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Abstract

A d-dimensional contact process is a simplified model for the spread of an
infection on the lattice Z%. The dynamics of the process can be shortly described
as follows. At any given time t > 0, certain sites € Z¢ are infected while the re-
maining once are healthy. Infected sites recover at constant rate 1, while healthy
sites are infected at a rate proportional to the number of infected neighboring
sites on the lattice. The model is parametrized by the proportionality constant
denoted by A. If A is sufficiently small, infection dies out eventually (subcrit-
ical process), whereas if X is sufficiently large infection tends to be permanent
(supercritical process).

In this paper we shall study the estimation problem for the parameter ) of
the supercritical contact process starting with a single infected site at the origin,
given that the process survives forever. Based on an observation of this process
at a single time ¢, we obtain an estimator for the parameter A which is consistent
and asymptotically normal as t — co.

The probabilistic results needed to establish these facts are taken from a
companion paper Fiocco and van Zwet (1998b).

1 Introduction

A d-dimensional contact process is a simplified model for the spread of a biological
organism or an infection on the lattice Z%. At each time ¢t > 0, every point of the
lattice (or site) is either infected or healthy. As time passes, a healthy site is infected
with Poisson rate A by each of its 2d immediate neighbors which is itself infected;
an infected site recovers and becomes healthy with Poisson rate 1. Given the set of
infected sites & at time ¢, the processes involved are independent until a change occurs.
If the process starts with a set A C Z¢ of infected sites at time ¢ = 0, then & will
denote the set of infected sites at time ¢ > 0 and {¢/ : ¢ > 0} will denote the contact
process. For example, {¢Z°: ¢ > 0} or {Et{o} : ¢ > 0} will denote the processes starting



with every site infected, or with a single infected site at the origin. If the starting set
1s chosen at random according to a probability distribution ¢, then the process will be
written as {£ : ¢ > 0}. If we do not want to specify the initial state of the process at
all, we simply write {&, : ¢ > 0}.

We also need a compact notation for the state of a single site z € Z< at time ¢. For
any contact process & we write

_ _ | 1 if zis infected at time ¢
(1.1) §i(z) = 1g,(z) = { 0 if z is healthy at time t |

thus using the same symbol & for both the set of infected points and its indicator
function. Of course &!(z) and £7(x) will refer to the processes £2 and £* in the same
manner.

The first thing to note about the contact process is that for all non empty A C z9,
the infection will continue forever with positive probability if and only if A exceeds a
certain critical value Aq. Such a process is called supercritical. Thus, if we define the
random hitting time

(1.2) T =inf{t: & =0}, Acaz?,

with the convention that 74 = oo if &2 5 0 for all ¢ > 0, then for the supercritical
contact process

(1.3) P(7% = o0) > 0
for every non-empty A C Z°. Moreover, if A has infinite cardinality |A| = oo, then
(1.4) P(rt =00) =1

In the supercritical case, the process ftzd that starts with all sites infected converges
in distribution to the so-called upper invariant measure v = vy. Here convergence in
distribution means convergence of probabilities of events defined by the behavior of
the process on finite subsets of Z¢, and ’invariant’ refers to the fact that the process
{&¢ : t > 0} is stationary. In particular, the distribution of & is equal to v for all
t. Obviously, v is also invariant under integer valued translations of Z%. The long
range behavior of the supercritical contact process {¢&} : t > 0} for arbitrary non-
empty A C Z% is described by the complete convergence theorem. Let g denote the
probability distribution of £2 and d¢ the distribution that assigns probability 1 to the
empty set.

Theorem 1.1 Let AC Z% and A > Ay . Then, ast — co

(1.5) p = P(r4 < 00)dp + P(r# = ooy .



For a proof for d = 1 see Liggett (1985), Chapter VI, Theorem 2.28; for d > 1 see
Durrett & Griffeath (1982}, Bezuidenhout & Grimmett (1990), Theorem 4, and Durrett
(1991).

If A > X; and A = Z¢ the process {tzd survives forever with probability 1 by (1.4)
and converges exponentially to the limit process, i.e. for positive C and « and all ¢t > 0,

(16) 0 < P(E () = 1) - P(E(x) = 1) < Ce™

(Durrett (1991)).

Another major result concerning the contact process is the shape theorem. To
formulate this result we first have to describe the graphical representation of contact
processes due to Harris (1978). This is a particular coupling of all contact processes of
a given dimension d and with a given value of X, but with every possible initial state
A or initial distribution . Consider space-time Z¢ x [0, 00). For every site z € 2¢ we
define on the line z x [0, c0) a Poisson process with rate 1; for every ordered pair (z, y)
of neighboring sites in Z¢ we define a Poisson process with rate A. All of these Poisson
processes are independent.

We now draw a picture of 2% x [0, 00) where for each site z € Z¢ we remove the
points of the corresponding Poisson process with rate 1 from the line z x [0, c0); for
each ordered pair of neighboring sites (z,y) we draw an arrow going perpendicularly
from the line z x [0, 00) to the line y x [0, 0o} at the points of the Poisson process with
rate A corresponding to the pair (z,y).

For any set A C z¢, define £ to be the set of sites that can be reached by starting
at time 0 at some site in A and traveling to time ¢ along unbroken segments of lines
x % [0,00) in the direction of increasing time, as well as along arrows. Clearly,
{£/ : t > 0} is distributed as a contact process with initial state A. By choosing the
initial set at random with distribution ¢, we define {¢ : ¢ > 0} . The obvious beauty
of this coupling is that for two initial sets of infected sites A C B, we have £ C ¢F for
all ¢ > 0.

From this point on we shall assume that all contact processes are defined
according to this graphical construction. We shall also restrict attention to
the supercritical case.

Before formulating the shape theorem we need to introduce some notation. Let |- |
denote the L*® norm on R? that is

= = max |z
for z = (21,...,24) € B, and let @ = {z € R? : |z| < 1/2} denote the unit hypercube
centered at the origin. For A,BC R, A®@ B = {z+y:z € A,y € B} will denote the
direct sum of A and B and for real r, 7A = {rz : € A}. Define

(1.7) H =) fs{o} eQ ,

s<t



(1.8) KE={zez*: z)=Z(z)} @ Q .

Thus for the process {ft{o} : £ > 0} that starts with a single infected site at the
origin, H; is obtained by taking the union of the sites that have been infected up to or
at time ¢, and replacing these sites by unit hypercubes centered at these sites in order
to fill up the space between neighboring sites. Similarly K, is the filled-up version of

- 1) zd . o . o
the set of sites where £ and £Z° coincide. We are now in the position to formulate
the shape theorem.

Theorem 1.2 There ezists a bounded conver subset U of R? with the origin as an
interior point and such that for any ¢ € (0,1),

(1.9) (1-eU Cc t7/(H,n Ky) Ct'H,c (1+e)U

eventually almost surely on the event {T{® = 0o} where 5:{0} survives forever.

For a proof for d = 1 we refer to Durrett (1980); for d > 1 one may follow Bezuidenhout
and Grimmett (1990) and Durrett (1991). For a version of the shape theorem for the
process & on {74 = oo} for arbitrary A C Z¢ see Fiocco & van Zwet (1998a).

The shape theorem describes the growth of the set of infected sites if the process
ft{o} survives forever. Roughly speaking the convex hull of the set of infected sites will
grow linearly in time as ¢ — oo and acquire an asymptotic shape tU, where U is a
fixed convex set with the origin as an interior point. Inside of this set, say in (1 — e)tU,
the smallest and the largest possible process §t{0} and Etzd are equal eventually a.s.
and this must mean that, for large ¢, their distribution is close to the equilibrium
distribution v. Together, the complete convergence theorem and the shape theorem
describe the peculiar type of convergence of the supercritical contact process to its
limiting distribution. The infection spreads at a constant speed and relatively soon after
it has reached a site , equilibrium will set in at that site. In the evocative language
of Durrett & Griffeath (1982) the infection behaves like a “blob in equilibrium”. For a
more precise and detailed account of the facts mentioned so far, the reader is referred
to e.g. Durrett & Griffeath (1982), Liggett (1985), Bezuidenhout & Grimmett (1990),
Durrett (1991) and also Fiocco (1997).

A third important property of the contact process is its reversibility or self-duality.
If, in the graphical representation, time is run backwards and all arrows representing
infection of one site by another, are reversed, then the new graphical representation
has precisely the same probabilistic structure as the original one. In particular

(110) PENB#0)=PEPNA+£0), forall ABCz%andt>0 .



With A = {0} and B = Z? this yields
P(ri® > t) = P(e2(0) = 1)
and letting ¢ — 00 in the supercritical case, this reduces to
P(rt% = c0) = P(§(0) = 1) .
Combining this with (1.6) we see that if A > A4,
(1.11) P(t < 7% < 00) < Ce™

(cf. Durrett (1991)).

In this paper we shall study the estimation problem for the parameter A of the su-
percritical contact process {t{o}, given that it does not die out. Based on an observation
of ft{o} at a single time ¢ we derive an estimator XEO} and show that it is consistent and
asymptotically normal as ¢ — oo.

The informal description of the convergence of the contact process immediately
suggests a way to derive an estimator of the parameter A. If 5,{0} survives forever,
then observing Et{o}(:):) for all sites = contained in (1 — €)tU is asymptotically the same
as observing the limit process £/(z) on this set. This asymptotic “equivalence” of £
and £/ on (1 — €)tU should allow us to derive an estimator of A based on the limit
process & (x) for sites z € (1 — €)tU, and hope that this estimator will also work for
the process {-,'t{o . The advantage of deriving the estimator under &} is that we can use
the stationarity of this process to set up the estimating equation.

For D C 74, define the total number of infected sites in the set D at time ¢ as

(1.12) n(D) =Y &(a)

el

and the total number of pairs of neighboring sites for which one site is healthy and lies
in D and the other is infected as

(1.13) k(D) = szt(m) )
where
(1.14) kfz) = (1 —f:(ﬂ:))I ZT,_ &(y) -

Here |z — y| denotes the L' distance between sites z and y. When we need to specify
the initial state of the process we shall use an appropriate notation. For example nio}
and kt{o} will indicate that we are referring to the process {;'t{o}. Similarly for the process

&/, we write ny and k;.



For the & process, £/ (z) increases by 1 at rate AkY(z) and decreases by 1 at rate
& (z). As &/ is stationary, this implies that AIEk} (z) = IE€/(x) and since £ is spatially
translation invariant we have
o E&@) _EBg)

Bk (z) Ek;(0)

Notice that these expectations are independent of ¢ because of the stationarity of £¥.
For t > 0, let A, C Z¢ be finite sets of cardinality |A¢| = 00 as t — oo. It seems
reasonable to expect that some form of the law of large numbers will ensure that as
t — oo,

(1.15)

> &)

nr(Ai) — TEA;
| Ay | A

~ [E&/(0)

and
k(@)
k(A _ ZH
A [A]

~ IEEY(0) .

This would imply that
ng (A)

ki (Ad)
is a plausible estimator of A on the basis of an observation of the process £/ at a single
time ¢. If, in addition to |4, — oo, we also require that A, C (1 — €)tU for some
€ > 0, then the shape theorem suggests that conditional on ft{o} surviving forever, the
probabilistic behavior of 5,5{0} and & should be asymptotically the same on the set

A, C 7% But this indicates that if we observe the process ft{o} instead of £}, then

n® N
k% (4,)

would be a plausible estimator of A based on {t{o}, provided that 5,,{0} survives. Unfor-
tunately, the set U is unknown - and so is ¢ in many applications - and hence we can
not implement this estimation procedure directly. However, the shape theorem also
suggests that if 5,,{0} survives forever, the convex hull C (§z{0}) of the set ‘ft{O} of infected
sites behaves asymptotically like tU. Hence we may expect that if we define 2 mask

Cy = (1 - 8)C(E™)

for some 6 > 0 and & survives, then |C:NZY — 0o and C, C (1 — €)tU for some
€ > 0. Combining these ideas we arrive at
nEO} (Ct)

(1.16) A = 3%y = 2
t K (Cy)



as a plausible estimator of A on the basis of an observation of §t{0} at a single time {. In
fact we shall use masks C; which are obtained by shrinking the set C( {0}) in a more
general manner than through multlphcatlon by (1 —6) (cf. Section 3).

The aim of this paper is to prove that ’\t % is a consistent and asymptotically normal
estimator of A on the event where cf survives forever. To do this we not only have
the considerable problem of making the above heuristic argument precise, but in order
to prove the asymptotic normality, we also have to show that for the f, process
conditional on survival, distant sites evolve almost independently. The technical tools
for dealing with these problems are provided in Fiocco & van Zwet (1998b).

We should stress at this point that shrinking C (&{0}) to obtain the mask C; is abso-
lutely essential to obtain an estimator that works well in practice. Without shrinking,
the mask will contain the boundary area of the “blob” of infected points where equi-
librium has not yet set in and the infected points are therefore less dense. This has the
effect of lowering the estimator of A and simulation shows that the resulting negative
bias is considerable {cf. Section 6). ;From a theoretical point of view we shall find that
without shrinking - i.e. if ¢ = 0 and hence C;, =C ({t{o}) - we can still show consistency
of the estimator Xt{o}, but not its asymptotic normality.

Having described our purpose, a few words concerning the motivation for this study
may not be amiss. For more than two decades interacting particle systems have been a
major object of study in probability theory. We believe that these models are important
and can be applied to describe many situations of great practical interest. It would
therefore seem timely to study these processes from a statistical point of view.

However, the probabilistic structure of interacting particle systems is highly com-
plex and it therefore seemed wise to begin by restricting attention to the simplest
non-trivial example, which is the contact process. It is non-trivial because it exhibits
a phase change; it is relatively simple because each site can be in only two states and
direct interactions are limited to immediate neighbors. Admittedly the contact pro-
cess 1s perhaps too simple to serve as a model for many situations. However, we are
inclined to think that any progress made for this problem will help to attack more
complex processes in future.

2 Technical tools

In this section we provide the reader with a number of tools that will be used in this
paper for establishing the properties of XEO}. The proofs may be found in Fiocco & van
Zwet (1998b) which will henceforth be abbreviated F&vZ (1998b). Let C( t{U}) be the
convex hull of the set of infected sites. Theorems 1.4 and 1.5 in F&vZ (1998b) provide
the following bounds on this set.

Theorem 2.1 For every e € (0,1),
(2.1) (1—e)tU C C(Et{ol) C (1 + e)tU eventually,
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a.s.on the set {T{% = c0}. Moreover, for every ¢ € (0,1) and r > 0, there exists a
positive number A, . such that for everyt > 0

113((1 —)tU c (&) | 70 = oo) >1— At

Before formulating the next result we need to introduce some notation. Let H =
{0,1)2" denote the state space for the contact process. For f : H — R and z € Z¢,
define

A(a) = sup{1f(m) = £(O) : 1,C € H and n(y) = ¢(o) for all y £},
(2.2)
=3 As(a).

zczd

For Ry, R, C Z% let d(R,, Rp) denote the L!-distance of R; and R,, thus

d
AP Re) = il plo—vl= dnf e 2 lei—wil
Let

(2.3) Drp={f:H = R|f]| < oo, f(n) depends on n only through nN R} ,

i.e. Dp is the class of functions f with ||f || < oo such that f(n) depends on 5 only
through n(z) with z € R.

Theorem 2.2 There exist positive numbers v and C such that for every Ry, R, C Z¢,
f € —DR1 ge DRz; andt2 0:

(2.4) < ClfRgllem R R,

cov ( (62, 9(67"))

In particular, there exist positive numbers v and C such that for all t > 0, and z, y
€ 24,

(25) cov (67/(2), €2'w))| < ceh,
and
(2.6) cov (kfd(m),kfd(y))! < CeMlest




Proof. Theorem 1.7 in F&vZ (1998b) produces the first part of the theorem. Inequal-
ities (2.5) and (2.6) follow because || f|| = gl = 1 or 8 respectively.

Obviously (2.5) and (2.6) imply that o2(nZ(D)) and ¢2(k%(D)) are of order | D
for large D. The following theorem extends this result to all moments of even order.

Theorem 2.3 For aeny k = 1,2..., there exists a number Cy > 0 such that for every
Dcztandt>0,

d d 2k
(2.7) pox = E(n'(D) - En2'(D)) " < GuIDI* .
and

P - 2k
(2.8) oy = IE}(kf (D) - EX? (D)) < CyDI* .

Proof. The proof follows from Theorem 2.1 in F&vZ (1998b).

For A > Ay, let Eio} denote the process £{” conditioned on {7{®} = co}. This is not
a contact process but for large s and ¢ — s it can be defined for ¢ > s according to the
graphical representation starting at time s on a set of large probability. This enables
us to define a process Et{o} in such a way that it is coupled to a process Eff sfort> s
with large probability for large s and t —s. Theorem 1.6 in F&vZ (1998b) provides the
following probability bound for equality of the processes on the set {1 — €)tU, as well
as for each individual site in (1 — €)tU separately.

Theorem 2.4 Foreverye € (0,1) andr > 0 there exist numbers A, and A, depending
on € and (r,€) respectively, such that for s a (t —35) > A,

(2.9) 1P(‘f°}n(1—e)tU - fffsﬂ(l—e)tU)

gd
> 1-A,,e(s"’"+ ) )
Moreover, for every z € (1 — )tU

(2.10) P(‘f‘” (z) = ;’-_‘s(x)) >1-4,, (s-f 4 (= s)~r) .

The final theorem in this section is a re-statement of Theorem 1.8 in F&vZ (1998b).

It asserts that for the EEO} process, distant sites evolve almost independently for large
t.



Theorem 2.5 For every e € (0,1) and r > 0 there ezists a positive number A, such
that for allt > 0 and all f and g satisfying

f € Dg, with By C (1 —-¢e)tUNz?,

g € Dp, with R, c z? ,

(2.11)

cov($E™),9E™)| < Arc 171~ B9l @B, Br) 1 )

3 Shrinking

As we have argued in the introduction we choose the mask C; for computing the
estimator :\fO} as a shrunken version of the convex hull C({,:{O}), that is guaranteed
to lie in (1 — ¢)tU with large probability. As an example we discussed the choice
Cy = (1-6)C (&{0} } about which we shall have more to say later in this section (see
Example (ii)). However, we also noted that it is possible to consider more general
methods of shrinking and this is the topic of the present section.

For a set A C R the interior of A is denoted by ;1 and the discrete cardinality of
A as Ap = |ANz9. Define a shrinking operation as follows.

Definition 3.1 Suppose that to any convezr set V C R? there corresponds a conver set
V= C R%. Then the map V — V~ is called a shrinking if for every convez V and W

with 0 €V,

(3.1) vocVv,
(3.2) VW=V - cW™,
(3.3) (tV) |p 9> 0 ast— oo,
. . [(tV) " |p
3.4 if s,t > oc0owitht/s— 1, then ——— — 1.
S d / V)l
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Property (3.3) guarantees that if V' contains a ball centered at the origin and hence
tV grows linearly in ¢ in any direction, then the number of lattice points in (tV)~ tends
to infinity. By a standard argument one finds that (3.4) is equivalent to:

if 0 EI;, then for every § > 0 there exist ¢ > 0 and ¢, > 0 such that

[ +e)tV]7lp _
(1 - e)eV]=ip

We shall base the estimator of A on a shrunken version C; of C(

(3.5) 11 <é forallt > ¢,

t{o}), ie.

(3.6) Co=[c €™
and

S0 _ 3 ni" (Cy)
(3.7) X =30 = T

The set defined in (3.6) is called the random mask or window.
The reader will have noticed that we have defined a shrinking by listing its properties

(3.1)- (3.4) when applied to a convex set V with 0 €V. For other convex sets V, we may
define the convex set V'~ in an arbitrary manner. The reason that we have extended
the definition of a shrinking V' — V'~ to all convex V is that in e.g. (3.6}, we cannot

guarantee that C( 10} } will have the origin as an interior point. Of course (2.1) ensures
that eventually a.s. on {7{® = oo}, 0 will be an interior point of C({t{O}) because

0 GUOT . Hence the fact that V'~ is an arbitrary convex set if 0 ¢I;' will not influence the
asymptotic behavior of our estimator Xt{o}(Ct).

Together (3.6), (3.7) and Definition 3.1 will allow us to prove consistency of A{"
on the set where ft{O} survives forever. However, in order to prove strong consistency

of Xfo}, we need to strengthen assumption (3.3) and require that if 0 EI}, then

( ) Jor
t-00 t5

To prove asymptotic normality of our estimator given {7{® = oo} we need to
assume that, if 0 €Y/, then

(3.9) V-c(1-6§V ,
while at the same time strengthening (3.3) in a different direction and require that
(3.10) V)" —=r® as t—oo .

We end this section by presenting various ways of shrinkin§ that one may wish
to apply to the convex hull of the set of infected sites C (:ft{o ) in order to obtain

11



the mask C;. Numerical results that show how the performance of the estimator 7\;0}
improves by restricting attention to sites in the mask C; instead of considering the
entire configuration, will be discussed in Section 6.

Examples of shrinking

i)V =V.
This satisfies Definition 3.1 as well as (3.8) and (3.10) but not (3.9). In this case we
do not shrink but simply choose C; =C (Et{o}) for computing At{o}.

({i)V-=(1-6)V,0<é<1.

Obviously Definition 3.1 as well as (3.8)-(3.10) are satisfied. In determining the mask
C,=(1- J)C(ft{o}) we have to face the problem that we observe the set Et{o}, but
not necessarily the location of the origin. As C; is determined by shrinking C (Et{o})
towards the origin, we have to estimate the origin and shrink towards this estimated
origin instead. An obvious estimate of the origin is the coordinate-wise average of all
sites in C (1;}{0}), i.e. the center of gravity of this set of sites. In view of Theorem 2.1
and the fact that the set U is obviously symmetric with respect to the origin, it is easy
to see that the estimate of the origin has error op(t) on the set where §t{°i survives
forever. But this implies that shrinking C( t{o}) towards the estimated rather then the
true origin will not affect the consistency of Xt{o} in the conclusion of Theorem 4.1. The
asymptotic normality of X,fo} in Theorem 5.2 will not be affected either by a slightly
more complicated argument.

As we have already argued, the reason for shrinking the convex hull C({t{O}) to
obtain the mask C,, is that once the process §t{o} has reached a certain site, it needs
time to attain equilibrium. It seems reasonable to assume that the time needed for this
is independent of the location of the site. Since C({t{o}) grows at a constant speed like
tU, this leads us to consider choosing é proportional to ¢}, i.e. inversely proportional
to the linear dimension of the “blob”. Notice that the fraction of lattice points deleted
when shrinking C(£{*) to obtain C, is roughly proportional to (t—[(1—6)t]%)/t¢ ~ éd
for small é > 0 and hence this fraction a could also be chosen inversely proportional
to the linear dimension of the blob. Of course the argument only makes sense if the
blob is of a certain minimum size.

(iii) V~ = peeling(V).

This type of shrinking avoids the estimation of the origin of the picture. For an
arbitrary convex set V' C R?, the peeling procedure starts with the set V; = C(V Nnz9),
the convex hull of the lattice points of V. Notice that in the particular case we are
considering, V' = C(§t{°} ) and hence V5 = V. The peeling of V is now obtained by
removing all lattice points in the L'-contour of V;, constructing the convex hull of the
remaining lattice points of Vp, and repeating this procedure k times until a fraction

12



a of the lattice points in V5 has been removed. This amounts to stripping away the
k outermost layers of the blob. Obviously peeling satisfies Definition 3.1 as well as
(3.8)-(3.10). In view of the problems encountered in Example (ii), we prefer peeling
over multiplication by (1 — &} as a shrinking operation. For more details about peeling
the reader is referred to Fiocco (1997).

(vi) V™ = Bier)-

The mask is computed by taking a Euclidean ball inside the set on infected sites
with center ¢ and radius r where the center is estimated by taking the coordinate-wise
average of all sitesin C ({,{0}) and the radius r is computed by averaging the L!-distances

between the estimated center and the sites in C (.f,,{o}).

It should be clear from these four examples that we have a great deal of freedom
in choosing our mask as a shrunken version of C ({t{o}). In order to satisfy (3.1)-(3.4),
we mainly have to watch out that we do not remove all but a bounded number of
lattice points of C (ft{o}), and that for large sets the fraction o of lattice points deleted
depends on the size of the set in a smooth manner. Conditions (3.8) and (3.10) are not
likely to be violated for any sensible procedure either. Assumption (3.9) asserts that
the shrinking is non-trivial.

4 The estimation problem: Consistency

In the proof of the consistency of Xfo} we shall not follow the same route that we
used in Section 1 to arrive at the estimator Xfo}(Ct). Rather than introducing a new
coupling to compare f,,{o} on {710 = oo} with &, we shall simply employ the standard
graphical representation for comparison with §tzd instead. In Theorem 2.1 we showed
that on {7{% = 00}, C (Et{O}) can be bracketed between two non-random convex sets. By
applying the shape theorem (Theorem 1.2) we reduce the problem to one concerning
the £ process on a non-random convex set and then show that the difference between
the random and the non-random masks is negligible.

Let A; C Z% be a finite non-random set with |4;] = 0o as t — co. In analogy with
(1.12) and (1.13) define

(4.1) n?(4) = Y ()

TEA:

(42) K(A) =Y K¥(z) where k(2 =(1-&'@) Y €W .

TEA; |lz-yi=1
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Lemma 4.1 Suppose that for t > 0, the sets A, C Z¢ satisfy A, C Ap if t < t,
{As| < 00 and |Ay| = oo fort — 00. Then ast — oo,

nZ(A

43) i L)

zd
(4.4) ke (Ad) £ Ek*(0)

| Ae|
Moreover, if for some 6 > 0

;|
(4.5) lim inf It—;l >0,
then as t — o0,
zd
(4.6) "*lﬁ‘) — EE(0) as. ,
ktZd(At) v

Proof. We shall only prove (4.3) and (4.6). The proof of (4.4) and (4.7) is almost
exactly the same.
By Theorem 2.3 and the Markov inequality,

n¥(4) EnF(4y)
| At | A:]

(4.8) IP( > e) < Cre |4

for every k = 1,2, ... and appropriate Ci > 0. By (1.6),

En?"(A,)

(4.9)
as t — o0o. Since [A,| — oo this proves (4.3).
For every ¢ > 0 and A C Z¢ we have

(4.10) IP( sup

0<s<h

nE(4) - ()| 2 d4l) <P(2 2 /)

where Z has a Poisson distribution with IEZ = u = ch|A|, where ¢ = 1 v 2dA. To see
this, note that between times ¢ and ¢ + h a change at any particular site in A occurs
with rate at most ¢. As

Ee? = efe~n < g2

14



we find that if A < ¢/(4c),
(4.11) P(Z > €|A]) < el < gelAlf2
Take t, = 0 and define ty < t) < to < ... recursively by
tme1 = (tm +€/(4c)) A inf{t >t Am # Ay}

where A;_ = liﬁl A, = UAS and 4;, = liiltl A, = ﬂAs. Hence t,, is obtained
8 s<t $ s>t
by adding to ¢, until one either arrives at t,, + ¢/(4c) or encounters a change in A,.

Because A; is non-decreasing, this implies that by passing from ¢,, to {41, one either
increases t by €/(4c) or |A;| by at least 1. It follows that ¢,, = oo as m — co. To see
this, note that either ¢, — oo or |A,,, | — oo. Since |A;| < oo for all £, we must have
tm — oo in both cases. Obviously there exists 0 < k¥ < m — 1 such that ¢,, > ke/(4c)
and |A,,. . | > |Ai.| > |Ai.—| 2 m — &k — 1. By (4.5) this implies that

|Atm_|

— >0
mo

lim inf
m
for 8' =6 A 1. It follows from (4.8) that for every k =1, 2...,

zd
) _meto] s )

(4.12) 113( e

and the same is true with A, replaced by A, _ or A; ..
As tm+1 —itn & 6/(4C) and Ag = Atm-l- for tn <t < tm+1: (410) and (411) y1@.ld

P sup nf"(At)—nf:(Atm+)|zemtmq) < el

b <t<Em41

(4.13)
< e—eCm'S'/2

for some C > 0 and m > mgy. By (4.12) with £ > 1/§, (4.13) and the Borel-Cantelli
lemma we find

zd
ni (A) EZ(0) — 0 a.s.
|4l
and together with (4.9) this proves (4.6). m

. Lemma 4.1 allows us to prove both the consistency and the strong consistency of
,\?” as t — 0o0.



Theorem 4.1 Let :\fo} (Ct) be the estimator of A for the process £ defined in (8.6)-
(3.7) and Definition 8.1 . Then on the set where €t{°} survives forever,

(4.14) - MHe) B0 as to oo
If, in addition (8.8) holds, then

(4.15) MHC) — A as to oo
a.s. on the set where Et{o} survives forever.

Proof. We first prove (4.14). Both n}% (A) and k(% (A) are increasing in A and because
0€U , Theorem 2.1, (3.2} and (3.6) ensure that

n (1 - tU]) _ wf™(C) _ (1 + 9tU])
HY(+et]) ~ k%) ~ R - )

(4.16)

eventually a.s. on the set {r{% = oo}.
In view of Theorem 1.2, (3.1) and the fact that {t{o} C ftzd in the graphical repre-
sentation, we have eventually almost surely on the set where ft{o} survives forever,

nHC) (A4 U _ (1 + 9]
K2 (C) T KON - o)) T (A - otU])

As 0 €T, (3.3) ensures that |[(1 + €)tU]~|p = oo and |[(1 — €)tU]"|p — oo. Applying
(4.3)-(4.4) we obtain

w2+ ) p
1A+ OtU)-|p — E£"(0) as t = o0

and

KO- tU)) po
0 -9 — IEK”(0) as t =00 .

Since € > 0 can be chosen arbitrarily small and by (1.15) IE€*(0) / EkY(0) = ), (4.16)
and (3.5) imply that for any § > 0 and ¢ — co,

]P(Xfo} > A1 +4)), 10 survivesforever) = 0 .
To deal with the left hand-side of (4.16), we note that by (3.2) and Theorem 1.2

KO +0w)) = KO - w]7) + KO ([(1 + otU]) = KO - otU)) <
k(1 = tUT™) + 24{)[(1 + U] |p — [(1 — e)tU)~ |},
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eventually a.s. on {r{® = co}. Again applying (4.16), (4.3), (4.4) and (3.5) for
sufficiently small € > 0, we find that for any 4 > 0 and ¢ — oo,

IP(:\t{O} <AM1-9)), { } survives forever) — 0.

This proves (4.14). The proof of (4.15) uses (4.6) and (4.7) instead of (4.3) and (4.4).
This is allowed because (3.8) implies (4.5) for A, = [(1 — €)tU]" NZ%and A, = [(1 +

e)tU]” N 24 since 0 €U ]

Remark 4.1 For the supercritical contact process, (4.14) may be written as
(4.17) IP{|X§°} “A>e | 7 =00) 20 ast— 0

for every ¢ > 0. From a statistical point of view this appears unsatisfactory smce we
shall never know whether the process will survive forever and hence whether At will
probably be close to A even for very large t. However, for the supercritical contact
process (4.17) is obviously equivalent to

(4.18) P{AD - >e | €D #0) =0

for every € > 0, and this statement does have statistical relevance. Of course our result
does not provide any information in the subcritical case { A < Ag4).

5 The estimation problem: Asymptotic normality

This section is devoted to the proof of a conditional central limit theorem for the
estimator )\t{ Y= /\z (C't) based on the random mask C;. First we establish the joint
asymptotic normality of

A2 (nE'(A0) ~ |AJEBE (0), kF“(A) — | AJER(0))

for a non-random mask A; C 29 with |4;] < oo for all ¢ > 0, but |A4,] — oo as
t — o0o. Next we show that this result carries over to the Eio} process, i.e. the do}
process conditioned on {r{® = oo}. This proves the asymptotic normality of the
estimator A\ (A4,) given {r{® = oo} for a non-random mask A,. Then we show that
the COIltI‘lblIthll to the standardized estimator which is due to the randomness of the

mask C; = [C ({t )] vanishes as £ — co. The asymptotic normality of
G2 (RC) - N

given {71% = oo} then follows.

17



A very general central limit theorem for a translation invariant random field was
proved by Bolthausen (1982) under mixing conditions. Let {(z), = € Z¢, denote a real
valued translation invariant random field, i.e. {¢(z) : z € 2%} is a collection of random
variables and the joint law of the {(z) are invariant under integer valued shifts in z¢
It is assumed that IE¢?(z) < co. For z = (21,..,24), ¥ = (t1,..,¥4) € Z° define the
L*-distance of z and y as

plz,y) = max |z; - yil

Let A, € 2%, n=1,2..., with |A,| < co for all n, |4,] = co as n = co and

(5.1) IﬁﬂﬁOwn%m.
Here
(56.2) OA, = {x € An : 3 y € 2%\ A, with p(z,y) = 1}

denotes the L®-contour of A, in Z¢. Consider

Sn= 3 (C(x} - E((0)) .

TEAn

If C C 2% let Be be the sigma-algebra generated by {{(z),z € C}. For Cy,C; C Z¢,
let

p(Cl,Cg) = 1nf{p($, y) 1 € Cy, Yy e Cz} .
For m € N,k,l € NU {oo}, define the mixing coefficients

(5.3)  axy(m) =sup{|IP(B1 N By) — P(B)IP(B,)| : B; € B, |Ch] L &,

|Cy| <1, p(C1,Cy) 2 m} .
Let N(0,0?) denote the univariate normal distribution with expectation u and vari-
ance 02 and N(u,X) the bivariate normal distribution with expectation vector u and

covariance matrix X. Part of Bolthausen’s theorem reads as follows.

Lemma 5.1 Suppose that, as m — o0,

(5.4) Y m¥log(m) <oco  for k+1<4,

(5.5) a,00(m) = 0(m™) ,

18



and that for some § > 0,

(5.6) E|(z))*° <o and Zm.l {(m)P < oo
Then Y |cov(¢(0),¢(2))| < oo. If, in addition, 0% = Y _ cov(¢(0),{(z)) > 0 and (5.1)
zezd zczd

holds, then |An|”"/*Sa/0 converges in distribution to N(0,1).

For our purpose we have to modify this result slightly. First of all, we allow a
different stationary random field (,(z) for each n so that S, becomes

§n = Z ((n(x) - ]EC,,(O)) :

TEAR

As a result, we also have to replace the assumptions of the lemma by versions which

are uniform in n. This means that in the assumptions of the lemma we replace

o (m) by the supremum over n of expression (5.3) for (,(x). Similarly the integra-

bility of |¢n(z)[**¢ in (5.3) is replaced by the uniform integrability of |(,(x)|**®. Then

Bolthausen’s proof goes through to show that sup, > |eov((a(0), ¢(2))] < oo and that
zezZd

|An|~28, fo -2 N(0,1), provided that liminfo2 > 0, where o2 = > cov((a(0), (a()).
A second modification of Lemma 5.1 concerns assumption (S.S)Tezldt is clear from

Bolthausen’s proof that condition (5.5) may be replaced by

(5.7) o (1Y) = o(17M?) asl— 00 .

With these modifications , Lemma 5.1 allows us to prove

Lemma 5.2 Fort >0, let A, be a finite subset of Z¢ such that for each v > 0,

(5.8) |Ai] = 00, |8A¢|/|A4] =0 and |Ade™ =0 ast—> 0.

As t — oo the random vector

69 AL €0 - B ), ¥ 6 @) - B 0)

TE A TEA

converges in distribution to N(0, L) where

o2 o
(5.10) 2:( ! 1’3)

0']'2 Ty
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and

= > cov(£’(0),&%(z)) , = > cov(k¥(0), k" (z)) ,

z€zd T€Zd

(5.11)
o1 = ) cov(k”(0),&"(z)) .

rczd

Proof. Let u and v be real numbers and define

G(z) = ue? () + vk (z)

Clearly {(;(z),z € Z%} is a real valued translation invariant random field for each ¢.
Consider

Se=3 (Glz) — EC(0) -

TE A

The fact that S, depends on a real valued index t — oo instead of an integer n — 0o

as in our version of Bolthausen’s result, is of course immaterial in what follows. Note

that |G;(z) < |u| + 4}v] so that all moments of |¢,(z)| are bounded independent of ¢.
Let us write ayu(m) for the quantity defined in (5.3) computed for {;. By Theorem

2.2 and because p(z,y) < d(z,y) Z:|:r:t yil, there exist positive C' and < such that

app(m) < Ckle ™™

independent of ¢. This means that assumptions (5.4) , (5.6) and (5.7) are fulfilled
uniformly in ¢. Note that (5.5) is not satisfied since we can not allow ! = co, but as we
have indicated, (5.7) serves just as well. Hence we have proved that

(512) 44707 T (uleF (@) — BE(0) + o(kE (@) ~ BAF(0)))

TEA;

has a standard normal limit distribution provided that liminfo? > 0 . Here

(5.13) ol =3 cov (u&tzd(O) + vk24(0), ue? () + kad(:r))

z€zd

We also know that ¢? is bounded for fixed u and v.
By (1.6) there exist positive C and «y such that

0 < EEZ(0) — E€“(0) < Ce™
and hence also

IELZ(0) — EA*(0)] < 4d(IEEZ'(0) — JEE*(0)) < 4Cde™™ .
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As
|42 ™ 5 0ast - 00 ,

by (5.8), we see that in (5.12) we can replace IE€Z°(0) and IEK**(0) by IE¢*(0) and
[E¥(0) with impunity.
Again by Theorem 2.2 we find that for fixed u and v and all z € z¢,

cov (uffd(ﬂ) + ka“’(O), ”‘ftzd(:c) . ktzd (a:)) < e"'z::;dxil .

for appropriate positive C' and . Because this bound is independent of ¢ and as
Theorem 1.1 and IP(72° = 00) = 1 imply that £Z° 2, ¢ for t — 0o, we also have

cov (uf”(()) + vk”(0), u&"(z) + 'vk:"(x)) ’ < Cle Xl

for all z € Z. But since Etzd 2, ¢¥, this ensures that o? in (5.13), converges for t — oo
to

(5.14) o= cov (u{”(O) + vk¥(0), ué”(z) + vk"(:z:)) .

rezd

Thus we have shown that for every fixed real u and v,

4077 Y (w6 (@) - e (0)) + ok (2) — BR(0)))

€A,

converges in distribution to N(0,0?) for o2 > 0. This remains true for ¢ = 0 if we
interpret N(0,0) as the degenerate distribution at 0. In view of the Cramér-Wold
device, this proves the lemma. a

Qur next step is to show that the result of Lemma 5.2 continues to hold if the Etzd

process is replaced by the conditional process £ = (£{% |71 = o).
Lemma 5.3 Choose € € (0,1) and A; C Z¢ for t > 0 such that

|0A,|

—~0 ags t—=00.
[ Ayl

(5.15) A C(l-etU ,|A) = o and

Then as t = oo , the conditional distribution of the vector

> (7@ - B¢ ©), ¥ (K@) - B ©)]

TEA; A

(5.16) |At]"‘f2[

given {T{% = 00}, converges weakly to N(0,T), with & given by (5.10)-(5.11).
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Proof. For 0 < s < t, define the random vectors

= 1473 () - B ), 3

TCA, TEAL

(k@ -Er©)]

= 1472 ¥ (6% - Be0) .

TEA; ZEA;

(R @ - )]

As Ay C (1-€)tU, (2.9) of Theorem 2.4 ensures that for any 7 > O and s A (t—s) > A.,
and for any Borel set B C R?,

(5.17) |Pme3ymmmemkgth+ufw).

Fix s > 0 and let { = co. As A, satisfies assumption (5.15), A4, = Asyy satisfies
assumption (5.8) and hence Lemma 5.2 implies that

(5.18) Vi 2 N(0,Z) ast— oo ,

with X as in (5.10)-(5.11). Obviously (5.17) yields for every s > A, and every Borel
set B C R?,

(5.19) lim sup [IP(V; € B) — P(W, € B)| < A, s™"
t—o0
Since s can be taken arbitrarily large, we may combine (5.18) and (5.19) to find that
W, i)N(O,Z) ast— o0 ,
which proves the lemma. O

For a non-random mask A, satisfying (5.15), Lemma 5.3 yields the asymptotic
normality of the estimator

nio} (Ac)
k(A

j\\ju}(f‘lt) =

conditioned on {r{% = co0}. By (1.15) we have

ni”(4) e (0) )
K94 ER(Q)

1+ 3 (6%) - B¢ (0) /(l4EE (0)
= A| A,V = —1
1+ 3 (K@) - B (0))/{ AR (0))

T€As

AR A = 3y = 4d 2
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Hence Lemma 5.3 implies that

> (7@ -Ee0) ¥ (H@-Er0)

172,540} 4y _ — \|A,|"1/2 |z _ zE€A ]

+ Op(|4™)

where IP denotes the conditional probability given {7{% = co}. Another application
of Lemma 5.3 establishes the following result.

Theorem 5.1 Under the assumptions of Lemma 5.3,

(5.20) 1472 (A (A4) - A) 25 N(0,07)
conditional on {r{®% = co}. Here

2 2 20.
5.21 o = ,\2[ G __ 4, _% _ _ ,
(5:21) ey T EBFO)? ~ ECOERQD)

where 62 | 03 and 01 are given by (5.11).

To complete the proof of the asymptotic normality of Xt{o} based on the random mask
Ci=[C (@{0})]‘ we have to show that the difference between the estimator computed on
the random mask and the one based on a non-random window is negligible as ¢t — co.
This means we still have to prove

AL2GINC) - M4 D50

where A, is a non-random mask which is close to C; and P(.) = P(.|r° = c0). For
e > 0 and t > 0 define

(5.22) Ar=[1-etUI"nz? B, =[(1+etU]" nz? ,

i.e. A; and B, consist of the sites in shrunken versions of the sets (1 —¢)tU and (1+¢)tU
respectively, where the shrinking operation is defined in Definition 3.1.

Lemma 5.4 Fore € (0,1) define A, and By as in (5.22) and let D, = (B, \ A,) NGy,
with Cy, = [C( t{o})]_ as given by (3.6) and Definition 8.1. If the shrinking operation
V — V™ satisfies (3.9) for some § € (0,1), then for every z > 0

> (9@ - Be(0)

(5.23) limlimsupIP (|A:|_1/2
e—0
zEDy

t—00

Zz[’r{o}=oo)=0 ,

(5.24) limlim supIP(]Ad'I/z 3 (k,{"}(m) - IEk"(O))' >z | 0 = oo) ~0
£ t—o0

z€D,
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Proof. We shall only prove (5.23), the proof of (5.24) is almost the same. As before

we write £ for the conditional process (/%71 = o0) and P for the conditional
probability IP(-] 7% = o0).

Without loss of generality we assume that € < §/4 so that (1 —8)(1 +¢) < 1—36 /4
and by (3.9),

(5.25)  Bi=[(1+tU] NztC (1-8)(1+ el C (1— 3—5)w .

It follows from (2.10) of Theorem 2.4 with s = ¢/2 and r = 2d that for the coupling
employed there,

PE" (z) = () > 1 - bt~

for all ¢t > bj, all z € B; and appropriate constants by and b5. As |£&] < 1, this implies
that

2 (@) - Bio)| <t
for t > bj and z € B,. By (1.6),

[EZi@) - Be(0)| < ce
and as |[Dy] < |By| < [tU|p = O(t%) by (5.25), we find that

s 2

el

E£(” (@) - E¢"(0)] = 0

As |4, = |[(1-€)tU]"|p — oo for t — oo by (3.3), we see that in order to prove (5.23),
it is enough to show that

(5.26) limlimsup]P(lAJ_l/?
=0 400

Py (8@ - @)| 2 ) =0
Define
(5.27) [C({g“’} 1—e)tU}ﬂ(1+e)tU)]
By (2.1), (1 — )tU € C(™) ¢ (1 + &)t and hence
({g{” (l—e)tU}ﬂ(1+e)tU) - c( © (l—e)tU)
= c(c@™va-aw) =cE™
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eventually IP-almost surely . It follows that
(5.28) =[cEN-=c

eventually a.s. (IP). Obviously this implies that

> (E"@0-E"@) = % (8@ -E"@)lae

r€ED, ZEB\A

= ¥ (0 - @) o)

‘IEBf,\At
eventually a.s. (IP). Instead of (5.26) it is therefore sufficient to show that

> (@%@ - B @)l (0)| 2 2) = 0

Tim Jim supIP(lAtl—lﬂ
€0 teo 2EB\A:

Clearly this will follow if we prove that

629 timimsup| A" B[ ¥ (8@ - BE" @)l ()] =0

TEB\A;

By (5.27) the random set C} is determined by the random set {ao} U@ -etUln
{1+ ¢€)tU which is bracketed by the non-random convex sets (1 —eltU and (1+€)tU. It

follows that C} is determined by the values of ao}(y) for sites y € (1+€)tU\ (1 -¢€)tU.
Put differently, for every x € Z¢ the function g, : H — {0, 1)} defined by

(5.30) 9:(E") = Ig: ()
satisfies
(5.31) 9: € Dp with R={(1+erU\ (1 -etU}N2? ,

and Dy defined by (2.3).
The expected value in (5.29) can be written as

Y (8% - B @)1 )|

632 = ¥ B(E@-E"m)(E%6) - B ) i ()1 ()

e’ €B:\Ae

= Y ELE™)fEeRE e EY)

2’ €B\ A

2
E| 3
T€ B\ As

with fi( {0}) {0} (z) - IE)Et{O} (z) and g, defined by (5.30). Obviously
(5.33) fefor € D{a:,z’} y  9z-90 € Dp
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in view of (5.31). If z,2’ € B, \ A;, then (5.25) ensures that {z,2'} C (1 — 36/4)tU
and because ¢ < §/4, (5 31) implies that R C {(1 — 6/4)tU}*. Hence, if d(.,.) denotes
Ll-distance, then

(5.34) - d({z,r'},R) > bt forall =z,% € B, \A;
where 05" is a positive number depending only on 4. Finally we use (2.2) to compute
(5.35) Izl =2, Nga-gzll < |R| < aet® < abt?

for an appropriate constant a > 0. Combining (5.32)-(5.35) and invoking Theorem 2.5
with r = 3d we obtain

[A: E[ >

2
(87@ - EE" @) 1o =)
TEB\A;
<14 Y EREDLED) BeE ™) E@) + M,

:Bx'EB:\At
cov( {0}(16) {0} )]+Mt )

<A Y

z,x'€B\A:

where the remainder term M, satisfies, for appropriate positive ¢;s and C,

IMy| < AT [Bon Ael csll fe-Foll-lge-gl it
< GlA™ =0 as t > o0

since | By \ Ay < |By| < |14+ 6)tU]p < |(1+6/4)tU|p = O(t?) and |4,| — oo by (3.3).
To prove (5.29) it therefore remains to be shown that

cov( ), f"}(:c'))l:o .

Invoking Theorem 2.5 once more, this time with 7 = d + 1, we find that for z,z’ €
By \ Ay, T # 2', and appropriate ¢} > 0,

lCO’U( (:IJ) 5{0}( ))' S cglm_xfl-(d+1) ,

since z,z’ € By \ A, implies |z — 2’| = O(¢). It follows that

3 cov(_fo}(m),gfo}(a:’))[ < 1By Ay (1"“3:; > |$l_(d+l))

(5.36) limlimsup |4, >
0 tooo .2 €8\ A

z,2'€B\A: z€z4, 240
< ¢ |Be\ Ay
for some cj’ > 0,as > |z|~{%*) converges. Hence (5.36) holds if
z€Z4,T#0
G | B \ A
limlimsup ——= =0 .
e=0 t—)oop |At|
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But since 4, = [(1 — €)tU]~ N 2% and B, = [(1 + €)tU}~ N Z7 this is a consequence of
(3.5). This proves (5.36) and the lemma. a

Before proving the central limit theorem for the estimator Xio}(Ct) based on the
random mask C;, we have to verify that |§A4,|/|A: — 0 for A, defined in (5.22).

Lemma 5.5 Fort > 0, let W, be bounded conver sets in R with W, — R? as t = co.
Then

|8(W, nz%)|

(5.37) AT

—0 as t—o00 .

Proof. Let W be a bounded convex set in R? with non-empty interior V‘f/ Let Va(W)
and A{(W) denote the volume and the surface area of W, by which we mean the d—
and (d — 1)-dimensional Lebesgue measure of W and its boundary respectively. As W

is bounded and I/IO/# @, W contains a largest d-dimensional open hypersphere S with
radius r > 0. We shall show that

VaW) =1

Without loss of generality we shall assume that the center of S is located at the origin

so that § = {z € B* : |z], < r} where |z|; = (}_ 27)"/* denotes the Euclidean norm.
The set W can be approximated by a convex polytope in such a way that both the

volume and the surface area of the polytope are arbitrarily close to those of W (cf.

Eggleston (1958), Theorem 33 and property (a) on page 88). We may therefore assume

that W is a convex polytope. By Theorem 37 in Eggleston (1958) we have

(5.38) GO

1 k
Va(W) = < Y hiVa(F)
i=1

where Fi, ..., Fy are the faces of convex polytope W and h; is the Euclidean distance of
the origin to the (d — 1)—dimensional hyperplane containing F;. As S C W, we have
h; >rfori=1,..,k Hence

T

k
Va(W) 2 Z:Vd—l(ﬂ) = JAW)

ol

which establishes (5.38) for bounded convex W with W 0.

As W, /' R%, the convexity of W, implies that W, will contain a hypersphere with
arbitrarily large radius r for sufficiently large t. Combining this with (5.38) we find
that

(5.39) —0 as t— oo .

27



According to (5.2) there are disjoint unit hypercubes within a distance 2v/d from the
boundary of W centered at the sites in (W, M 2%). Hence |8(W; N Z2%)|/A(W,) remains
bounded as t — oo and as |W,NZ9| ~ Vy(W,), (5.39) yields (5.37).

We are now in a position to prove the main result of this paper.

Theorem 5.2 Let :\iO}(C’t) be the estimator of A for the process {t{o} defined in (3.6)-
(3.7) and Definition 3.1. If the shrinking operation V. — V= satisfies (8.9) for some
6 € (0,1) as well as (3.10), then ast — oo, the conditional distribution of

(5.40) [ALEIRI(AESY

given that {T1% = 0o}, converges weakly to N(0,02). Here o® is given by (5.21) and
(5.11).

Proof. In the proof we write E,{O} for the conditional process (&”r{® = o0). For
t > 0, define

Ar=[1-etU]" Nz

Since 0 €17, we have A, C (1-€)tU by (3.1) and [(1 — €)tU]” — R? by (3.10). Because
[(1 — €)tU]~ is bounded and convex it follows that |3A4,]/|A: — 0 as ¢ — oo by
Lemma 5.5. Hence A, satisfies condition (5.15) of Lemma 5.3 and we find that for
every € € (0,1),

P{l4 2

TEA;
(5.41)
— ®(u,v) as t > o0 ,

(8@ - B )] <u, 1472 T (F) - B0 ()] <o)

TE A

where @ denotes the two dimensional N(0,X) distribution with £ given by (5.10)-
(5.11).
In view of (3.9) we may apply Lemma 5.4 to obtain

U, (e) = liﬂgpp(mtl_m > (_t{o}(x) - IEE"(O))‘ > z) -0,

xeDy
(5.42)

Ty(e) = 1imsupIP(|At|‘1f2 > (Ef"} () - IEk”(O))‘ > z) =0

t—o00 :BEDt

as € — 0 for every z > 0. Here D, = (B; \ 4;) N C; with By = [(1 + ¢)tU]~ Nz% Notice
that by (2.1) and (3.2) we have A, C C,Nz% C B, and hence

(543) Cg n Zd = Ag U Dg y Ag M Dt = 0
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eventually a.s. on {7{® = co}.
Let us write

%= ¥ ({0 -Be0) |

TEC:
(5.44)

Y= 3 (H%) - ER() .

zeC

By a standard argument (5.41)-(5.43) yields

®(u —2,v — z) — ¥i(e) — Va(e)
< litxgglf]P(lAtl‘”th < wu, |A7V%,; <w)

(5.45) < limsupP(|A|7/2X, < u, |A72Y, < v)
t—=eo
< ®(u+ z,v+2) + ¥i(e) + Pale) .

Having sent ¢ — oo for fixed € € (0,1) and z > 0, we now let ¢ — 0 for fixed z > 0.
By (5.42) this removes ¥, (¢) and ¥;(e) in (5.45), but it also allows us to replace |A,| by
|Ci|p in (5.45). This follows because A; C C;NZ% C B, eventually a.s. on {7{®} = oo}
by (2.1) and (3.2), and |B;|/|A:| — 1 as t = oo and € — 0 by (3.5). Finally we let 2z
tend to zero to obtain

lim P(Ci[5"X; < w, [Cil5"*Y; < v) = B(u,v) -

The theorem now follows in the same way as Theorem 5.1 follows from Lemma 5.3.
O

6 The asymptotic variance of 5\;[0}(@)

If the variance ¢? of the normal limit distribution in Theorem 5.2 were known, then
this would allow us to assess the accuracy of the estimator or to set up asymptotic
confidence intervals for A of the form

(6.46) MCY) — ua|CiEY %0 < A < MOHC) + ua| G520

where u, is the upper a-point of the standard normal distribution. This asymptotic
confidence interval would be valid provided that ‘ft{u} survives forever but as we pointed
out in Remark 4.1, it is enough that {t{o} # @, i.e. that the process has survived up to
time .

Since o? is unknown we have to find an estimator of ¢2. One way to achieve this
would be to estimate a? = 0()) as a function of \ by simulating & a large number of
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times for each A, each time computing the value of Xio}(Ct) and using |C;|p times the
sample variance of these values as an estimate of 5()). One could then use 62(A{*(C}))
as an estimate of o2. Of course in a.nRr particular instance it would be enough to carry
out these simulations only for A = Xto}( 1)

An alternative way to estimate 0% would be to use the observed process ft{o} itself.
First we subdivide the mask C, into & subsets Ct15 -+, Cox of (approximately) equal

size and compute the values :\fo} (Cis) for i = 1,..., k. We then use k~![C}|p times the
sample variance of these values as an estimate of o2.

An obvious advantage of the second method is that it is not as dependent on the
model as the first. It is quite conceivable that the estimator X,EO}(C}) is a useful statistic
in a much broader class of models than the contact process. In this case the second
method is more likely to produce a sensible result than the first.

7 Simulation results

In this section we shall present some simulation results for the supercritical contact
process ft{o} on the lattice zZ? starting at time £ = 0 with a single infected site at the
origin. We have performed a large number of runs of the process ft{o} for different values
of the parameter A in the interval [0.42,4]. The value 0.42 is taken close to the critical
value A in dimension 2. Simulation suggests that Ay ~ 0.41 (cf. Brower, Furman &
Moshe (1978) and Grasseberger & de La Torre (1979)) .

‘The simulation procedure does not take time into account but computes ft{o} at
every time point 0 < ¢; < #; < ... < ty when a change occurs. This means that given
the configuration ftf at time t, of the n-th step, a 0 at site z is replaced by a 1 with
probability /\kt{r?} (x) / (/\kt{f}(Z?) + nt{f} (z?)) and a 1 by a 0 with probability
& 10 (z) / (/\kt{f} (z?) +n§f } (z?)) at time ¢,,,,. Here n}f}(ZZ), kt{f} (2%} and kt{f}(r) have
the same meaning as in (1.12)- (1.14) and the remark following this, with the index ¢
replaced by t,. The simulation run is stopped after N steps at time ty.

Our first goal in running these simulations is to show how the convergence of Et{O}
takes place. As we have seen the process should spread like a "blob in equilibrium?”.
This means that after some time the process §t{°} has settled down to the stationary
limiting process in the middle of the blob of infected sites. Near the boundary of this
set the process has not yet reached the equilibrium distribution and the infected sites
are less dense than in the middle. In Figures 1 and 2 we show the process for A = 0.5
and N = 40,000 and for A = 3 and N = 30, 000. Infected sites are indicated by colored
1 x 1 squares. An additional feature of these two figures is that for each infected site
we have kept track of the number of steps since it was last infected and have indicated
this by the tone of the color: the darker the color, the older the present infection at
a site. If we view the contact process as a simplified model for the growth of a forest
(a tree is present at an infected site and absent at a healthy site) then the tone of the
color indicates the age of the tree.
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Next we present some results for the estimate ng} (C,) of A where we apply peeling
as a shrinking operation, thus

C... = peeling( C(£{™))

Figure 3 shows how C; is obtained from Q{O}.
Define the peeling fraction ¢ as

_ _ICulp
MG

Let Cyy, o} denote the mask obtained from the convex hull C( t{,?}), with peeling fraction

a. For fixed A we have computed the values of ng}(C{tma}) for increasing n and «,
averaged over 20 simulation runs with N = 40,000. The results for A = 0.42;1;1.5 and
2 are shown in Tables 1-7.4.

As Table 1 shows, the estimates obtained for A = 0.42 indicate rather large fluctua-
tions for varying o and fixed N, especially for those processes with N < 15,000. Based
on these experimental results it seems that a fraction o between 0.5 and 0.7 gives the
best estimates of A. Both these fluctuations and the rather Iarge values of o are hardly
surprising in view of the scattered character of the set fg for such small values of A
(cf. Figure 1).

Tables 2-7.4 show that the estimates at the beginning of the shrlnkmg rocedure
are monotone increasing and then there is an interval where the values of )‘tn oscillate
around the true parameter. Small values of o yield negative bias because near the
boundary of the convex hull infected ]i)omts are less dense than in the middle of the
“blob”. This produces large values of k;,’ (C{e, ) ) relative to nt{ }(C{t .})- Simulations
suggest the interval 0.2 < a < 0.4 for the fraction of lattice points that should be re-
moved, with 0.3 as reasonable compromise. Moreover, the optimal fraction o decreases
as n increases This is in accordance with a remark made in Section 3 under (ii).

A =042
n/ o 0.0 0.10 || 0.20 || 0.30 || 0.35 || 0.45 |j 0.55 || 0.65 || 0.70
5000 || 0.414 || 0.430 || - | 0.450 || 0.443 || 0.439 [} 0.449 || 0.438 || 0.431
10000 |[ 0.415 || 0.437 || 0.406 0.405 || 0.408 |l 0.393 }i 0.431 [{ 0.355
15000 || 0.427 || 0.443 || 0.432 || — || 0.373 || 0.387 |} 0.432 || 0.415 |{ 0.372

20000 |f 0.448 || 0.454 || 0.460 || 0.470 || 0.426 || 0.473 || 0.419 | 0.424 || 0.465
25000 j| 0.414 |l 0.426 || 0.408 || 0.460 || 0.432 || 0.444 | 0.377 || 0.430 {| 0.427
30000 || 0.408 || 0.401 || 0.417 {| 0.395 || 0.390 || 0.419 [ 0.419 || 0.432 || 0.425
35000 || 0.446 || 0.450 | 0.444 || 0.455 |} 0.463 || 0.454 [ 0.489 || 0.462 || 0.464
40000 || 0.392 || 0.404 || 0.389 || 0.407 |} 0.396 || 0.392 || 0.402 || 0.402 || 0.417

Table 1 Values of Xt{f} (Cfta,a}) for different numbers of steps n and peeling fraction c.
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L

A=1

n/ o

0.0

0.05

0.10

0.15

0.20

0.30

0.40

0.50

0.60

0.70

5000

0.821

0.898

0.930

0.941

0.957

0.970

0.998

1.019

10000

0.882

0.947

0.967

0.980

1.002

1.007

1.030

1.023

1.000

15000

0.879

0.934

0.949

0.967

0.975

0.977

0.989

0.992

0.992

1.012

20000

0.894

0.940

0.957

0.968

0.985

0.985

0.991

0.989

0.984

0.980

25000

0.893

0.932

0.947

0.952

0.966

0.969

0.979

0.978

0.985

0.984

30000

0.904

0.944

0.956

0.967

0.980

0.990

0.999

1.013

1.024

1.034

35000

0.930

0.967

0.980

0.997

1.006

1.017

1.027

1.039

1.029

1.012

40000

0.924

0.959

0.972

0.982

0.995

1.013

1.029

1.042

1.037

1.041

Table 2

Values of Xt{f} (Cltn.0}) for different numbers of steps n and peeling fraction a.

f

A=15

n/ a

0.0

0.05

0.10

0.15

0.20

0.30

0.40

0.50

0.60

0.70

5000

1.159

1.303

1.360

1.434

1.497

1.521

1.537

1.592

10000

1.211

1.333

1.378

1.427

1.470

1.530

1.547

1.543

1.547

15000

1.252

1.348

1.387

1.457

1.478

1.522

1.518

1.520

1.530

1.384

20000

1.258

1.340

1.377

1.413

1.439

1.476

1.485

1.504

1.499

1.502

25000

1.253

1.323

1.352

1.382

1.408

1.462

1.466

1.480

1.474

1.464

30000

1.276

1.348

1.375

1.402

1.422

1.454

1.472

1.453

1.450

1.457

35000

1.299

1.365

1.393

1.420

1.467

1.483

1.496

1.498

1.506

1.508

40000

1.300

1.367

1.394

1.447

1.468

1.492

1.492

1.505

1.504

1.508

Table 3

Values of X;{,?}(C{t,.,a}) for different numbers of steps n and peeling fraction a.

A=2

n/ a

0.0

0.05

0.10

0.15

0.20

0.30

0.40

0.50

0.60

0.70

3000

1.439

1.651

1.764

1.860

1.908

1.945

2.026

2.020

2.044

10000

1.516

1.680

1.763

1.812

1.883

1.921

1.966

1.977

1.969

1.964

15000

1.551

1.684

1.748

1.804

1.878

1.940

1.976

1.970

1.958

1.936

20000

1.586

1.711

1.774

1.816

1.865

1.929

1.973

1.982

2.017

1.989

25000

1.620

1.731

1.793

1.842

1.883

1.954

1.975

1.973

1.970

1.949

30000

1.684

1.790

1.841

1.894

1.980

2.032

2.041

2.069

2.054

2.040

35000

1.706

1.808

1.860

1.945

1.971

2.024

2.033

2.030

2.044

2.055

40000

1.680

1.777

1.876

1.921

1.946

1.998

2.012

1.989

1.968

1.961

Table 7.4 Values of Xt{f} (Cltn,a}) for different numbers of steps n and peeling fraction a.
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Figure 1: The process Et{o} for A = 0.5 and N = 40,000. Infected sites are repre-

N
sented by colored squares. The tone of the color indicates the age of the

infection.



Figure 2: The process §f3} for A = 3 and N = 30,000. Infected sites are repre-
sented by colored squares. The tone of the color indicates the age of the
infection.
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Figure 3: Mask obtained by peeling C (§t{£})
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