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Abstract

The paper is devoted to the nonparametric estimation of the mode of an unknown
probability distribution.

We formulate and solve the problem of choosing optimal parameters of the ker-
nel estimator of the mode.
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1 Introduction.

Suppose that the random variable (r.v.) X has an absolutely continuous distribution
with density f. Given an i.i.d. sample X;,...,X, from X, we want to estimate the
mode

6 = inf{x : f(z) = sup f(2)}.
t
A natural estimator of @ is the sample mode

0, = inf{z : fa(z) = Sl:-P fa(®)}, (1)

where f, is the kernel density estimator
1 n
falz) = n z Joriy(Xi) (2)
i=1

with the smoothing parameter % and the kernel f,. Hereinafter the symbol f; denotes
the density of the distribution of a random variable ¢, and D denotes a variance.

Given the estimator (1), the question is which kernel £, to choose? We answer this
question in theorem 1 below. '

Conditions for consistency and asymptotic normality of the estimator (1) were found
in [1-4], [8]. It was pointed out in [3] that, under appropriate assumptions on f-and f,,

E(8, — 0)° ~ [k*maf3(0)/2f"(8)]" + v £ (8)/nk3Lf"(6)]? 3)
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as h = h(n) - 0, nh® = co. Here

v=v(y)= /f:fz , mi=Ey' = /x‘f,,(a:)dw.

Relation (3) may be obtained on the basis of the following observation valid for smooth
functions f and f, (see [1]):

0 = £,(62) = f1(0) + (60 — 0)£(0 + 7(0, — 8)) 0<7<).

This implies that
bn— 0 =—F(0)/f(0 +7(6,—0)). (4)

Moreover, it is not hard to verify that
Efi(z) = Ef(z + hv) = f(z) + A2 f"(z)m2/2 , Df.(z) ~ vf(z)/nh®

if the functions f and f, are “smooth” enough and k is “small” (see [12] for more
information on ratios of type (4)).
Relation (3) entails that the mean squared error

MSE4, = E (4, — 8)* = O(n™") (%)

if h(n) ~ en~Y7. A better rate of MSE may be achieved if f, is the density of a
generalised distribution (unit measure) on R. Note that the function f, may take

negative values in that case.
We deal with the problem of the optimal choice of the bandwidth % and the kernel

fy-
Eddy [3] suggested to chose A = h(n) in such a way that the 2-nd term on the
right-hand side of (3) dominates the 1-st one, and then to look for a kernel f¢ such that

V(€)= minv(y). (5)

It is shown in [3,5] that Epanechnikov’s kernel

fel@) = 301 - a1 {llell < 1)

is the solution to problem (5) in the class of absolutely continuous distributions.

The assumption that the 1-st term on the right-hand side of (3) is negligible with
respect to the 2-nd one means that A <« n~Y/7. In contrast to (*), this implies that
E(8, — 6)? > n~*/7. Hence, Eddy’s approach can hardly be regarded as a natural one.

In this article we suggest a different approach to the problem of choosing the optimal
values of the parameters h and f,.

2 Optimal kernels.

Denote by h, the value of A that minimises the right-hand side of (3). It is easy to see
that

nhl = 3vf(6)[m2f"(0)]7. (6)
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With A = k., the right-hand side of (3) becomes

4/7 m 6/7
7[()12’7[” 9)] i 7

where
R(y) = v*(Ey*)°. (8)
Inspired by (3) and (7), we formulate the problem of minimising the functional R(%)
over the class D of distributions with absolutely continuous densities.
A similar problem was treated in [5], but instead of D, the authors of [5] considered
the class of nonnegative kernels g (vanishing outside some symmetric interval [-T;7])
such that the derivative ¢’ changes its sign only once.

Theorem 1. Denote

fel@) = 101 —2?)1{le] <1 )

Then
min R(y) = R(E).

Remark. Note that the functional (8) is invariant under a replacement of vy by c¢y.
Thus, one can say that there is a family {fi,¢ > 0} of optimal kernels.

Now we compare the values of R(v) for some distributions:

No f+(z) supp fy | m2 | v(7) R(v)

1 Normal Vg—we“”'z/z (—o0j00) | 1 ﬁ; 7= 7 0.0199
2 | Epanechnikov’s 3(1 —2?) [~1;1) | 1/5 | 3/2 0.018

3 Optimal (1 — z?)? [-1;1) | 1/7 | & | 225/7° ~0.013
4 A -1 -2/5) | [-L;1} [4/21] &8 [22.2~.016
5 1— |z [-1;1] | 1/6 | 2 & ~0.0185

Suppose that (3) holds. If the smoothing parameter A is chosen according to (6) and
the kernel according to (9) then

2/7

E(0, = 0)* ~ n~ (@) [3- 5. 75 £(0) ()]
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as n — o0o0. Under additional assumptions, this relation holds if one replaces § and f
in (6) by their consistent estimators.

For every even k, denote
Ri(v) = v*m} . (10)
Consider the problem of minimising the functional Ri(y) over the class D.
The interest in this topic is facilitated by a tendency to use the so—called improved

nonnegative density estimators (INDE) instead of kernel density estimators (2) with gen-
eralised kernels f, (for more information on INDE see {1, 7, 9, 13, 15, 16]). For every

known INDE fn , the decay rate of the bias and of the MSE is the same as those of the
kernel density estimator:
. . 2
Efu(x) = f(z) + cola)h*me, B (fule) = f(2))" = O ((nh)™ + 1)

as n — oo. If the distribution of X has a heavy tail then the MSE of INDE may be
asymptotically smaller than the MSE of the classical kernel density estimator (see [13]).

Since the bias of f’(z) decays like O(h¥), we expect that Ef!(z)—f(z) = e1(z)hFmy.
The variance of any known estimator of f’(z) decays (under appropriate assumptions)
like cy(z)v/nh®. Therefore, arguments similar to those yielding (6) and (7) show that
the optimal choice of & is c3(z)(v/nm?)/C+?%)  In that case

E(fy(2) = f/(@) ~ cla)n ¥/ CHO Ry () /4.

The problem is to find a density that minimises Ri(7).

Theorem 1*. Denote

f.(z) = 3(k+3) [k

2 k42 <
= T2 (k +2)2? + 224*2] 1{|z| < 1}, (11)

where n = 1. Then for any even k€ N
min Ri(y) = Ri(n). (12)

The assertion of Theorem 1 is a consequence of (12) with k = 2. If £ = 4 then an
optimal kernel is

Fula) = 15(1 — 2@ + A)1{Jel < 1}. (13)

Eddy (3] considered the problem of minimising the functional (5) in a certain class
D, of generalised distributions satisfying the following conditions

Ef:r:"f,,(m)dm=0 for 1<i<3, Ey'#£0.

It is shown in [3,6] that Igg)n v(v) = v(&), where
relyq

fe. = 551~ )3 = T)1{el < 1}, (14



and that min R4(v) = v(n.), where
YED,

fa = 51 = (1 - 32)1Je] < 1} (15)

The biases of the estimators f, and f, with kernels (14) and (15) decays like O(h?) as
h—0.

Proof of Theorem 1*. Note that En* = 3/[(k + 1)(2k + 3)]. Since the functional (10)
is invariant under a replacement of v by ¢y, we may suppose that

Ev* = 3/[(k + 1)(2k + 3)].
Denote by D, the set of densities from D which obey the conditions

(5) f g(z)de =1, (i) ] z*g(z)dz = 3/(k + 1)(2k + 3) .

Let us show that

@)= [g*2 [ 12 =r(fy) (16)

for every function g € D, .
Put h =g — f,. Observe that

(k + 3) 3(k+3)

file) = 2(c* = 1), f(@) = =5 ((k+1)a* —1) .
Then, since fi(£1) = 0, we have

/912 > ff;2+2£11f;h’ = ff;2—2f_llf,;'h.

Because of (i) and (ii),

/h(w)dm = f:c"h(:c)d:c =0
Therefore,

[ lz) (6 + 1)a* 1) dz = 0,
which implies that

f [ £ 3(" +3) (% + 1)a* — 1)h(z)dz. (17)
R\[-1;1)

The function g is nonnegative. Hence h(z) > 0 if = ¢ [—1;1], and relation (16)

immediately follows from (17). o

The approach suggested above is close to that of [2], ch. 5, where the problem of
minimising the functional (Ejf,(y))*Evy* was considered. The optimal kernel (11) might
also be found using tools of the calculus of variations [6] if we restricted ourselves to a
class of absolutely continuous functions vanishing outside finite symmetric intervals and
noticed that assumptions (i), (ii) for those functions could be rewritten in the form

(&) [ 2g(z)dz = —1, (i) [ g (z)dz = —3/(2k + 3).
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