} with 0 <71 <17
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Let F' be absolutely continuous with density f. Recall the notions of the hazard
rate ¢ = f/F and hazard function

Q) - | ") dy = ~nF(z) .

An interesting result yielding a complete answer to S—membership for absolutely
continuous F with hazard rate eventually decreasing to 0 is given in Pitman [97];
see Proposition A3.16 in Embrechts et al. [34].

Proposition 2.3.1 (A characterisation theorem for S)
Suppose F' is absolutely continuous with density f and hazard rate q(x) eventually
decreasing to 0. Then

(a) F €S if and only if

T

lim V1@ fy)dy =1. (2.4)

r—>00 0
(b) If the function © — exp{x q(x)} f(x) is integrable on [0,00) then F € S.

Proof. (a) We restrict ourselves to the sufficiency part; a complete proof can be
found in the references mentioned above. Suppose that the condition (2.4) holds.
After splitting the integral below over [0,z] into two integrals over [0,z/2] and
(z/2,z] and making a substitution in the second integral, we obtain

/ Q@) =RE=1)=QW) ¢(y) dy
0

z/2
_ / (@) -Qa—1)-QW) g(y)) dy
0

z/2
+ / Q@) =RE=1)=QW) ¢(z — y) dy
0

It follows by a monotonicity argument that I; (z) > F(z/2). Moreover, for y < z/2
and therefore z —y > /2,

Qz) —Q(r—y) <yqlr —y) <yq(z/2).
Therefore 1
F/2) < L@ < [ ere/2700 o) dy,
0
and (2.4) implies that
lim I(z) =1. (2.5)

T —r00
The integrand in I;(z) converges pointwise to f(y) = exp{—Q(y)}q(y). Thus we
can reformulate (2.5) as “the integrand of I; (z) converges in f-mean to 1”. The
integrand in I»(x) converges pointwise to 0, it is however everywhere bounded by
the integrand of I (z). From this and an application of Pratt’s lemma (see Pratt
[98]), it follows that lim,_,~ I2(x) = 0. Consequently,
F2(z)

— —-1=1

)

i.e. F € S, proving sufficiency of (2.4) and hence assertion (a).

(b) The assertion follows immediately from Lebesgue’s dominated convergence the-
orem, since ¢(z) < q(y) for y < z. O

Proposition 2.3.1 immediately yields the following examples in S. Note that, using
the above notation, F'(z) = exp{—Q(z)}.
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Example 2.3.2 (Examples of subexponential distributions)

(a) Take F' a Weibull distribution with parameters 0 < 7 < 1 and ¢ > 0, i.e.
F(z)=e ", z2>0.

Then f(z) =crz™'e ", Q(z) = cz” and q(z) = ct2™" which decreases
to 0 if 7 < 1. We can immediately apply Proposition 2.3.1(b) since

z e’ q(’”)f(a:) =t (T2 o p gt
is integrable on (0, 00) for 0 < 7 < 1. Therefore F' € S.

(b) Using Proposition 2.3.1, one can also prove for
F(z) ~ e~e(na)”’ , =00, (>0,

that F' € S. This example shows that one can come fairly close to exponential
tail behaviour while staying in S.

(¢) At this point one could hope that for
F(z) ~ e @)z 500, 0<7<1, Lslowly varying ,

F would belong to S. Again, in this generality the answer to this question
is no. One can construct examples of slowly varying L so that the corre-
sponding F' does not even satisfy condition (2.2). An example for 7 = 0 was
communicated by Charles Goldie; see also Cline [18], where counterexamples
for 0 < 7 <1 are given.

2.4 Further Properties

In this section we collect some further properties of subexponential distributions;
their proofs can be found in Embrechts et al. [34].

The following amazing result is due to Goldie; see Embrechts, Goldie and Ver-
averbeke [32] or Embrechts et al. [34], Proposition A3.18.

Proposition 2.4.1 (Convolution root closure of S)
If F™ € S for some positive integer n, then F' € S.

Quite often it is of interest to consider transforms of subexponential distributions.
One of them is a compound Poisson distribution of a distribution in S. Assume
that for some A > 0,

G(w):e_AZ—Fk*(:U), x>0, (2.6)

which is the distribution of Efil X;, where the X; are iid with distribution F,
independent of the Poi(\) random variable N.
The proof of the following result can be found in [34], Theorem A3.19.

Theorem 2.4.2 (Subexponentiality and compound Poisson distributions)
Let G, F and X be related by (2.6). Then the following assertions are equivalent:

(a) GeS,
(b) FesS,
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(¢) limy oo G(z)/F(z) = \.

The same proof appplies to more general compound distributions as demonstrated
in Theorem A3.20 of [34].

The compound Poisson model (2.6) leads to one of the key examples of the so—
called infinitely divisible distributions. A distribution F' is infinitely divisible if for
all n € N, there exists a distribution H,, such that F' = H'*. The Laplace-Stieltjes
transform of an infinitely divisible distribution F' on [0,00) can be expressed (see
Feller [40], p. 450) as

~

fls) = exp{—as—/ooo (1—e ) du(m)} s>,

where a > 0 is constant and v is a Borel measure on (0, o) for which v(1,00) < 0o
and fol x dv(z) < co. This is the so—called Lévy-Khinchin representation theorem.
In Embrechts et al. [32] the following result is proved.

Theorem 2.4.3 (Infinite divisibility and S)
For F infinitely divisible on (0,00) with Lévy—Khinchin measure v, the following
are equivalent:

(a) F eS8,

(b) v(1,2]/v(1,00) €S,

(¢) lim, oo F(z)/v(z,00) = 1. m|
A key step in the proof of the above result concerns the following question.
If F, G €8, does it always follow that the convolution F «G € §?
The rather surprising answer to this question is
In general, NO!

The latter was shown by Leslie [68]. Necessary and sufficient conditions for con-
volution closure are given in Embrechts and Goldie [30]. The main result needed
in the proof of Theorem 2.4.3 is the first part of the following lemma (Embrechts
et al. [32], Proposition 1). A proof of the second part can be found in Embrechts
and Goldie [31].

Lemma 2.4.4 (Convolution in S)

(a) Let H = F x G be the convolution of two distributions on (0,00). If G €S
and F(z) = o(G(x)) as x — oo, then H € S.

(b) If F € S and Gi(z) ~ ¢;F(z) for ¢; > 0, then Gy * Go(z) ~ (c1 + c2) F(z) as
T — 00.
(¢) If F €S and G(x) ~ cF(x) for some positive ¢, then F x G(z) ~ (1 + ¢)F ()
as & — 00.
(d) If F,G €S, then FxG € S if and only if [p F+ (1—p) G] € S for some (all)
p€ (0,1).
With respect to asymptotic properties of convolution tails, the papers by Cline
[18, 19] offer a useful source of information.

In the discrete case, the following classes of distributions have been found to
yield various interesting results.
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Definition 2.4.5 (Discrete subexponentiality)
Suppose (p,) defines a probability measure on Ny, let p2* = > ko Pn—kPr be the
two—fold convolution of (p,). Then (p,) € SD, if

(a) limy, 00 p%*/pn =2 < oo,

The class SD is the class of discrete subexponential sequences. O

Suppose (p,) is infinitely divisible and p(r) = Yo, prr* its generating function.
Then by the Lévy—Khinchin representation theorem

p(z) =exp —A I—Zajzj ,

j=1

for some A > 0 and a probability measure («;). The following result is the dis-
crete analogue to Theorem 2.4.3, or for that matter Theorem 2.4.2 (Embrechts and
Hawkes [33]).

Theorem 2.4.6 (Discrete infinite divisibility and subexponentiality)
The following three statements are equivalent:

(a) (pn) € SD,
(b) () € SD,

(¢) limp oo Pp/an = A and limp 00 atp /api1 = 1. |

See the above paper for applications and further references.
A recent survey paper on subexponentiality is Goldie and Kliippelberg [46].

2.5 Applications

2.5.1 Ruin Probabilities

One of the classical fields of applications for subexponential distributions is insur-
ance mathematics. Such distributions are used as realistic models for describing the
sizes of real-life insurance claims which can have distributions with very heavy tails.
The class S of subexponential distributions is quite flexible for modelling a large
variety of tails, including regularly varying, lognormal and heavy—tailed Weibull
tails.

In what follows, we intend to consider one of the classical insurance models and
want to see how the subexpontential distributions come into consideration in a very
natural way. The classical insurance risk process is defined as

N,
Rty =utct—Y X;, t>0,
i=1

where

o u > ( is the initial capital or risk reserve. It is usually assumed that u is very
large.

e ¢ > 0 is the premium rate. This means that there is a linear premium income
as a function of time.
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o (N¢)i>o is the number of claims that occurred until time t. Usually, N is
modelled as a homogeneous Poisson process or as a renewal counting process,
ie.

where (Y;) is an iid sequence of non-negative random variables. We will assume
that EY = \~! exists and is finite. Then X is called the claim time intensity.

o X1,X5, ... are the claim sizes. They are supposed to be iid with common
clawm size distribution F' and usually also non—negative. Notice that the nth
claim occurs at time T},. Also write u = EX, where we assume that the latter
expectation is finite.

o Claim sizes and claim times are independent. This means that (X;) and (Y;)
are independent.

Now all ingredients of the risk process are defined. The event
{R(t) < 0 for some t} for a given initial capital u
is referred to as the ruin, and the corresponding probability
Y(u):=P(R(t) <0 forsomet), wu>0,

is said to be the ruin probability. In insurance mathematics rhe ruin probability,
as a function of u, is considered as an important measure of risk. Therefore quite
some work in probability theory has been done in order to evaluate the size of the
quantity ¢(u). Early on, starting with Cramér [21], it was realised that the ruin
probability is closely related to the distribution of a random walk with negative
drift. Indeed, in order to avoid ruin with probability 1, we have to assume that for
large t,

N
ct > S(t) := ZXi a.s.
i=1

An appeal to the strong law of large numbers ensures that this condition holds,
provided

ct>FE =EN;p~Xtp.

N
> X
i=1

This amounts to the following net profit condition:

c
pi= N 1>0. (2.7)
In what follows, we assume this condition to be satisfied.

For the ease of representation assume from now on that (V¢)s>o is a homogeneous
Poisson process with intensity A. Alternatively, the Y;’s consistitute a sequence of
iid Ezp()\) random variables. In the insurance context, the risk process is then
called Cramér—Lundberg model. Since ruin can occur only at the claim times T), we
have

bw) = P (tigg [u+ct — S(t)] < 0)

n
u-{—cTn—ZXi] <0>

i=1

P (inf
n>0
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P (sup Xn:[X, —-cYi] > u) .

n=0 i=1

By virtue of the net profit condition (2.7), E[X — ¢Y] < 0. Therefore and by the
independence of (X,,) and (Y},), ¢ (u) is nothing but the right tail of the distribution
of the supremum of a random walk with negative drift. This probability can be
determined for instance via Spitzer’s identity (cf. Feller [40], p. 613). An application
of the latter result allows one to express the non—ruin probability 1 — ¢ (u) as a
compound geometric distribution, i.e.

oo

1—4(u) = r”p S (4 p) ™ Fpr (), (2.8)

n=0

where p is defined in (2.7) and

1 ("=
Fits) =5, [ Fl)dy, =20,
B Jo
denotes the integrated tail distribution.
In his classical work, Cramér [21] gave asymptotic estimates for ¢(u) as u — oo.
In particular, he obtained the bound

Pu) <e ™, u>0,

which holds under the assumption that the equation (Cramér—Lundberg condition)

Oouz_ _E
/0 e F(a?)—A

has a solution. If the latter exists it is unique.

The latter equation only makes sense if F(z) decays to zero at an exponential
rate. However, we learnt in Section 2.1 that subexponential distributions do not
have finite exponential moments and therefore the classical Cramér theory does not
apply. In this context the representation of ¢ (u) via the infinite series (2.8) is very
useful. Indeed, consider

Pu) _ p o P (w)
Tr(w) 1+p ;(1”) Fr(u) 29)

If F; is subexponential, we know that
Fp*(u) ~n Fy(u) for every fixed n as u — oco. (2.10)
This fact together with the basic property (2.3), i.e.

?’L(S) <K(l+e)", 2>0,

and a dominated convergence argument ensure that we may interchange the limit
as u — oo and the infinite series in (2.9) to obtain

1[](1/,) p - -n _ ,—1
AR nZ:%n (L4+p) "=pt. (2.11)
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This elegant solution to the ruin problem for subexponential distributions was pro-
posed by Embrechts and Veraverbeke [35] generalising earlier work by Embrechts
et al. [32] and by Pakes [92], Smith [106] and Veraverbeke [110] in the queuing
context.

Remark 2.5.1 Consider a GI/G/1 queue with renewal arrival stream and gen-
eral service time distribution F' with finite mean p and corresponding integrated
tail distribution Fy. Also assume that the queue is stable in the sense that the
traffic intensity is smaller than 1. (This is the net profit condition (2.7).) Then
the stationary waiting time distribution can be represented as the distribution of
the supremum of a random walk with negative drift; cf. Feller [40], VI.9. Hence
analogues of relation (2.11) (corresponding to an M/G/1 queue) are immediate.
Another interpretation of (2.11) has been given in the context of branching theory;
see Athreya and Ney [3], Chistyakov [15] and Chover et al. [16].

Remark 2.5.2 The asymptotic relation (2.11) is nothing but a qualitative result.
Assuming second or even higher order subexponentiality, i.e. requiring conditions
on the rate of convergence in (2.10), one can obtain an improvement on the rate
of convergence in the asymptotic relation (2.11). This, however, would be of a
rather restricted practical interest because we do not know the exact tail behaviour
of a distribution in real-life situations. Mikosch and Nagaev [78] show that even
for the simple case of a distribution F; with Fr(z) ~ const ™%, the error term
Y(u)/Fr(u) — p~t can decay to zero arbitrarily slow.

In the context of the approximation (2.11) it is an important question as to whether
FT is subexponentai or not. In particular, one would like to have simple conditions
on the distribution F' which ensure that FT is subexponential.

Example 2.5.3 (Regularly varying distribution) _
It is clear from Karamata’s Theorem 1.2.6 that regular variation of F'(z) with index
—a < —1 implies that

Hence Fy(z) is subexponential. O

In general, it is difficult to determine whether Fy € S. Kliippelberg [62] introduced
the class §* in order to handle this problem.

Definition 2.5.4 (The class §*)
For any distribution F' with support (0,00) and finite mean pu, F' € §* if the following
relation holds:

. *Flz—y) =
l —_— F d = 2 .
Jm | @) (y) dy = 2p

The class §* makes it less difficult to decide whether Fj is subexponential:
Proposition 2.5.5 If F € §*, then F € S and Fr € S.

Conditions for F' € S and Fj are often formulated in terms of hazard functions
Q(x) = —In F(z) or its density, the hazard rates q(x). (It can be shown that every
F € §* is asymptotically tail equivalent to an absolutely continuous distribution
with hazard rate ¢(z) — 0 as © — 00.) The following results are cited from Goldie
and Kliippelberg [46].

Proposition 2.5.6 (Conditions for F' € §*)
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(@) Iflimg oo q(x) < 00 then F € S*.

(b) If there exist § € (0,1) and v > 1 such that Q(zy) < y°Q(z) for all z > v,
y > 1 and liminf,_, z q(x) > (2 —2°)7", then F € S*.

(¢) If q is eventually decreasing to 0, then F' € 8* if and only if

T

lim eV IOF(y) dy = p.

Tr—r00 0

(d) If

lim ¢(z) =0 and limsupz q(z) = o0,
z—00 T—00

and limsup,_, . zq(z)/Q(x) < 1, then F € S*.

Other conditions for F' € §* are given in Kliippelberg [62, 63], Cline [18] and Goldie
and Kliippelberg [46]; see also Embrechts et al. [34], Section 1.4.

Example 2.5.7 (Distributions F; € S)
The heavy—tailed Weibull distribution F' with parameter 7 € (0,1) has Fr € S. So
have the log—normal distribution and the Benktander—type I and II distributions.

We finally mention that, in general, F' € S does not imply Fr € S and vice versa.

Notes and Comments

Over the last few years various results on the asymptotic behaviour for ruin prob-
abilities have been derived for various settings. The case of claim sizes with a
distribution having a moment generating function in some neighbourhood of zero
has attracted most attention, also for dependent claim size sequences. Grandell
[47] gives an overview of techniques and results in this context. The heavy—tailed
dependent case has been treated recently in various papers. Asmussen et al. [2]
show that the Embrechts and Veraverbeke result (2.11) remains valid (in the queu-
ing context) under a fairly general dependence structure of the interarrival times if
the service times are still independent. Mikosch and Samorodnitsky [79] consider
ruin probabilities for claims sizes which constitute a linear process with regularly
varying tail distribution. They show that the Embrechts and Veraverbeke result
does not remain valid in this case, although the asymptotic order of ¥ (u) (regular
variation with index (1 — «)) remains the same. Braverman et al. [12] consider the
case of a general a—stable strictly stationary ergodic sequence with a € (1,2). They
show that the ruin probability can be of the order ¢(u) ~ u?* =) L(u), where L is
any slowly varying function and v € (0,1). The value «y is the smaller the stronger
the dependence in the sequence.

2.6 Large Deviations

This section is based on Mikosch and Nagaev [78].
Large deviation probabilities for heavy—tailed random variables can be consid-
ered as a natural extension of the relation

P(S, > ) ~ P(M,, > x) ~n F(2) (2.12)
as x — 0o, where, as usual,

Sp=X1+--+X,, M,=max(Xy,...,X,), n>1,
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for an iid sequence (X,,) with common distribution F. We know that (2.12) is a
property of regularly varying distributions and can be taken as the definition for
the class of subexponential distributions. A large deviation probability occurs when
z and n in (2.12) are linked:

P(Sp, > xp) ~P(My, > xy) ~n F(xp), ZTn-—>00, n—00.

More generally, one is interested in z-regions B,,, say, where the latter relation holds
uniformly in z:

P(S, > )

su s
5 n F(x)

zEB,

—1‘ = 0, n—ooo. (2.13)

One usually chooses B,, = [d,,, ) for some threshold sequence d,, — co. Relation
(2.13) again supports the idea that the event {S,, > 2z} for large = is due to only
one single event, namely to the extremal event {M,, > z}.

Clearly, if z is not large enough we may expect that, instead of an approximation
by P(M, > x), the central limit theorem might be a good approximation to P(S,, >
x): write

1 &0 2
q)(il,') ::\/—2_71_ / e ¥ /2 dy,

for the tail of the standard normal distribution. Assume that X has mean p = 0 and
finite variance 0. Then one is interested in z-regions (1, c,] where the following
normal approximation holds. such that

P(S, > 1)
B(z)/(o0y/n))

From the CLT we may conclude that there exists a sequence (d,,) with d,,//n — 0
sufficiently slowly and such that (2.14), with ¢, = ¢y/n, holds. In his famous work,
Cramér [22] proved that, given the existence of the moment generating function of
X in a neighbourhood of the origin, (2.14) holds with ¢, = c¢y/n, for any ¢ > 0
and d,, = o(n?/?), while (2.14) fails in general for d,, = O(n*/?); see for instance
Petrov [95, 96]. The existence of the moment generating function is also referred
to as Cramér’s condition. It is crucial for the proof of Cramér’s theorem. Petrov’s
refined version of Cramér’s theorem (see Petrov [93], and also Petrov [96], Theorem
5.23) yields the following: if z > 0, x = o(n) and Cramér’s condition holds, then

3
M:exp{x—x(f)}<1+o<x“>> . (2.15)
D) 2"\ n

Here A(z) = Y 4o, ckz” is a power series with coefficients depending on the cu-

mulants of the random variable X. The series A(z) converges for sufficiently small

values of z. It is called Cramér’s series and appears in many results related to large

deviations.

Cramér’s theorem has been extended and generalised in various directions, for
example to sums of dependent random variables or to general sequences of random
variables. Large deviation techniques are very useful tools in different areas of
probability theory, statistics, statistical physics, insurance mathematics, renewal
theory, and other applied fields. The main stream of research has been concentrated
on the study of the quantities In P(S,, > ) under Cramér’s condition. We call them
rough large deviation probabilities; see for instance the monographs by Bucklew [14],
Dembo and Zeitouni [27], Deuschel and Stroock [28], and Ellis [29]. However, in
many situations rough large deviation results do not suffice. Therefore precise large

sup
1<z<ep

—1‘ - 0. (2.14)
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deviation results for P(S,, > z) are needed; Cramér’s asymptotic expansion (2.15)
is a typical example.

Since the existence of the moment generating function is crucial for proving
Cramér’s theorem, the following question also arises: what can be said about the
asymptotic behaviour of P(Sy, > x) if Cramér’s condition is violated? This situation
is typical for many distributions of interest in insurance, when one is interested in
modelling large claims, or in queuing, when large interarrival times are described
by distributions with heavy tails. In that case, distributions with exponentially
decaying tails (which is a consequence of Cramér’s condition) do not form realistic
models. Typical distributions with heavy tails are the following;:

Regularly varying tails RV («)

F(z) =2 %L(z), x>0,

where a > 0, and L is a slowly varying function.

Lognormal—type tails LN(v)
F(z) ~cxle 7 | 2 5 o0,
for some 8 € R, v > 1, A > 0 and appropriate ¢ = ¢(3,7). In the abbreviation
LN(v) we suppress the dependence on 8 and .
Weibull-like tails WE(«)
F(z) ~ctPe™" | - 0,

for some 8 € R, a € (0,1), A > 0 and appropriate ¢ = ¢(3,«). In the abbreviation
WE(«) we suppress the dependence on 8 and .

The lognormal distribution obviously belongs to LN(2). The heavy-tailed Wei-
bull and the Benktander—type-II distributions are members of WE(«). All these
distributions do not satisfy Cramér’s condition, hence Cramér’s theorem is not
applicable. For a precise definition of these distributions we refer for instance to
Embrechts et al. [34], Chapter 1.

Notation

Before we formulate the result about the large deviation probabilities for heavy—
tailed distributions we introduce some notation. In what follows, ¢, < d,, are two
sequences of positive numbers. Write

rLe, if ze€(0,e,/hn),
x>d, if z€ (dygn,o0),

for any choice of sequences h,, g, — o0 as n — oo. The relation ¢, € = K d,, is
defined analogously. The asymptotic relation

A, (z) ~ Bp(z) (2.16)
for ¢, € r < d,, means that

A, (x)
B, (x)

sup
Cnhn Sden/gn

—1‘ = o(1)

for any choice of sequences hy,, g, — 00 as n — co. For z < ¢, and = > d,,, (2.16)
is defined analogously. We also write a,, ~ by, for a, = b,(1 + o(1)).
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A Review of Large Deviation Results for Heavy—Tailed Distributions

In this section we describe the asymptotic behaviour of large deviation probabilities
P(S,, > z) under a heavy-tail condition on F. If not mentioned otherwise, we
assume that y = EX =0, 0? = var(X) = 1 and E|X|**° < oo for some § > 0.
It is typical for large deviation probabilities P(S,, > z) that there exist two
threshold sequences ¢, < d, such that
P(Sn > ) ~ ®(z/v/n),

T < Cn (2.17)

and

P(Sp, >z) ~nF(z), x>d,. (2.18)

Proposition 2.6.1 The following threshold sequences (cy,), (dy) can be chosen

Fe Cn dn
RV(a),a > 2 n'2In'Zn | /210t n
LN(y),1<y<2 nt2In"?n | nt/2m"*n
LN(vy), v >2 nt/22p | n/2m7 "ty
WE(a), 0 < a<0.5 | nt/G-a) nt/(2=2e)
WE(a), 0.5 <a <1 | n?/3 nt/(2=2e)

Remark 2.6.2 The sequences given above are, by definition, determined only up
to rough asymptotic equivalence. For instance, ¢, or d, can be multiplied by any
positive constant, and (2.17) and (2.18) remain valid.

Remark 2.6.3 For the heaviest tails (RV(«),LN(7y),1 < v < 2) one can choose
cnp = dy, i.e. there exists one threshold sequence which separates the approximations
(2.17) and (2.18). The case RV(a), a > 2, was treated in A. Nagaev [83], where
the case 2 > n'/? Inn was studied. The separating sequence (c,) given in the table
appeared in A. Nagaev [85]. Rozovski [103] discovered that the parameter v = 2
separates the classes LN(v), v > 2, and LN(y), 1 < v < 2, in the sense that, in
the case v > 2, (¢,) and (d,) have to be chosen non-identically. The case WE(«),
0 < a < 1, was considered in A. Nagaev [84, 87]. Other reviews of this topic can be
found in S. Nagaev [89] and Rozovski [103]; see also the monograph by Vinogradov
[112].

As a historical remark, we mention that the validity of the normal approximation
to P(S, > x) was already studied by Linnik [69, 70] and S. Nagaev [88]. They
determined lower separating sequences (c,) under the assumption that the tail F(z)
is dominated by one of the regular subexponential tails used in Proposition 2.6.1.

Remark 2.6.4 The assumption F € RV(a), a < 2, in combination with a tail-
balancing condition, implies that F' is in the domain of attraction of an a—stable

law; see Section 1.4.1. In particular, 02 = co. In the domain of attraction of an a—

stable law G, one can find constants a,, € R and b, > 0 such that b, (S, —a,) LN

G+ . The sequence (by,) can be chosen such that F(b,) ~n~'. This implies that
b, = n'/®Ly(n) for a slowly varying function L;. Then the relation

P(S, >z) ~nF(z), > a,+n"*Li(n),
holds. The case RV(a), a < 2, was treated by Heyde [54, 55]; he dealt with
two-sided large deviation probabilities P(|S,, — a,| > z). Tkachuk [108] proved

the corresponding results in the one—sided case, i.e. for P(S, > z). A unifying
approach for RV(a), a > 0, was considered by Cline and Hsing [20].
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Remark 2.6.5 The exponential (WE(1)) and superexponential (WE(a), o > 1)
cases require tools which are quite different from those used for heavy—tailed dis-
tribution functions F'. These cases can be partly treated by Cramér’s theorem, see
(2.15), provided that the left tail of F' also decays to zero at an exponential rate.
Then the moment generating function exists in a neighbourhood of the origin. For
at least exponentially decreasing right tails F(z), further results in the spirit of
Proposition 2.6.1 can be found in A. Nagaev [86].

Remark 2.6.6 Davis and Hsing [23] prove precise large deviation results for sta-
tionary mixing sequences with distribution function F' € RV(«a), a < 2. Mikosch
and Samorodnitsky [79] prove large deviation results for linear processes under very
general conditions on the coefficients of the process.

Remark 2.6.7 Large deviations for random sums of iid subexponential random
variables were considered in Kliippelberg and Mikosch [64] and Mikosch and Nagaev
[78]. The latter papers treat random sums where the summands are independent of
the random index. Mikosch and Stegeman [82] consider a special case of dependence
between the summands and the random index.

Example 2.6.8 (A quick estimate of the ruin probability)

Let X, X1, Xo, ... be iid with EX =0, E|X|**9 < oo for some § > 0 and such that
F is regularly varying with index —a < 0. (Clearly, a > 2.) Then we know from
Proposition 2.6.1 that

P(S, > ) ~nF(z) for z> (nlnn)'/2 (2.19)

For the random walk with negative drift (—nc + Sp), ¢ > 0, we call

1/J(u):P<sup (—nec+ Sp) >u> , U — 00,

n>0

the ruin probability with intial capital u. See Section 2.5.1. We are interested in the
asymptotic behaviour of ¢(u) as u — oo. Notice that by (2.19),

Y(u) > P(Spy > u(l +c) ~const u' ~*(1+¢)7%.

On the other hand,

1/)(U)SZP( sup Sn>u+c2k>§ZP<sup Sn>u+c2k>.
0

h— 2k§n§2k+1 k=0 n§2k+1

Using the Lévy maximal inequality (for example Petrov [96]), one obtains for any
€ € (0,1) and large u,

IN

P( sup Sn>u+02k>

n§2k+1

2P (S2k+1 >u+c2F — (2k+20'2)1/2)

IA

2P (52k+1 > (u + C2k)(1 — 6)) .
We conclude that
P(u) < const Z(u +28)7 ~const ul T, u— .
k=0
Thus we showed by some simple means that

Y(u) < u'™% asu — oco.
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