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SCENERY RECONSTRUCTION IN TWO DIMENSIONS
WITH MANY COLORS

MATTHIAS LOWE AND HEINRICH MATZINGER III

ABSTRACT. In [6] Kesten observed that the known reconstruction methods of
random sceneries seem to strongly depend on the one dimensional setting of the
problem and asked whether a construction still is possible in two dimensions. In
this paper we answer the above question in the affirmative under the condition
that the number of colors in the scenery is large enough.

1. INTRODUCTION AND THE MAIN RESULT

The following problem has its roots in ergodic theory but may also be considered
interesting in its own rights. Consider a graph (V, E) and color its vertices in an
arbitrary way (so we do not only concentrate on proper colorings in the strict sense
that any two adjacent vertices need to have a different color). This coloring will be
called a scenery on (V, E). Then we run a random walk on (V, E) of which we only
know the color record (i.e. the sequence of colors it reads at the vertices) but not
where it actually reads them. The question then is: Can we still say anything about
how V was colored?

This problem — which at first glance might seem a bit hopeless — was first investi-
gated independently by Benjamini and den Hollander and Keane [5]. From here the
problem splits into basically three branches:

1. Can we distinguish two (known) sceneries by their random walk record? or,
more ambitiously:

2. Can we even reconstruct (unknown) sceneries by the observations we obtain
from a random walk? and:

3. Are their sceneries which cannot be reconstructed or distinguished by the color
record of a random walk?

Basic answers to all of these three question have been already given while other
aspects are still wide open. For example Benjamini and Kesten [1] discovered the
very strong result that almost surely any two given sceneries on the integer lattices
7 or Z? can be distinguished by a simple random walk on these lattices given that
the colors are selected by an i.i.d. process. Matzinger [9] showed that on Z even
more is true: Almost every i.i.d. two-color scenery can be reconstructed from the
color record of a simple random walk (which even might have non zero probability
to stand still). This implies Benjamini’s and Kesten’s result in one dimension as
well as the earlier observation by the same author that the same holds true for three
and more colors [8]. However, notice that Benjamini’s and Kesten’s techniques also
work in a two dimensional situation or when the random walk is allowed to jump.
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2 M. LOWE AND H. MATZINGER

A remarkable answer to Question 3 has been given by Lindenstrauss (7] who showed
that there are still uncountably many sceneries on Z which cannot be distinguished
from the color record of a simple random walk.

To be more specific: In what follows (V, E) will always be the integer lattice Z? and
a function £ : Z? — Z will be called a two dimensional scenery. For a subset D C Z2
we call £ : D — Z a piece of scenery. If the range of £ contains exactly m elements
we will say that £ has m colors or that it is an m-color scenery. Two sceneries { and
£ will be called equivalent, if there are a € Z* and

we{(3 )0 5) (3 5)- ()

() =E(Mz+a) VzelZ’
Similarly, we call two pieces of scenery { : D — Z and € : D — Z equivalent, if
again

such that

£(z) = E(Mz + a) VxeD
holds true (a and M as above) and moreover M (D) +a = D.
In other words ¢ and £ are equivalent (in symbols £ ~ £) if they can be obtained by
translation and reflection on the coordinate axes from each other. It is rather obvious
that in general we cannot expect to distinguish equivalent sceneries by their color
record and thus also reconstruction will work only up to equivalence. Throughout
this paper we will consider £’s that result from an unbiased i.i.d. random process

with m colors (thus we will also say that £ has m colors), that is the £(v) are iid.
for all v € Z*? and

P(E©) =)=~

for all colors 7 € {0,...,m — 1}. Moreover, let (Si)ren be simple random walk in
two dimensions starting at the origin.

The main result of this paper states that if m is large enough the color record of

(Sk), ie.
x = (x(k)ren = (§(Sk))ken

contains enough information to reconstruct § almost surely up to equivalence. Ad-
ditionally, we will present a well defined algorithm that given the scenery on a finite
set reconstructs the whole scenery with probability larger than one half. In the
next section we will see why this actually suffices to prove the main theorem. This,
in a more mathematical way, is expressed in the following theorem, which states
that with sufficiently many colors reconstruction of £ from x (up to equivalence) is
possible with probability one.

Theorem 1.1. There exists mo € N such that if m > my, there ezists a measurable
function (with respect to the canonical o-fields)

A:{0,...,m—1}¥ > {0,...,m—1}¥
such that
P(A(x) ~ £) = 1. (1.1)

Here the measure P lives on the product space of the outcomes of { and the space of
all random walk paths.
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Remark 1.2. We have not calculated any lower bound for mg yet. We are also
convinced that the methods presented here, will lead to an my which is terribly large
and far off any reasonable number and, in particular, any of the “borderline”-cases
m = 4,5 for which we have as many colors (or one more color, respectively) as
we have neighbors in Z? or even m = 2 (for which we doubt that Theorem 1.1 is
valid). This is basically so, since we decided to keep the present proof as simple and
transparent as possible and to use as many colors as necessary to this end. The
specification of a good bound on mq will be subject to further research of the authors.

This note has two further sections. In Section 2 we present the basic ideas of the
algorithm used to reconstruct a random scenery while Section 3 contains the rigorous
proof of Theorem 1.1.

Acknowledgment: This problem was posed by Harry Kesten. We benefited a lot
from electronic discussions with him and private conversation with Mike Keane and
Frank den Hollander. We are indebted to all of them for their interest in our work.

2. THE MAIN IDEAS AND BASIC NOTATIONS

The proof of Theorem 1.1 crucially bases on an induction argument. Given that we
already know the scenery on a finite set A (for a special choice of A) we show how to
extend this knowledge to the points sitting next to A. The following three lemmas
are the building blocks of this induction. First we see that it suffices to exhibit an
algorithm that reconstructs the scenery with probability larger than 1/2 in order to
be able to reconstruct the scenery almost surely.

Lemma 2.1. For allm > 2 (where m designates the number of colors in {), if there
exists a measurable map

A:{0,..., m-1N5{0,...,m—1}%
such that
P(A(x) ~ €) > 1/2
then there also exists a measurable
A:{0,..., m-1}¥ = {o,..., m—1}%
with
P(A(x) ~ &) =1.

The proof of Lemma 2.1 will be given in Section 3.

Lemma 2.1 will be useful, since we will soon see that with sufficiently many colors
we are able to reconstruct with large probability the scenery on finite regions of Z?
such as the integer circle of radius n denoted by

B":={z € Z*: ||z|| < n}.
Here || - || stands for the Hilbert norm in Z2. Moreover, in the following we will
frequently use the following notation: we will write f|B for the restriction of f to a
subset B of the domain of definition of f, for example £|B will be a piece of scenery

(that is the scenery restricted to some subset B of Z?), while x|B will be a part of
the observations (here B will be a subset of N).

The next two lemmas will basically contain the induction. Lemma 2.2 below is the
start of the induction, while Lemma 2.3 contains the induction step. So, first we



4 M. LOWE AND H. MATZINGER

show that we can reconstruct &£|B" for each finite n with arbitrary large probability,
as long as the scenery contains sufficiently many colors.

Lemma 2.2. Letn € N and € > 0. Then there exists m; € N such that if m > my
there exists a measurable function

A {o,...,m—1}N = {0,... , m—1}F

such that
P(A™(x) ~€EB") 21 —e¢.

Also Lemma 2.2 will be proven in the next section.

The next lemma is the induction step in the sense that it states that we can recon-
struct £|B™! with large probability provided we know £|B™ up to equivalence and
the number of colors is large enough.

Lemma 2.3. There exists my € N such that for m > my there is a sequence of
measurable functions (A" )nen,

A {o,...,m-1}B" x{0,...,m—1}¥ = {0,... ,m—1}7""
such that given a sequence (Y™)nen of pieces of scenery with
P|B" ~¢") =1,
then P-a.s.
A", x) ~ €|B™ (2.1)
for all but finitely many n.

Roughly speaking, Lemma 2.3 means that the algorithm obtained by concatenating
the different ,A™'s works well, in the sense that given £|B™ and the observations x
it almost surely fails to reconstruct &|B™*! only for finitely many =.

To explain the proof of the induction step, which is crucial to the whole proof of
Theorem 1.1, observe that the main difficulty in the reconstruction of sceneries is,
of course, that we do not exactly know where the random walk precisely is. This is
even more a problem in two dimensions than it is in one dimension as the random
walk in one dimensions by time N has returned to the origin about VN times, and
therefore produces a lot of information about the neighborhood of the origin. In
two dimensions the local time of the origin at time N is only about log N. Thus we
have to find an accurate method for guessing when the random walk is close to the
origin from the observations x it produces. This will be achieved by using a set of
signal words, i.e. sequences of subsequent colors in B*. Their frequent appearance
in the observations will indicate that we really are in a neighborhood of B™.

This “guessing that the random walk is inside B™” is the first step of the reconstruc-
tion algorithm. More accurately, these words which will indicate that we are inside
B™ (the so called signal words) are horizontal, non-overlapping words inside B" of
length proportional to logn. The set of these words will be called S™. Whenever
we read more than n? words during a time interval of length n? whose endpoint is
inside [0,e""] (o and § some numbers to be specified later), we will “guess” that
the walk is inside B**+*. The union of these time intervals will be called 7% and the
reconstruction will only take place during 7™. Note that 7" designates a random set.
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More formally in the sequel let c;, cp, c3 > O be positive constants (not depending
on n) which we will specify later. For convenience we will assume that ¢;logn € N
for each ¢+ = 1,2,3 (which of course means the ¢; slightly depend on n but this
dependence is 1rrelevant) Let

S = {w=(wW,...,Welogn)|Tk €Z and (z,y) € Z*: z = keylogn
(x+s5,y) € B* and w, =&((x +s,%)), Y0<s<clogn—1}.

In other words S “partitions” £|B™ into disjoint horizontal words of length ¢, log n.
Moreover let 1 < @ < 8 < 2 be two real numbers close to two to be specified later,

= {I=[t,t+n?|t <™ —n?

x|I contains more than n® different words from §"},

T = Th g = U I.

IGI&,B

and

As sketched above, the point is that during the times &k € 7" we can be pretty
sure that the random walk is “close to B™”, more precisely that it is inside Brat
This will ensure that the reconstruction takes place at the boundary of B™ and not
anywhere else.

As a matter of fact, the probability for the random walk to go right through a
given signal word is equal to (1/4)%'°6”  Thus for ¢; very small the random walk
when being inside B" typically reads n®~*! signal words during a time interval
of length n%. Here £; > 0 can be made arbitrarily small. This is basically so,
because the random walk typically visits about n?/logn distinct points in a time
window of length n?, and thus during these time steps it would roughly visit about
n?/logn x (1/4)°118™ > n?~1 (for ¢; small enough) signal words.

Now, if the number of colors m is large enough we can choose ¢; small and still the
signal words will be typical of B® (that is, the probability to read them in a given
ball B;‘z the ball of radius n? centered in y ~ is small, as long as the ball does not
touch B™). Indeed, there are less than mn*4°1!°8" different paths of length ¢, logn
inside B"’2 Thus by independence the probability for a given signal word to appear

in BY' \Bﬂ is less than 7n*(4/m)* €™, which is as small as we want to, if only m
is large enough. As a matter of fact, explomng the independence of the signals in a
large deviations argument we will be able to show, that up to time e"” the random
walk in a time interval of length n? will only be able to read more than n? (o,
as above) signal words if it spends this time in B™+" and that the probability of
reading so many signals elsewhere is about e~"". So, our test, to check when we
are back in B" will not fail until time roughly e™*. But by that time we will have
returned to the origin about n*¢2 times (¢, > 0, small). If now m were so large
that there were only different colors inside B™ this would suffice to reconstruct £
on the boundary of B*. We simply would have to follow the walk until it exits B"
and read the first color outside as the color of a boundary point. If all colors were
different, we would clearly know where this boundary point was. Moreover, there
are order 7 points in 8B", so n'*¢* (g3 > 0) returns to the origin would suffice to
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reconstruct the scenery on the boundary of B". As we already saw that we have
about n® of such returns, we would be done.

However, we are not allowed to choose m growing with n, so we cannot assume that
all colors inside B™ are different. So we have to employ more subtle methods to
reconstruct £ on the boundary of B™.

To describe this reconstruction part we have to introduce some more notations. Let
AB™ := {z € B"|3y € Z*\ B” such that z and y are neighbors }
be the inner boundary of B™ and
8B" := B™'\ B"

be its outer boundary (observe that 8B™ may differ from the outer boundary of B®
in the lattice topology). Since by definition B™ U 8B™ = B™*! it clearly suffices to
reconstruct dB™ with large enough probability.

The strategy will be to guess the color of a point v in B™ by extending a walk
to a neighboring point in §B™ by two further steps. Of course, we have to be very
careful of both, to walk to v € 8B™ and to extend the walk into the right direction.

The principal idea behind this reconstruction can be described quite easily. Draw a
straight (horizontal or vertical) line through v and suppose we knew already the the
colors of a line segment of length approximately log n inside B™ and containing v as
well as the colors of a line segment of about the same length outside B™ at distance
2 from v. Then we could figure out the two missing colors between these two
segments by just waiting until the random walk first reads the colors of the segment
inside B™ (in the right order) and then after a waiting time of 2 the colors of the
segment outside B". Except, if the walk is far away from v (which we can exclude by
the above arguments) the walk must have followed the straight line supporting the
two segments at least partially and thus the missing two colors are the colors read
between reading the colors of the two segments. Indeed, the “following partially”
part above needs a little more technical work. In fact we could deviate from the
above line segment and just accidentally read the right colors. We will get rid of this
nuisance by characterising the missing two points as the shortest distance between
two cones rather than between two line segments. This idea will be made more
precise below.

Now a major difficulty is that we do not know the colors outside B®. Thus we have
to think of another characterisation of the segment outside B™ (supported by the
same line as the inner segment). It will turn out that it is useful to think of it as the
segment whose colors can be read in shorter time by starting with the inner segment
than by starting with any segment parallel to it.

To formalise this idea for v € 9B™ we define a segment o(v) (the segment associated
with v) in the following way: Let ¢(v) be the horizontal or vertical segment of length
(c2 + ¢3) logn with endpoints v and oo(v) € B", such that the angle between this
segment and the tangent to the circle of radius |v| centered in O in the point v is
at least 45 degrees (the latter is needed to ensure that the objects below are well
defined).

The first ¢, log n lattice points (starting from op(v)) will be called the root segment
of v and abbreviated by &(v), the rest of o(v) is called second root segment and
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will be denoted by the symbol &(v), while the left and right neighboring segments
of &(v) of the same length c;logn as §(v) (or the lower and upper segment next
to the root segment of v, if o(v) is a horizontal segment, respectively) are named
the side segments of v. For these we reserve the symbols A(v) and p(v), and their
starting points (next to oo(v)) are denoted by Ag(v) and po(v), respectively. Finally
the segment of length ¢ logn following o(v) after one step when we keep following
the line supporting o(v) will be called the invisible segment associated with v and
denoted by (v). Its endpoints are called v, and o(v). The words associated with
these segments will be called the root word, second root word, side words, and
invisible words, respectively. Finally the lattice points we want to guess the color
of, that is the points on ¢(v) of distance one and two to v are named v; and v;. All
this is illustrated in Figure 1 below.

Let us now describe how this reconstruction works.

The idea behind the above setup is that in order to read the color of v; and vy we
take a neighboring vertex v € 3B" and read the color of v; and v, as the next colors
when we have read o(v) from o¢(v) to v. To guarantee that indeed we read the color
of the right points we require that the algorithm picks a word w of length c;logn
satisfying the following conditions

1. w appears in x| directly (one step) after the word supported by o(v).

2. In x|r™ the shortest time for w to appear after the root word of v is exactly
equal to czlogn + 1.

3. In x| the shortest time for w to appear after the side word of v is exactly
cslogn + 2.

Condition 2 assures that we do not run backwards after having read the word sup-
ported by o(v) while Condition 3 guarantees that we have not deviated from the
segment from oo(v) to v while reading the scenery.

Thus we estimate £(vq) to be the first color of w. The estimate for £(v;) will be
the the color between o(v) and w, when they appear in Xx|[0,e™"] one step apart
from each other. If there is no word w satisfying the above conditions we let the
algorithm terminate (our conditions imply that this will happen only with extremely
small probability).

To realize this idea, that is to actually prove Theorem 1.1, we need some more
definitions, which we will give now. For v € 8B™ the half space associated to v

which will be denoted by H(v) - is the half space separating (v) from 7(v)
orthogonal to ¢(v) and with 7(v) in H(v). The first quart-space @Q;(v) associated
with v will be the right-angular cone based in v, with bisecting line along ¢(v)
such that the major part of ¢(v) is inside this cone. The second quart-space @Q2(v)
associated with v is the right-angular cone based on the line separating H(v) from its
complement such that (v) is on its bisecting line and (v} is in this cone. The third
quart-space @3(v) associated with v will be defined as the right-angular cone based
on the line separating H(v} from its compliment such that A(v) is on its bisecting
line and A(v) is in this cone. Finally, the fourth quart-space Q4(v) associated with v
will be the right-angular cone based on the line separating (v) from its compliment
such that p(v) is on its bisecting line and p(v) is in this cone. The base points of
Q3, Q2 and @y, respectively, are denoted by a, b, and ¢, respectively.



B M. LOWE AND H. MATZINGER

i H()
a b c
& (v)
Alv)
Qs(v) Q2(v) |o(v) (o) Qu(v)
' /\0(”) ¢ 00{v) ¢ po(v)
FIGURE 1

All this is illustrated in Figure 1. In this figure the points v,a,b,c, Ao(v),o0(v),
and po(v) are supposed to be inside B", whilst vy, v, and po(v) are supposed to be
outside B™.

3. PrOOFs

In this section we give the proofs of Theorem 1.1 and Lemma 2.1, Lemma 2.2, and
Lemma 2.3. Let us start with the proof of Lemma 2.1.

Proof of Lemma 2.1: Let © denote the right shift on N such that, if x =
(x(0}, x(1), x(2), - --),

O (x) = (x(, x(+1),...)



SCENERY RECONSTRUCTION IN TWO DIMENSIONS 9

for each | € N. Moreover, let X(I) be the indicator for the event that the recon-
struction algorithm A applied to the observations shifted by [ give rise to a scenery
which is equivalent to the actual scemery, that is X(I) = 1 if A(©'(x)) ~ ¢ and
X (1) = 0 otherwise. Obviously, (X(I),! € N) is stationary with

PX()=1) = PAAG) ~ ) > 5

for all [. Hence, by the ergodic theorem also

XD+X2)+...+X()
l
converges to a limit larger than 1/2 almost surely. Thus under the assumption that

P{AG) ~€)> 5.

we can identify the equivalence class of £ as the only equivalence class which even-
tually is equivalent to the majority of the A(©!(x))’s.

O

Let us now prove Lemma 2.2.

Proof of Lemma 2.2: The principal idea behind the proof of Lemma 2.2 is that
with enough colors within a large area a certain color is typical of the point under-
lying it. This will help us to reconstruct the scenery on two basic shapes, which
will help to reconstruct the scenery on the points of a three by three square and
hence also on any other square. In a final step we will see this already suffices to
reconstruct the scenery within a large ball.

To be more precise let

m= [ {€@) #E@)}
zFyeBn
and

=1 N N

B )

{(Sk)x passes from z to y in one step before visiting v}

z,yEB™,
llz—yll=1

In words the event EJ; says that all colors inside B™ are different, while Ey, states
that all edges inside B™ are crossed by (Si)ren before it visits a point outside B"
having the same color as one of the points inside B".

We now show that under the condition that Ef; and Ef, hold true, we can recon-
struct the scenery £|B™. The reconstruction will be based on the following two
important cases.

Case I: Let x,y, z,v € B" be the corners of a unit square with z and z (and as well
y and v) across the diagonal. Then, if Ej; and Ef, hold, and we know the colors
of of =, y and z, we can figure out the color of v. As a matter of fact, the color
of v is the first color appearing, neighboring both the color of x and the color of
z, and different from the color of y. (Here and in the following we call two colors
neighboring if they are read at subsequent times).
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Case II: Let 11,25, 23,24,y € B™ be a “cross” with center y , that is z1, zoz3, 24, ¥
are pairwise different and

lz1—yl=|ze—y|=|zs —y| = |ra —y| =1

Knowing that £}, and E, bold as well as the colors of z;, x2,z3 and y we can find
out the color of x4 as the only color neighboring £(y) different from £(x1), £(x2), and

&(z3).

We will now see that these two basic techniques suffice to reconstruct £{B™, if Ef; and
o hold. Indeed, denoting by @; the 2j4-1 by 25 +1 square with center zero, we can
first reconstruct £|Q,. To this end we first recover the color of the origin (which is,
or course, trivial) and the the colors of (1,0),(0,1), (—1,0), and (0, —1). Indeed, the
colors themselves are known from the observations. Their relative position to each
other (which is all we need, because we only want to reconstruct up to equivalence)
can be detected from the fact that the color of ¥ can be read with distance two of
the color of z without reading the color of the origin in the meantime (and the same
for the colors of v and z, for example), while this is not true for the colors of x and
z, or the color of ¥ and v, respectively, where we have to pass zero in between.
Once we know the &|{(1,0),(0,1),(-1,0),(0,—1)} up to equivalence we can recon-
struct the scenery on @, by applying Case I to the four corner points of Q.
Now we can proceed inductively. Knowing the £|Q; N B™, we want to reconstruct
€|Qj4+1 N B", that is we want to find out the color of the boundary points of @;11
(as far as they are inside B™). For all points with at least one coordinate different
from 25 + 1,27,—-27 ~ 1, or —23, this can be done by applying the technique of
Case II. Then the color of the points with one coordinate equal to 25 or —2j can
be reconstructed by applying the technique of Case I. Finally the same technique
yields the color of the corner points of Q;+1.

This shows that under the condition that Ef; and Ef, hold true we can reconstruct
£|B™ up to equivalence. It remains to understand that both, Ef;, and Eg, hold true
with arbitrary large probability for fixed n and large enough m. Indeed, this is not
very hard to see. For Eg;, note that

1
P((Eg;)°) < const nza,

which can be made arbitrarily small by choosing m large.

Similar techniques apply to Ef,. Note that by taking T large enough the random
walk (Si)i<r up to time T has visited each point in B, at least L times (L some
number to be chosen soon, cf. [10] for similar results). Then the probability that
there is an edge in B™ the random walk does not visit up to time T is bounded by

3\ 2
2 ——
constn (4) .

which is arbitrarily small for L large enough. If we now first choose L, the take T
as above, and finally choose m so large that also the probability that all colors in
BT are distinct (by the same techniques as above) is as large as we want to, we see
that

P((ER)) <€
for each € > 0 if only m is large enough. This finishes the proof of Lemma 2.2. 0O
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Next we will prove Lemma 2.3, which is indeed the key ingredient to the proof of
Theorem 1.1.

Proof of Lemma 2.3: Let E* denote the event that given a piece of scenery ¥
with 9 ~ £|B™ the “reconstruction algorithm at step n” A" produces a piece of
scenery A (1, x) with

A (9, x) ~ £|B™F1.

We need to show that with probability one E™ holds for all but a finite number of
n’s (in the following we will also say that an event holds for almost all » if it holds
for all = but a finitely many).

To do so see we decompose E™ for n € N in such a way that

E™ > ET N E;NES.
We will then show that each of E?, i = 1,2, 3 holds for all but finitely many n’s.

Whenever in the sequel we will say about a piece of scenery i that “¢ appears in
A with starting point 2", or “¢ appears in A with endpoint y”, respectively, where
v €{0,...,m—1} for some I, A C Z?, and z,y € Z?, we will mean that

XIT =1

for some realisation of the random walk S,, some discrete time interval T = [to, to +
I — 1] such that S, = = (or Sy1-1 = ¥, respectively) and S|T C A. In other
words 1 appears in A with starting point z (or endpoint y) if it can be read in-
side of A by a nearest neighbor walk starting in z (ending in y). Moreover if,
for one of the line segments o(v),5(v),7(v), w(v) or A(v), we refer to £|L (£ €
{o(v),5(v),T(v), p(v), A(v)}) we mean the observations obtained by reading ¢ along
£ from the center of B™ to the outside of B

Now let

ET := (\yegexetney {There are less than n? different word from
S appearing in £|(BX \ B™)},

where B™* stands for the discrete ball of radius n? centered in .
Observe that the definition of 7 implies that on ET we have that S, € B+ for
all ke 7.
Moreover let
E} =Ej NEpNEpnEy N Ey

with
Ey = n ﬂ {¢]o(v) appears in £|B™*" only with starting point point inside H(v)},
vEAB™ 7(v)
E3, = ﬂ ﬂ {€|6(v)appears in ¢|B™**" only with endpoint z € Qa(v)},
vEHB™ (v)
Ej = n n{f | A\(v)appears in £ |B"2+" only with endpoint z € Q3(v)},
vEaB™ A(v)

Ej, = ﬂ ﬂ{{ |o(v)appears in §|B"2"'" only with endpoint £ € Q4(v)},
vEZB™ p(v)
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and
o= ﬂ r] {€|(v)appears in £|B™*™ only with starting point z € Q:(v)}.
vEBB™ ¢(v)
Finally let
Ef =Ej,NE;,NEZ,
where
re = n { All nearest neighbor walks of length (2c; + c3)logn +1
vedBn
initially reading £|6(v) are realized at least once during 7(n)},
E3, = n { All nearest neighbor walks of length (2¢; + c3)logn +1
veEdB™
initially reading £|A(v) are realized at least once during 7{n)},
and
5e = n { All nearest neighbor walks of length (2ce + c3)logn + 1

veEgGB®
initially reading £|p(v) are realized at least once during 7(n)}.

Before we show that £ N EF N F} indeed happens for all but a finite number of n’s,
let us see that this will actually imply the desired result, that is, let us see, that

E"> E'AErMNED.

As a matter of fact, for each event in E} we know that during 7(n) we must be close
to B™, more precisely, we know, that during 7(n) the walk is inside B*+". Then E?
ensures that in this time 7(n) we read each sequence of length (2c; + ¢3)logn + 1
beginning with either £|6(v), £|p(v), or £|A(v) for each v € 3B™ at least once. E}
now guarantees that during these times the walk is close to the points a; b, and ¢ (of
the appropriate v). Finally E} together with E} ensures some of the walks actually
pass the points a, b, and ¢, correspondingly. Therefore, we are able to read the color
of the vertices v; and v, next to v in direction of o(v).

To be more specific: For fixed v we divide the words of length (2¢c; + ¢3)logn + 1
beginning with one of the 3 sequences £|6(v), £|A(v) and £|p(v) into two categories,
the words ¥ which begin with £|6(v), and the set = which don’t. The words from
¥ are the candidates for revealing the color of v; and v,, while with the help of
the words from £ we keep control over actually reading the right colors. First we
delete from X those words which do not continue with £|a(v) at the cplogn + 1'st
to (c2 + ¢3)logn’th step. For these words the walk obviously deviates from the
straight line that supports o(v). Of course, we might also deviate from this line
without producing a color record different from £|o(v). However, notice that such
walks that deviate from o(v) have the property that after having £|6(v) at the
cologn + 1'st to (co + ¢3) logn’th step it continues with a word which could have
been read earlier when starting along A(v) or p(v). To exclude these walks we cancel
all walks from T which after the first (c; + c3) logn steps read a word Which also
can be read earlier by starting along p(v) or A(v), that is by starting with a word
from . Conditions E}, and Ej, ensure that T contains all such words we need



SCENERY RECONSTRUCTION IN TWO DIMENSIONS 13

for comparison. This obviously excludes all possibilities to deviate from the line
supporting o(v). (In practise this procedure might be a bit tedious but it evidently
works). Note that we also may delete some words from ¥ which actually do not
describe a deviation from the straight line underneath o(v) (since it might happen
that the same sequence of colors occurs twice, once as a continuation of a walk
starting from p(v) or A(v) and once as a walk that indeed followed o(v). However,
the condition associated with ETs guarantees that after the deletion there are still
some walks left.

Finally, we also have to take care of not walking backwards after having read o(v).
To this end consider the color record of the walk only from time (¢, + c3)logn + 2
to time (2c; + ¢3)logn. If these colors (in the same order) can be read earlier by
starting with £|d(v) (note that by condition EY we keep record of all such walks)
we take this as an index for having stepped backwards. Indeed, all walks that after
having read &|o(v) follow the line segment in the opposite direction for a while have
this property. Again, we might also be deleting some admissible walks (that is,
walks that actually go in the right direction) but condition E} together with EZ;
guarantees that we will not delete all walks form X. After these cancellations ¥ will
obviously only contain walks that follow o(v) and then step to »;. In particular,
their color record will be the same at the first (c2 + c3) log +1 positions and we will
be able to read the color of v, as the (¢, + ¢3) log +1'st color of these records.

With the knowledge of £(v;) we may similarly delete all walks from > which do not
step to v, in the (c; + ¢3)log +2'nd step and thus we will also be able to obtain
information about &(v,).

As this works for all v € 3B™ we are indeed able to reconstruct the scenery on B"+!
proving that

E™ D ETNE}UEZ.

It remains to show that Ef N E? N EF is true for all but finitely many n, if we choose
a and § in the correct manner.

E? holds for all but finitely many n: Let w € 8™ be any fixed signal word in
B™. By this we mean that w is the signal word between two fixed starting points;
so note that w although being fixed in this sense, will still be random. Let y ¢ B™
be any potential starting point for w outside B®. By independence of the colors

clogn
P(w appears in £|(Z%\ B™) with starting point y) < (E)
as there are 4°11°6™ different walks of length c; log n starting in y. Thus for any y
. cylogn
P(w appears in £|(By \ B")) < nt (E) — gpit+ei(log4-logm)

as there are mn* different points inside B™.

Now the indicators I, for the event that the word w € 8" appears in B;‘z \ B"
are conditionally independent (for different w) under PP given §|(}l’i‘;,‘2 \ B"} as the
different words have mutually disjoint support and therefore are independent. To
understand this point correctly it is of utmost importance to recall that 8™ is a
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random set (under P). The independence claimed above would not be true for any
fixed set of words or if we did not condition on knowing £ |(B;,‘2 \ B®).

Hence the number of w € S™ appearing in B;" \ B" is stochastically bounded
by a Binomial random variable with N = n?/c;logn different trials and success
probability p = mn?taliesd—leek) By concentration of measure, (or the simple fact
the the rate function of a large or moderate deviation principle for i.i.d. Bernoullis
can be quadratically bounded), cf. [12], for N iid. Bernoullis X; with success
probability p we have that

N
2
PO Xz Np+4) < ecomst- Gy
i=1
for each N and each A > 0. Applying this to our situation and moreover choosing

m in such a way that
71_,nz-l-c:l(logil—lc.gﬂ't) < 1/??.

(which is possible for every fixed c;) yields
P(There are more than n” different words from S” in le;‘z \ By)
—conat.-q%zs-:(“’az_l.é.‘*_"_%)ﬁ — e—ccrn,st.::lhf!%sﬁﬂ

IA A

e
e_nz(ﬂ—l)—e
for each positive ¢ > 0 and n large enough. Hence
P(EN)< 3. e =g (3.1)
meBexp(no')
As o < 3, and we can choose them such that 26 — 2 > o + ¢ the right hand side of

(3.1) clearly is summable in n, which by the Borel-Cantelli Lemma yields that E?
holds for all but finitely many n.

E? holds for all but a finite number of n: Since the proofs of that E3; holds for
almost all n are very similar for each i, we just show it for E7, and leave the other
proofs to the reader.

To this end consider any v € 9B™ and any oriented connected segment s in Z? of
length c;logn. Note that if the endpoint of s is not in @ the ’th point of g(v) is
different from all the j’th points of s, j < i, and thus £(di(v)) is a “fresh random
variable. Thus by conditional independence the probability of reading &(v) along
£|s is bounded by

1 czlogn
=5 < —
rels=se)< (5)
and therefore for every fixed z € B™'*™ \ Q2(v)
calogn
P(5(v) appears with endpoint z) < (;n,_) .

As there are at most 7(r? + n)? points in Br*+" and there are at most const X n
points v € 3B™, we obtain

czlogn
P((E%)%) < (a) const x nw(n® +n)? = pe2(log 4-logm)
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The right hand side of this inequality becomes summable if we choose m large enough
(depending on c; - or ¢ when we want to prove that another E7; holds). This choice
of m will basically be the proof of Theorem 1.1. Thus (again by a Borel-Cantelli
argument) E7, holds true for all but finitely many n.

Note that until now we are still free to choose ¢y, ¢9, ¢3.

E7 holds for all but finitely many n: Again we only give the proof in detail for
one of the events, which will be E7,. The proof for the other two events follows the
same lines.

We split this proof into several parts.

First let us prove that in a certain (stricter than usual) sense the random walk by
time €™ has returned to the origin more than n” times, where v < a < . A result
like this seems to be very much in the spirit of a result by Erdés and Taylor [2],
who showed that almost surely a random walk at time e has returned to the origin
between n/(logn)'** and (1 + £)nloglogn times for all but finitely many n’s and
every positive ¢ > 0. The reason why we cannot simply refer to this result is that
we also want these returns to the origin to be apart at least n? from each other. So,
more precisely let us introduce a sequence 97 of stopping times such that 4§ = 0
for all » and ¥, is the time of the first return of the random walk .5, to the origin
after time 9; + n2. This will ensure that in the meantime the random walk is able
to hit one of the boundary points of B®. So we want to check that for y < a < 8
(v appropriately chosen afterwards) the event

51 = {5 < e}
happens for all but finitely many n’s. Indeed, choosing § = X the result by Erdés
g 2
and Taylor [2] quoted above states that the event
m  := { Up to time e there are more than n**’ returns to the origin }

holds true almost surely for all but a finite number of n’s. Next we will show that
the same is true for the event

nY
E3y, :=){In the interval [#},97+n’] there are less than n° returns to the origin }.

1? 1
i=1

As a matter of fact the probability for a simple random walk to start in the origin
and not to return to it for ¢ steps is bounded below by 13% for t large enough [11,

p.167], [3]. Applying this yields

P(In the interval [97, 9" + n?] there are more than n® returns to the origin )

(i)
logn

for each i = 1,... ,n"” and n large enough. Hence by bounding the probability of a
union by the sum of the probabilities

P((E3,)°) < nte ™"’

which is finitely summable. Therefore E}, holds for all but a finite number of n’s.
As E%y, and Ej), together imply EF, also E}, holds for almost all n.
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Next we will show that many of the intervals [97, 97 + n?] above are indeed signal
times, that is we will show that we read more than n” different signals in all of these
time intervals. To this end introduce random variables Y; which are indicators for
the event that the interval [97,97 + n?] is a signal time, that is for the event that
there are more than n? signal words read in [07, 97 + n?]. To avoid the dependence
among reading different signal words we only concentrate on such words which are
“far apart” form each other. To this end we partition the inner part of B", that is

B™ \ 8og nys B™ where
AognysB™ = {z € B",d(z,3B") < (logn)®}
and d(-,-) is the lattice distance in Z2, into boxes of lengths ¢, logn and (logn)®.
Let
W, = {(z,y) € B" : klogn < z < (k+1)logn, I (logn)® < y < (I +1) (logn)*},
(k,l € Z).

Now consider the following indicators: Let I'™(z) be the indicator for the event
that §  ws € Bn/legn 127(;) denotes the indicator for the event that the whole
i T

trajectory (Si) R contained in B™. Furthermore, let I*"(:) be one if
T

k=07,... 97
the random walk visits more than n*3> /(mgﬁl logn) distinct points in [97, 97 +
n*$] and zero otherwise.

Moreover let Iy(i) be the indicator for the event that in the time interval [97, 97 +

n*#] the walk enters W{, and within (logn)® steps after the first entrance time
touches one of the lines x = klogn or z = (k + 1)logn, and finally follows the
straight line supporting the the word associated with the starting point it touched.

First consider the event {I'™(i) = 0}. By concentration of measure (cf. [12]) we
have for every fixed ¢

2=

a0y _ n —const.B——y
P(I""(i) =0) = P(|]Sﬂ?+ng§g“ > _logn) <e llogm)?

Therefore, as § < 2

p

P((O{Hl’“(i) = 1})") < n2e"°°““'%§r

which is finitely summable and thus (),{I>"(:) = 1} holds true for almost all n.
By the same argument

P(I2"(3) =0) = PAte 97,07 + n*¥] ¢ |1S] > n)
n2-8
< RIS, sl > n) < nlememt ST

Thus, also [),{I*"(z) = 0} holds true for all but finitely many n.

To bound the probability that I37(%) is equal to zero, first observe that the number
of distinct points D; visited by a simple symmetric random walk starting in the
origin by time ¢ satisfies (cf.[4], [3])

2t

£= logt
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for all ¢ large enough. Moreover such a random walk clearly can only have visited
at most ¢ points (i.e. D; < ) up to time ¢. Together this implies
1

P(D: 2 logt) - logt

(3.2)
Partitioning the interval [97,9; + n’ ] into n%3% intervals of length n? %2 and ap-
plying (3.2) witht =n 2538 (observe that logt = 2-32 log n) yields for any fixed ¢:

nlié 2—

nst. 3
Ingy < 1 cons < const. B rrral

Hence by the same summability argument as above (), {I**(i) = 1} holds for almost
all n.

Next let us have a closer look at {]I:?(’L) = 1}. Suppose that we already know that
S, enters the sector W, within [d7,J7 + n ‘¥ ]. Considering just the projection of

the walk to the z-axes, we see a n:earést neighbor random walk on Z with holding
probability 1/2. The points klogn and (k + 1)logn obtained by projecting the

vertical limiting lines of W, may be considered absorbing barriers for this random
walk. As the expected hitting time of one of these barriers is of order (logn)?, after
time (logn)® we will have hit one of the boundaries with a probability bounded away
from zero (in n). In other words that is to say, that S, conditioned on that it will
visit W}, at all, will touch one of its left and right boundary lines within (log n)? after
the first entrance time into this sector with probability bounded away from zero.
As the word associated to this boundary point has length ¢; logn the probability
that the walk touches a boundary point and then follows the walk associated to it
is bounded by const.(1/4)t '8,

Note that the events {][‘,t";‘(i) = 1} are not independent for different choices of (k,1)
and the same ¢ and n. First due to the fact that (Sy) is a Markov chain the event
{1[4’"( ) = 1} increases the chances that we also hit a square close to W(,. However,

also given that we visit both W, and W ), for example, the events {]Iz}"(z) =1}

and {Ilz’_fl /(1) = 1} are dependent since reading a word associated with a boundary
pomt of Wk . might easily coincide with touching a boundary point of W, , less
than (log n)3 steps after the first entrance time. To cope with this effect we disregard
every other square, that is we consider the indicators

L) =T Ik, )
where I(k,[}is +1 if £ and ! are even and O otherwise, instead.
Now observe that on {I2"(z) = 1} N {I®"(z) = 1} the random walk visits more than
n2'5t s [ M log n distinct points within [97,97 + n'% ] —all of them lying in B® -
and therefore, as each of the W, has ¢i(logn)* points, also n? =y (2¢,22(log n)®)
distinct Wi/'s. As one fourth of them will have both k and ! even ]Ik,}‘(z') has a

chance to become +1 for n2'%* / (8c1 12 (log n)®) different choices of (k, ). Given the
indices (k,!) for which this is true the events {ﬁi’j‘(i) = 1} indeed are independent
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and have probability at least const.(1/4)11°8™_ Hence again by moderate deviations
or concentration of measure on {I2"(:) = 1} N {I¥"(¢) = 1}

N $(2-B)—c1 log4 .
]P’(Z ]I}t"?(z) < nf) < exp (—const.%%)T) <e™
k,d

for some small €, if ¢; is small enough (depending on how large we have chosen f
before). As e™™ is finitely summable even after multiplication with the number
of different ¥ we obtain that on the event [,{{I*"(i) = 1} N {I>"*(s) = 1}} we
have 37, , I37(3) > nf for all i and all but finitely many n’s. As also ), {{I*"(1) =
1} N {I**(z) = 1}} holds for almost all n

> 16 2 »f
k.l
also is true for almost all n. As finally also [),{I'™(¢) = 1} for all but a finite number
of n’s, we arrive at
{{Yi=1}n{T'"() =1}}

for all n but finitely many.

Let us summarise what we know already. For almost all n the following holds true:
Until time e™ we have more than n” (-y smaller than a) different intervals of length
n? of signal times. The signals are read in the first n*$ steps, after which the
random walks stops in a distance at most n/logn from the origin.

Finally we have to show that in these time intervals [97, U7 + n?] we also read all
words of length (2¢c; + ¢3)logn beginning with either a root word or a side word
associated to any of the boundary points. To avoid trouble with independence we
will only concentrate on events where this happens in one of the time intervals
Jr =0+ 0" 92 0] i=1,2,..

To this end, first observe that (S;) on JP* has variance

\/1?,2-—7?,4_4-';& Zg

for n large enough. Therefore, and since “in the worst case” S s = 0 with positive

probability bounded away from zero (Si) exits B* during J,-n. This bound will be
used to estimate the probability to hit the beginning oo(v) of a root word for a
boundary point v € 8B" or the beginning of one of its side words. This probability
can be computed as the probability of hitting this point conditioned on that we hit
the (discrete) sphere it is contained in, times the probability that we hit this sphere
at all. The latter probability is bounded below by a constant away from zero, by
the above considerations. On the other hand the probability to hit a certain point
in 8B™ conditioned on that we leave B"™ is bounded below by Z for some constant
# > 0 no matter where in B*/ 198" we started. Of course, it suffices to understand
that this is true for large n. But observing that under the scaling Z2 — 1Z2, the
boundary 8B™ converges to the unit sphere, B '°8™ shrinks to the origin and (S;)
converges (after rescaling also the time axes which is irrelevant for our argument) to
Brownian motion W°(¢) starting in the origin and moreover taking into account that
the harmonic measure on the unit sphere (any sphere centered in zero) with respect
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to WO(t) is the uniform distribution on it, shows that the above bound indeed holds.
So, as all starting points of root words and side words lie in B \ B ~(cr+es)logn we
see that the probability of hitting any fixed starting point is bounded from below
by % for some »’ > 0 (3¢ results from multiplying s with the probability of exiting

B™ in a certain J;).

Now the probability of reading &(v) and after that any fixed continuation of length

(¢ + c3) logn given that we first read og(v) has (for any fixed v € dB™) probability
1 (2¢ztc3)logn

( ) - n—(2c2+ca) log 4

4

So the (unconditioned) probability of reading &(v) and after that any fixed contin-
uation of length (c + ¢3) logn is bounded below by

(2cz+c3) logn
E l — m—l—(2c2+ca) log 4
n\ 4

On the other hand there are n” different time intervals where we can read such a
word. So the probability of not reading é(v) and after that any fixed continuation
of length (cz + ¢3)logn in all of these intervals behaves like

nY
(1 B xn—l—(2c2+c3)log4) < exp(—sen7-1-CGerteallogd).

As we can choose ¢, and ¢; as small as we want to and v > 1 (and still v, @)
this probability is smaller than e™™ for some & > 0. The same holds true for
the probability of reading a side word and then any fixed continuation of length
(c; + c3)logn given that we read its first letter. As for fixed n there are only
polynomially many of such words (more precisely, as there less than

67rn4(cz+c3) logn _ 6,n_nl+(cz+c3) log4

such words) the probability of not reading all of them is bounded by

61rn1+(C2+C3) log 4e—n‘

which is finitely summable in n. Therefore, by the Borel-Cantelli Lemma, also E3
holds for all but finitely many n’s. This finishes the proof of Lemma 2.3. O

The proof of the main theorem now only consists of choosing the constants in the
correct order.

Proof of Theorem 1.1: To finish the proof we finally specify the order in which
we choose the constants. So first we choose a, 3,y with 28 — 2 > « (such that right
hand side in (3.1) is finitely summable), and 1 < y < @. Then we choose ¢, ¢z and c3
to make the last part of the above proof of Lemma 2.3 work (note that this part does
not depend on the number of colors m). If we now choose m larger than a certain
number m,; (coming from the arguments which guarantee that £} and E7 hold), this
procedure ensures that the reconstruction in Lemma 2.3 works with probability one
for almost all n. Call the largest n for which it does not work N. Then according to
Lemma 2.2 for each € > O there is a number m, and a reconstruction algorithm AV
such that if m > m, we can reconstruct £|BN with probability larger than 1 —e. If
we now choose m > max{m;, m,} and concatenate A" from Lemma 2.2 with A"
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for n > N +1 from Lemma 2.3, we obtain an algorithm .4 which reconstructs { with
probability larger than 1 —e.

In view cf Lemma 2.1 this suffices to prove Theorem 1.1. |
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