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1 Introduction

Statistical Process Control (SPC) is one of the methods used to monitor the variation of
product quality and to reduce it if possible. Control charts, like Shewhart, CUSUM, and
EWMA charts, form a considerable part of the techniques associated with SPC. A control
chart represents the course of a quality characteristic versus time. By observing the quality
characteristic in this way, it can be judged whether the production process is in statistical
control or not. This judgement is based on control limits, indicated on the chart. A process is
said to be in control if it is only influenced by common causes, i.e. causes that are responsible
for variation that is inherent to the process. In fact, by using a model of the process’s
inherent variation, SPC aims at a timely detection of variation in the process that goes
beyond this common cause behaviour. Such deviations are interpreted as signals for special
cause variability and should be followed by identification and removal of the particular special
cause. SPC monitors the process and tries to minimize the consequences of special causes.

On the other hand, Automatic Process Control (APC) (also called Engineering Process
Control) can be used in situations where production processes are subject to disturbances
that cannot be removed (e.g., a trend caused by wear-out). APC aims at maintaining the
product quality as close as possible to a target value, by carrying out control actions that
compensate for the predicted influence of the disturbance. This control action can be derived
from a transfer model that describes the relation between the output variable(s) and the
input variable(s). In this case the automatic control mechanism is part of the normal process
behaviour.

An excellent overview of the different aims, models and backgrounds of SPC and APC
can be found in G6b (1988). Although SPC and APC have different aims (SPC is monitoring
the process while APC is adjusting it), there are certain circumstances under which feedback
control corresponds to an EWMA control chart (cf. Box and Kramer (1992), MacGregor
(1988), and MacGregor and Harris (1990)). For many years SPC and APC have been used
separately of each other. The idea of implementing SPC and APC simultaneously in a single
production process has been put forward from time to time (see e.g., Barnard (1963)), but it
is safe to say that this idea did not catch until the papers (Hahn (1989) and MacGregor and
Harris (1990)) appeared. The ideas of these papers have been taken up by several people,
resulting in papers like Box and Kramer (1992), Vander Wiel et al. (1992), Tucker et al.
{1993), Montgomery et al. (1994), Faltin et al. (1997) and a monograph: Box and Lucefio
{(1997). Several issues must be taken care of when combining SPC and APC. First of all one
has to carefully choose a model for the disturbance. Some authors argue that a standard model
with independent identically distributed observations may not be appropriate. Zhang (1998)
advocated the use of weakly stationary processes, while Box and Kramer (1992) and Vander
Wiel (1996) propose to use integrated moving average models. Usually single persistent shifts
of the mean are investigated, an exception being G&b et al. (1998) where also a sequence
of shifts at random times is included in the model. Another issue is what to chart and how
to chart (i.e., the choice of control chart). Since feedback control results in correlated data,
standard control charts are not appropriate. A general technique for monitoring a process
with correlated data is to use a control chart on residuals of a fitted time series (see e.g.,
Alwan and Roberts (1988), Harris and Ross (1991), Montgomery and Mastrangelo (1991),
Longnecker and Ryan (1992), Yashchin (1993), Wardell et al. (1994) and Faltin et al. (1997)).
The use of cuscore charts in this context is advocated by Box and Lucefio {1997) and Shao
(1998). An alternative is to use charts based on run sums as proposed in Willemain and



Runger (1998). Yet another possibility is to chart the raw correlated data and modify the
control limits, see e.g., Vasilopoulos and Stamboulis (1978) and Schmid (1995). Finally, the
choice of controller is important. In the statistical literature, one usually considers MMSE
feedback control or PI controllers (see e.g., Box and Lucefio (1997) and Tsung et al. (1998)).
However, we should bear in mind that more sophisticated controllers have been developed
during the last decades by the control community.

In this article we consider a slight extension of one of the feedback models discussed in
Box and Kramer (1992). In particular, we study Minimum Mean Squared Error (MMSE)
feedback control. We present an industrial example where this model is applied in Section 2.
Section 2 also contains our model assumptions. We apply a shift in the mean level of the
disturbance and explicitly calculate its influence on both the output measurements and the
control actions in Section 3. It turns out that MMSE feedback control cannot completely
remove the effect of this shift, which results in a nonzero expected deviation of the output
from its target value. This emphasizes the importance of applying SPC to a process that is
automatically controlled. This also puts doubt on the emphasis in the statistical literature
on MMSE feedback control. For a delay period equal to one (this is the number of periods
that goes by before a control action influences the output), we show in Section 4 how to
compute with arbitrary precision the average run length (ARL) and standard deviation of
the run length (SRL) of a Shewhart chart on the residuals of an ARMA mode! under a shift
of the mean of the disturbance. This extends the results of Longnecker and Ryan (1992)
and Wardell et al. {1994). We also derive integral equations for the ARL of a corresponding
CUSUM chart. A small simulation study compares the performance of Shewhart charts with
CUSUM charts. Finally, three appendices contain derivations of our formulas.

This paper is partly based on Van Zante (1993). In particular, Sections 2 and 3 are direct
extensions of Van Zante (1993).

2 Feedback Control

In this section we discuss feedback control. We start with an example that one of us en-
countered during work for a major producer of optical discs. One of the process steps in
the production of optical discs is to put a thin layer of tellurium on a glass plate. This is
accomplished by placing batches of 22 plates into a ‘sputter room’, in which ‘target material’
(tellurium) is placed. The room is filled with Argon, which is ionised by an electrical charge.
The ions possess sufficient energy to extract atoms from the target. Due to inhomogeneity of
the target, there are fluctuations in the number of atoms that precipitate on the glass plates.

Let Y; be the thickness of the tellurium layer if the target material were homogeneous.
However, due to the inhomogeneity of the target material, the actual thickness U; of the
tellurium layer equals Y; + Z;, where Z,; is a disturbance. The thickness of the tellurium layer
is crucial for the quality of the optical disc. In order to control this quality, the thickness
of the tellurium layer of one plate is used to adjust the power X; of the electrical charge.
Practical experience shows that the disturbance Z; can be modelled by an AR(1) process.
Thus the following equations form an adequate model for the sputter process:
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Figure 1: Schematic view of the sputter process

i = p+9Xis (1)
U = p+gXi v+ 2 (2)
Zy = pZy ) +ay,

where p and g are constants, b is the delay period and a; ~ NID(0,02). A schematic view of
the sputter process is given in Figure 1.

The control action X; is carried out by an MMSE controller. The following simulation
(see Figure 2) indicates that this controller is not able to cope with a small shift in the
mean of disturbance Z;. We took the following (typical) values for the model parameters:
b=1, Xo =182, Zy = 1.5, ¢ = —0.25, g = 16.6, 4 = 30.2, and o, = 0.17 (and hence,
oz = 0q/+/1 — p?* =0.1756). We imposed a mean shift of size 0.1756 in Z; after 150 periods.
Note that the vertical axis of Figure 2 does not start at zero.
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Figure 2: Simulation of sputter process

We now proceed with a general analysis of the model given by (1) and (2). Note that if
b =1, then model (1) is model (14) of Box and Kramer (1992). This model is also studied in
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a series of papers by Vander Wiel and collaborators, starting with Vander Wiel et al. (1992).
We may and will assume without loss of generality, that p equals 0. Instead of using the
AR(1) process Z; = ¢ Z;_1 + a; of the example, we assume that Z; can be represented by an
ARMA (p,q)-model {Box and Jenkins (1976)):

&(B) Z; = ©(B) ay, (3)
where a; ~ NID(0, 02). Here
®B)=1—¢1 B — @ B* - ...4pp BP

and
©(B)=1-6B—6,B*—...9,B7

are polynomials in B, the backward shift operator (B* a; := a;_;). We moreover assume that
the roots of both @ and O lie outside the unit circle. Hence, there exist power series I' = ©/®
and E = ¢/O such that

Zy=T(B)a;= (1 -> % Bi) a, (4)

i=]

and
ay = E(B) Z; = (1 - & B*’) Z,. (5)
=1

The control action X; aims to keep the expected output deviation close to zero. As controller
we take a linear causal filter on the error terms a;, i.e. we set the control action at time #
equal to:

00 oo )
Xt = Z Cj Qg Z Cy B 4T (6)
3=0

j=0

Note that because of the linear relations between a4, Uy, and Z;, a linear filter on any of these
is also a linear on the others. Combining (6} with (2) and (4), we obtain that for & > 1, the
output U; equals

b—1 o0
Ut =11- Yi BJ + Z (ng—b - 7]) B! at, (7)
while for b = 1,we have
o0
U =a; + Z (gcj—1 —v5) ar_y. (8)
Jj=1

Since the MMSE b-steps ahead linear forecast Z,,(t) at time ¢ is given by (see Box and
Jenkins (1976))

o0
Zers(t) = =D Yotj 0o (9}
§=0



it follows that MMSE-controllers are included in this setup by choosing ¢; = Yp4;/¢ in (6).
Thus MMSE controllers are special in the sense that in this case control and monitoring are
largely related matters, because they are based on (forecasts of) disturbances. For MMSE
controllers, (7) reduces for b> 1 to

b—1
Uy =ay— Z Vi Qt—j» (10)
=1

which is the b-steps ahead forecast error of the disturbance Z;. Furthermore, if MMSE control
is applied with b = 1, then U; = a;, which implies that the output is uncorrelated.

Because the disturbance Z; (and hence a;) cannot be measured directly, we rewrite (6) in
terms of current and previous output deviations Uy, by substituting (7) into (6):

oo

. R
E c; B
=0

Xi=——=3 — U, (11)
1-3 4B+ (gejs—v) B
=1 j=b
while for b = 1 we have

m -
DB’
e

Xy = —7 U:. (12)

1+ (gej-1— 7)) B
j=1

Since the U; are correlated for b > 1 and for & = 1 if the controller is not an MMSE controller
(cf. (7)), we cannot apply standard control charts to U;. However, it follows from (2) and
(9) that ey, (1), the one-step ahead forecast error of U; based on minimum MMSE forecasts,
satisfy

ev (1) = Z; — Zy(t = 1) = ay, (13)

where Z,(t — 1) is the forecast of Z; at time ¢t — 1. Hence, the forecasts ey, (1) are uncorrelated.
In the following section we use these formulas to compute the influence of a shift in the
mean of the disturbance.

3 The influence of a shift in the disturbance

In this section we study the effect of a change in the disturbance Z; on the output Uy and the
control action X, in order to show the importance of monitoring an automatically controlled
process. The simplest change is a persistent shift of the mean. When a shift occurs in the
mean level of the disturbance, then feedback control reacts to the increased (or decreased)
output deviation. Because of the compensating influence of the control action on the produced
output, the shift in the disturbance will not become visible as one single shift in the mean
level of the output deviation. Formulas (14) and (16) show the influence of the shift on



the produced output U; and on the control action X;, respectively. The special case of
ARMA(1,1)-disturbances Z; and MMSE controllers X; can be found in Vander Wiel et al.
(1992). We assume in the sequel that all parameters in (2) and (3) are known and do not
change in time. We will show that even in this ideal situation, serious problems occur.

We assume that there is no shift of the mean level of the disturbance until time ¢, i.e.,
Zy = 64+ T(B}ay, with §; = 0 for t < c and §; = § for ¢t > ¢. Note that the a; are still assumed
to be NID(0,02). Hence, the theoretical controller (6) and the practical controller (11) are
not equivalent when 4, # 0.

In order to compute the influence of a shift, we first derive the influence of a general
change Z; = 6 + I'(B) a; with no restrictions on &,. We use U,_; = B®U, and substitute the
above formulas and (11) into (2). This yields for b > 1:

b—1 o0
Uy = (1_Z7iBJ+Z (QCj—b—Tj)BJ) (E(B) o + @), (14)
=1 j=b
while for 5 = 1 we have
w I3
U= 1+ (gci1—m) B | (E(B)& +a). (15)
j=1

Similarly, by substituting (14) into (11) or (15) into (12), we find the effect of the shift on
the control action X; for & > 1:

X = (Z: Cj Bj) (E(B)d; + a) . (16)
3=0

Note that (16) reduces to (6) if §; = 0.
The following special cases of (14) are of interest. If §; = 0 (no shift), then (14) reduces
to (7). If X; is an MMSE controller, then (14) reduces to

b-1
U, = (1 -7 BJ‘) (E(B) b + 1) (17)
j=1

and (15) reduces to

U

E(B) 6,: + ay. (18)

We now return to our goal of computing a persistent change of size d starting at time c, i.e.
d¢ =0 I[t > ], where
lift>e¢

IBzd:{

0 otherwise
Then (18) becomes:
U =E(B}YoIft > c] + a, (19)

where B¥ I[t > c] = I[t — k > ¢]. This has the following important consequence. Although we
applied a shift to the mean of Z;, the feedback controller causes the output to be the same as



the output of an uncontrolled ARMA process with a shift in the mean of the driving noise a.
In other words, the output U; is the same as the output of an uncontrolled ARMA-process
with a shift of the mean of residuals a;.

In order to show the vulnerability of MMSE feedback control, let us first consider the
special case of white noise disturbance (£(B) = 1). In this case there is no control (X; = 0),
and thus there is no compensation for the shift (U; = d I[t > ¢] + a;). If Z; = I'(B} ay, then it
follows from (17) that the change in the output deviation due to the shift in the disturbance
equals:

o

-1 o0
2(B) |1 GBI | 61t >cl= |14+ E(B) Y w4 B | 511t > o]
j=1 j=0

The right-hand side shows that the mean level of the output equals § during the first b periods
after ¢, whereas the left-hand side shows that the mean level of the output converges to

1-&t-&L—)1-mn——mm)d

Since Z(B) has only roots outside the unit circle, this asymptotic level is unequal to zero unless
41 + -+ 4+ -1 = 1. Hence, MMSE feedback control is not able to remove the influence of
the shift completely, which results in an increased output deviation of the target value. This
is another proof of the vulnerability of MMSE controllers, which is well-known to control
engineers but seems to be not generally known to statisticians. Note however, that if the
disturbance would follow an ARIMA process (= has a root at 1), then MMSE feedback
control is able of removing the disturbance. It is useful to note that the performance of the
controller depends on the type of disturbance.

The following section discusses the application of control charts for the system described in

(1)-(3)-

4 Control charts for U,.

In this section we discuss control charts for the system (1)-(3) with MMSE control. Note that
monitoring U;, X;, and Z; have different aims. Apart from the gain constant g, the portion
of the disturbance compensated for by the MMSE controller is moved from U; to X;. Thus,
monitoring U; is looking for evidence of unsuccessful compensation, while monitoring X; is
looking for evidence of successful compensation. However, in practice, one cannot always
measure the control action X;. Ideally, one would like to monitor the disturbance Z,, since
this picks up the shift, whether successfully compensated for or not. The disturbance Z;
can only be retrieved by using (2). Therefore, we restrict ourselves to control charts for U;.
Depending on the size of the delay period, two different situations for U; exist. It follows
from (7} that for MMSE controllers, the output measurements are uncorrelated if and only if
b = 1. Therefore, we have to distinguish between the cases b=1 and b > 1.

4.1 Control charts for U, if b= 1

To apply SPC to the system described by (1)-(3) with b = 1 and MMSE feedback control,
Box and Kramer (1992} suggest Shewhart control charts for the observed output U;, the
disturbance Z;, and the control action X;. MacGregor and Harris (1990) advise to plot the
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difference X; — X;..; or the disturbance Z,. Vander Wiel et al. (1992) applied a CUSUM
control chart to the output U;. In the following two subsections we study a Shewhart and
a CUSUM control chart for the output U, if & = 1. Both control charts have proven to be
useful in traditional SPC {uncorrelated data). Shewhart control charts are easy to implement
and perform well in detecting large shifts, while CUSUM control charts outperform Shewhart
control charts in detecting small shifts. We investigate the performance of these charts for
the detection of a one standard deviation shift in the mean of the disturbance process. Note
that if b = 1, then it follows from (8) that U; = a;. Hence, control charts for the output U;
coincide with control charts for residuals of ARMA(p,q)-processes. These charts have been
studied by several authors in order to monitor correlated data (Alwan and Roberts (1988),
Harris and Ross (1991), Montgomery and Mastrangelo (1991), Longnecker and Ryan (1992),
Wardell et al. (1994), Runger et al. (1995}, and Faltin et al. {1997)). Note that although
we applied a shift of the mean of Z;, the feedback controller causes the output to be the
same as the output of an uncontrolled ARMA process with a shift in the mean of the driving
noise a;. We will use the average run length (ARL) and the standard deviation of the run
length (SRL) to judge the performance of a control chart. The ARLgy,, which is the average
number of observations (periods) between the shift and its detection, has to be as small as
possible. On the other hand, the ARL;,, which is the average number of periods between
two false alarms, has to be reasonably large. In order to get an idea of the spread of the run
length distribution, we also study its standard deviation. E.g., a 3-¢ Shewhart control chart
for uncorrelated observations from a normal distribution, has an ARL;; of 370 and an SRL;,
of 370. In case of a one sigma shift in the mean level, the ARLgy; equals 43.9 and the SRLgy;
equals 43.4. Subsections 4.1.1 and 4.1.2 discuss the Shewhart and the CUSUM control charts
for the output U, respectively.

4.1.1 A Shewhart Control Chart for U; if b= 1

In this subsection we study the performance of Shewhart control charts. The central line of
this chart represents the centre of the distribution of the quality characteristic that we want to
monitor. The control limits are usually placed three sigma above and below the central line.
Thus for MMSE control with b = 1, a Shewhart control chart for U; = @¢; has the following
form:

Upper control limit : EU, +3+/VarU; =30,
Central line : EU, =0
Lower control limit : EU;, — 3+/VarU;, = -30,.

Although we only use these limits in the sequel, it is easy to adapt our formulas to other
limits.

Alwan and Roberts (1988) suggested the idea of monitoring residuals of correlated data
instead of the original data. Longnecker and Ryan (1992) gave a formula for the ARLgy; of a
Shewhart control chart for the residuals of an AR(p)-process. For the same case, Wardell et
al. (1994) gave formulas for both the ARL,,; and the SRLyy;. Moreover, an exact formula
for the corresponding probability generating function is contained in formula (D.4) of Wardell
et al. (1994), by taking g(x} = 2*. For the general ARMA (p,q)-case, Wardell et al. (1994}
only gave approximate results for the ARLg,; and SRL,,; without indication of the accuracy,



while Longnecker and Ryan (1992) gave upper and lower bounds for the ARLgy; with a non-
computable estimate of the error. We improve on these papers by giving a closed formula
for the probability generating function of out-of-control run length, from which we derive
computable exact upper and lower bounds for ARL and SRL that can be made arbitrarily
close. The approximations of Wardell et al. (1994) turn out to coincide in special cases with
our lower or upper bounds {depending on the signs of the coefficients of Z).

As mentioned before, U; = a4 (see (10)) and the ARL;, and SRL;, are both approximately
equal to 370. By (19), a shift of size § in the mean level of Z;, will not result in just one
change in the mean level of the output Uy, but in a sequence of level changes. Let F be the
curnulative distribution function of the standard normal distribution and let and I" and = be
as in (4) and (5). Assume that a shift of size § occurs in the disturbance at time ¢. Define
Pr+1 (k > 0) to be the probability that the output U; measured at the end of period ¢ + k,
falls outside the control limits. Since pxy1 = P(|Uctk| > 30}, it follows from (19) that (cf.
(8) of Wardell et al. (1994)):

pm=1—F(3—(1—£1—---—§k)%)+F(—3—(1—£1—---—¢k)aia). (20)

Closed formulas for the £ can be obtained easily (by hand or using a computer algebra system
like Mathematica) using partial fractions and power series expansions, the approach taken
by Wardell et al. {1994) being unnecessarily complicated. Using Lemma Al of Appendix A,
P(RLOut 2 1) 1! a.nd
j=1
P(RLow > ) = [] (1 -p)
i=1

for 1 = 2,..., we obtain:

oo F-1

Prr () =2+ Y T -p)#, (21)
out z

71=2 i=1

where PRLout (z) is the probability generating function of the out-of-control run length. Part
b) of Lemma Al of Appendix A yields that

o« 7

ARLow =1+ > [J(1 —p) (22)
3=1 i=1
and
o0 J
VRLow = 1+ »_ (25 +1) [ ] (1 - ps) - (ARLow)? (23)
j=1 i=1

Elementary calculus yields that F(3 —z) — F(—3 —z) <2F(3) — 1 for all z, hence 1 —p; <
2F(3) — 1 < 1 for all k. It thus follows from the Ratio Test that the right-hand sides of (22)
and (23) are convergent, i.e. both the ARLg,, and the SRL,,; are finite.

The above formulas are exact, but in general not useful in this form, since there is no
directly computable formula for p.. These formulas are useful, however, for the important



special case of AR(p)-processes. For these processes, Z(B) is a polynomial in B of degree p,
and thus py = pp41 for k > p+ 1. Hence, in this case (22) and (23) reduce to

ARLow(AR(p)) =1+ zpj ﬁ(l —pi) + Hf:i(l —Pz‘)’
p+1

=1 i=1

and

P i p+l
VRLow(AR()) = 1+ (25 +1) [ (1-p) + (2 R s 1“”’“) T (1-pi) - (ARLaw)?,

2
=1 i=1 Pp+1 =il

which were obtained earlier by Longnecker and Ryan (1992) (only ARL) and Wardell et al.
(1994) (see Lemma B3 in Appendix B for another derivation). Figures 3 and 4 gives contour
plots of out-of-control ARL’s and SRL’s for AR(2) processes with § = ¢, and the standard
3o control limits. Contour plots of out-of-control ARL’s for other control limits can be found
in Longnecker and Ryan (1992).
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-1.5 -1 =05 © 0.5 1 1.5 2

Figure 3: ARLgy; of AR(2) with MMSE feedback and one sigma. shift (§ = o)

For general ARMA (p,q)-processes, Wardell et al. (1994) resorted to approximations with-
out investigating accuracy. Their approximations are based on setting p; constant from a
certain cutoff value (cf. the AR(p) case). Longnecker and Ryan (1992) give upper and lower
bounds for the ARLgy for general ARMA (p, g)-processes, expressed in terms of the difference
between the probabilities px + 1 from (20) and their limit. We improve on the bounds given
by Longnecker and Ryan {(1992) by using certain monotonicity properties of the probabilities
Pk, thus avoiding the numerical problems of bounding the difference between the probabilities
Px + 1 and their limit. Note that both our results and those from Longnecker and Ryan are
hard bounds, not approximations. Moreover, we extend their results by giving bounds for
the SRLoys. Our bounds are based on first computing p1,... ,pn, and then replacing the
remaining pi’s by upper and lower bounds. Fix n and let pjo and pyp be such that

Plow < Pk < Pup-
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Figure 4: SRLoy¢ of AR(2) with MMSE feedback and one sigma, shift (§ = o)

for k£ > n. In this way we obtain the following hard bounds for ARLgy and VRLgy:

et n n—1 j
1+21‘[(1—p,-)+&=1£_1’=)<ARLm<1+2f[1_p)+ Llop) g

=175 up j=1 i=1 low
and

LB(VRL,,,) € VRLyy < UB(VRL,,,) (25)

out

where

n-1 i
LB(VRLout)=1+Z(2j+1)H(I—pi)+(2+(27;2 1)pup)H(1 p;)—(UB(ARL,,,))?,

j=1 i=1 up i=1

and

24+ (2n— w
UB(VRLout)—1+Z 2;+1)H(1 ) ( 2 D pro )H(l —pi)— (LB(ARL,,,))?,
low

i=1

with LB(ARL,,,) and UB(ARL,,,) the lower and upper bound of ARLyy as given in (24)).
We refer to appendix B for proofs of these bounds.

At first sight, these formulas seem hard to use since they require hard bounds on the
probabilities py of (20) for large k. However, we will give two examples that illustrate how to
find such bounds. We refer to Chapter 3 of Box and Jenkins (1976) for the conditions that
the parameters must satisfy for the disturbance to be causal and invertible.

MA(1)-model An MA(1)-model can be described by:

Zi=(1-0B)ay o2 =(1+6%) a2
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Thus & = —6%. Since 8 < 1, we have

1— |9|k+1

1+ |9|k+1
1-0 '

<14+6+..-+6<
S1+0+--+0 < ——

Note that these bounds for 1 + 8 + --- 4+ #* are positive and monotone in k. Since F is
increasing, it is thus possible to write down explicit bounds for p;. for & > n.

ARMA(1,1)-model An ARMA(1,1)-model can be described by:

1-+6%—20p0
(1-¢B)Z=(1-0B)a; o} = T -0l

We proceed in a similar way as for the MA(1)-model. Here £ = (¢ — 6) 85—, which yields
the bounds

L ol A 1 d
1-6

< 1—(p—6) (1+6+---+6"‘1)

1-p+lp—0]19*
1-¢6 ’

<

Note that the lower bound is positive for large k. Again, the bounds are monotone in ¥ and
we can write down explicit bounds for py for £ > n. Obviously, these bounds coincide with
the bounds for the MA(1)-model if ¢ = 0.

Our method of obtaining bounds for the ARL and SRL of a Shewhart chart can in principle
also be applied to other models than ARMA models. The key property that make our method
work, is that one can compute monotone bounds for the probabilities px as in the above
examples.

We checked the values of the ARL’s and SRL’s for various ARMA(1,1) parameters in
Table 3 of Wardell et al. (1994). Although their table is based on approximations, most of
the values do not differ too much from our exact results (where we increased n until our lower
and upper bounds coincided; often n = 30 sufficed). For values of ¢ and @ close to 1 and/or
-1, n had to be increased to values in the range of 100-150.

In the next subsection we study CUSUM control charts. For uncorrelated data, CUSUM
control charts detect small shifts faster than Shewhart control charts (cf. Subsection 4.1.3).

4.1.2 A CUSUM Control Chart for U;if b= 1

In this subsection we study the performance of CUSUM control charts. The tabular form of
the CUSUM control chart uses Sy(¢) and Si.(t), the upper one sided CUSUM and the lower
one sided CUSUM for period ¢, respectively. The CUSUM Sy(¢) and Sy (¢) for a CUSUM
control chart for U; (b= 1) are given by (see. e.g. Van Dobben de Bruin (1962) or Hawkins
and Olwell (1988)):

Su(t) = max(0,U; — K + Su(t — 1))
Su(t) = max(0,—U; — K + Syt — 1))
Su(0) SL(0) =0,

12



where K is the reference value. Lucas (1982) proposed K = §/2 for uncorrelated data. We
follow the recommendation of Runger et al. (1995) and choose K equal to half the final
change in the output level. It follows from (19) that:

5 >0
K=-2-(1—;5,;). (26)

If Su(t) > H or Si(t) > H, we conclude that the mean level of U; has experienced a positive
shift or a negative shift, respectively. One should choose the decision value H in such a
way that both the ARL,,; and the ARLj, have acceptable values. Page (1954) derived
integral equations for the ARL;, and the ARL,y; of a one-sided CUSUM control chart for
uncorrelated data (see also Van Dobben de Bruin (1962)). We extend Page’s results by giving
formulas for the ARLg,: of a one-sided CUSUM control chart for residuals of ARMA(p, g)-
processes. Appendix C shows these formulas. We assume that Sp(c) = Su(c) = 0. Lucas
and Crosier (1982) gave the ARL;, and the ARLy,; of the two-sided, symmetrical CUSUM
control chart under this assumption (see Appendix C). Note that for an in-control situation
U; £ Up for i > 0. Hence, ARLyo(i,s) = ARLy (0, s) for ¢ > 0, where ARLy (4, ) and
ARLp o(¢,5), ¢ = 0,1,..., are the average number of periods that the upper and lower one-
sided CUSUM takes to give a false alarm, given Sy(i — 1) = s and Sy, (¢ — 1) = s, respectively.
Contrary to the formula for the ARLi, of Page (1954) which consists of a single integral
equation, our formula for the ARL,,; consists of an infinite system of integral equations
for general ARMA(p, g)-processes. For AR(p)-processes, however, the number of integral
equations is finite and equals p+ 1 (Lemma C4). In this case, we solve the integral equations
for ARLy s(c + p, s} and ARLy s(c + p, s) numerically by using Gaussian quadrature with 24
Gaussian points (cf. Vance (1986)). This solution was used to successively numerically solve
the integral equations for ARLy s(c+p—1,s), ARLy s(c+p—1,s), ..., ARLgs(c+1,s) and
ARLy s(c + 1, s), which finally gives ARLy 5(c,0) and ARL(, 4(c,0). Note that the Markov
approach of Brook and Evans (1972) as extended by Runger et al. (1995) to the AR(p)-case,
essentially consists in replacing the integrands in Lemma C3 by piecewise constant functions.

If we assume that Ugy; 2 Uctn for i > n for general ARMA(p, g)-processes, then we can use
the above approach also, to find an approximation for the ARLyy of a one-sided CUSUM
control chart. A choice for n may be a value of n such that the corresponding bounds for
Shewhart charts in Subsection 4.1.1 are close. Note, however, that solving the system of
integral equations for large values of n may lead to numerical instability.

4.1.3 Simulations

We now investigate the behaviour of (two-sided) CUSUM charts through a small simulation
study. We use the choice of K as put forward in (26). For all CUSUM charts, we choose H
such that ARL;, equals approximately 370. Since run length distributions of control charts
are usually skewed, we look at both the ARL and SRL to judge the performance of a control
chart. Extensive computations for AR(1) processes can be found in Runger et al. {1995).
We see that the choice of H changes considerably for different choices of the ARMA(1,1)
parameters ¢ and 8.

For uncorrelated data, CUSUM charts perform better than Shewhart charts for small (1
standard deviation or less) shifts of the mean. The simulation presented in table 2 shows that
this situation also holds for correlated data.

13



@ g|é K H | ARL;, | SRLip

025 | 0.25 |1 | 0.50 | 4.81 376 365

025 | 0252 1.00]2.48 356 360

-0.25 | 0.25 |1 (0.83]3.05 383 377

-0.25 | 0.25(2(1.67]1.40 396 414

075 | 025 (1017 |9.90 346 330

0757 025 (2]0.33]|640 328 325

025§ 0.75 (1 |1.50 | 1.62 384 363

025 0.75 (2] 3.00 | 0.1 359 365

-0.75 | 0251 (1.17]2.15 373 277

-0.75 | 0.25 |2 | 2.33 | 0.67 351 354

025 |-0.75 {1]0.21]9.10 398 376

0.25 | -0.75 | 2 | 0.43 | 5.40 381 387

Table 1: CUSUM chart for ARMA(1,1) processes

7 gls CUSUM Shewhart

K H AR-Lout SRLout ARLout SRLout
025] 0251|1050} 4.81 11.1 5.2 43.9 43.4
025 0.25 | 2| 1.00 | 2.48 4.2 1.6 6.3 5.8
-0.25 | 0.25 {1 |0.83 | 3.05 5.6 2.2 8.8 7.2
025 [ 025 | 2| 1.67 | 1.40 2.7 0.8 2.1 0.9
075 025 |1 0.17 | 9.90 50.1 31.9 184 191
075 0.25 {2 |0.33 | 6.40 18.4 10.0 44.7 61.3
025] 075 |1 |1.50 | 1.62 4.6 1.5 4.7 2.0
025 | 0.75 |2 3.00 | 0.01 2.6 0.7 2.1 0.8
-0.75| 025 |1(1.17 | 2.15 3.9 1.3 2.1 0.7
-0.75 | 025 | 2| 233 | 0.67 2.2 04 1.3 04
0.25 1 -0.75 11021910 38.0 21.9 107 114
0.25-0.75 2| 043 | 540 13.9 6.7 13.0 21.2

Table 2: Comparison of Shewhart and CUSUM charts for ARMA(1,1) processes

4.2 Control charts for U; (b 1)

If b > 1, then the output U} is correlated. This correlation offers us the opportunity to predict
future observations and to chart the uncorrelated one-step ahead forecast errors of U;.
We know from (13) that the one-step ahead forecast error of U based on minimum MMSE

forecasts are uncorrelated.

We assume that a shift of size § occurs in the mean level of the disturbance at time ¢,
i.e., Zy = §I[t 2 ¢] + ['(B) a;. Substitution of this formula and (3) into (13) yields the effect

of the shift on ey, (1):

Note that the above formula is identical to (19). This implies that the results of Subsec-
tion 4.1 are also valid for Shewhart and CUSUM control charts on the one-step ahead forecast

error of U; in case b > 1.

ey, (1) =E(B)SI[t > ] + a;.
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5 Conclusions

We have shown that MMSE feedback control is not capable of completely removing the effect
of a relatively shift in the mean of the disturbance. In our example in Section 2, a Shewhart
control chart would have detected the shift after 27 periods (see Figure 5) when we set up
the standard 3¢ control limits using the true value of o, (the ARL and SRL are 24.2, 23.2
respectively). A two-sided CUSUM control chart with K = §(1 — ¢}/2 = 0.1098 (cf. our
discussion of (26)) and H = 0.67 has an ARL;, of approximately 370. This CUSUM chart
would have detected the shift in our simulated data after only 5 periods (see Figure 6), when
using the true value of o, (the ARLy,; and SRL,,; are 8.3 and 3.7, respectively). Of course,
in practice the parameters need to be estimated, which affects these run lengths.

thickness

31.0
30.8
30.6
304
30.2 [y
30.0
29.8

29.6 LCL
50 100 150

time

Figure 5: Shewhart chart for simulation data

upper CUSUM
0.8
H
0.6
shift
0.4 \
0.2

25 50 75 100 125 150 175

Figure 6: CUSUM chart for simulation data

We have also shown how to compute with arbitrary precision the ARL and SRL of She-
whart charts for residuals of ARMA processes. In principle, our technique may also be applied
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to Shewhart charts for residuals of other processes. For corresponding CUSUM charts, we
derived integral equations.

Appendices

A Generating functions

In this appendix we present a general Jemma, which is useful for calculating the probability
generating function of the run length (RL) of Shewhart control charts for residuals of cor-
related data. Since RL is expressed most conveniently in terms of P(RL > j), we use the
following modified form of the probability generating function.

Lemma A.1 Let X be a discrete random variable taking values on 1,2,... and define
P(z):=) P(X >34
j=1

Then we have:

a) P(z)=1+z;1 %,

where P(z) is the probability generating function of X.

P(z) and P(z) = z

n—1
n! =
b) EXmy = PU(1) = = 3 7 H(-1)* *PW(),
k=0
where EX(yy = EX(X - 1)(X = 2)--- (X —n+1) end P denotes the ntt derivative
of P.
In particular, EX = P'(1) = P(1) and Var(X) = 2P'(1) — P(1) — (P(1))2.
Proof.
a) We have

j=1 k=j
oo k
= Y ) P(X =k)f
k=1 j=1
o0 oK1,
= L PX=h=
_ 2 (s P(X = k) zk—l)
5 (S peemn (1)
= zil(P(z)—l).

Rewriting the above formula yields a).
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b) The first equality is a basic property of probability generating functions. The second
equality follows by applying Leibniz’s formula for derivatives of products:

(f-g)™ = Zn: (2) FHRgtn=k)
k=0

to a) and evaluating at z = 1. DO

B Shewhart charts

In this appendix we derive upper and lower bounds for the ARLyy; and the VRLgy; of She-
whart control charts for residuals of correlated data studied in Section 4.1.1, to which we
refer for unexplained notation. These bounds are based on first computing py,... ,p,, and
then replacing the remaining py’s by upper and lower estimates. Fix n and let pjow and pyp
be such that piow < px < pyp for k > n.

Lemma B.1

J n-1 j
1+ZH(1—p)+H'_( )<ARL,M< 1+ JIa-p)+ Hin A =pi)
j=1 i=1 Pup j=1 i=1 plow
Proof.
Using piow < px and (22), we obtain the following upper bound for ARLgy,:
[ o] 7 n 7 o0 J
ARLow = 1+ Jla-p)=1+> JTa-p+ > [ICt-»)
j=1 =1 i=1 i=1 j=n+l i=1
nJ
< 1+3 JJa —pg)+1'[(1 2 2 1'[ (1~ Piow)
3=1 i=1 j=n+1 i=n+l
n ] [='] .
= 1+ H(l_pt +H(1_p1 (1 - prow)’
=1 i=1 =1 j=1
2, 2 1 —p
= 1+> J[-m) +H(l—p, ) 2 —flow
j=1 i=1 Dlow
n—-1 j§
1
= 1+ 3 [0 -py+ L lop)
= Plow
The lower bound for ARL,,; can be found in a similar way. O
Remarks

a) Note that we may always obtain a lower bound, by choosing the trivial upper estimate
Pup = 1.
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b) The following argument shows that the upper and lower bounds converge to the true
ARLgy if n tends to co. Since lim;_, oo p; > 0, it follows that the product [T, (1 — p;)
converges to 0 as » tends to co. Thus the upper bound is bounded from above. Moreover,
the difference between the upper and lower bound converges to 0 as n tends to oc.
Putting everything together, we may conclude that both bounds converge to the true
ARLoyt.

Lemma B.2 LB(VRL,,) < VRLyy < UB(VRL,,,), where

n—1 n
LB(VRL,) =1+ 2j+1)]:[(1 Pi) (2+( 5 l)p“”) [T -p)—(UB(ARL,,))*,
j=1 i=1 Pup i=1

UB(VRL,,) = 1+Z (25+1) H(l— ,)+(2+(2;2_ Up"””) ﬁ(l—pf) (LB(ARL,,))?,

i=1 low i=1

and LB(ARL_,) and UB(ARL ) the lower and upper bound of the ARLyy;, respectively (as
given in lemma B.1).

Proof.
We only show how to obtain an upper bound. A lower bound can be found in a similar way.
Using piow < px for k& > n, it follows that:

0o J J 00 J
> il[a-p) = Za]‘[(l—th}gH 1—p;)
j=1 =1 i= =1 j=n =1
-1 ¥ [=.¢] j
= ZJH 1-p)+ > JH(I—Pz)+nH(1—p,
j= i=1 j=n+1 i=1
n=-1 3 o0 i n
< i[Ja-p)+ ( b | l_plow)+n) [Ta-r)
i=1 J=n+l i=n+l i=1

2 .
[
—

]
EIH-

(1-pi)+

LY
Il
-
-
Il
Ld

i=1 i=1 i=1

( _plow)z J 1_]'3‘1c>w)J 1+nz (1- Plow)J+n) H(I_Pz

T

3
|
—

Il
;:—jh

1 = n
1 pg ( 2plow +n Dlow + n) H (1 _pz)
plow Plow im=1

[
—

Eu

B
.
Il
==

(1-p)+ (%—lﬂ%) ﬁ(l — pi)-

low i=1

s
Il
=
o,
Il
=

Substituting this result into (23) and using Lemma B.1, we obtain UB(VRL,,,) after some
simplification. O
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Remark In a similar way as for the bounds of the ARL,,¢, we may show that the bounds
of the variance converge to the true variance.

Lemma B.3 For an AR(p)-process, we have:

P2 P+l
ARLoulARG) =1+ 3 [ (1 = po) + L= 2 )
Jj=1 i=1 Pp+1

and

- . 2+ (2p+ Vppr \ 77 .
VRLou(AR) =1+3 (25+1) [0 -p)+ [T (4 -p0) - (ARLou)®

=1 i=1 P aly
Proof.
Recall that for AR(p)-processes py = pp41 for k£ > p. Now apply Lemmas B.1 and B.2 with
n =P, Plow = Pup = Pp+1, and simplify the formula for the VRL. 1

C CUSUM charts

In this appendix we derive formulas for the ARL of CUSUM control charts for residuals of
ARMA (p, g)-processes. This extends the results of Runger et al. (1995) who calculated the
ARL for the AR(p)-case using a Markov chain approach. Our approach uses integral equations
in the spirit of Page (1954). The Markov chain approach used in Runger et al. (1995) is a
special choice of discretization of these integral equations. With the results of Yashchin {1985)
it is in principle possible to extend our approach to calculate the SRL as well. We refrained
from deriving formulas for the SRL, since these formulas are very complicated and hence,
possibly numerically unstable.

We assume that a shift of size § occurs at time ¢. Define Pys(c +¢,3,n),i = 0,1,..., to
be the probability that it takes n periods after time c + ¢ before the shift is detected, given
Sa(c+1) =s.

For an MMSE controller with b = 1 it follows from (19) that
N(6,62) and Ugp; ~ N((1 =& — -+ —€cys)d,02) fori > 1.

We denote the normal density and cumulative distribution function of U.y; by fy,,, and
Fy,.;, respectively.

Lemma C.1 Fori=0,1,..., we have:
Pys(c+4,8,1)=1—-Fy_ ... (H+ K —5s)
and
Pgslc+i,8,n) = Pygle+i+1,0,n—-1)Fy_,, (K —s)+

H
f Puglc+i+1,9,m—1)fu,,+ K — s)dy.
0
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Proof.
For n =1 we have

Prslc+1i,8,1) = Prob(Sug(c+i+1)> H|Su(c+1)=3)=Prob(Ueyiy1 > H+ K — s5)
= 1 Py, (H+ K —5).

For n > 1, we condition on Sy(c+ i+ 1). We have to distinguish between Sy(c+i+1) =0
and 0 < Sy{c+i+1) < H. This yields:

PH,&(C‘l‘i:an) = PH,J(C+2.+laoin_l)FUc{—iﬂ(K—S)+

H
]0 Prs(e+i+Lyn— Dy, v+ K — ) dy,

as required. (M|

In order to obtain moments of the run length, we now derive integral equations for the
following generating function:

o0
Mpslc+1i,s,z) = Z Py s(c+14,s,n)e"",i=0,1,...

n=1

The n'® moment of the run length given Sg(c + 1) = s, equals the n® derivative of the
moment generating function My s(c+ 14, 5, x} with respect to z evaluated at z = 0. Note that
knowledge of the first two moments yields the variance.

Lemma C.2 Fori=0,1,..., we have:
e_xMH’J(C +i,8z) = 1-— FUC+.~+1(H +K—3s)+ MH,J(C +i 4 110,$)FUC+,~+1(K — )

H
+ fo My (e +i+1,4,2) fu,p, (v + K — 5)dy.

Proof.
Substitute lemma C.1 into the definition of My s(c + 1, s, z). O

Define ARLy s(c +i,5) and Mom2y s(c + ¢,s) to be the average run length and the second
moment of the upper one sided CUSUM chart, respectively, given Sy{c+1) = s.

Lemma C.3 Fori=0,1,..., we have:
ARLys(c+i,5) = 14+ ARLys(c+i+1,00Fy,,,,, (K —3)
+ fOH ARLgslc+i+ 1L, ) fu. i (y+ K —s)dy
and
Mom2ys(c+1i,5) = —=1+2ARLys(c+1i,8)+ Mom2gs(c+i+1,0)Fy,,, (K —s)+

H
]0 Mom2y 5(c+ i+ 1,y) fu,p0n (v + K — ) dy.
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Proof.
Differentiate the results of lemma C.2 with respect to = and set z = 0. 0

Lemma C.4 For an AR(p)-process and an MMSE controller, we have:
ARLH,‘s(C + 1:,.9) = 1+ ARLH,g(C g4 1, 0)1'-'{;‘:4_1.4_1 (K —s)+
H
/ ARLygslc+i+ 1,9 fu iy + K —s)dy
0

with Ugi ~ N((1 — 1 — -+ — ;)8,02) fori=0,1,... ,p—1, and

H
ARLg s(c+1,5) =1+ ARLy s(c+p, 0)FUc+p(K——s)+/ ARLgs(c+p,y) fu.,,(y+K —s)dy
0

with Uggp ~ N((1 — 1 — -+ — 0p)6,02) fori > p.

Prgof.

Recall that for ARL(p)-processes & = ¢; fori=1,--- ,p, & =0 for ¢ > p and Upyy 4 Uetp
for i > p. Hence, ARLy s(c +i,8) = ARLg s(c + p, s) for i > p. Substituting this result into
lemma C.3 we obtain our result. O
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