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OPTIMAL CONTROL OF BATCH SERVICE QUEUES WITH
FINITE SERVICE CAPACITY AND LINEAR HOLDING COSTS

SAMULI AALTO

ABSTRACT. We consider the optimal control problem of certain batch service queue-
ing systems with compound Poisson arrivals and linear holding costs. The control
problem involves the determination of the epochs at which the service is initiated as
well as the sizes of the batches served. The service times are assumed to be inde-
pendent and identically distributed, however, with a general distribution. A quite
natural operating policy is to start the service as soon as the number of customers
reaches some threshold and serve always as many customers as possible. Assuming
infinite service capacity Deb [3] proved that under some mild conditions the optimal
operating policy is of this type. In this paper we show that a similar result is valid
even if the service capacity is finite. In this case the threshold is never greater than
@, the service capacity (the maximum number of customers that can be served at
the same time).

1. INTRODUCTION

In this paper we consider the optimal control problem of M*/G(Q)/1 batch service
queueing systerns with a single server, compound Poisson arrivals and general i.i.d.
service times. The service capacity (i.e. the maximum number of customers that
can be served together in a batch) is denoted by . The control problem involves the
determination of the epochs T, at which the service is initiated as well as the sizes B,, of
the batches served. Costs are usually charged both for serving the customers (service
costs) and for holding them in the system (holding costs). An optimal operating
policy minimizes, for example, the discounted costs among all the admissible operating
policies.

In a seminal paper by Deb and Serfozo [2] sufficient conditions were found for the
following two types of operating policies to be optimal:

(i) Operating policy me: No customers are served.
(ii) Operating policy m;: After a service completion, as many customers as possible
are served as soon as the queue length reaches a certain fixed level z.

The latter one is called a queue length threshold policy. As regards the holding costs,
Deb and Serfozo assumed that they depend just on the number of customers in the
system (but not, for example, on the times the customers have been waiting). Accord-
ing to [5], such holding costs are called linear. Deb and Serfozo further assumed that
customers arrive according to a Poisson process.

In a later paper [3] Deb proved that similar optimality results are valid even when
the customers arrive according to a compound Poisson process (still assuming linear
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holding costs). However, he only considered the case of infinite service capacity, @ =
0.
In [1] we considered the case with compound Poisson arrivals and finite service
capacity, Q@ < co. We let the holding costs be even non-linear but omitted totally the
service costs. We also needed an additional (technical) assumption that the size of an
arriving batch is bounded by some constant M < oco. In the case of linear holding
costs our results in [1] imply the following two facts:

(i) The operating policy 7o, that leaves all the customers unserved is never optimal.
(ii) An optimal operating policy belongs to the class of queue length threshold policies
7z with threshold z < .

It is clear that the former result is due to our assumption to omit the service costs.

In this paper we partly generalize the results of [3] and [1}. So we assume compound
Poisson arrivals. We restrict ourself to the case of linear holding costs, but (as a
generalization to [3]) let the service capacity be finite. In addition to holding costs, we
also consider the costs due to serving customers {as a generalization to [1]). Under the
same additional assumption as in [1], we will find sufficient conditions for the following
two cases:

(1) The operating policy 7o that leaves all the customers unserved is optimal (under
Condition C1).

(ii) An optimal operating policy belongs to the class of queue length threshold policies
7, with threshold z < @ (under Conditions C2 and C3).

The rest of the paper is organized as follows. In Section 2 we present the model
and the main results (including conditions C1, C2 and C3). In Section 3 we prove the
claim presented in case (i) above. Case (ii) is proved step-by-step in Sections 4 — 8.
First, in Section 4, we prove that it is optimal to initiate the service infinitely many
times. In Section 5 we introduce the so called Q-policies and show that it is sufficient
to consider such policies when seeking an optimal policy. Some important properties
of these Q-policies are presented in Section 6. In Section 7, we introduce the so called
stationary Q-policies and find an optimal policy among these stationary Q-policies.
Finally, in Section 8, this optimal stationary policy is shown to be optimal also among
all the Q-policies and, thus, among all the admissible policies.

2. THE MODEL AND THE MAIN RESULTS

In this section we first introduce the queueing model. The main results concerning
the optimal control of this queueing system are presented at the end of the section in
Theorem 2.3.

Consider an M*/G(Q)/1 batch service queueing system with @ < co. In this model
the service capacity is finite and customers arrive in batches, the sizes of which are
independent and identically distributed. Let §, denote the size of the nth arriving
batch. As in [1], we make the following assumption.

Assumption 2.1. We assume that there is M < oo such that P{f$ < M} =1.
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The batches 3, arrive according to a Poisson process, the intensity of which is
denoted by A. Let (A(%)):»0 denote the customer arrival process with A(0) = 0. Thus,

A(t) = Zﬁnl{fn)gt}:
n=1

where 7, denotes the arrival time of the nth batch.

Customers are served in batches, the sizes of which are not greater than Q. The
service times S, are assumed to be strictly positive, independent and identically dis-
tributed with a finite mean F[S,;] < co. In particular, they are assumed to be inde-
pendent of the service batches. The following assumption implies that, for example,
the system with the usual operating policy m; (i.e. the queue length threshold policy
with threshold z = 1) is stable.

Assumption 2.2. We assume that AE{3))E[S)] < Q.

The first service starts at time Ty = 0. The size of the first service batch, By,
need not be specified, since, according to our assumptions, the first service time 5 is
independent of By and, as we will assume later, only those customers that are waiting
(but not yet in service) cause some costs. The number of those customers that remain
in the queue of waiting customers at time 0 is denoted by X(0). We assume that
X(0) < M. By this way, the starting time 0 looks like a non-trivial service epoch
(which will be defined in Section 6). The conditional probability measure that takes z
as the initial queue length (X (0) = z) is denoted by P,. The corresponding conditional
expectation operator is denoted by E..

An operating policy m = ((T,),(By)) is defined by giving the service epochs T,
n € {0,1,...}, and the service batches B,, n € {1,2,...}. It is required that Ty = 0
and T, > T,y + S, for n > 1. As regards the service batches, it is required that
B, < @ and 3} ;_, Br < X(0) + A(T%) for all n. When needed, a more complete
notation, m = ((T'”) (B’”)) is used.

If the last service is initiated at time 77} , we denote T} = co and Bj = 0 for all
n > ng. Let my denote such a policy that leaves all the customers unserved (the
non-serving policy). Then T7~ = oo and BT = 0 for all n > 0.

An operating policy is said to be admissible if the decisions are based on the current
and past information only. More precisely, 77 shall be a stopping time with respect to
the history F, generated by the initial queue length X(0), the arrival process A and
the service times S;,...,S5,. In addition, BT shall be measurable with respect to the
corresponding stopped o-algebra F,(T,7). The family of admissible operating policies
is denoted by II.

With each policy = € II, we associate a queue length process (X™(t))i»0. The queue
length at time ¢ is defined by

X™(t) = X(0) + A(t) ZB Lirret)-

Note that X"(t} stands for the number of waiting customers (excluding the customers
in service) at time t and X(0) is the initial queue length common to all policies .

Let z > 0. The queue length threshold policy w, = ((T%),(B,)) with threshold z is
formally defined by setting Ty = 0 and, for n € {1,2,...},
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o T, =inf{t > Th_: + Sa | Xa(t) > z} and

o B, =min{X,(T,),Q}
Here X, denotes the (partial) queue length process that takes into account the services
up to time Ty,

Xa(t) = X(0) + A(t) = Y Bulizncy-

The resulting policy is clearly admissible.

Holding costs (for pohcy ) are assumed to accumnulate continuously at rate h(X7 (1)),
where h(0) = 0 and h(z) is non-decreasing as a function of z. Note that the cost rate
process h(X™(t)) is thus non-decreasing within service intervals [T_,, 7). In addition
to the holding costs, at every service epoch T)7 a service cost of amount of K +¢B] 1s
incurred, where K > 0 and ¢ > 0 are constant.

Let o > 0 be fixed. The discounted cost process (D™ (t))i>o for each w € Il is defined
by

i [s.0)
D*(t) = fo e " h(X™(u)) du + Z e T (K + ¢B)liTr<sy-

n=1

So, D™ (1) takes into account all the costs until time ¢. Since D"(t) is non-decreasing,
the limit

D" _hmD’f(t)—/ e h( X" (u du+ze°' (K + cBT)
1)

t—rco

is well defined. For each m € II, the (expected) dzscounted cost with respect to the
initial queue length z < M is defined as follows:

V*(2) = lim E[D"(t)] = E. [/ e~ h( X (u) du+Ze S(K +cBT)). (2.1)

In addition, denote, for any =z < M,
V*(z) = inf{V™(z) | 7 € IT}. (2.2)
It is possible to show that the part of the discounted cost due to serving customers,

Vi(z) = B> e T3 (K +¢By)),

n=1

is finite for all 7. Namely, by taking into account the facts that, for all m and =,
Tr >S5 +...+5, and B <Q,

the discounted serving cost VZ(z) can be upperbounded by a geometric (and, thus,
finite) sum:

VI(x) <Y E[e™ K + cQ) = Ms < oo.
n=1

As regards the other part of the discounted cost,

Vi(z)=F [f e h(X ™ (u)) dul,
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which is due to holding customers, it can be finite or infinite, depending on our oper-
ating policy m and cost function h(z). However, if A{(z) = hz with some A > 0, then
we have, for all = and =,

Vi(z) < oo,
implying also that, for all 7 and =,
V™(z) < oo and V*(z) < oo.
This can be proved by considering the non-serving policy m,. It is an easy exercise to
calculate the discounted cost for this policy:

hz  hA
Vre(z) = Vi©(z) = ?’” + _ilﬁl <o

Note that this result is even independent of our assumptions 2.1 and 2.2 (as long as
E[$] < o0). On the other hand, since X™(¢) > X™(¢) for any 7 and ¢, holding costs
are greatest for 7.,. Thus, for all = and =,

Vile) < Vg=(2) < co.

Let then
" =1+ max{z € {-1,0,...,Q -1} | *(z) < 2*}, (2.3)
where
2" =a(K + V*(0))
and

—00, z=-1,
((e) = h(z) + A E[(z + L) A Q] —2) +
MEV*((z+ 68— Q)N)]) - V*(0)) —acz, z€{0,1,...,Q—1}.

Here we have used notation: z A @ = min{z, @} and (z — @)* = max{z — Q,0}. We
further note that 2* € {0,1,... ,@}. In the special case of ordinary Poisson arrivals,

we have
- _ —0Q, T = -—1,
““’)‘{h(x)“c_acx, s€{0,L.,0-1),

Now we are ready to present our main results. After presenting Conditions C1, C2
and C3, we first consider the general case, i.e. non-linear cost rate functions A(z), in
Theorem 2.3. Then, in Corollary 2.4, we assume that the holding cost rate function
h(z) is linear.

Condition C1: h(z + 1) — h(z) < alc+ %) for all z > 0.
Condition C2: h{z + 1) — A(z) > afc+ %) for all z > 0.
Condition C3: V*(z) < oo for all 2 < M.

Note that, under Condition C1, A(z) < a(c+ %—)'c for all z. Thus, V7= (z) < co for

all z, implying also that V*(z) < oo for all z. Note further that Conditions C1 and C2
are complementary only when the cost rate function A(z) is linear. These conditions
are slightly different from those presented in [2] and [3]. The difference is due to the
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fact that we excluded the customers in the service when considering the holding costs,
whereas Deb and Serfozo included them.

Theorem 2.3. Let h(z) be any non-decreasing function with ~(0) = 0.

(i) Under Condition C1, the non-serving policy mo is discounted cost optimal.
(ii) Under Conditions C2 and C3, the queue length threshold policy mo is discounted
cost oplimal.

Corollary 2.4. Assume that h(z) = hx with some h > 0. Then there are two possi-
bilities:
(i) Ifh < alc+ %), then the non-serving policy me 15 discounted cost optimal.
(ii) If h 2 alc+ %), then the queue length threshold policy mg» is discounted cost
optimal.

Finally, by omitting the service costs {i.e. K = ¢ = 0), we get the following result,
which is in line with our former results presented in [1]. In this case, we have z* =

aV*(0} and
C*(m)_ —OO, T = _1?
h(z) + MEV*((z+ 5 - Q)] - V*(0)), =ze€{0,1,....@—-1}
Corollary 2.5. Let K = c¢=0. If V*(z) < oo for all x < M, then the queue length
threshold policy w,+ is discounted cost optimal.
3. OPTIMAL POLICY: DO NOT SERVE AT ALL!

In this section we prove the first part (i) of Theorem 2.3. Therefore, we assume that
Condition Cl is valid. We will prove that, under this assumption, the non-serving
policy 7 is discounted cost optimal even pathwise.

Proposition 3.1. D™ < D™ for all w € 1.

Proof. Let 7 € II. Denote (here) briefly: T¥ = ¢, and B} = b, for all n. Now, by
C1, we have

D™ — D" < Z (./: e alc+ %’)b,1 du— e (K + cbn)>
n=1 il
= Z e~ (cb, + % b — K —¢b,) < 0.
n=l
The last inequality above follows from the fact that @ > b, for all n. O

The first part (i) of Theorem 2.3 follows by taking the expectations.

4. OPTIMAL POLICY: SERVE INFINITELY MANY TIMES

In this section we start the proof of the second part (ii) of Theorem 2.3. Therefore,
we assume that Condition C2 is valid. We will show that, under this assumption, it is
sufficient to consider such operating policies that initiate the service infinitely many
times.
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Let w € II such that 7] = co for some n € {1,2,...}, and denote
ng = sup{n > 0| Ty < oo}.
Define a modified policy % by setting Ty = 0, and, for n € {1,2,... ,no},
o 77 =T7 and
o B7 = B,
and, for n € {no+ 1,n0+2,...},
o TF =inf{t >T7_, + 5, | X*(t) > Q} and
e B =0Q.
Thus, 7 is identical to 7 up to the service epoch T, but changes thereafter to the

queue length threshold rule (with threshold @). It is clear from the construction that
the resulting policy is admissible, i.e. 7 € I

Proposition 4.1. D™ < D,
Proof. Denote (here) briefly: T'F = t,. Now, by C2, we have

D —-D" < i (e‘“‘"(f( + @) — /t:o e alc+ §)Q du)

n=np+1
oo

= Y e (K +cQ —cQ—§Q)=0,
n=ng+1

which proves the claim. ]

Proposition 4.1 tells that, under Condition C2, we can restrict ourself to such oper-
ating policies 7 € II for which T] < oo for all n.

5. OPTIMAL POLICY: A Q-POLICY

In this section we continue the proof of the second part (ii) of Theorem 2.3. Therefore,
we again assume that Condition C2 is valid. We first recall the definition of a @-policy
from [1], and then show that it is sufficient to consider only such operating policies
when seeking an optimal policy.

Definition 5.1. An operating policy m € Il is said to be a Q-policy if, for alln €
{1,2,...},

o T7 <inf{t >T7_, + 5. | XI(t) > @} and

e B = min{XJ(T7),Q}.
The class of such policies is denoted by TI%.

Note that these policies apply the following two principles: (i) after a service comple-
tion, a new service starts at the latest when the number of waiting customers reaches
or exceeds the service capacity ¢}, and (ii) whenever a service of a batch is initiated,
it includes as many customers as possible. It is also clear that, for example, all the
queue length threshold policies 7; with threshold z < @ belong to this class. These
are called the queue length threshold ()-policies.

Let 7 € II such that T < oo for all n. Our purpose is now to construct a @-policy,
which is (even pathwise) at least as good as w. This is done in two phases.

Define first a modified policy =? by setting Tg" = 0, and, for n € {1,2,...},
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o T™ =Tr and

o B = max{ X7 (T1"), Q).
Thus, 79 is identical to # as regards the service epochs but serves always as many
customers as possible. It is clear from the construction that the resulting policies are
admissible, i.e. 77 € II. In addition, it is easy to see that

i Bi' > Z B;
k=1 k=1

for all n, implying (due to simultaneous service epochs) that X™ (¢) < X"(t) for all
t>0.

Proposition 5.2. D™ < D*.
Proof. Denote (here) briefly: T = ¢, and BI" — BT = §,, for all n. Since

X*(t)=X"(t)+ i S
k=1

for all t € [ta,tnt1), we have, by C2,

oo tng n
D™ — D" < Z (e“"’t“cc&.L - f e~ acZJk du)

n=1 tn k=1
oo o0 n

= Y etnes, =Y (e — e e )y 6
n=1 n=1 k=1
[eo] [ev] oo

— Z e—atncé'n _ Z C6k Z:(e—ortn _ e—atﬂ“)
n=1 k=1 n=k
o0 o0

= Z e~ cd, —~ Z e el = 0,
n=1 k=1

which proves the claim. O

Note that the policy 79 is not necessarily a @-policy: it applies the second principle
(i) but not the first one (i). Therefore, something more is needed.

Define now another modified policy 7% by setting TJQ =0, and, forn € {1,2,...},

o T = min{T™",inf{t > T, + S, | X7° > Q}} and

o B = max{X7°(T7°),Q}.
Thus, 79 is such a modification of 77 that applies principle (i). It is clear from the
construction that the resulting policy is admissible, i.e. 7@ € II. In addition, it is easy
to see that
for all n, implying (since T,;’Q < T7") that X"Q(t) < X™(t) for all t > 0. Note further
that

@ @ 4
B <@ = T, =T;. (5.1)

K

Proposition 5.3. D™ < D™,
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Proof. Denote (here) briefly: T7° = t,,, T = ¢! and B*® = B™ = b, for all n.
Now, first by C2 and then by (5.1),

o0 1:1 X
D™ -D" < Z ((e“"‘" — e ") (K + ¢by) — /t e~ afc+ %)bn du)
n=1 n

(51_-__1) Z ((e—an:ﬂ _ e—ati‘) (K + cQ) - [

n=l1 tn

f'

n

e ™ afc+ %)Q du)

Z(e-a*" — &™) (K +¢Q — @ — 5Q) =0,

n=1

which proves the claim. O

As a corollary of the previous two propositions we get the following theorem.
Theorem 5.4. inf{V"(z) | 7 € 1%} = inf{V™(z) |7 €I} forall z < M.

Theorem 5.4 tells that, under Condition C2, we can restrict ourself to the class of
Q-policies, I1<.

6. SOME PROPERTIES OF THE @-POLICIES

In this section we recall from [1] some important properties of the @-policies. They
are needed in the next section, where we continue the proof of Theorem 2.3. All the
proofs of the results presented in this section can be found in [1].

Let # € II9. The principles (i) and (ii) mentioned in the previous section imply that
the first non-trivial decisions are made only after such a service completion that leaves
less than @ customers waiting (otherwise a new service is initiated immediately with
the maximum batch size @}). Inspired by this fact, we define an increasing sequence
(N])22, of integer-valued random variables by setting NF = 0 and, for k € {1,2,...},

NI =inf{n> NI, | XT(T"_, + S.) < Q}. (6.1)

The random variables N7 are called the indices of non-trivial service epochs. We recall

from [1] that E.[N]] < oo for all z < M and k > 0. The non-trivial service epochs T}
are defined by setting

7 = Ty
The queue length at the non-trivial service epoch 77 is denoted by ¢7,
& = X"(TY).

We recall from [1] that P.{{f < M} =1 for all z < M and k > 0. In addition, we
define random variables Bf and ST by setting

B{ = B}{r{ and S'Lr = SN,:’_1+1 +...+ SN:.
Since NT is common to all 7 € [I%, we may write Nf = N; and ST = §,. Further-

more, we have T7 = 5} , and BT = Q for all # € II9 and n < N,. It follows that the
(partial) queue length process X; = X7, is common to all 7 € I19. Note further that

BT = min{X,(T7),Q} and £7 = max{X,(T7) - Q,0}. (6.2)
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Consider now the common queue length process X, during the interval from 5, to
the first non-trivial service epoch. First we define the process X% = (X9(t))i»0 by
setting

X°@#) = X1(min{S; + 1,11 °}). (6.3)

So, X9 is a “truncated” compound Poisson process with initial value X(5,). Tt is
adapted to the history 2 = (F9(t))s»0, where

FOt) = Fi(S, +1).

Here F, denotes the history generated by the initial queue length, the arrival pro-
cess and the service times Si,...,Sn,. Note that X? is a strong Markov process
with integer-valued, non-decreasing and right-continuous paths. The conditional dis-
tribution of X2 with initial value z € Z, is denoted by P®, and the corresponding
expectation operator by EZ.

Let B denote the Banach space of real-valued and bounded functions f: Z; — R
with the usual supremum norm

I f1] = sup{|f(z)| | = € Z4}.
Define an operator A?: B — B by setting, for all f € B and z € Z,

A%f(z) = lim LEZ[f(X?(R))] - f(=)- (6.4)

1t is called the infinitesimal operator of the Markov process X?. A straightforward
calculation reveals that

_ ) MEf(+8)] - f(2), <@,
A9 f(z) = { 0. x> Q. (6.5)

Due to Dynkin’s formula [4], we have the following important result (Proposition
4.2 in [1]).

Proposition 6.1. Forany7m €I1°, f€ B andz < M,
T‘R‘

B[~ f(X(TT))] = Exle™>% F(Xi(51)) + [ L et (AR f( X () — af (Ka(2))) ]

5
7. STATIONARY (J-POLICIES

In this section we continue the proof of the second part (ii) of Theorem 2.3. Now
we assume that Conditions C2 and C3 are valid. We first recall the definition of a
stationary @Q-policy from [1]. Then we introduce some operators needed later on. The
basic operator 7™ defined in (7.3) is associated with the discounted costs up to the
first non-trivial service epoch of a Q-policy 7 and the value of the given function v at
the end of this interval. When applied to the discounted cost function of a stationary
Q-policym, we get T"V™ = V™ (Proposition 7.2). By taking the pointwise infimum
over all Q-policies, we obtain another operator 7. As shown in Proposition 7.4, for
any function v increasing at least with rate c, there is a queue length threshold Q-
policy ¥ such that 7v = 7™ v. In Proposition 7.9 we show that this operator, when
limited to a certain subset of non-decreasing functions, has a unique fixed point w.
Thus, 7" 1w = w. Finally, in Theorem 7.11, we show that the queue length threshold
Q-policy 7% is optimal among these stationary ¢-policies.
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Definition 7.1. A Q-policy m € 119 is said to be stationary if (€7, TF)2, is a Markov
renewal sequence and the process X™ is semi-regenerative with respect to this Markov
renewal sequence. The family of stationary Q-policies is denoted by T19%.

It is clear that all the queue length threshold Q-policies are stationary.

Let & = {0,1,... ,M — 1}. By By we denote the space of real-valued functions
v: Em — R. Since &y is finite, By is trivially Banach with norm
[lvllar = sup{|v(z)| | = € Em}.
Denote, for any t > 0,
Ny~-1

[
Dy(t) = fo e h(Ka(w) du+ Y e (K + eQ)lgs, <o (7.1)

n=1
It follows from Condition C3 and results of Section 5 that there is # € II? such that
V™(z) < oo for all z € Eyr. Thus,

E.[D:1(5)] € V™(z) < co.

After this observation, it is not so hard to prove that E.[D,(779)] < oo implying that
even for all 7 € II?

E-[Di(I7)] < co. (7.2)

For each m € II®, we now define an operator 7™: By — By by setting, for all v € By
and z € Eu,

T"o(z) = Eo[Dy(T7) + =T (K + eB] + v(&]))). (73)
It follows immediately from (7.3) that, for any 7 € II? and u,v € B,
u<v = Tul T . (7.4)

Proposition 7.2. Let 7 € 19, Then
(i) Ve By and V* =T™V~,
(i1) limgooo(T*Yv = V™ for all v € By
Proof. First, prove (ii) as Proposition 6.3(ii) in [1]. This can be done independent

of the first claim (i). The fact that V™ € By follows now easily from (ii) and (7.2).
After this, prove the latter part of (i) as Proposition 6.3(i) in [1]. ]

For each v € By, we define v? € B by setting

vo(m)z{ K4denQ+ue=), =<a4M -
where £ A Q) = min{z, Q} and (z — @)* = max{zr — Q,0}. Note that, by (6.5),
Ac(El(z+B)A QI —2)+
A%P(e) = ¢ MEP((=+5 - Q)*)] —»(0), e<Q, (7.6)

0, z > Q.
Now, by (6.2) and (7.5), we get the following representation for the basic operator 77:
To(2) = B Dy(T]) + =T (X0(T)) (7.7)
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With each v € By, we also associate a real number z¥ and a real-valued function
(*(z) by setting

2" = ol K + v(0)) (7.8)
and
Y —09, x=-1,
=) = { h(z) + A%%(z) —acz, =z€{0,1,...,@ -1} (7.9)

By applying now Proposition 6.1 to function v?(z) and recalling that Xi1(t) < Q for
all t € [S1,T7), we get still another representation for the basic operator 7™

Tv(z) = Eo[Di($1) + e (K + cXi(51) + v(0)) + 97 (7.10)
where the first two terms on the right hand side are independent of 7 and

Ty .
A = / e” ' (("(Xa(t)) — 2") dt.

g
Let then

Iv={veBy|vz)—v(z—1)>c forallze{l,2,...,M—1}}.
Proposition 7.3. Function (¥ is non-decreasing for all v € Iy.
Proof. Letwv e Iy and z € {1,2,...,Q —1}. Now, by C2,
((z) = (e —1) = h(z)—h(z—1) = ac+ Ac(Elspcail = 1) +
ME[(v(z+ 6 — Q) —v(z + i — 1 ~ Q) lizs8>03])
> ofc+ ) —ac+Ae(Ellspcar] = 1) +
ME[(v(z + 61— Q) —v(z + b —1 = Q))l@+a>a))
= af + A Ellgipcey) — 1) +
AME[(v(z+ b — Q) —v(z + i — 1 — @) 1lztp>a)])-
Since v € Inr, we get the following inequality:
(2) = ¢le—1) > af +r(Ellprpcy] — 1) + ME[cliz1p>0)])
= a% —xe(l = P{z + 51 < QY+ AcP{z + f1 > Q}
= ag 20,
which proves the claim. o
With each v € Iy, we associate an integer-valued threshold z* by setting
2’ =14+ max{z € {-1,0,...,@ -1} | ("(z) < 2"} (7.11)

Note that z¥ € {0,1,...,Q}. Finally, for each v € Iy, let 7 denote the queue length
threshold policy with threshold z¥,

1'['0:7730. (7.12)
Proposition 7.4. For any v € Iy and @ € &y,
T v(z) = inf{T"v(z) | 7 € 19}.
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Proof. By Proposition 7.3,
4™ = inf{y™ | ® € 19},
The claim follows now from (7.10). )
Next we define an operator 7 : Ipy — By by setting, for all v € Iy and z € &y,
To(z) =T" v(z). (7.13)

It follows from Proposition 7.4 and formula (7.4) that, if u,v € Ips such that u < v,
then

Tu=T " u<T u<T " v="To. (7.14)
Proposition 7.5. For each u,v € Ip, there is 0 < d < 1 such that
[Tu — Tollar < dlfu—||n.
Proof. Let x € £y. By Proposition 7.4,
Tu{z) — Tov(z) = T u(z)~T" v(z)
< Tu() - 7'”“ ()
Eo[e>T (w(&") — o(&"))].

The claim now easily follows from the facts that u(¢7") — v{(€7") < |Ju — v||as and
Tr" > 8§, > S; > 0 (cf. the proof of Proposition 5.3 in [1]) a

Let then

Ly={vely|v<To}

First we show that I}, is non-empty. Let £ € Iy be defined by £(z) = cz. Note that,
forallz < Q@+ M,

BE)=K+c(zAQ)+elz — Q) = K + cz.
In addition, we have A94?(z) = AcE[B,] (i.e. constant) for all z < Q.
Proposition 7.6. £ € I;,.
Proof. Let xz € Ep. Denote (here) briefly: #¢ = . Now we have to prove that
T™(z) > £=).
First, for each n € {1,2,...}, let
B; = min{X3(T7), Q},

where X7 denotes the (partial) queue length process that takes into account only the
original X (0) waiting customers (ignoring, thus, all the future arrivals) and the services
up to time T7_,,

X3(t) = X(0) - Y Bilizzen.
m=1

It is clear that, for all » and ¢,
X3(t) < XX(8).
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In addition, BS < B” and X2(t) is constant during service intervals (T,7_;, T;7) for all
n. Finally, we define

& = max{ X3, (1T7) — @, 0}
and note that £ < £7. It follows that
Tlz) = B {Z / e h(XE(D) dt + e T (I + cBY)) + e Thg(E])

N]_ T:

> B ([ e hOG) ik e TReBD) + e TRU(E])
n=1 Y
N
= Ez[Z((e—aT:" e™*F) Z ° )+ e TR eB%) + e~ Thet?].
n=1
Now, by C2,
N n=1
Tr(e) 2 Bl (T — ) (eX(0) ~ 3 eBg) + & T eBy) + ¢~ Thet]]
m=1

N
= E[eX(0)(1—e TR 4 Z cBle™Th 4 e TR et?).

n=1
By further taking into account that & = X(0) — ZnN;I B;, we finally get
T™é(z) > Ex[c X(0)] = cz = {(z),
which completes the proof. O
Proposition 7.7. Tv € Iy, for allv € Iy,

Proof. Let v € I3;. The first step is to prove that 7v € Ip. This is rather
complicated but, however, can be done along similar lines as in the proof of Proposition
5.4 of [1].

First we introduce some notation. The sample space of our stochastic system consists
of pairs (z,w) € Epr X Q, where z refers to the initial queue length and w gives a sample
of the arrival process A and the service times S, S2,.... Thus, for any = € €u and
7 € II, such random variables as T.7(z), B7(z) and X™(¢; ) are well defined on {2
(meaning the nth service epoch, the nth service batch and the queue length at time
t, respectively, in such realizations that start with initial queue length z).

Denote (here) briefly: #¥ = 7. Now we define a modified policy =’ = (T, (B))
as follows. Let 77 =0 and,forne {1,2,...}andz < M —1,

o T™(z) = T(z +1) and

o B (z) = min{XT(Tr (z);z),Q}.

Here X™ denotes the nth partial queue length process generated by #’. Finally, let
Tr(M — 1) = Tr(M — 1) and Bf' (M — 1) = Bj(M — 1) for n € {1,2,...}. The
resulting policy @’ is clearly a Q~policy.

Now, let 2 < M — 1. Qur purpose is to show that

Tro(z 4+ 1) 2 Tv(z) +c.
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However, by Proposition 7.4, T™v(z) < 7™ v(z). Thus, it is sufficient to prove that
T o(z+1) > T v(z) +c (7.15)

This will be done next.
Denote (here) by A the following event on §:

A={X(Si(z)iz) < Q- 1}.
So, in this set with initial queue length z, the queue length at the completion time of
the N,(2)th service is less than @ — 1. But this implies that, with initial queue length
z + 1, the queue length at the same time is less than @. Thus, N,(z) = Ni(z + 1),
implying that

Si(z)=8(z+1) and T(z)=T7(z+1).
In addition, for all ¢ > 0,
Xtz +1) = Xy (t;2) + 1.
By (6.2), it follows that
Bi(z+1) = B () + Lz, gy (apercey @0d &(z +1) = & (@) + Lz oy

Since v € Iy, the latter equality implies that

v(€7(z + 1)) 2 v(€] (z)) + ¢ Lz, (77 o)) 2@}
Further, by C2,

Di(Ty(x+1);241)

= Dy (TT (x);2) + fo e (h(Xy(t;z) + 1) — h( X, (8 2))) dt

v

. 77 (2)
Dy(TT (z);z +/ ~*acdt

Dy(TT (@), 2) + e (1 ~ e-“Tf"(x’).

Thus, we have
Eoa[Dy(T7) + e=>TF (K + cBf + v(¢7)); A]
> Eo[Dy(T7) + e (1 — e )+
e—o Ty (Ix + cBr + clz, (F')<@) +v(¢] )+ elig dmysgy) Al
= E[D(T) + e=oTl (K + Bl 4+ v(€F)); Al + cPL(A).
Consider then the complementary set
A = (X(Sie)io) = @ - 1)

Let $) be such a random variable defined on £y x Q that Sy(z + 1) = §;(z). Note
that, in A°, with initial queue length z, the queue length at the completion time of
the Nl( )th service is equal to @ —1; but with initial queue length = + 1, the queue
length at the same time is equal to Q Thus, Ni(z) < Ni(z + 1), implying that

Tfr’(-"'v') = Tﬁ:(x)(-”?) =Th )z +1) = Si(z +1) = ().

(7.16)
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Thus,
BY(z)=@Q—1 and (F(z)=0.
In addition, note that, for all t < Sy(z +1) = Si(z),
Xtz +1) = Xa(t;2) + 1.
By further taking into account C2, it follows that
Di(Si(z +1);2+1)

. 5 (=) . .
= Dy(5i(a)i2) + / et (h(Fa(t:2) + 1) — h(Xa(t;2))) dt +

e (”)(K + @)

. 51{=) .
> Dy(Si(z);2) + [ e acdt + e (K + Q)
0

= Dy\(T7 (@);@) + c(1 — T @) 4 =TT (K 4 B + ).
Still we observe that
B[ Dy(TF) + €T (K + eBF + v(€7)); A9 = Bzt [Di(51) + e~ *$1T9(0); A%).
Thus, we have
By [Di(T7) + eoT0(K + BT + v(£])); A7)
> E DT +c(1 —e ) 4 e oI (K + eBY + ¢+ Tv(0)); A
> E[Di(Tm) 4 c(1 — eoT7 ) 4+ e=oT7 (K + ¢B]' + ¢ + v(0)); A7)
= E DT + e o (K + By +v(£]')); A°] + cPo(A°).

(7.17)

The latter inequality above follows from the fact that v € I},. By summing up (7.16)
and (7.17), we obtain (7.15). Thus, Tv € Iy.

It remains to prove that 7v < T(7v). This follows from (7.14), since v,Tv € Iy
and v < Two. ()

Proposition 7.8. I}, is complete.

Proof. Let (v,) be Cauchy in I}, and ¢ < M — 1. Since By is complete, there is v €
By such that v, — v. It follows that v,(z) = v(z). Now, since va{z +1) ~va(z) 2 ¢,
we also have v(z + 1) — v(z) > ¢. Thus, v € Ipn. It remains to prove that v < Twv.
However, this can be proved in exactly the same way as in Proposition 5.5 in [1}. ©

Note that, since By is Banach, it follows from the previous proposition that Iy is
closed.

Define finally the operator 7*: I3, — I3, by setting, for all v € Iy,
Tv="Tuv. (7.18)

Proposition 7.9. The operator T* has a unique fized point w € I3,. In addition,
limgeo(T*)ev = w for all v € I},
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Proof.  Since By is Banach, I}, C By is closed and 7*: Ly — Iy is a strict
contraction (Proposition 7.5), the claims follow from Banach’s fixed point theorem. O

Consider then the queue length threshold Q-policy 7™ = 7w associated with the
function w € [}; defined above.

Proposition 7.10. V™ = .
Proof. This can be proved as Proposition 6.4 in (1]). a

Theorem 7.11. The queue length threshold Q-policy ™ = mw is discounted cost
optimal among the stationary Q-policies 1195, i.e., for all z € &,

V™(z) = inf{V"(z) | = € I95}.

Proof. This can be proved as Theorem 7.1 in [1). For completeness, we present the
proof also here.
Let = € II?5. By Propositions 7.4 and 7.9,
T "w > T w = w.
Thus, by (7.4),
(T™w =T"(T"w) > T"w > w.

By induction, we deduce that (T™)*w > w for all k. But this implies, by Propositions
7.2(ii) and 7.10, that

V™ = lim (T'Jr)kw 2 w = Vqrw’

k—roo

which completes the proof. o

8. OPTIMAL POLICY: A QUEUE LENGTH THRESHOLD POLICY

In this section we finalize the proof of the second part (ii) of Theorem 2.3. Therefore
we again assume that Condition C2 is valid. Here we prove that the discounted cost
optimal policy among the stationary Q-policies found in the previous section is also
optimal among all the Q-policies. By Theorem 9.4, this completes the proof of the
second part (ii) of Theorem 2.3.

Let z € &y and n € TI9. For each k € {0, 1,...}, we define a new policy 7} by
setting Tp* = 0, and, for n € {1,2,..., NI},

o Tok = T7 and

L] B::k = B::,
and, for n € {NJ + 1, NF +2,...},

o Thk = inf{t > T:_’:I + 5n | X:’:(t) > z¥} and

o Br* = min{X7*(T7%), Q}.
So, 7} is identical to 7 up to the non-trivial service epoch T,;” but changes thereafter to
the optimal stationary rule. It is clear from the construction that the resulting policy
is a Q-policy, i.e. m} € 119 for all &.

As in [1], we may easily prove that

V™i(z) < V(a).
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By further observing that 7 does not depend on the original policy 7 but is, in fact,
the optimal stationary @-policy m¥, we have proved the following theorem.

Theorem 8.1. The queue length threshold Q-policy ™ = wzw is discounted cost op-
timal amonyg the Q-policies TI9, i.e., for all z € &y,

V™ (z) = inf{V"(z) | = € I°}.

Theorems 8.1 and 5.4 together imply that the queue length threshold @-policy
7% = 7w is discounted cost optimal among all admissible policies, i.e., for all z € &y,

V™ (z) = inf{V*(z) | = € II}.
It follows that
w(z) =V™ (z) =inf{V™(z) | = € I} = V*(2),

implying that the thresholds £ and z* are equal, which completes the proof of the
second part (ii) of Theorem 2.3.
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