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Abstract

In this paper we study metastability and nucleation for the two-dimen-
sional lattice gas with Kawasaki dynamics at low temperature and low
density. Let 8 > 0 be the inverse temperature and let A C Ag C Z? be
two finite boxes. Particles perform independent random walks on Ag \ A
and inside A feel exclusion as well as a binding energy U > 0 with par-
ticles at neighboring sites, i.e., inside A the dynamics follows a Metroplis
algorithm with an attractive lattice gas Hamiltonian. The initial config-
uration is chosen such that A is empty, while a total of p|As| particles is
distributed randomly over Ag\ A. That is to say, initially the system is in
equilibrium with particle density p conditioned on A being empty. For large
3, the system in equilibrium has A fully occupied because of the binding
energy. We consider the case where p = e=*% for some A € (U, 2U) and
investigate how the transition from empty to full takes place under the
dynamics. In particular, we identify the size and shape of the critical
droplet and the time of its creation in the limit as 3 — oo for fized A
and limg_, % log |Ag| = co. In addition, we obtain some information on
the typical trajectory of the system prior to the creation of the critical
droplet. The choice A € (U,2U) corresponds to the situation where the
critical droplet has side length £. € (1,00), i.e., the system is metastable.
The side length of A must be much larger than ¢., but is otherwise arbi-
trary.

Because particles are conserved under Kawasaki dynamics, the analysis
of metastability and nucleation is more difficult than for Ising spins under
Glauber dynamics. The key point is to show that at low density the gas
in Ag \ A can be treated as a reservoir that creates particles with rate p
at sites on the interior boundary of A and annihilates particles with rate
1 at sites on the exterior boundary of A. Once this approximation has
been achieved, the problem reduces to understanding the local metastable
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behavior inside A, and standard techniques from non-conservative dynam-
ics can be applied. Even so, the dynamics inside A is still conservative,
and this difficulty has to be handled via local geometric arguments. Here
it turns out that the Kawasaki dynamics has its own peculiarities. For
instance, rectangular droplets tend to become square through a movement
of particles along the border of the droplet. This is different from the be-
havior under the Glauber dynamics, where subcritical rectangular droplets
are attracted by the maximal square contained in the interior, while su-
percritical rectangular droplets tend to grow uniformly in all directions (at
least for not too large times) without being attracted by a square.
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NUNC AGE, RES QUONIAM DOCUI NON POSSE CREARI
DE NILO NEQUE ITEM GENITAS AD NIL REVOCARI,
NE QUA FORTE TAMEN COEPTES DIFFIDERE DICTIS
QUOD NEQUEUNT OCULI RERUM PRIMORDIA CERNI

(Lucretius, De Rerum Natura)

1 Introduction and main results

In this paper we study metastability for conservative (C) dynamics. In par-
ticular, we study the transition to the liquid phase of a supersaturated vapour
described by the two-dimensional lattice gas with Kawasaki dynamics.

Metastability is a relevant phenomenon for thermodynamic systems close
to a first-order phase transition. Suppose the system is in a pure equilibrium
phase, corresponding to a point in the phase diagram close to a first-order phase
transition curve. Suppose we change the thermodynamic parameters to values
associated with a different equilibrium phase, corresponding to a point on the
opposite side of the curve. Then, in certain experimental situations, instead
of undergoing a phase transition the system can remain in the old equilibrium,
far from the new equilibrium, for a long time. This unstable old equilibrium,
called metastable state, persists until an external perturbation or a spontaneous
fluctuation leads the system to the stable new equilibrium.

Examples of metastable states are supersaturated vapours and solutions,
supercooled liquids, and ferromagnets with a magnetization opposite to the
magnetic field.

In Section 1.1 we recall some of the main features of metastability by describ-
ing some well-known results obtained for a non-conservative (NC) dynamics,
namely Ising spins with Glauber dynamics. In Section 1.2 we introduce a con-
servative model, namely the lattice gas with Kawasaki dynamics, and discuss
the main differences between C and NC. In Section 1.3 we propose a simplified
model, where the interaction and the exclusion only act in a finite box, and
formulate our main theorem establishing metastable behavior for this model.
In Section 1.4 we give an outline of the key ideas needed to prove this theorem,
which are further developed in the remainder of the paper. In Section 1.5 we
collect the basic notation that is used throughout the paper.

1.1 The non-conservative case

1.1.1 Grand-canonical ensemble. Let A C Z2 be a large finite box centered
at the origin. With each site x € A we associate a spin variable o(z), assuming
the values +1 or —1. With each configuration o € X = {—1,4+1}* we associate

an energy
Ho) =5 3 ola)oly) — 5 3 ola), (L.1)

(zy)eN” zeA



where A* is the set of bonds between nearest-neighbor sites in A, J > 0 is the
pair interaction, h > 0 is the magnetic field, and we assume periodic bound-
ary conditions on A. The grand-canonical Gibbs measure associated with the
Hamiltonian H, describing the equilibrium properties of the system, is given
by

e—BH(0)

wlo) =— (0 € &), (1.2)

where Z is the partition function

Z =Y e M) (1.3)

oeX

and 8 > 0 is the inverse temperature. The qualification ‘grand-canonical’ is used
here because h plays the role of a chemical potential and the total magnetization
> zea 0(r) is not constant under p.

It is well known that for every J,h,3 > 0 in the thermodynamic limit

A — Z? a unique Gibbs state with a positive magnetization exists (see e.g.
Ruelle [14], Sinai [20]). We will be interested in the regime where

A is large but finite, h € (0,2J), [ — oo. (1.4)
Let
B = the configuration with o(z) = +1 for all z € A (1.5)
B = the configuration with o(z) = —1 for all z € A. '

In the regime (1.4) the Gibbs measure will be concentrated around H, which is
the unique ground state of H. Clearly, H is only a local minimum of H, and it
is therefore naturally related to metastability.

For £ € N, let
E(t) = H(ouxe) — H(B), (1.6)

where oy is the configuration in which the (41)-spins form an £ x £ square,
centered at the origin, in a sea of (—1)-spins. Then e~#F() is the ratio of the
probabilities to see oy« resp. B under the equilibrium p. It follows from (1.1)
that E(¢) = 4J¢ — h¢?, which is maximal for £ = 2Z:

E(0)

\e

Fia. 1. The energy of an £ x £ droplet (NC)



This means that, even though an arbitrarily small non-vanishing magnetic field
determines the phase, its effect is relevant only on sufficiently large space scales,

namely ¢ > /. with
2J
0, = [—] (1.7)

h
Only on such scales the volume energy dominates the surface energy and a
larger square of (41)-spins is energetically favorable over a smaller square (see
Fig. 1). The choice h € (0,2J) corresponds to ¢, € (1,00), i.e., to a non-trivial
critical droplet size.

This describes the metastable behavior from a static point of view.

1.1.2 Glauber dynamics. In order to describe the metastable behavior from
a dynamic point of view, we introduce a discrete-time stochastic dynamics by
means of a Markov chain on X' with transition probabilities P (o, o’) satisfying
the reversibility condition

p(o)P(o,0") = p(o')P(o’,0)  Vo,0' € X, (1.8)
where p is the Gibbs measure in (1.2), and the ergodicity condition
Vo,n € X 3t € N such that P'(o,n) > 0, (1.9)

where P! is the t-step transition kernel. From the ergodic theorem for reversible
Markov chains it follows that P!(o,n) converges to u(n) as t — oo for all
o,neX.

An explicit construction of a Markov chain satisfying the above conditions

can be given, for instance, by the Glauber-Metropolis algorithm, which is de-
fined as follows. For 0 € X and = € A, let

" o if x
o (y) = { _(g()y) o 4 ) (1.10)
and choose as transition probabilities
0 if o' £0%Vz e A
o#0': Plo,o') = { ke SO if o = 6% 35 € A

(1.11)

o=0": Plo,0)=1-— > P(o,0).
o' #£o

This dynamics randomly selects a site from A and flips the spin at this site with
a probability equal to the Boltzmann weight associated with the positive part of
the energy difference caused by the flip. We emphasize that the dynamics given
by (1.11) is NC, in the sense that the total magnetization is not a conserved
quantity.

1.1.3 Metastability. Suppose we consider the typical paths of the Markov
chain defined by (1.11), starting from B, in the regime (1.4). We can use a
computer simulation and perform a large number of independent runs (see e.g.
Tomita and Miyashita [22]). What we see is that in the sea of (—1)-spins small



droplets of (+1)-spins appear, which however shrink and disappear before they
are able to become large. Only after a very long time, and under the effect of a
large fluctuation, a large enough droplet appears that grows without hesitation.

In order to understand this behavior, let us compare the probabilities of
shrinking resp. growing for a connected cluster of (+1)-spins in a sea of (—1)-
spins. First of all, each cluster of (+1)-spins becomes rectangular after a finite
time (independent of 3) with a probability of order one following a sequence of
transitions with H(0%)— H (o) < 0. Indeed, the rectangle is the only shape such
that: (i) all (+1)-spins have < 2 nearest-neighbor (—1)-spins; (ii) all (—1)-spins
have < 2 nearest-neighbor (41)-spins. Hence for the rectangle there are no
spins that can be flipped with H(o%) — H(o) < 0.

Starting from a rectangular cluster of (+1)-spins, to remove a row or column
of length ¢ costs (£ —1)h:

— [H(0") — H(0)]+ = [h]4+ = h for each of the sites except the last one.
~ [H(0") — H(0)]+ = [h — 2J]4+ = 0 for the last site.
On the other hand, to add a row or column of length £ costs 2J — h:
~ [H(0") — H(o)]+ = [2J — h]+ = 2J — h for the first site.
— [H(0") — H(0)]+ = [—h]+ = 0 for each of the sites except the first one.

This means that if the minimal side length ¢ of the rectangular cluster is such
that h(¢ —1) > 2J — h, i.e., £ > £, with £, given by (1.7), then it tends to grow,
while if £ < /. then it tends to shrink.

The above heuristic argument has been developed in a rigorous way by
Neves and Schonmann [8], [9] (see also Schonmann [15], [16], [17]). Let (o¢)zen,
be the Markov process on X’ with transition probabilities as in (1.11). Write
P,,E, for its probability law and expectation on path space given oy = 0. Let

T, = min{t € Ny: 0, = o} (1.12)

be the first hitting time of the configuration o. The main result for metastability
reads:

Theorem 1 (Neves and Schonmann [8,[9]) Fiz h € (0,2J), with 2. not inte-
ger, put b, = [%], and suppose that A is sufficiently large.

(a) Let R be the set of configurations where the (+1)-spins form a rectangle in
a sea of (—1)-spins. For o € R, let £1(0) x la(0) be the rectangle of (4+1)-spins
in o, and let £(o) = min{¢,(0),¥2(c)}. Then for any o € R

o) <l.: lim Py(rg <7g) =1
B—00

U(o) > le: lim Py(1g < 75) = 1. (1.13)
B—00

(b) Let R* be the set of configurations where the (+1)-spins form an €. x (£, —1)
or (b, — 1) x L. rectangle with a protuberance attached anywhere to one of the



sides of length {.. Let Ogm = max{t < tm: oy = B} and 19 g~m = min{t >
Oam: o € R*}. Then

lim ]P)EI(TEI r*m < TEB) =1. (114)
B—o00 T
(¢c) Let T =T (J,h) = 4Jb. — h(¢2 — 4.+ 1). Then

lim Pg (e@—m <1 < e<F+5>5) —1 V>0 (1.15)
B—00

l—1

F1a. 2. The critical droplet (NC)

Theorem 1 not only identifies the size and shape of the critical droplet (see Fig.
2), it also shows that the critical droplet is the ‘gate’ of the transition from
H to H and it identifies the transition time up to logarithmic equivalence in
(. Note that T'(J, h) is the formation energy of the critical droplet under the
Hamiltonian in (1.1).

1.1.4 Nucleation. The problem of identifying the typical path of nucleation,
i.e., the path between 5 m and 7m, corresponds to the problem of the typical
first exit of (0¢)ien, from a suitable region in the state space X'. This problem
is discussed in detail in Freidlin and Wentzell [5] Chapter 6, Schonmann [16],
Olivieri and Scoppola [10], [11], Catoni and Cerf [3] under rather general hy-
potheses on the Markov chain. We recall here the main result for the case of
the Glauber Ising model.

A sequence of configurations o1, ...,0, (n € N) is called standard when:
1. the (+1)-spins of o; form a rectangular droplet R; = ¢1; X l3;

2. R;11\R; is a single row or a single column;

3. if min{ly ;,0o;} < £, then |61 ; — lo;] < 1;

4. Ry =2x2and R, = H.



The configurations in such a sequence are stable, since they are local minima of
H,ie., H(0;) < ming .., H(o"), where o' ~ ¢ if and only if P(0,0’) > 0. With
each o; it is possible to associate a permanence set Q; (a suitable ‘environment’
of 0;) and a permanence time T; = E,, TQe (the mean exit time of Q; starting
from ;). In this way we obtain a standard sequence of permanence sets (see
Olivieri and Scoppola [12] for more precise definitions).

For each standard sequence of permanence sets and each ¢ > 0 we can
introduce a tube of trajectories T¢ g(Q1, ..., Qy), defined as the set of paths of
configurations visiting the ordered sequence Qj, ..., @, and spending in each set
Q,; a time that falls in the interval [Tie*ﬂ , J’ieJ“eﬂ]. In terms of these quantities
the main result for the path of nucleation reads:

Theorem 2 (Schonmann [16], Olivieri and Scoppola [12]) For every k,e > 0
there exists a By = Bo(k,€) such that for all B > [y

Pa((o1)1ciog ] € Tes(Q1, -, Qn) for some standard (1.16)

sequence of permanence sets Q1, ..., Qn> >1—e "8,

Theorem 2 shows that the transition from H to H takes place in a narrow tube
around rectangular droplets that are squares or quasi-squares when the droplet
is subcritical.

The main idea behind Theorem 2 is the following. The Markov chain
(0t)ten, is in the Freidlin-Wentzell regime, i.e., its state space is finite and
its transition probabilities satisfy the following estimates:

e V6l < p(g,0') <e V) mll yo o, (1.17)

where V (-, ) is a non-negative function, and limg_,, v = 0. Indeed, this prop-
erty trivially follows from (1.11), because A is fixed and V(o,0’) = [H(0o") —
H(o)]+. From (1.17) it is standard to obtain estimates on E,, 7o and Py, (075, =

o') (see Freidlin and Wentzell [5] Chapter 6).

The main steps in the proof of Theorem 2 are the following:

(1) One must solve a certain sequence of variational problems defined in terms
of the energy function H. These variational problems are minimaz prob-
lems necessary to find the minimal saddle point energy between pairs of
states 0,0’ defined by

H(o,0') = min max H(n). (1.18)
¢: o—0’ neEP

The output of this first step is a standard sequence of configurations.

(2) One must associate with each stable configuration a permanence set and
a stability in terms of a permanence time. This can be done by using a so-
called cycle decomposition. Cycles can be defined in the Freidlin-Wetzell
regime (see Freidlin and Wentzell [5] Chapter 6, Olivieri and Scoppola
[12], Trouvé [23]). In the case of the Glauber Ising model cycles turn out
to be connected sets of configurations with energy below a given value.



1.2 The conservative case

1.2.1 Canonical ensemble. In the present paper we want to study the
metastable behavior of conservative systems. To that end we consider a lattice
gas model defined as follows. Let Ag C 72 be a large finite box centered at the
origin, with periodic boundary conditions. With each x € Ag we associate an
occupation variable n(x), assuming the values 0 or 1. A lattice gas configura-
tion is denoted by n € X = {0,1}*. We consider the interaction defined by
the following Hamiltonian:

H(n)=-U Y n@mly), (1.19)

(zy)eA;

i.e., there is a binding energy U > 0 between neighboring occupied sites. For
A C Ag, we let

Natn) = 3 n(a). (1.20)

€A
We fix the particle density in Ag at

LS @) =p=e (1.21)

where A > 0 is an activity parameter. This corresponds to a total number of

particles in Az equal to
N = p|Agl. (1.22)

On the set of configurations with N particles
Ny ={neXx: Nay(n) = N, (1.23)
we define the canonical Gibbs measure

e AHm) lNN (71)

vN(n) = Zn (n € &), (1.24)
where
Zy =Y e P, (1.25)
neENN

We see from (1.21) and (1.22) that in order to have particles at all we must
pick |Ag| at least exponentially large in §. This means that the regime where
Ag is fixed, considered in the NC-case, has no relevance here. We will in fact
be interested in the regime

1
Ae (U,2U), B—oo, lim —log|Ag|= oo, (1.26)
B—o0 ﬁ

which takes over the role that (1.4) played in the NC-case.

10



1.2.2 Kawasaki dynamics. We define a stochastic dynamics in terms of
a continuous-time Markov chain (1n:);>0 with state space Ny, given by the
following generator:

LHm =Y @y, nlf0™) = fn)], (1.27)

(w,y)EAZ3
where
n(z) ifz#zy
N (z) = { n(z) ifz=y (1.28)
ny) ifz==z
and
c((z,y),n) = e PHOE)—Hm]+ (1.29)
It is easily verified that the reversibility condition holds:
v (mel(e,y),m) = v (n“9)e((z,y),n ") (1.30)

The Markov chain (7;);>0 can be represented as follows. With each bond
b = (z,y) € A} we associate a random clock ringing at exponential times.
When the clock at b rings, we consider the configuration with the particles
swapped along b. This configuration is accepted with a Metropolis rate given
by the Boltzmann factor in (1.29). More formally, for each bond b put 7,9 =0
and let 7,;,4% € N, be the sequence of random times whose increments are i.i.d.
exponentially distributed with mean 1. Since |Ag| < oo, we have

P(3b,b,i,i": 1, = Ti7.57) = 0. (1.31)

Now, if £ = 7,; for some b and 4, then we define

) m—  with probability 1 — ¢ BLH (ng_)=H (ne—)]+ (1.32)
"= n?_ with probability e_’B[H("?—)_H(m*)}*, '

while between ringing times the configuration stays fixed.

1.2.3 Metastability. In order to see that the regime in (1.26) is metastable,
let us consider the grand-canonical Gibbs measure associated with the model,
ie.,

pa(n) = T)\a (1.33)
where
Hx(n) = H(n) — ANx4(n), (1.34)
A € R is an activity parameter, and
Zy=Y_ e P, (1.35)
nex
It turns out that if A = —A, then for the description of metastability the

canonical Gibbs measure is equivalent to the grand-canonical Gibbs measure in
the limit of large 3, provided they are suitably restricted in the following way.

11



Consider the lattice gas at low temperature at its condensation point. Let

L) g 1= 0) (1.36)

pi(B) 5

denote the density of the liquid resp. gas phase. Here m*(3) is the spontaneous
magnetization in the spin language (see (1.42)). Since

pg(B) = e 27FB) (B o0), (1.37)

we see that e™2U# can be identified as the density of the saturated gas at the
condensation point (in the sense of logarithmic equivalence in 3). Suppose that
we slightly increase the density, avoiding however the appearance of droplets
of the liquid phase. Then we get a supersaturated gas that can be described
in terms of a restricted ensemble (see Lebowitz and Penrose [7] and Capocac-
cia, Cassandro and Olivieri [2]), namely, the grand-canonical Gibbs measure
restricted to a suitable subset of configurations, for instance, where all suffi-
ciently large clusters are suppressed. At low temperature this supersaturated
gas will stay rarified, so that its metastable state can be described as a pure
gas phase with strong mixing properties.

In these conditions, let us make a rough calculation of the probability to see
an £ x £ droplet of occupied sites centered at the origin. Under the restricted
ensemble, which we denote by p*, we have

1% (¢ x ¢ droplet) = pt 2t=1UB (1.38)

since p is the probability to find a particle at a given site and U is the binding

energy between particles at neighboring sites. Substituting p = e~ 2# we obtain
1 (£ x ¢ droplet) = e PE®), (1.39)
where
E(f) = 2U¢ — (2U — A2 (1.40)
The maximum of E(¢) is at £ = 52

E(0)

s \ !
F1a. 3. The energy of an ¢ x £ droplet (C)

12



This means that droplets with side length ¢ < /. have a probability decreasing
in £ and droplets with side length £ > /. a probability increasing in ¢, where

be = {2UU— A1 (1.41)

(see Fig. 3). The choice A € (U,2U) corresponds to ¢, € (1,00), i.e., to a
non-trivial critical droplet size.

Another way of understanding our choice of A is the following. In the
grand-canonical Gibbs measure the configuration can be represented in terms
of spin variables. Indeed, after we make the substitution n(z) = H’+(x), where

o(z) € {—1,+1} is a spin variable, we can write

Hy(o) = —U Y g@lich) ) s~ Lol
(zy)en; z€Ag
(1.42)
= -9 3 o@oly) -2 Y o(z)+ const.
(w,y)EAE ZL‘GAﬁ
So if A = —A, then we have a spin Hamiltonian like (1.1) with pair interaction

J = % and magnetic field h = 2U — A. By the discussion developed in Section
1.1.3, we therefore expect metastable behavior with a critical droplet size given
by (1.41) (compare with (1.7)). The metastable behavior for the NC-case in
the spin language occurs when h € (0,2J). This corresponds precisely to A €
(U,20).

In physical terms, A € (0,U) represents the unstable gas, A = U the
spinodal point, A € (U,2U) the metastable gas, A = 2U the condensation
point, and A € (2U, o0) the stable gas.

The above describes the metastable behavior from a static point of view.
A static comparison of Glauber vs. Kawasaki dynamics in the spin language is
indicated in the following figure:

Fi1G. 4. Relaxation to equilibrium for Glauber (G) and Kawasaki (K) dynamics

1.2.4 Local description. Let us now consider the metastable behavior from
a dynamic point of view and see what happens locally. As discussed in the

13



NC-case, we want to compare the probabilities of growing resp. shrinking for
a rectangular cluster of particles. Again the argument will be very rough.
Suppose we pick a large finite box A, centered at the origin, and start with an
¢ x £ droplet inside A. Suppose that the effect on A of the gas in Ag\ A may be
described in terms of the creation of new particles with rate p = e 27 at sites
on the interior boundary of A and the annihilation of particles with rate 1 at
sites on the exterior boundary of A. In other words, suppose that inside A the
Kawasaki dynamics may be described by a Metropolis algorithm with energy
given by the local grand-canonical Hamiltonian:

H(n) = H(n) + ANg(n). (1.43)

Then the energy barriers for adding resp. removing a row or column of length
¢ are given in terms of the local saddles of H (see Fig. 5):

energy barrier for adding = 2A-U

energy barrier for removing = (2U — A)(¢ — 2) + 2U, (1.44)

and the balance of the two barriers indeed gives the critical size £, in (1.41).

0
— U O

saddle

=

AT ¢ (2U—A)(0—2)+2U

Fic. 5. Local saddles of H

Let us briefly discuss the main difficulties arising in the attempt to develop
the above idea rigorously and underline the main differences with the NC-case.
As we already remarked, in the C-case the Markov chain (7;);>0 is not in the
Freidlin-Wentzell regime, so we need new ideas. The real difficulty is to find the
correct way to treat the gas in Ag\ A. The heuristic discussion given above was
based on the assumption that the dynamics inside A is effectively described
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by the local grand-canonical Hamiltonian H in (1.43). However, unlike the
NC-dynamics, the C-dynamics is not really local: particles must arrive from
or return to the gas, which acts as a reservoir. It is therefore not possible to
decouple the dynamics of the particles inside A from the dynamics of the gas
in Ag\ A. This means that the gas must be controlled in some detail in order
to prove that the above assumption is indeed a good enough approximation.

A second consequence of the non-local behavior of the C-dynamics is that
the argument used in the NC-case, based on the stability of configurations and
on the corresponding partition into cycles of the state space (see Section 1.1.4),
is completely lost in the C-case. In other words, we cannot define the stability
of a configuration inside A, since it depends on the configuration in Ag\ A A
different aspect of the same problem is the following: What is the mechanism
by which the gas remains in or close to equilibrium, so that its description in
terms of H is correct, even over long time intervals during which exchange of
many particles occurs?

1.3 A simplified model

Unfortunately, we are unable to handle the model described in Section 1.2. In-
stead, in the present paper we solve the problem of metastability for a simplified
model. Namely, we remove the interaction outside the box Ag = A\ O~ A, with
O~ A the interior boundary of A, i.e., we replace the interaction energy (1.19)
by

H(n)=-U Y nlz)ny). (1.45)

(z.y)EAG

Moreover, we also remove the exclusion outside A, i.e., the dynamics of the gas
outside A is that of independent random walks (IRW’s). These two simplifica-
tions will allow us to control the gas and to overcome the difficulties outlined
in Section 1.2.4.

Our state space is
Ny = {n€X: Na,(n) = N}, (1.46)

where X = {O,I}A x NA\A and N = p|lAg| (with p = e %), The local
grand-canonical Hamiltonian is

H(n) = H(n) + ANj(n), (1.47)
where H is the Hamiltonian in (1.45). Throughout the remainder of this paper
we assume that we are in the regime (1.26).

Our main theorem reads as follows. Let

B={necX: nlz)=1Vze Ay}

O={neX: n(z)=0VzecAl (1.48)

For j € X = {0, 1}}, let vy denote the canonical Gibbs measure conditioned on
the configuration inside A being 7, i.e.,

v () = v(m)1r; (n)
! v(Iy)

15

(n € X), (1.49)



where Iy = {n € X: n|y = 7}, with n|x the restriction of 5 to A, and v is the
canonical Gibbs measure defined in (1.22-1.24). For 7 € X = {0,1}", write
P, Ey,; to denote the probability law and expectation for the Markov process
(n¢)i>0 on X following the Kawasaki dynamics with Hamiltonian (1.45) given
that no is chosen according to v;. Write O to denote the empty configuration
in A. For A C X, let

74 = min{t > 0: n, € A} (1.50)

be the first hitting time of the set A.

Theorem 3 Let A € (%U, 2U), with QUL—A not integer, put £, = [QUL_A], and
suppose that log |Ag| > (.

(a) Let R C X be the set of configurations inside A where the particles form
a square or quasi-square contained in Ag. For ij € R, let £1(7) x lo(7) with
|41(n) — £2(n)] < 1 be the square or quasi-square of particles in 1, and let
£(77) = min{¢1 (7)), l2(7)}. Then for any 7 € R

l(n) <le: lim P, (m<m)=1
_ proo (1.51)
ln) >Le: lim Py (wm<m) =1
B—00

(b) Let C* be the set of configurations defined in (4.20). Let om = max{t <
m: Nt € O} and 706 g = min{t > 0o m: n: € C*}. Then

lim Py (o c-m < m) = 1. (1.52)

B—00

(¢) Let T =T(U,A) = —~U(20%2 — 40, + 2) + A(¢? — L.+ 2). Then

lim P, (e@*‘”ﬂ <m< e<F+5>ﬂ) =1 Y50 (1.53)

[B—00

Ao

F1a. 6. A critical configuration (C)

Theorem 3 is the analogue of Theorem 1. There are, however, a number of
important differences.
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— The mechanisms for the evolution of clusters under the Kawasaki dy-
namics and the Glauber dynamics are different. In particular, under the
Kawasaki dynamics there is a movement of particles along the border of
a rectangular droplet, leading to a (more stable) square droplet on a time
scale much shorter than the one needed to grow or shrink (namely e®?).
Moreover, the sub- vs. supercriticality of a rectangle (i.e., its tendency
to reach [0 before B or vice versa) is related to its area. In contrast,
under the Glauber dynamics the sub- vs. supercriticality is related to its
minimal side length: a subcritical rectangle is attracted by the maximal
square contained in its interior, while a supercritical rectangle does not
manifest any tendency towards a square shape.

— Theorem 3(a): We only identify the sub- vs. supercriticality of squares
and quasi-squares. We believe that it should be possible to show that,
starting from an ¢; X ¢ rectangle with ¢,/ = 22 for ¢ soem integer, the
system reaches an ¢ x ¢ square in a time of order e®% and from there
proceeds as described in (1.51).

— Theorem 3(b): Let R* C X be the set of configurations inside A where
the particles form an £, x (£, — 1) or (. — 1) X £, quasi-square with a
protuberance attached anywhere to one of the sides of length /. and with
a free particle anywhere else, all contained in Aq (see Fig. 6). We will see
in Section 4.2 that C*, the ‘gate’ of the transition from [0 to M, consists
of all configurations that are ‘U-equivalent’ to some configuration in R*,
i.e., can be connected to that configuration via a path with a ‘maximal
saddle U’ and vice versa. In particular, C* D R*, but the full set is more
complex (see Fig. 9 in Section 5.2). This complexity comes from the fact
that under the Kawasaki dynamics particles can move along the border
of a rectangular droplet at a cost U.

The critical configuration in Fig. 6 has the same shape as in the NC-case,
but with an extra free particle. This particle signals that the ‘gate’ of the
transition from [0 to B has been passed and that the droplet starts to grow
without hesitation. Note that I'(U,A) is the energy of the critical droplet
under the local grand-canonical Hamiltonian in (1.47).

It is certainly feasible to also prove the analogue of Theorem 2 for the
simplified model. However, in the present paper we will not address this issue
for reasons of space.

Remarks:

(1) As explained above, the removal of the interaction outside Ag and the ex-
clusion outside A allows us to mathematically control the gas. From a physical
point of view this approximation seems very reasonable, because 8 — oo corre-
sponds to a low density limit (p = e ®#) in which the gas essentially behaves
like an ideal gas.

(2) In the simplified model we are focussing on the local aspects of metastability
and nucleation: the removal of the interaction outside Ay forces the critical
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droplet to appear inside Ag. In the original model with interaction and exclusion
throughout Ag, if liminfg % log |Ag| is large enough, then the decay from
the metastable to the stable state is driven by the formation of many droplets
far away from the origin, which subsequently grow and coalesce. This is a
much harder problem, which we hope to tackle in the future (see Deghampour
and Schonmann [4] for a description of this behavior for Ising spins under
Glauber dynamics). In the original model also the question of the growth of
large supercritical droplets comes up, which is absent for the simplified model
because A is finite. For Kawasaki dynamics this poses new problems compared
to Glauber dynamics, because large droplets deplete the gas.

1.4 Outline of the paper

Our strategy to prove Theorem 3 will be the following. In Section 2 we show
that, under the measure v (77 € X), particle densities in suitable regions around
A are not too far from their expected value. With the help of large deviation
estimates we show that these density properties are preserved under the dy-
namics over very long time intervals with a very large probability. In Section
3 we use this fact to control the gas, essentially via a series of mizing lemmas.
Once the gas behavior is under control, we start to tackle the metastability
problem inside A. This is done in Sections 6-7 via recurrence and reduction.
Namely, in Section 6 we show that certain subsets of configurations of increasing
‘regularity’

X1 DX D Xg (1.54)
are visited by the process on certain basic time scales
T =% <« Ty =P <« Ty =P, (1.55)

This fact leads us in Section 7 to define a reduced Markov chain with state space
X3, whose transition probabilities we can estimate in a way that allows us to
control the metastable behavior. In essence, we show that this reduced chain is
equlvalent’ in its metastable behavior to a local Markov chain with state space

= {0,1}" that is reversible w.r.t. the local grand-canonical Hamiltonian H
deﬁned in (1.47). This approximation is what drives the argument. In Section 5
we study the local Markov chain using general ideas from renormalization. The
dynamics inside A is still conservative, and this difficulty has to be handled via
local geometric arguments, as explained in Section 4. Here we also show that
the Kawasaki dynamics has its own peculiarities, which need to be understood
in order to describe the evolution of droplets. The proof of our main result
in Theorem 3 comes in Section 8. Here the fact that the full Markov chain
is reversible w.r.t. the canonical Gibbs measure plays an important role. In
Section 9 we prove the equivalence of the canonical and the grand-canonical
ensemble for the simplified model in the regime (1.26). This equivalence is used
in some of the calculations.

1.5 Notation

Before we start the proof of Theorem 3, we collect the frequently used notation.
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We use capital letters for subsets of Z2, calligraphic capital letters for subsets
of the configuration space X, and boldface capital letters for events involving the
Markov process and the clocks. This style is used consistently in order to keep
different types of quantities apart. We use the symbols ¢, 7T for time, v for the
canonical Gibbs measure with particle density p = e2% (recall (1.22-1.24)),
and x for a generic positive constant.

For A C 72, the set of nearest-neighbor bonds in A is
A" ={b=(z,y): z,y € A}. (1.56)
For A C X, the base of A is
BASE(A) = min{A C Z* n€ A= ¢ € AVY(: {|a=n|a}, (1.57)

i.e., the minimal set of sites on which the configuration determines the event
A. Forn € X, n|x € {0, 1}* denotes the restriction of 5 to A. Conversely, for
e X,

Iy = {n € &: nlz =n}. (1.58)
For A C Z? and 1 € X, the number of particles the configuration 7 places in A
is

Na(n) =) n(x). (1.59)

TEA

For A C Z?2, the interior resp. exterior boundary of A are

07A = {z€A Fb=(z,y): y¢ A}

0tA = {z ¢ A: 3b=(z,y): y € A}. (1.60)

For ¢ € N, the box with side length ¢ centered at the origin is denoted by A,.
The side length of Ag, the local box appearing in the Hamiltonian H in (1.45),
is ¢5. All quantities that live on A are written with a bar on top, in order to
distinguish them from quantities that live on Ag or other boxes. A function
B — f(B) is called superezponentially small (SES) if

o1
lim —
[B—00 ,8

log f(B) = —o0. (1.61)

We frequently round off large integers, in order to avoid a plethora of brackets
like [-].

2 LD-estimates for clocks and equilibrium

In this section we formulate several large deviation estimates that will be needed
later on.
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2.1 LD-estimates for clocks

Let 74, « € N, denote the ringing times of the clock at bond b. For ¢ > 0, let
rp(t) = max{i € N: 7,; < ¢} denote the number of rings prior to time ¢. For
m,n €N, put ry(n,n +m) = ry(n +m) —ry(n). For A C Z2, T >0 and § > 0,
define

R).(A) = {Vb € A*¥n < T V¥m > e: ry(n,n+m) € [3m, %m]} (2.1)

Proposition 4 below shows that clocks ring regularly over long time intervals.
This proposition will be needed to switch from continuous to discrete time.

Proposition 4 For all AC7Z% T >0 and 6 >0

P(R5(A)%) < T|A*|SES. (2.2)
Proof. Write
P(R(A)°) = {Elb € A* In < T Im > eP: ry(n,n+m) ¢ [im, %m]}
< T|A7| Zw P(rs, (0,1m) ¢ [5m, 3m),
m>e
(2.3)
where by is any given bond. We have
Tbo (0, 1) <%m:>7b0 (] > (2.4)
rho(0,m) > 3m = 7, (B3] <M '

Since Ty, = X1 + -+ + Xm, With (x;)ien ii.d. exponential random variables
with mean 1, a standard LD-estimate gives that the summand of the last term
in (2.3) is < e ™ for some k > 0. Hence the claim follows. QED

2.2 LD-estimates for equilibrium

2.2.1 Hitting times. Proposition 5 below gives us an estimate on the hitting
time, under the dynamics starting in equilibrium, of sets that have a small
probability under the equilibrium measure.

Proposition 5 Let A C X and 74 = inf{s > 0:ns € A}. Then for any t >0

Py (74 < 1) = /X U(dn)Py(ra < 1) < 3BASE(A)*|(A). (2.5)

The same holds when v is replaced by vg = v1g/v(B) for any B C X.
Proof. Fix A. For s > 0, let

Fy={n,e€An, ¢ AV0<u<s} (2.6)
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Fix € > 0 and define
R, = {some clock in BASE(.A)* rings during [s,s +€)}. (2.7)

Then we have

P,(ta<t) = P,(3s€]0,t): Fy)
(2.8)
= P,(3s€[0,t): FsNR,) +P,(3s €[0,t): FsNRE).

The first term equals P, (14 < t)[1 — e~¢BASE(A)] because clocks have no
memory. The second term is bounded above by

Py(30 < i < t/e: mic € A) < EV(A), (2.9)

where we use that P, (n;. € A) does not depend on i because v is the equilibrium
measure. Combining the latter two observations with (2.8) we get

P, (14 < t) < tv(A) Eef‘BASE(A)*| . (2.10)

Optimize over ¢, i.e., pick e = 1/|BASE(.A)*|, to arrive at the claim. QED

2.2.2 Recurrence times. Proposition 6 below gives us control over the suc-
cessive times at which the dynamics hits a certain set. This proposition will be
needed later on to establish recurrence properties to certain special sets.

Proposition 6 Let T <T' <T" and let A,B C X. Suppose that there exists
an event Epr C X0T) sych that

(i) Ep C {3t [0, T):n € A}
(i1) ii%ﬂbm (Er) > p77> 0. (2.11)
no €

Then
IP’,,(Ht €[0,T"): ns ¢ AVs € [t + T'))

<7 [3|BASE(BC)*|V(BC) +(1- p)T’/T] (2.12)

Proof. Pick any ¢ € [0,7"). Split the time interval [t,¢ + T") into pieces of
length T'. By (2.11)(i-ii), on the event {75 > T"}, if at the beginning of a piece
the process is not in A, then it has a probability at most 1 — p not to enter A
during this piece. Hence the probability not to enter .4 during the time interval
[t,t +T") is at most (1 — »)T'/T by the Markov property. Consequently,

IP’,,(Ht € [0,T"): 15 ¢ AVs € [t,t—i—T’)) <Py (1 < T")+T"(1—p)T/T. (2.13)

Now use Proposition 5 to get the claim. QED

2.2.3 Particle density in annuli around A. Propositions 7-9 below give us
control over the number of particles in annuli around A with a side length that
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is close to the mean particle distance on an exponential scale. In the proofs we
compute the estimates using the grand-canonical Gibbs measure p on Z? with
particle density p, rather than the canonical Gibbs measure v on Ag with total
particle number p|Ag|. However, by the equivalence of ensembles proved in
Section 9, the difference is SES under our assumption that limg_,, % log |Ag| =
oo (see the remark at the end of Section 9).

Proposition 7 Let v >0 and |4 = e2(A+NB . Then for all v € (0,7)
v ({n € X: Ny, \1,(1) < e7lﬁ}> — SES. (2.14)
Proof. Abbreviate M = ¢4, Let A= {n € A: NAlJr\A(n) < M}. Then
WA) < M [yp(dn) e
_ eM[e—(1—e*1)p]\Al+\M (2.15)

= eM(1 +o0(1))exp[—(1 — e e,

where we use that p outside A places particles according to a Poisson random
field with density p, and we note that |A;, | = €77 /p. QED

Proposition 8 Let vy >0 and [_ = e2(A18 Then
v ({n€x: Ny, \x,(n) > logB}) = ses. (2.16)
Proof. Abbreviate M =logf3. Let A= {n€ X: Ny, \x(n) > M}. Then
N —
pA) < e [ u(dy) €T
_ e—'yﬁM[e(eW—l)p]Ml,\/_\\ (2.17)
= e "M (1 +0(1)),
where we note that [A;_| = e~78/p. QED
Proposition 9 Let v >0 and [_ = e3(A=NB Then for alln e N
v ({n€ X Nywry_yaea,_(n) > 2" =22 log B}) = (sE)™".  (2.18)

Proof. Abbreviate M = log . Forn € N, let A, = {n € Xt Nayn+1y, \onp, (1)
> (271 — 2)2 )M}, The same estimate as in (2.17) gives

p(An) < e METEEA (L Lo(1))  (neEN) (2.19)
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with the error term uniform in n. QED

Define
X = {nex: Ny \iln)>e"%
X3 = {neX: Ny \iln) <logf} (2.20)
X" = {n€X: Npwiiy, \2np, (n) < (2"71 —2")2log B}
and put
X=X naZn { N xg’n}. (2.21)
neN

Proposition 10 Let Ay = {n, € Xy Vt € [0,T)}. Then

P,(AS) =SES  for all T < e“? with C arbitrarily large. (2.22)

Proof. Estimate

P,(A%) <PBy(ryy <T)+Py(rye <T)+ Py(Tysm <T) (2.23)
neN

and use Proposition 5 in combination with Propositions 7-9. Note that |BASE(X])*|,
IBASE(X2)*| and 272"|BASE(X;"")*| grow only exponentially fast with 5. QED

Proposition 10 will be crucial later on. Namely, it says that over the expo-
nentially long intervals we are considering for the metastable behavior we may
as well assume that the process (nt)tz() never leaves Xj.

3 LD-estimates for independent random walks

In this section we formulate several large deviation estimates that involve hitting
times for particles performing independent random walks. These estimates will
be needed later on to control the gas outside A. We do the estimates pretending
that the random walk lives on Z? instead of Ag. However, this only causes an
error that is SES because of our assumption that limg_, % log |Ag| = oco.

3.1 LD-estimates for a single random walk

3.1.1 Hitting times. Let
(€t)e>0 (3.1)

be simple random walk on Z? with jump rate 1. Let P, denote its law on path
space given {y = z. Let 75 = min{¢t > 0: & € A}. Proposition 11 below gives
us control over 75 when the random walk starts from = € 9TA.

Proposition 11 There exist k > 0 and tg > 0 such that for all t >
K

in Py(ry >1%) > ——.
mrergf[\ olra>t) 2 logt
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Proof. We begin by proving the analogous estimate for discrete time. B
1. Let (£,)nen, be simple random walk on Z2. Let 75 = min{n > 0: &, € A}
(which does not include n = 0), and put

0{} =max{0 <m < n: &, € A}. (3.3)
Pick € A and write

n

1=Y"Pe(0)=m) =3 > Pulém=y)Py(rz >n—m). (3.4)
m=0

m=0yeco- A

Split the sum over m into two parts: 0 < m < n(l — @) and the rest. The
first part can be bounded above by

- n(l_@) K n
ERN [1 + mzl El} max B (T]\ > @), (3.5)
where we use that
maxPy(ém = 2) < L Vm>1 (3.6)

3|

2€72

(see Spitzer [21] Section 7). The second part can be bounded above by
EN I D (3.7)

Combining the two bounds in (3.5) and (3.7) with (3.4), we obtain, for n large
enough,

n K2
Py(ry > o) > e 3.8
yglaa—xfx y\"A logn/ ~ logn (38)

2. Since any two sites in 9~ A can be connected by a path outside A of length
at most 2(¢y + 1), it follows that uniformly in n

min_[P, (7'[\ >

lin_ ) > k3 max Py (TA > /<;4>. (3.9)
yeo~

logn yed~A logn

Together with (3.8) this settles the claim in (3.2) for discrete time.
3. The extension to continuous time is now trivial, via a standard LD-estimate
on the clock of the random walk. QED

3.1.2 Trapping times. Let A be a finite non-empty subset of Z? without
holes. Let

(éA)tZO (3.10)

be simple random walk on Z?\ [A\ ~ A] with jump rate 1 with the property
that when it hits 9~ A it gets trapped, in the sense that a step from 07 A to
0T A occur at rate e"U8. Proposition 12 below gives us control over the time
this random walk spends in the trap 0~ A starting from z € 0T A.
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Proposition 12 There exist k = k(A) > 0 and By > 0 such that for all 6 > 0,
all B > By and all t € [eVP,eCP] with U < C < oo

: A - g L w-ss__*K
> — —. .
xlgngPx(ft €0 A) > Se 20 (3.11)

Proof. Again, we first prove the analogous estimate for discrete time. The
proof uses the following asymptotic result for simple random walk (&,)nen, on
Z2. Let 7o = min{n > 0: &, = 0}. Then there exists a x; > 0 such that

K1

Py(m0 =n) ~ (Vo € Z2, n — 00) (3.12)

nlog®n
(see Spitzer [21] Section 7).

1. From (3.12) it is easily deduced that for all A C Z2, finite non-empty and
without holes, there exists a k = k(A) > 0 such that

min Py(75-4 =n) >

n — 00), 3.13
z€dt+A ~ nlog®n ( ) ( )

where 75- 4 = min{n > 0: {, € 0~ A}.
2. Let (£)nen, be the discrete-time version of (3.10). Let ng = e(U~9% <« n,
Then, for z € 9T A,

P, (2 € 07 A) > (1+ 0(1)) Pa(n — ng < 19— 4 < n). (3.14)

Here we throw away all the first hits of A at or prior to time n —ngy and require
the random walk to stay trapped for a time at least ng. The latter costs not
more than (1 —e~U#)" =1 — SES. But, by (3.13), we have

n

. K KT
]P):L‘ - < — < > ~ —) ,
mggBA (n=no <Tp-asn)2 m;mH mlog?m  nlog?n (n = co)
(3.15)
and so for all n € [eV?, e“P] and 3 sufficiently large
min P, (&, € 9~ A) > le(U_‘;)’BL (3.16)
e n Q(Cﬁ)Z ’

3. The extension to continuous time is again trivial, via a standard LD-estimate
on the clock of the random walk. QED

3.2 Mixing lemmas for independent random walks

In the following lemmas, Ap is the set of configurations defined in (2.20-2.21).

For 1y € Xp, let C](n) denote the event that all particles in 7o N (Ay_ \ A)
exit Ay_ within time 7' = e®# without entering A and remain outside A,_ until

time T. We recall that ¢/_ = e3(2=7)8,

Lemma 13 For all v > 0 there exist & > 0 and By > 0 such that for all 8 > Po:
ming, ey, P(C (m0)) > (k/6)'°87.
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Proof. Because outside A particles perform independent simple random walks
(see (3.1)), we have

min P(CY (1)) >

et inf Px(Tzz\Al7 S T, TA > TZ2\A£7’ £T Q Ag_) )

[ log B
TEITA

(3.17)
where we use that N, \[\(770) < log g for all ny € Ay, and that the probability

between square brackets is minimal for z € A, \ A when z € 9 A. We have

Pu(rz20, < T, 75 > 1g2\0, > 7 & Ae_)

(3.18)
> Pyt > 122\, ) — Palrz2\n, >T) —Pul(ér € Ag ).
But, by Brownian approximation, we know that
: _ K1 ~ 2K1
n Falra > T, ) 2wt -8 5.19)
max Py(rz2,, >T) < exp[—roT/I12] = SES, '
TEITA -
while (3.6) gives
A
max P, (ér € Ay_) < ralAe| = kze 7P, (3.20)
OtA T
Insert (3.19-3.20) into (3.18) to get the claim. QED

For ny € Xy, let Cg’é(ng) denote the event that no particle in ng N (Z2\ Ag_)

enters A within time T = e(2—9)8,

Lemma 14 For all § >~y > 0: infy cx, P(Cg’a(ng)) =1 — SES.

Proof. We have

Pp(CY () = [ Palrg >T)@ = [ [1-Palry <T)™@.

:L‘GZZ\A[_ IEZQ\AZ_
(3.21)
But, by Brownian approximation, we have
P,(r5 < T) < exp[—rlz[*/T] < 1 (3.22)

uniformly in 2 € Z?\ A,_. Hence, for 3 sufficiently large,

> m(@) expl-nlz2/T]}. (3.23)

:L‘GZZ\A[_

DN | =

Pro(C3 () 2 exp { -

The sum in the exponent can be estimated from above by

> Nyniip, \ana,_(m0) exp[—r52%me@=78], (3.24)

n=0
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Hence the claim follows via (2.20). QED
Forng € Xy, k€N, t1,...,t, > 0and zy,...,5, € 0" A, let
Cg’é(no;tl,...,tk;fL‘l,...,ZEk) (325)

denote the event that k particles from ng N (Z2?\ A,_) enter A during the time
intervals [t1,t1 4+ 1),..., [tg, tx + 1) at sites z1,...,x; (with no restriction on
what happens at other times).

Lemma 15 For all v,6 > 0 there exist kK > 0 and By > 0 such that for all
B> Po:

k
min P(Cg’é(no; By b3 X1y ey Tg)) < [nef(Af‘s)ﬁ log 8 (3.26)
no€Xo

uniformly in k €N, 0 < t1,...,t, < T = €% and z1,...,2, € O A, with C
arbitrarily large.

Proof. Obviously,

k

Py (C3° (03t -t o, - ) < [ Pao (CF (03 113 22) (3.27)
=1

and so it suffices to prove the claim for £k = 1. Consider first the case where
T = elA—0)8 <t <T = e Let us look at the particle configuration at
time t; — T1. By Proposition 10 we know that with a probability 1 — SES this
configuration falls in Ay. Hence, using the Markov property at time ¢t; — 77, we
get

5
max Py, (C3° (105 t1; 1))
N0 €Xo

)0 _
= SES + max Z I[DTIO (ntl—Tl = n)Pno(Cg (’170;t1;(I:1) | Ny -1y = 77)-
no €Xo nEXo
(3.28)

But, by Lemma 14 and (3.6), we have

0
max Py, (C3° (no; t1;1) [ -y =n) < SBS+max 35 n@)Pe(lry = 21)
neto nEXo zeA,_\A

S SES + % maxnexo NAl_ \[’\ (77)

< SES 4+ K1e (A8 10g 3.

(3.29)
Substitution into (3.28) gives the claim. The case where 0 < ¢; < Tj follows
from Lemma 14 and gives SES. QED
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4 Local Markov chain: definitions and saddle points

In this section we introduce the local Markov chain that approximates our
dynamics inside A, and we study its geometric properties. In Section 5 we will
study the recurrence properties of this Markov chain, which will be needed in
Sections 67 to study the metastable behavior of our dynamics.

4.1 Definition of the local Markov chain

We denote by b = (x,y) an oriented bond, i.e., an ordered pair of nearest-
neighbour sites, and define

FRM = {b=(a,y): veRy¢ A}

A" = (b= (z,y): ¢ A,y € A} (4.1)

and 0*A = 9*A°* U 9*A™. Two configurations 77,_77’ €X with 77 # 7’ are called
communicating states if there exists a bond b € A* U 9*A such that 7' = Ty7,
where T37 is the configuration obtained from 7 as follows:

~ b € A*: Ty denotes the configuration obtained from 7 by interchanging
particles along b;

— b€ 9*A% (ie., b is exiting from A):

Tyi(z) = {g“’ v (42)
— be §*A™ (i.e., b is entering A):
Tia(z) = { 1) V27 (43)

The local Markov chain (7;);>0 is defined to be the Markov chain on X =
{0, 1} with generator

LHm= > cbDTI) - f@)], (4.4)
bEA*UO* A
where
(b, ) = e BUH(Toi)—H(7)]+ (4.5)
Note that

be oA c(b,i) =e PA

be o Aot b,y = 1. (4.6)

Also note that an exchange of occupation numbers inside the ring A \ Ay or
between Ay and the ring A \ Ay does not involve any change in energy.

In a standard way the above dynamics can be realized with the help of
Poisson clocks. To study the transitions of the local Markov chain, we consider
the discrete-time version that is obtained from the continuous-time version by
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looking at the process when some clock in A*UJA* rings. We denote by P(7,7')
the corresponding transition probabilities, i.e.,

P(ﬁaﬁl) = Pﬁ(ﬁﬁ = ﬁl) (47)

with 7 the first ringing time. It is easy to verify that the stochastic dynamics
defined by (4.4-4.5) and (4.7) is reversible w.r.t. H. In particular, the transition
probabilities P(7,7’) can be written in the form

P(i,1') = q(n, 1 )e” =0 (48)
where ¢(77,7') is an irreducible symmetric Markov kernel characterizing the set

of communicating states.

4.2 Definitions

Let us recall some definitions from Olivieri and Scoppola [10].

1. A path ¢ is a sequence ¢ = ¢y,...,¢, (n €N, ¢; € X) with P(¢;, pis1) >0
fort =1,...,n — 1. We write ¢: 7 — 77 to denote a path from 7 to 77’. A set
A C X with |A| > 1 is connected if and only if V57,7’ € A I¢p: ) — 7' such that
¢ C A. Given A C X, we define its boundary

OA={C ¢ A: P(7) >0} (4.9)
2. The set of minima of the Hamiltonian H in A is
FA) = {i1€ A H() = min H(O) }. (4.10)
CeA

The communication height between 7,7’ € X is

H(n,7') = min max H (). (4.11)
¢: 17 leg

The set of configurations realizing the minimal saddles between 7,7 € X is

SG1) = {Ce®: 3 i, 3¢ max HE) = HQ) = Ao} (412)

£co
Given two sets A, B C X, put
H(AB) = min H(5.i) (4.13)
and
S(A,B) = {8(i,7): 1€ A i € B, H#,7) = H(A,B)}. (4.14)

3. Next we introduce a geometric description of the configurations in terms
of contours. Given a configuration 7 € X, consider the set C() C R? defined
as the union of the 1 x 1 closed squares centered at the occupied sites of 7
in Ag. The maximal connected components C1,...,Cp, (m € N) of C(7) are
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called clusters of . The centers of the unit squares of a cluster C form a *-
cluster (i.e., are within distance v/2). The boundary of a cluster C is a polygon
connecting sites on the dual lattice (Z?)* = Z? + (3,1). At each site an even
number of bonds of this polygon meet: 0, 2 or 4. When this number is 4, we
use the convention to ‘round off” the corners: in this way we obtain a further
decomposition of the boundary of a cluster into a set 7y, ..., 7, of closed self-
avoiding contours (see e.g. Gallavotti [6]).

4. Let 7 be such that 7|3, gives rise to a single contour ¥ = (7). Define

n() = Ny, (1) (4.15)
In this case B
A(3) = B() + An(a), (4.16)
where
B(3) = (=20 + A)(3) + 3 1yl (4.17)

with () the area enclosed by v and |y| the perimeter of 7. Indeed, it is easy
to check that 2(y) — %|f7| is the number of nearest-neighbor bonds enclosed by
7. (Note that, since there is no interaction inside A \ Ag nor between Ay and
A\ Ay, for the computation of E(¥), the ‘energy’ of ¥, everything is as if we
had empty boundary conditions outside Ag.)

5. We denote by R(J) the rectangle circumscribing the contour 4, and by
01(7),22(7) the lengths of its sides. We use the convention ¢1(y) < £5(%),
but include all the translations and rotations of the retangle. We denote by
Ry, 0, the set of configurations whose single contour is an /1 x {3 rectangle. We
call monotone a contour v such that its perimeter coincides with that of the
circumscribed rectangle: || = 2(41(%) + £2(7)).

Fic. 7. A monotone contour

6. Given integers £1, 0o > 2, we define

— Dy, 4, the set of configurations where the occupied sites form an £; X /5
rectangle contained in Ay plus one free particle, i.e., a particle in A not
touching the rectangle;
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- Z/)\E_l ¢, the set of configurations obtained from a configuration in Dy, ¢, by
attaching the free particle to one of the sides.

— Dy, 4, the set of configurations given by

Dy 4, =171 € X: 37€ Dy, H(7,7') < H(7) +U, H(7) = H(7')}.
(4.18)
In other words, D, , is the set of configurations that can be connected

to ﬁfhzz by paths ¢ = ¢1,...,¢, (n € N) such that

¢1=1, ¢n=17, max H(¢;)<H(n)+U, H()=H®T) (419

1<i<n

It is easy to see that D, , contains only configurations giving rise to a
single monotone contour 4 contained in Ay such that:

— <’7) = V149 + 1;

— R(%) has side lengths ¢, (y) < 41 + 2 and 45(y) < 2+ 2;

~ (¥) contains a rectangle with side lengths (¢; —4) A 0,45 — 2

i.e., the interior of 4 contains a suitably large rectangular core.

- Dg ¢, the set of configurations obtained from a configuration in D, , by
1,2 1,42
adding a free particle.

- D; s, the set of configurations obtained from a configuration in D}, by
1,2 1,£2
attaching the free particle to an external corner of the contour in D, ,. .
In particular, DZ ¢, contains:

- 52' 0 the set of configurations where the occupied sites form an £; x £

rectangle contained in Ag plusa 1x2 protuberance attached to one of the
sides. Note that De £, Can be obtained from De o by attaching a 1 x 1
square to the 1 x 1 protuberance in an external corner.

7. A for our purpose particularly important set of configurations, which play
the role of ‘critical configurations’, is given by

C*=Dp 1,4, (4.20)

with

0, = [2UU_ A] . (4.21)

Recall that in the simple static analysis developed in Section 1.2.3 this value
came out as the critical droplet size. We denote by I' = T'(U, A) the energy of
the critical configuration:

D'=H(C*) = -U(20? — 46, +2) + A(£? — 0. +2). (4.22)

We recall that O denotes the configuration where A is empty and B the set of
configurations where Ay is full.
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4.3 Identification of saddle points

The following proposition is the key result of this section. It identifies the saddle
points for the transitions between rectangular droplets for the local Markov
chain (compare with (1.44)).

Proposition 16 (i) For 2 < ¢ < {.:

SR Uity o)) Rentn) = S(Reps Re—1,0) =Dy
H(D) |,) — H(RM) =Q2U —A)(¢—-2)+2U
(4.23)
S(Reer1: Uiy )20 Resen) = S(Rees1, Ree) = Dy
H(DY,) — H(Reg11) = (2U — A) (£ — 2) 4 2U.
(11) For £ > £.:
S(Ree, Uity )26, Rer 03) = S(Res Regr1) = Dy,
H(D),) —H(Rey) =2A-U
(4.24)
S(Rep+1 Uty o), 2(t041) Rev ) = S(Repi1s Retie1) = Dpoyy
H(Dpyyy) — HReyr1) =24 - U.
(iii)
s@O,m=D; ,,
HOW) — A0) =T (4.25)
Proof. Let B
No={f€X: Ny(m) = a(x) =n}. (4.26)
ver

We consider the foliation of X into manifolds of a constant number of particles:
UM N, (4.27)

We will consider the sets N2, Nyq1y for £ > 2 and investigate some of their
geometric properties. Our proof will be based on the following lemma identify-
ing certain sets of minima, minimal saddles and communication heights. After
this lemma has been proved we givethe proof of the proposition.

Lemma 17 (i) For £ > 2:

FNu-1e) =Re-1p,  FN2) = Ray- (4.28)
(ii) For £ > 2:

S(Re—1,6N2) = S(Ne-1ye,
H(Rp-1,,Np2) = H(Dg_l,e) = H(De_—u) +A

(4.29)
S(Ree, Nuer1y) = SWNi2s Nyesry) = Dy
H(Rep, Neerry) = H(Dgy) = H(Dy,) + A.



Proof. (i) Fix £ > 2 and consider n = (£ — 1)¢ or n = ¢2. Given an 7 € Ny,
the energy decreases if we translate the clusters of 1 to join them into a single
cluster contained in Ag. It further decreases if we rearrange the 1 x 1 squares
to get a single contour v (i.e., if we fill the internal ‘holes’ with external 1 x 1
squares). Since under these operations the total number of particles remains
fixed, to minimize the energy in N, we just have to find the contour(s) 4 with
minimal perimeter |y| among the ones with () = n. It is clear that, starting
from a contour 4', by rearranging the 1 x 1 squares inside we can construct
a monotone contour ¥ with R(¥) C R(¥') without increasing the energy. The
energy associated with a monotone contour 4 with (y) =n is

B() = (<20 + A)n+ U(1(7) + 6(7)- (4.30)

To minimize E(Y) in N, we have to find the rectangle with minimal perimeter
among those whose area is > n. From this the claim easily follows.

(ii) Fix £ > 2.
1. We first prove the claim when starting from R,_; o. We define a set of paths
$:Ro—1,4 — Ny as follows:

— Let
PP = ¢"P(L = 1,0): Re10— Dy, (4.31)

be defined by

(lbup:(lbl""’¢2""’¢3""’¢4""’¢5 (4'32)
with

1 € Re-16, ¢2€De—1e, $3€D, 14 s € D} 1y b5 € DS 1y
(4.33)
where ¢ uses ¢1, P9, P3, P4, P5 as a ‘skeleton’ and the successive configu-
rations in ¢ are obtained in the obvious way by successively adding or
moving a suitable particle (see 6 in Section 4.2). The maximal saddle in
¢"P is reached in Dg—ll and is of height H(Dg—l,é) = H(Df_fl,l) + A.

— It is easy to see that there is a path
¢l = 10— 1,0): Dy, — N (4.34)

such that max; H(¢¢ov", ¢pdovm) < H (Dy_1,) + A. Indeed, to obtain this
path it suffices to successively introduce into A one new particle and fill
up all the corners of the contours in DZ’_M until the arrival in Ry C Np2.
Each time we add a particle, we have first an increase of energy by an
amount A, but as soon as we put this particle into a corner of the cluster
in Ay we have a decrease of energy by an amount 2U > A.

Thus, for each £ > 2, the path (¢*P(¢ — 1,£), %™ (¢ — 1,¢)) is a candidate to
realize the minimax between N, (¢e—1)¢ and Np2. These paths will turn out to be
useful to make a comparison with other possible candidates.
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2. When starting from R, we proceed exactly in the same way to construct a
path (¢"7(£,£), $V" (£, 0)).
3. From the proof of (i) it is immediate to see that

.7:(./\/(5,1)5 \Re—1p) = min H(n) = E(RK—I,E) +U. (4.35)
NEN -1y \Re—1,

From this it follows that for any path passing through N 1)e \ Re-1,¢, once it
meets N(g_l)g_i_l it gets an energy > H(Ry—1,¢) + U + A, which is strictly larger
than

max_H(¢;) = H(D)_, ;) = H(Ry—1,4) +2A - U. (4.36)

i=1,...,5

This, in turn, implies that any path realizing the minimax between N(g_l)g
and N(l—l)ul has to pass through R,_;,. Moreover, any path realizing the
minimax between Ry_1 ¢ and Ny has to enter Ny_q)p4q1 through Dy ¢, which
corresponds to the saddle between R;_1 ¢ and N, (6-1)641- (Similarly, any path
realizing the minimax between Ny and N1y has to pass through Ry, and
Dyy.)

4. At this point it is clear that paths realizing the minimax between R,_q ¢
and N2 also have to pass through 5[71 ;- Indeed, any move (with a change
in energy) starting from Dy_;  and different from attaching the free particle
to the rectangle would involve an energy increment of at least U, i.e., large
enough to pass over the saddle in the path (¢*?(£ —1,¢), 9" (£ —1, /) because
U > A — U. Similarly, paths realizing the minimax between N2 and NK(K-H)

have to pass through ﬁ[é.

5. Let n = (£ — 1)¢ + 1, and consider a monotone contour ¥ with () = n.
The area of its circumscribed rectangle has to be at least (¢ —1)(£+ 1), with a
minimal perimeter of 4¢. Similarly, for n = ¢2 + 1 the area of a circumscribed
rectangle has to be at least /(¢ 4 1), with a minimal perimeter of 4/ 4 2. From
this it easily follows that F(N(_1)¢41) coincides with the set of configurations
containing a single monotone contour inscribed in an £ x £ or an (£ —1) x (£+1)
rectangle and containing (£ — 1)¢ + 1 particles. Similarly, F(Ny2, ;) coincides
with the set of configurations containing a single monotone contour inscribed
in an £ x (£ + 1) rectangle and containing ¢2 + 1 particles. In particular,

F(Af[(l,l)+1) D ,Dl_fl,f’ f(N[2+1) D DE_:Z (437)
From this the claim follows. QED

We can now complete the proof of Proposition 16. Parts (i) and (ii) fol-
low from Lemma 17. To prove part (iii), note that since every path ¢:[] —
B has to cross all the manifolds NVp2, Nyr41), the global saddle S(CJ, M) can
be nowhere lower in energy than the saddles S(Ng_1ye, N¢2), S(Ngz, Ngpay),
¢ > 2. By direct inspection we see that the saddle with maximal energy is
S(Ne—1)e., Nez) = Dgﬁl’gc. On the other hand, using a comparison with the
path ¢"P(L. — 1,£4.), %" (¢, — 1,£.) we see that H(S(CJ,M)) cannot exceed
H(S(N(gc_l)gc,./\[gg)). From this it follows that S(CJ, W) = Dgc—l,éc' QED

Remarks:
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(1) We want to emphasize that, contrary to what happens under the non-
conservative Glauber dynamics where the global saddle is ‘S(H, H) = Z_)[fl’lc’,
under the Kawasaki dynamics with creation and annihilation at 0*A the global
saddle is more complex and does not correspond to a single geometric shape
(modulo translations and rotations). Indeed, after reaching ﬁﬂ_c—l,éc we can,
before we add a next particle whose cost is A, perform all possible sequences of
moves described by paths satisfying (4.19) and remain below the height of the
global saddle, which is H(Rg,—1,,) + 2A — U (see Fig. 9 in Section 5.2 for an
example). This global saddle is reached when we add the next particle to the
configuration containing a cluster in D, _, , (with energy H(Ry,—1,4,)+A-U),
giving us a configuration in C* = D?fl ¢.- This is the set that appears in
Theorem 3 and that plays the role of the critical configurations.

(2) A typical j € Dy, 4, canin fact be quite asymmetric, i.e., quite different from
square or quasi-square. However, there is always a path from 7 to a suitable
square or quasi-square along which the energy does not exceed H (7). Thus,
under the Kawasaki dynamics the squares or quasi-squares act as attractors on
a time scale e®? which is much shorter than the time needed to grow of shrink.

(3) The specification that we included in the geometric characterization of
— 0 +
Di 15 Dt 0 Dt g (4.38)

namely, that the interior of 4 has to contain a suitably large rectangular core,
is related to the fact that the above mentioned moves can only be performed on
the external boundary of the rectangles circumscribing the clusters in D, .

5 Local Markov chain: recurrence

In this section we analyze the local Markov chain (7;);>0 on A that was defined
in Section 4.1. Since this Markov chain is non-conservative and finite, it falls in
the Freidlin-Wentzel regime (recall (1.17)) and the analysis of metastability can
in principle be carried out by using the general method in Olivieri and Scoppola
[10]. The result obtained in Proposition 16 in Section 4.3, i.e., the solution of
a certain sequence of minimax problems, is the ‘model dependent’ part of this
method.

An alternative route is the renormalization procedure developed in Scoppola
[18], which is based on the following idea:

(1) Group the configurations in X' into a sequence of subsets of configurations
of increasing regularity: X D A1 D Ao D A5, D ...

(2) Prove a recurrence property of the Markov chain to these sets on an
increasing sequence of time scales: T} K Tr K T3 K ...

(3) Construct a sequence of Markov chains by observing the original Markov
chain when it enters these sets, and estimate their transition probabilities.
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In our case we need three sets: X; D X5 O X3. In Section 5.1 we define these
sets, in Section 5.2 we give a geometric description of their configurations, and
in Section 5.3 we prove the recurrence properties to these sets on the time scales
T, = % ,Th = elB , T3 = e®B . Section 5.4 contains some results on so-called
cycles.

Actually, we will not follow the renormalization procedure in full detail.
Rather, we make a construction that is adapted to our specific situation. The
results obtained in this section will be extended to the full Markov chain (’I’]t)tz()
in Sections 6-7, and will be used in Section 8 to prove our main result in
Theorem 3.

5.1 Definitions

We begin by defining a notion of reduction of a configuration that will be needed
to control the dynamics.

Definition 18 A configuration fj € X is 0-REDUCIBLE if there exists a sequence
of bonds by, ..., b, € A* UO*A (k € N) such that:

(a) H(ip1) < H(m;) for all 0 < i <k,

(b) H (i) < H(7),

where 0; = Ty, Ty, | ---Tp, 7, ¢ > 0.

Remarks:

(1) We can always extract a subsequence of bonds with length & < tg =
|A* U9*A|?, again satisfying (a) and (b), such that 7; # 7; for all i # j. This
is because tg is the maximal number of moves inside A needed to change any
7 € X into any 77’ € X.

(2) By definition, if 77 is 0-reducible, then there exists a finite path ¢: 7 — 7'
with 77 a configuration that is not O-reducible such that H(¢;11) < H(¢;) for
all 4. In fact, to construct such a path it suffices to glue together the paths given
by the definition of O-reducible configurations until we arrive at a configuration
that is not 0-reducible. The number of O-reductions necessary to arrive at a
configuration that is not O-reducible is finite, because with each 0-reduction the
energy H decreases by at least U while H is bounded from below.

Definition 19 The configurations 77,717’ are 0-EQUIVALENT if there exists a se-
quence of bonds by, ... by € A* UJ*A (k € N) such that H(7;11) = H(7;) for
al0<i<kandn="10.

Definition 20 A set of configurations C C X is a CYCLE if it is connected and
satisfies

H(F(C)) > I[la.CXH(’ﬁ), (5.1)
e

where F(OC) is the set of minima of H in the boundary OC of C (recall (4.9-
}.10)).
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We next generalize the idea of reduction as follows:

Definition 21 A V-PATH is a finite connected sequence ¢1,...,¢r (k € N) of
configurations or sets of configurations such that:

(a) If ¢; = C for some 1 < i < k is a set of configurations, then C is a cycle
with H(F(OC)) — H(F(C)) <V, where F(C) is the set of minima of H in C,
and ¢ir1, Ppi—1 are single configurations such that ¢;r1 € F(IC) and ¢i—1 € C.

(b) If ¢i, piy1 for some 1 <i <k are single configurations, then q(¢j, pj41) > 0

and H($j41) < H(¢;) (recall (4.8)).

The reader should think of a V-path as a ‘downhill cascade’ in which a sequence
of lakes of depth at most V' can be present.

Definition 22 A configuration 7' is V-REACHABLE from 7 if there exists a
V-path from 7 to 7'. Two configurations 7 and 7' are V-EQUIVALENT if 7] is
V -reachable from 7' and vice versa.

Definition 23 A configuration 7 is V-REDUCIBLE if there exists a configura-
tion 1 that is V-reachable from 7 such that H(7') < H (7).

With these notions we define the following sets:

X = {7 € X: 7 is not O-reducible}
Xy = {n € X:nisnot U-reducible} (5.2)
X3 = {i € X: 1 is not A-reducible}.

We note that if V' < V', then a configuration that is V-reducible is also V-
reducible, so X3 C Ao C X;. We also define the following sets:

&) = {7 € i‘?l: 77 is O-equivalent to 7'}
E(n) = {n € Ay nis U-equivalent to 7'} (5.3)
E(7) = {7 € X5: 7 is A-equivalent to 7'}.

5.2 Geometric description of the recurrence sets

Definition 24 (a) For z € Ay, let nn(z) = {y € Ao: |z — y| = 1} be the set of
nearest-neighbor sites of x in Ag.

(b) A FREE PARTICLE is a site x € 770 Ao such that 35, .y 71(y) = 0.

(c) A PROTUBERANCE is a site £ € 1 N Ag such that 3 ¢, 1(y) = 1.

(d) For ij € X, the EXTERNAL BOUNDARY 07 is the set of occupied sites in 7
that can be connected to the ring A\ Ay via a path along unoccupied sites in 1.
(e) For j € X, an EXTERNAL CORNER is a site x & 7 such that there exist
Y,y €nnnn(z), y#y'. )

(f) R(bn,ly,dp,de,ds,dy) denotes the RECTANGLE in Ay of horizontal side
length ¢;, and vertical side length £,, such that its north side is a distance d,
from the north side of A, and so on.

(9) Ry, 4, denotes a rectangle of side lengths ¢1,0y anywhere in the box A, in-
cluding all translations and rotations. A rectangle Ry, 4, is called a SQUARE or
6 QUASI-SQUARE if £1 > 2 and 0 < fy — ¢1 < 1 (use the convention {1 < {3).
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Fi1g. 8. Two examples of external corners

The following proposition is our main structural identification of the sets
Xla XQ, X3'

Proposition 25 (i) Configurations in X have no free particles nor free holes.
If 7 is connected with a monotone contour, then fj € Xj.

(ii) Configurations in Xy have no protuberances. If j is connected with a mono-
tone contour obtained from a square or a quasi-square by removing m sites with
0<m<Il -2, thenﬁEé\?g.

(iii) Configurations in X3 can be characterized as follows: 0 € Xs; if 7 €
X3\ {0}, then 07 is the boundary of a square or a quasi-square. Moreover, if
max{dy,,ds} > l, and max{de,dy} > Iy, then 7= R(lp,ly,dp,de,ds,dy).

Remarks:

(1) The characterization of Xy, X5 in Proposition 25(i-ii)is not complete. Only
those properties are given that are needed to derive the complete characteriza-
tion of X3 in Proposition 25(iii).

(2) We see from Proposition 25(iii) that all the elements of X3 corresponding to
‘small’ clusters, i.e., clusters of side length < %0, are square or quasi-square (¢
denotes the side length of Ay and we assume that £y > £.). All other elements
of X3 are LACUNARY SQUARES OR QUASI-SQUARES, i.e., have holes inside. By
definition, the interior structure of such configurations is not U-reducible. We
denote the set of lacunary configurations by £. These configurations need a
separate treatment (see the end of Section 7.6).

(3) It follows from the proof of Proposition 25(iii) given below that if £3(7)
corresponds to a ‘small’ cluster, then any 77 € £3(7) can be obtained from 7
by means of a rigid motion. For this reason we will denote the elements in
&;3(77) N X5 corresponding to ‘small’ clusters by Ry, 4, (with 0 < /¢y —¢; <1 and
l > 2).

To prove Proposition 25 we need the following lemma, which will also serve
us later on. For n € X and V € {U, A,2U}, define

Cy ={n € X: H(n, ') — H() <V} (5.4)

The structure of this set is characterized as follows.
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Lemma 26 (i) If 7 € X, then C?,%] is a cycle, n € .7:(0_%]) and C_%] N&L = &(n).
(_u) Ifne Xy, then _C_ﬁA is a cycle, € ]—‘(CTﬁA) and C_ﬁA N Xy = E(77). Moreover,
CA\F(Cq) C X\ Ay

(_m) Ifn € As, then C%U is a cycle, 7 € F(CZV) and C2UNXs = E3(n). Moreover,
CBUNF(CRY) C X\ &,

Proof. (i) If 7 € Xy, then 7 € F(C'). Indeed, if there exists 7' € Cf with
H(7') < H(n), then 7 is 0-reducible, which contradicts 77 € Aj. Next, let Z_),%] be
the maximal connected component containing 77 of configurations 7’ such that
H(7') < H(n) + U. By definition, D is a cycle. It turns out that C' = DY
Indeed, if 7' € C_f[]] , then H(7') < H(7',7), so 7' is in the connected component
because the trajectory realizing the minimax gives the connection. Conversely,
if 7' € DY, then there exists a path ¢: 7 — 7 such that max; H(¢;) — H(7) <
U, while by the minimax definition we have H(7,7) < max; H(¢;). Hence
H(n,7')— H(n) <U. Finally, if 7 € CY' N Xy, then it is straightforward to show
that 7' € ]—'(C,Tg), via the same argument that was used to show that 7 € F(CY).
This implies H(7]) = H(7]') and 77 € £,(7).

The second part of (ii) follows from the following remark. If 7’ € A}, then
H(7',q") > H(7') + U for all 7" with H(7") < H(7'). On the other hand,
if 7 & f(é?), then H(7') = H(7) + U. But then H(7',7") > H(7') + U =
H(7) 42U, and so 7 & @?. A similar argument works for the second part of
(iii). QED

Proof of Proposition 25. (i) If 7 has a free particle or a free hole, then 7
is obviously O-reducible, i.e., 7 ¢ X;. If 77 is a connected configuration with a
monotone contour, then there exist other configurations that are 0-equivalent
to 1 only if 17 has at least one protuberance. In this case all the configurations
that are 0-equivalent to 77 can be obtained from 7 by moving the protuberance
along the side of the cluster. Therefore H (Ty7) — H () > U for allb € A*U9*A
such that Tp7 ¢ &1(7).

(ii) We divide the proof into steps.
1. If » has a protuberance, then it is obvious that 7 is U-reducible. To prove
the second claim, we first show that if 7 is a connected configuration with a
monotone contour obtained by removing 0 < m < ¢; — 2 particles from Ry, y,,
then to reach a configuration ' with H(7') < H(n) we have to pass over a
saddle

H(n,7') > H(7) + A. (5.5)

The second claim follows from this inequality. Indeed, we only have to note
that if there exists a U-path ¢: 7 — 7', then H(7,7') < max; max¢eg, H(¢) <

H(7) + U, which contradicts (5.5). Hence 7] € X.
2. Equation (5.5) says that (recall (5.4))

n € F(Ca). (5.6)
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Let us use the description of the energy H in terms of contours that was intro-
=/

duced in Section 4.2. For 7' € A with contour ¥’ = 4'(7') we have

A() = (=20 + A () + o [+ ()4, (5.7

where n{, = n{(¥’) is the number of particles in Ay (i.e., the area inside the

contour) and n' = n/(§) is the number of particles in the ring A \ Ag. Our
configuration 7 has ng € [£1fy — 1 + 2,0145], |7| = 2(41 + £2) and n = 0.

3. Denote by CR(nyg) the set of all configurations 7" such that nj, = ng and such
that the circumscribed rectangle is contained in the square or quasi-square

Ry, ¢,. To prove (5.6) we first note that
1 € F(C5 N CR(ng)). (5.8)

Indeed, suppose that there exists a configuration 77’ € C}A N CR(ng) with |¥| <

17| Let R}, ,, be the rectangle circumscribing /. Then R}, , C Ry, 4,, and we
1°%2 12

have

6’1 </, EIQ < Yty ,1 + 612 <ty + 4o, €11€,2 >ng=¥01ly—m (5.9)

with 0 < m < ¢; — 2. But ¢} < ¢; implies £] ¢}, < ({1 — 1)l < ny and £, < £y
implies ¢} ¢, < £1(¢3 — 1) < ng, which contradicts (5.9). The final step in the
proof is to show that B B

Cq* N CR(ng) = C5'. (5.10)

But this is an immediate consequence of the fact that in order to exit from
CR(np) the process has to reach an energy > H(n) + A.

(iii) We divide the proof into several steps. Namely, for every 77 € X3 we show
that:

1. 07 is the boundary of a union of rectangles;

2. these rectangles are squares or quasi-squares;

3. squares or quasi-squares can move;

4. 0n is the boundary of a single square or quasi-square;

5. a ‘small’ square or quasi-square is not lacunary.
1. Suppose that 77 has an external corner z. Then 7 is A-reducible, because a
particle can be created at cost A at 9~ A and can be moved inside the external
corner at x, which gives us a A-path (recall from Lemma 26 that CﬁA is a cycle).

The only case in which 07 has no external corners is when 97 is the boundary
of a union of rectangles at distances > 2 (recall Fig. 8).

2. Suppose that 7 = R4y, by, dy,de,ds,dy) with £, — £, > 1. We want to show
that 7 ¢ A3. Also now we can find a A-reduction of 77: Fig. 9 shows an example

40



of a A-path reducing 77, which is taken from Peixoto [13]. (To each monotone
contour in the sequence of pictures we associate the corresponding U-cycle.)

1Y

e

F1c. 9. Movement of particles along the border: 5 x3+1=4 x4

3. By using the same kind of path as in Fig. 9, we can move the square or
quasi-square around. The A-path to do so is the following:

a2
F‘

(10)

(11) (12) (13) (14) (15)

Fic. 10. Movement of a 3 X 3 square

4. Since, by 3, squares and quasi-squares can move around, any configuration
with more than one square or quasi-square can be A-reduced by moving the
pieces together.
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5. Again by 3, for lacunary squares or quasi-squares with max{d,,ds} > ¢, and
max{de, dy} > ¢ there is sufficient room to move them up so as to create an
opening for the internal structure. Indeed, Fig. 10 shows a motion of particles
along the boundary where the holes in the cluster do not move. QED

5.3 Recurrence

Let T} = %, Ty = VP, Ty = 2P, and let Ty, be the first hitting time of the
local Markov chain (7;)¢>o to the set &; (i = 1,2,3). The following proposition
is our main recurrence result.

Proposition 27 For every 6 > 0 there exists By > 0 such that for all 3 > By

max Py(tp > T;e®®) =SES (i = 1,2,3). (5.11)
neX; !

Proof. 1. As noted in Remark (2) following Definition 18:
— For each 7 € X\ X} there exists a finite 0-path ¢: 7 — 7' € A].
— For each 7] € X'\ X, there exists a finite U-path ¢: 71 — 77’ € Xs.
— For each 7§ € X'\ X3 there exists a finite A-path ¢: 7 — 7' € Xs.

If ¢ is a O-path, i.e., H(¢; 1) < H(¢;) for all 4, then for every § > 0 there exist
Bo > 0 and a = a(d) > 0 such that for all 5 > [y

Py (s = s Vs € [0,T1]) > a. (5.12)

2. We want to have a similar statement for U-paths and A-paths. To that end
we make the following observation, valid for cycles C:

Proposition 28 (i) For every § > 0 there exist Sy > 0 and k > 0 such that
forall B> Py and n €C

P, (Tac < e—[H(f(ac))—H(f(C))+5])/3) >1—e b, (5.13)
(i1) There exist 69 > 0, By > 0 and k > 0 such that for all 8 > By and 7,7 € C
P (Tﬁ, < Toe, Ty < e*[H(f(ac»fH(f(c»faow) >1—e ", (5.14)

(117) For all 6 >0, 7€ C, 7 € OC and B sufficiently large

Pﬁ(ﬁTac = 77’) > 6_[H(77')_H(-7:(3C))+5W_ (515)
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Proof. See Olivieri and Scoppola [10] Proposition 3.7. QED

It follows from Proposition 28(i,iii) that for every § > 0 and every U-path ¢
there exist Gy > 0 and a = a(d) > 0 such that for all 5 > G

Py(0s = ¢ Vs € [0, Toe??)) > a (5.16)

and similarly for A-paths with T5 replaced by T3. So we have indeed generalized
(5.12).

3. To conclude the proof of Proposition 27 it now suffices to show that for every
il ¢ X; there exists an event Er, such that:

— On this event the process (;);>0 starting from 7 exits X; prior to time
] >
Tz-e§ﬁ.

— mingc p P(Ez;) > e™"8 with &' < $.
Namely, by Proposition 6 we then have

Y
max Py (75, > TPy < (1 —e7? ﬁ)‘ﬂﬁ = SES. (5.17)
qeEX
The event Er; is the following: The process follows the 0, U, A-path from 7 to
X, within time Tje3?. By (5.12) and (5.16) we indeed have Pp(Eqg,) > e 9%,
QED

5.4 Additional results on cycles

In this section we collect some results on cycles and their relation to the recur-
rence sets Aj.

), then H(ﬁlaﬁQ)_H(ﬁZ) >U.

Lemma 29 (z) If i1, 72 € Xy with H(ip) < 7_( 2
then H(m,m2) — H(n2) > A.

(ii) If m1, 72 € Xo with H(m) < H(72),

Proof. Note that the two smallest positive values for H (7, 72) — H(72) are U
and A.

(i) If 71,72 € Xy with H(f;) < H(72), then 771 ¢ C because otherwise 7y were
0-reducible. But then H(7;,72) — H(72) >

(ii) If i1, 72 € X with H () < H (), then 1 §Z CA because otherwise 772 were
U-reducible. But then H(71,72) — H(12) > A. QED

For the lacunary squares or quasi-squares in X3 (recall Remark (2) in Section
5.2) we can prove the following.

Lemma 30 Let 1 € L (i.e., 1 is a lacunary square or quasi-square). Then

there exists a 77 € X3\L with H(7) < H(f) such that there exists a 2U-path
from 7 to 7'.
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Proof. We define an external corner of the internal structure of an element of
L as a site € Ag such that n(z) =0, 3 ¢, ;) 1(y) = 2 and such that there
exists a path along occupied sites in 77 from z to the external boundary 07. The
following 2U-path goes from 7 to 7' and reduces the energy:

~ ¢o = C3Y;

— P1,...,¢ is the sequence of configurations in which a hole that is an

external corner of the internal structure of 77 goes to 97;

~ Pt i1, -+, P1, is a A-path going to Xs;

_ (/2U.
~ P41 = C s
— @ty+2,- -, Pty is the sequence of configurations in which a hole that is an

external corner of the internal structure of 77 goes to 07;

— and so on, until the complete removal of the internal structure.

QED
For 7 € X5\L, 1 = Ry, 4,, define
oy = {7 € X:H(7,7) — H(7) <r() + A}, (5.18)
where 7(7) is defined by
P 519

Lemma 31 (i) C}, is the maximal connected component containing 1 of config-
urations 1 such that H (') < H(n) + (1) + A. )

(i0) I 7 € Cy N (X\L), then i € Ex(7) and H(7) = H(7).

(iii) If ' € CzN L, then C?I,U C Cy and H(7') > H(7).

(iv) 7 € F(Cp).

Proof. (i) Let Dj be the maximal connected component containing 7 of config-
urations 77’ such that H(77') < H(7}) +7(7) +A. If 7 € Cy, then i € Dy;. Indeed,
H(7') < H(7',7) and 7' is in the connected component because the trajectory
realizing the minimax gives the connection. Conversely, if 7' € Z_Dﬁ, then there
exists a path ¢: 77 — 7’ such that max; H(¢;) — H(7j) < () + A, while by the
minimax definition we have H(n,7') < max; H(¢;). Hence H(n,7') — H(7) <
r(7) + A.

(ii) If 9,7’ € X3 \ £, then by the saddle point results in Proposition 16(i-ii) we
have H(7,7) — H(7) > r(7) + A.

(iii) If 7/ € C5 N L, then H(77') +2U — H(7) < r(77) + A by Lemma 26. Hence
C%U C C} and every 2U-path starting from 7’ is contained in éﬁ. But then, by
Lemma 30, there exists a configuration 7 € X3\ £ that is an element of C;. By
(ii), this is possible only if 77" € £3(7), and in this case H(77') > H(7") = H(7).
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(iv) Suppose that there exists 7/ € Cy such that H(i') < H(n). If if' & X,
then there exists 7" € X3 with H(n") < H(7') and H(7',7") — (ﬁ’) <A
If 7' € A5\L, then this contradicts (ii). If 7”7 € L, then b

)

H(7") > H(n), which contradicts the inequality H(1") < H(n
from the reduction. QED

Remark: Throughout Sections 4-5, A is a parameter in (U,2U) and [.(A) =
[5p2=1- If A and A’ are such that I,(A) = [.(A’) and if we consider the two
local Markov chains based on the values A resp. A’ for the creation rate along
0*A™, then all the results obtained in Sections 4-5 for these two Markov chains
are equal up to a correction where in all the exponents containing A an error
term of order |A’ — A| is added. This observation is needed in Section 7, where
we will need to perturb A. It also explains why in Theorem 3 we need to assume
that ﬁ is not integer.

6 Full Markov chain: recurrence

In this section we extend the definition of X; D X5 D A3, which were used in
Section 5 as the recurrence sets for the local Markov chain, to X1 D Xy D X3
and we prove the recurrence properties of the full Markov chain (1;);>0 to these
sets.

6.1 Definitions

The sets X; (i = 1,2,3) are defined as follows:

X = {nex: ;e
Xy = {n€X:nl; €Ay} (6.1)
Xs = {neX:ng € 3NN, \x(n) =0}

6.2 Recurrence

Proposition 32 below shows that, up to a superexponentially small probability,
the process (1;);>0 returns to &; after time lapses of order T;.

Proposition 32 (‘X;-recurrence’) Let T} = %, Ty = VP, Ty = *8. Fori =
1,2,3 the following holds: There exist § = 6(y) > 0, satisfying lim., o d(y) =0
and By > 0 and k = k() > 0 such that for all B > [y

P, (Elt €[0,T"): ns ¢ X;Vs € [t,t + T )) — SES (6.2)

for all
)
T=Te <« T =Tie"c <« T"=e" (6.3)

with C' > 0 arbitrarily large.
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Proof. We want to apply Proposition 6. Our task therefore is to define, for
each 1 = 1,2,3, an event EY, C X[0T) such that

E} C {3t €[0,T]: n € Xi}
min P, (E%) >p >0 (6.4)
noE€Xop

with p not exponentially small in 3.

i =1,2: The event EZ is the following:

— During the time interval [0, 7] no particle enters A.

— The process (1:):>o restricted to A follows a O-path (i = 1) resp. a U-path
(1 = 2) from np|5z to A; within the time interval [0, T].

Since T' = Tiegﬂ < A58 for § = 1,2 and ¢ > 0 sufficiently small we have, by
Lemmas 13-14 and Proposition 8,

_ log B
min P, (during [0, 7] no particles enter A) > (E) . (6.5)
no€Xo B

The estimate of P, (E%) can therefore be completed by using (5.12), (5.16),
Proposition 10 and Proposition 4.

1 = 3: We cannot proceed in the same way as for i = 1, 2, since we cannot avoid
)

the arrival of particles over a time interval of length T' = Tse2?. Actually, the

arrival of particles is important to reach X3. The event E3T is the following:

(i) The process (1;)¢>o restricted to A follows a A-path from 7|5 to X3 within
time %Tgegﬁ

(ii) After that, the process within time Tse~ 2P empties the annulus Ay \ A,
while keeping the configuration in A fixed and avoiding that particles
enter A.

To complete the proof we have to show that the probabilities of (i) and (ii) are
not exponentially small.

Estimate of (i): For each segment of the A-path not containing cycles of depth
A we can prove (by using the same argument as for i = 1, 2) that the probability

that the process follows this segment within time Tze%fg is not exponentially
small. We therefore only have to control the probability that the process follows
the segments of the A-path containing cycles of depth A, i.e., we have to control
the probability that it exits from a set

C’,—7A1 ={neX: ;e C_$} for some 77’ € Xy (6.6)

within a time larger than Tgegﬂ and that it exits at a state in ]—"(8(%‘,). This is
done by the following estimate:
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Lemma 33 For 6 > 0 small enough and 0 < v < % there exists ¢ > 0, depend-
ing on v,d but not on B, such that

. i3 ~ SA )
o Pn({T(Cﬁ%)C STt} 0 g |1 € FOCD}) 2 (6.7)
Proof. 1. From Lemma 26(ii) we know that if 7 ¢ .7-'(0_7%‘,), then 7 € X'\ A}
and there exists a downhill path from 7 to F (C_;‘,). We can therefore require
that the process (1;);>0 follows this path within a time e’ and that during

this time no particle enters A. As before, this probability is not exponentially
small in 8. It is therefore sufficient to show that for all 75 € Ap such that
mli € F(Cy)
é —
P, ({T(Cﬁl)c < Tye3f) Uroa eln € f(ac,_;‘,)}) > c. (6.8)

2. Let 7 denote the first time a particle enters A. Then

o)
5 _ Tgeéﬂ
Py ({ricsye < Ted )0 (s s € Fl0CH))) = /0 Py (v € dt, ANBy),

(6.9)
where
Ay = A1paye >t
! {7es) },A (6.10)
B, = {m-lze€F(C)}
The r.h.s. of (6.9) equals
Tgegﬁ
/ [P (1 € dt, Ay) — Py (T € dt, AN BY)]. (6.11)
0

Due to the recurrence property in A} and due to the fact that C}% \ .7-"(@%) C
X\X; (Lemma 26(ii)), we have that on the event {7 € dt, A; N B¢} a move of
cost U occurs during the time interval [(t — e%?) v 0,], so that

Tgegﬁ
/0 Py (T € dt, A;NBf) < e”VFe. (6.12)
On the other hand,

eéﬂ eéB
I Py (redt, Ay) = [T [Py (7 € dt) — Py (7 € dt, A)]
(6.13)

48
> f0T363 P%(T c dt) _ 67(2U7A*%),3,

since on the event {7 € dt, A{} a move of cost 2U occurs within time .
3. Finally use that {nj € X} C {NM+ () > 1} (recall (2.20)). If § > v, then
Py(13 < Tgegﬂ) > ¢ for a simple random walk starting at = € Ay, . Hence

Tgegﬂ 5
/0 Py (redt) =Py (r < Tses”) > c. (6.14)
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QED

Estimate of (ii): We estimate the probability of the following events:

— F: during the time interval [O,Tge_%’g ] no particle enters A;
— G: at time Te 27 there are no particles in Ay \ A;

— H: during the time interval [O,Tge_%ﬁ] the configuration in A does not
change.

From Lemma 13 we obtain min, ¢y, Py (F) > (k/B)°8 8. From Proposition 8
and (3.6), we obtain

. |Ag_| \logs _x
IP’/G>(1— ) >1—e 3810 8. 6.15
foin m(G) > Too-% € gl (6.15)

Finally, IP’% (H|F N G) can be estimated by considering the local Markov chain,
and we obtain

min Py (HIF NG) > (1—e 29T > 1 — ¢ QU8+, (6.16)
Ny EXo

So we arrive at

inP,(FNGNH) = min P, (HFNG)P,(FNG
nzrg;(lo i ( ) nzrg;(lo n, (H] )Py ( )

1
> [1- e—(2U—A+%)ﬁ} [(%> o8f _ 38 logﬁ}.
(6.17)
This completes the proof (i-ii) for i« = 3 and hence of Proposition 32. QED

7 Full Markov chain: reduction

In this section we derive all the key estimates for the full Markov chain that
are needed to study its metastable behavior. The computations are long and
difficult.

7.1 Definition of the reduced Markov chain

We begin by defining the reduced Markov chain that is obtained by observing
the process only when it enters A3. For 1 € A3, let

Co = {7 €X: H(7,7) — H®A) < A}. (7.1)

Extend this definition to the configurations in X in the obvious way, namely
for n € A3, let
A FA
Cp={neXx: ;e Coli ) (7.2)
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Definition 34 Let

7'0:0

op = min{t >0: n & CT% (73)
and, for i € N,
= min{t > 01t M € XS} (7 4)
o; = min{t > 1 m & CnAT} ‘
Then
an = N7, 1 € Ny, (7.5)
defines a Markov chain (n?);cn, on Xs with transition probabilities
PR (1) = Py(nr, = 1) (7.6)

For j € X, as before, let I be the set of configurations ' € X such that
0|z =1. For n € X3 and 7/ € A3, let

PR, Iy) = > PRn,n"). (7.7)
77”6[7—’/0/\’3

Our main result in this section is the following proposition, which makes a
comparison between the transition probabilities of the full Markov chain and
the local Markov chain.

Proposition 35 There exist § = §(01,70), satisfying lims, .10 6(01,7) = 0,
and By > 0 such that for oll B> Py:
(l} Ifﬁ e Rel,b, ﬁ’ € R£1+1,€27 then

min PR(n, I) > e~ (A=U)Be=96, (7.8)
n€l;nx,

(ZZ) Ifﬁ e Rel,b, ﬁ’ € Rél,b—l; then

min P®(n, Iy) > e~ PU=A)G=1)8 =05 (7.9)
n€l;nx,
(153) If 7 is a lacunary square or quasi-square, i.e., 7 € L, then there exists a
Sequence Ny, M1, . ..,y such that ng =n, n; € L fori=1,...,n—1, n, € A3\ L,
and |7;| > |7i—1| for all i for which

: i PR I ) > o QU-D)B 86 .
Z_:(),1(1171.1{17“1 nIZIéIIIan P%(ni, In,.,) > e e (7.10)
(iv) Let
r(n) = QU =A)(l —=1) ifn =Ry and 0 < by — 41 <1 with {1 < £,
r(f) =A—-U if 1= Ry, 0, and 0 < by — ¥y <1 with {1 > £,
r(q) = (2U — A) ifj € L.
(7.11)
Then
max max PR, Iy) < e~ r(m+al3, (7.12)

nely ' eXz: i ¢€3(7)
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Using Proposition 35 we will in Section 8 conclude the proof of our main re-
sult, Theorem 3, by constructing an event of nucleation and by controlling its
probability.

The remainder of this section is organized as follows. In Section 7.2 we prove
the lower bounds (i), (ii), (iii). The proof of the upper bound (iv) is much more
difficult. Indeed, to prove a lower bound it suffices tto estimate the probability
of a particular realization of the event we are considering, but to prove an upper
bound every possible realization of the event must be controlled. In Section 7.3
we define a coupling of our Markov chain to an auxiliary Markov chain. This
coupling enables us to study separately the effect of particles entering A from the
gas (‘green’ particles) and particles exiting from A but afterwards returning to
A and thus interacting again with the local configuration in A (‘red’ particles).

With the help of the auxiliary Markov chain we prove Proposition 35(iv) in
Section 7.4 by using the control of green and red particles obtained in Sections
7.5 resp. 7.6. Section 7.7 contains the proofs of some lemmas that are needed
along the way. In section 7.8 we collect some consequence of Proposition 35
that will be used in Section 8 to prove our main theorem.

7.2 Lower bounds

In this section we prove Proposition 35(iiii).

Estimate (i): The proof follows the same ideas as in Section 6.

1. Let 7, 0 < i < £5, be the configurations with monotone contour obtained
from Ry, 11,4, by removing ¢, —i particles, so that 79 = 77 and 7y, = 7. We know
from Section 5 that 7; € X for i = 0,2, ...,¢s. We construct our realization of
the growing transition 7 = Ry, ¢, = 7' = Ry, 11,4, by using the following events:

— For 7 = 1:

= Ay =1y > th
= Biy = {n-Iz =1}
~ for n” € I and z € OA, Cy,p, is the event where the process,

starting from 7" + x, inside A follows a path that brings the particle
at z to the cluster, thus reaching I y;

— For ¢ =2:
— Agy = {T(C%U)c >t}
— By := {n- |z € By} with By := G2V n X1 n{if": N3(7") = lala+1};
— for " € Ig and z € ON, Cy,pr, is the event where the process,

starting at 0" + x, inside A follows a path that takes the particle at
z to the cluster, thus reaching Ip,};

— Forv=3,...,0s:

- A ={1ca 2tk

nj—1/
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= Biy:={n|z € F(Cq )}

— forn" € Ipea yandz € OA, Ci 5 is the event where the process,
MNi—1

starting at n” +z, inside A follows a path that brings the particle at
z to the cluster, thus reaching I y.

2. As in Section 6, we define:
— F := during the time interval [O,Tgef%oﬂ] no particle enters A;
— G := at time Tgef%oﬂ there are no particles in Ay \ A;
— H := during the time interval [O,Tgef%oﬁ] the in A does not change.

Let 7 := min{t > 0: at time ¢ a particle enters A} and T := 7;?16—5?15. For n € I
we have

T .
PRIy > [TBy(r €dti, Avy NBry)  min By (Cupn)
z1€0M, '€l

T .
er5 Pnl (T € dty, A2,t2 n B2,t2) min Pﬁ”-i—:vg (CQ,n”,xz)
:L‘QE(?A,?]”GIBﬁ

T .
fo mel(T € di;, Ai,ti N Bi:ti) _1min Pﬁ”-i-fvi(ci,n”,xi)
;€N\, n EIF(CQ )
Mi—1
T .
fo Pwrl(T € dty,, Afz,tzz N Bb,tzz) o min Pﬁ”-i-f% (Cbﬁl”,w@)
1135263/\,77 el}'(CﬁA )
L5—1

minnuelﬁ,m% Pnu (F NGnN H),
(7.13)
where X is set defined in 2.21.
3. For any ¢ we have that the minimum of the probability of C;,» , can
estimated from below by a constant ¢ not exponentially small in . As in
Section 6, for each 1 = 1,3,..., /> we can write

fOT Pni—l (7’ € dti, Ai,ti n Bi,ti)
(7.14)
= foT[IP)mfl (T € dt;, Ai,ti) - IP)Th'fl (T € dt;, Ai,ti N qu,ti)

and this expression can be estimated from below by a constant ¢ indepen-
dent of B exactly as in the proof of Lemma 33. Moreover,we again have that
mingrer,na, Py (FNGNH) > (%)logﬁ . It therefore remains to estimate the
term corresponding to i = 2.
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4. On the event A,;,, before the arrival of the second particle the pro-
cess is in C%U. This means that for each time s until that arrival we have
N3z (ns) € {€ila, b4+ 1}, and if Nx(ns) = £1€, then 7, = Ry, ¢,. This, in turn,
implies that the process starting at 7; during the time interval [0,7) can be
estimated as follows:

— During the time intervals in which Nj(ns) = ¢1¢2 we have a particle
moving as a SRW and a fixed rectangular configuration.

— During the time intervals in which Nj(ns) = ¢1¢2 + 1 the particle can be
trapped by the cluster, producing a configuration that inside A falls in
X\Xy. In other words, during this time interval the process behaves like
a SRW with a trap at dRy, 4, of escape rate e~ UB. We denote this process

by (55)520-
5. We can now conclude our estimate:

fTUB Py, (T € dt2, Aoy, NBoy,)

e

= [0os Py (Boy, [T = ta, Agy,)P(T € dtz, Asy,)

> fg&ﬁ Pm (étz € 8R€1,42)P771 (T € dta, A2,t2) (715)

T _
>[5 %e(U 5)/31[",71(7 € dty, Az y,)

> B 1, (r € iy, A,

where the second inequality uses proposition 12 and the last probability can be
estimated as before.

Estimate (ii): 1. The lower bound in the case of shrinking transitions can

be obtained by forcing the transition to happen within a time Te 2008 and
requiring that during this time no particles enter A. In this way the transition
can be estimated as in the case of the local Markov chain. More precisely, let
n = Ry, ¢, and ' = Ry, y,—1. For n € Iz N X3 we have

PRy, Iy) =Py(nr, € Iy) > Py (A, —2608 N Doy =268 N Doy p-2608),  (7.16)
where
~ Agye 208 =1, € Iy} N {m < Tye 200);

— Dy, —2508 1s the event where during time Tse~2%8 no particles entering
A;

- DT3 .—2608 1s the event where during time 73 e 2008 1o particles are created

in OA}.
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The last term in the r.h.s. of (7.16) is equal to Pg(Aq,—2508 N Dy o260 N
Dy, -2508), where Ap, 255 is the analogue of A, 255 for the local Markov
chain.

2. We note that the events Dy, 2508 and Ap, 2508 N Dy, 2505 are indepen-
dent, since they involve different clocks and marks. Moreover, P(Dr, ,-2505) >

(%)logﬂ’ P(Dr,,-2508) > (1 —p)T‘Q’e_SOﬂ +SES > ¢ 7 and its easy to show that
IP)(‘ATge*%oﬁ |DT36*2505) > e—(2U—-A+300)8

Estimate (iii): A similar argument works for the transitions involving the lacu-
nary configurations.

7.3 Definitions

Recall that N = p|Ag| is the total number of particles and that our state space
is

X ={0,1}" x {0,1,2,..., N}s\A, (7.17)

Dynamics. We begin by realizing the process (1;);>0 in terms of a process in
which particles are distinguishable. This means that instead of A we consider
the space Xy = A]ﬁV where a configuration is given in terms of the position
&(n) C A of each particle n = 1,..., N. Each configuration n € X’ corresponds
to N! different configurations in X;. We denote by n;(x) the set of labels of the
particles that are at = at time ¢:

ne(x) ={n=1,...,N: &(n) =z}, (7.18)

so ny(z) = |ny(x)|. We note that for any = € A the set n;(z) contains at most
one element.

We can define a stochastic dynamics (&) on X; corresponding to our stochas-
tic dynamics (;) on X, provided we take the uniform distribution for the initial
configuration &, corresponding to the initial configuration 7y, i.e., each parti-
cle initially gets a label drawn randomly from {1,..., N}. This rules of the
dynamics are straightforward and read as follows:

— For each oriented bond b € A*U9* A%, define a sequence of i.i.d. random
times 74, ¢ € N, exponential with mean 1, and a sequence of i.i.d. marks
i, © € N, uniform on [0,1].

~ For each oriented bond b € (Ag\ A)* U 9*A™ and each label 1,..., N,
define a sequence of i.i.d. times 7(n),;, @ € N, exponential with mean 1.

— Inside Ag \ A particle n moves as an IRW with jump times 7(n)p;, i € N,
be (A\A)*

— Inside A particles move with exclusion and with interaction as follows.
When ¢ = 7, ; for some b = (z,y) € A*, i€ N:
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— If ny(x) = {n}, ni(y) = 0, then the proposed move y is given by
ProP(n) =y, &"P(j) = &(j) V4 # n. This proposed move is ac-
cepted if the corresponding mark i, ; is less than e —BLH @y —H (ne)l+
where 1! and 7, are the configuration in X corresponding to &/ rop
resp. &;.

~ If ny(xz) = 0, ny(y) = {n}, then the proposed move y is given by
ProP(n) = =z, &"P(4) = &(j) Vj # n. This proposed move is ac-

cepted if the corresponding mark i, ; is less than e —BIH(ng" " —H(me)l+

— In all other cases there is no move.

~ When ¢t = 7,; for some b = (z,y) € 9*A%, i € N:

- If ny(z) = n, then &y (n) =y, &4.(7) = &) Vi # n.
— If ny(z) = 0, then there is no move.
— When ¢ = 7(n)y,; for some b= (z,y) € 9*A™", i € N:

— If ny(x) = n and ny(y) = 0, then & (n) =y, &4(4) = &) Vi #n.

— Otherwise there is no move.

Coloring of particles. Next we assign a color to each particle. This color
depends on time and will later be used to distinguish between particles arriving
from the gas and particles returning to Ay after leaving it.

Definition 36 (a) Every particle in & N A is WHITE at time t.

(b) Every particle in & N Ag\ Ag_ is GREEN at time t.

(¢) Particles in Ay_ \ A are GREEN or RED depending on their past in the
following way. For n € ny(x), let

0 =0(n,t) = max{0 < s < t: &(n) &€ Ap_ \ A}. (7.19)

If &9(n) € A, then n is a RED particle at time t. If &g(n) € Ag \ Ay, then n is
a GREEN particle at time t.

It is easy to see that if the process starts from a configuration n € X3, then the
time @ is well-defined for each particle &(n) € Ay_ \ A.

The colors at different times are obviously correlated, since when a particle
leaves A it become red. Green particles become white when they enter A. Red
particles become white or green when they leave A, \ A.

In order to control the behavior of green and red particles, we separate their
effects by introducing an auxiliary Markov chain (7););>0 in which the arrival in
A of green particles is simulated by a process of creation at ~A with a rate of
order e P2 and a process of annihilation at 9T A with rate 1.

Auxiliary chain. We define the dynamics (7););>0 by means of a process (f )t>0
of distinguishable particles. Fix a parameter
1

NT e with T3 = 2P, (7.20)

p=

o4



where 7y is small and will be chosen later. Let
2= (A U{gh™. (7.21)

This means that each particle in the auxiliary dynamics can be in a site of A,_
or in a state called g (for green).

We can use the same ingredients as for the Markov chain (& );>o for the
bonds in A} U9*A%“", but we need to add for each bond b € 9* A" a sequence
of i.i.d. marks uf;, ¢ € N, uniform on [0,1]. The stochastic dynamics (ét)tzo
can be realized exactly as (&;);>o for each bond b ¢ oA If t = 7(n)p,; for
some b = (z,y) € 0*A™, i € N, then we consider an additional move of creation
of a particle at site y. The details are again straightforward and read:

— Inside Ay_ \ A particle n moves as an IRW with jump times 7(n)p,;.

Inside A particles move with exclusion and with interaction as for (&) e>0-
~ When ¢t = 7,; for some b = (z,y) € 9*A%, i € N:

~ I ny(x) = {n}, then &1 (n) =y, &1.(j) = &(j) Vi # n.
— If ny(z) = 0, then there is no move.

— When ¢ = 7(n)y,; for some b= (z,y) € 9*A™", i € N:

— If ny(x) = n and ny(y) = 0, then & (n) = y.

— If &(n) = g and ny(y) = 0, then & (n) = y when ph; < p, otherwise
there is no move.

— When ¢ = 7(n),,; for some b= (z,y) € O*AJ™, i € N:
— If ny(z) = n, then &4 (n) = g, otherwise there is no move.

We will consider the discrete-time Markov chains corresponding to (ft)tz()
and (ét)tzo by observing these processes when a clock rings in Ag. From now
on we will consider only these discrete versions. By Proposition 4 we know
that the control of the discrete-time Markov chain enables us to control the
continuous-time Markov chain.

Now that the process (gt)tzo is defined, the definition of 7j; in terms of & is
given exactly as 7y in terms of &. The state space X is

X =1{0,118 x {0,1,2,..., N} \AUigh), (7.22)

Coupling. We can define a coupling between the Markov chains (7;);>0 and
(M¢)t>0 by using the same clocks and marks for common bonds. Two events will
be important:

= By (t1, ... tgi b, .. by na, ..o ngs t) s the event for (n;)i>0 where dur-
ing the time interval [0,%] green particles enter A through the bonds
bi,...,by € O*A" at times t1,...,t; and their labels are ny,...,ng.
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= Bj(ti, ..., tg; b, ... bgina, ... ngs t) is the event for (7););>0 where during
the time interval [0, ¢] particles are created through the bonds by,...,b; €
0* A" at times t1,...,t; and their labels are nq,...,n.

Let us take two initial configurations 1y and 7, such that ng(z) = 0 for all
x € Ap_ \ A and ny(x) = no(x) for all z € A,_. If both

Bﬂ(tla"'7tk;b17"'7bk;n17-"7nk;t)

7.23
Bf](tla"'atk;bla"'abk;nla-"ank;t) ( )

occur, then we have that for all s € [0,¢] the red and the white particles of 7,
coincide with the particles of 7, i.e., if

ne'(z) ={n=1,...,N: {,(n) = z and n is a white or red particle at time s},
(7.24)
then

P(Vs € [0,4): {€5(n) = &(n)Vn € n¥"} N {E, = g¥n & n¥ In € n®"}
Be(ti, ... ti; b1y o b, .o ngs t)
Bﬁ(tl,...,tk;bl,...,bk;nl,...,nk;t)> =1.

(7.25)

In a trivial way we can define a coupling between (7)o and the local
Markov chain (7;);>0 defined in Section 4.1 by using the same clocks and marks
for bonds in Afj U 9*A% and the same clocks and creation marks for bonds in
b € 9*A"™. In particular, also for the Markov chain (7t)7>0 we can realize the
creation at the boundary of A by using N clocks and the same rate p in (7.20)
used for (7;)s>0-

If 9 > 0 in the definition of p is such that £.(A +7g) = £.(A), then we can
apply the remark given at the end of Section 5. If A € (U,2U) is such that
ﬁ is not integer, then there exists such a .

It is further obvious that if no red particles enter A during the time interval
[0,t], then 74|53 = 7s|5 for all s € [0,¢].

As in the case of the full Markov chain (1);>0, we can define recurrence
sets X, X, X3 and we can prove also for (M¢)¢>0 the recurrence properties to
these sets. In the same way we can define the reduced Markov chains (ﬁ{z)tzg
and (7f%)i>0 (recall Definition 34). The only difference is that for (7;)i>0 we
can only prove the recurrence to X3 in a time p~te®b,

7.4 Upper bounds

The key to Proposition 35(iv) is the following (recall (7.11)):

Proposition 37 There exist § = §(01), satisfying lims, 1o 6(d1) =0, and By > 0
such that for all B> By and 7j € X3

mz}xIP’n(TC% < TyeMB) < e [rm—al8, (7.26)
nely
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where

Cqi={n € X: 1|3 € C;} (7.27)

and

7= {n € X: H(ij',i) — H(7) < r(7) + A}. (7.28)

Proof of proposition 35(iv). Let M, denote the event that the transition
n®:n — 1’ occurs within time T3e?'?. By the recurrence property of the set X,
we have

P(Mj) < SES. (7.29)
Hence

max max  P(n%:n — Iy)
n€ln i € X3: 7 ¢E5(7) !

< max max P(pf: n — I, N M,) + SES
n€ly ' €Xs: 0’ ¢E3(1) ( ! ) (7.30)

< maxP(r¢, < Tse%8) + SEs.
nely

In fact, if 77 € X3 and 77’ & E3(7), then 77’ & C; by Lemma 31. QED

Proof of Proposition 37. Abbreviate for (7;):>0

Ay = {ree < T3P} (7.31)
and analogously for (7;):>0
A = {1z < Ty}, (7.32)
where N . _
hi= {7 € X if|z € Gyl (7.33)

Proposition 38 There exist d = §(01), satisfying lims, 10 6(61) =0, and By > 0
such that for all 3> By and n' € X3

Py (A,) < P(Az)e. (7.34)

Proposition 39 There exist § = 6(d1), satisfying lims, 1o d(d1) = 0, and By > 0
such that for all 8> By and ' € X3

P,y (Ajz) < e "MEFIE, (7.35)

Propositions 38 and 39 imply Proposition 37. QED
The proof of Propositions 38 and 39 is given in Section 7.5 resp. Section 7.6.
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7.5 Control of green particles

Proof of proposition 38. The problem is to compare the effect of green
particles versus the creation mechanism in the auxiliary dynamics.

1. Fix keN, t,...,t; >0, by,...,by € 0*A™, and abbreviate

B, = By(ti,...,tg; b1, ..., b0, oy s T3e219)

Bf] = Bﬁ(tl,...,tk;bl,...,bk;nl,...,nk;Tge‘slﬂ). (736)

We begin by proving the following:

Lemma 40 There exist 0 = 0(01,70), satisfying lims, 010 d(d1,7) = 0, and
Bo > 0 such that for all 8> [y and n' € X3

e—(a-5)8\ k
Py(A;NBy) (%) > By(A;NB,NBy)
o—(at+8)3\ F
> Py(A, 1B, NB;) > Py(A, B, (S F2) .
(7.37)

Proof. (1) Third inequality: Let Cj be the event that the number of rings by
clocks on the bonds in 9*A™ within time T3P is less than NT3e2014. Then

P(A,NB,NB;) >P(A, NB,NB;NCy), (7.38)

and
P(Cj;) =1 — SES. (7.39)
We have

P(A,NB,NB;NC;) > PBzA,NB,NC;)PA, B, NC;)
(7.40)
> ph(1—p)V P(A, N B, N Cy)

If vy in the definition of p in (7.20) satisfies vy > 2d1, then
P(A,NB,NB;NC;) > pFe "PP(A,NB,)+SES > pFe 2 FP(A,NB,). (7.41)

(2) Second inequality: This immediately follows from the coupling between
(7¢)1>0 and (7¢)¢>o0-

(3) First inequality: This follows from Lemma 15. The factor ﬁ comes from
the fact that Lemma 15 gives an estimate for a process with indistinguishable
particles and the probability that a given particle has a given label is % QED

2. Continuing the proof of Proposition 38, we write out

T 518 T 518
P(ATI) = ZZOZO Zbl,...,bk an,...,nk 0 * e fO * (742)
dP(A, "By (t1, ... ks br, . bgsna, . ,nk;Tg,e‘Slﬁ)),

and a similar expansion for P(Aj;). By Lemma 40 we have

P(A, NB,) < P(A; NB;)e?s, (7.43)
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and so we obtain

P(A,) < SRoe®B(A; N {v = k})

(7.44)
= Yl M P(AG{v = kHP({v = k}),

where v is the number of particles created by the process (7;);>0 during the
transition we are considering. It is easy to see that there exists a K > 0 such
that

Plv=Fk) <e®F  vkeN (7.45)

for g sufficiently large.
3. Let a = 4%, f=PA,{v=kNP{r =k})!I7® and g = e®FP({v = k})*
By applying Holder’s inequality with p = 1% and ¢ = 1, we obtain

(50) (50

= (5 =i =) (5 =)’

k=0

P(Ay)

IN

< C(aa K? 63 /B)P(Aﬁ)liaa
(7.46)
where the last inequality uses (7.45). But rough estimate gives P(Az) > e/
with K = Afy+ 041, obtained by creating £5 particles and bringing them to the
cluster in a time of order one. Hence we get

P(A,) < P(Az)e"?, (7.47)

which completes the proof. QED

7.6 Control of red particles

We now come to the hardest part of the argument, because we have to control
the effect of red particles.

Proof of Proposition 39. In order to control every possible mechanism of
exit from the set C},, we will analyze the final exit move. More precisely, we will
consider a partition of the set C_ﬁ (essentially in terms of its intersection with
the sets X7, Xz, A3), and we will compute the cost (in term of the difference
of energy) of the final exiting move starting from an element of this partition.
This final move can be obtained by the arrival of a red particle inside A or by
a move inside Ag. We will estimate the probability of the event Aj in terms of
the probability of this final move. As far as the probability of the arrival of a
red particle is concerned, we will show that red particles essentially behave as
IRW’s.

We divide this proof into several lemmas, the proof of which is deferred to
Section 7.7. We first consider the case 77 € X3\ L.
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1. We recall (5.7) that for a configuration 7' in A with contour 7/ = ~'(7'):
H(7') = (—2U + A)nj + %|’y'| + An/, (7.48)

where n}) is the total number of particles in Ay, n’ is the total number of particles
in the ring A\ Ag. We will use this expression to classify the configurations in

Cy in terms of the sets X1, X, and in terms of the cost to exit from C?,—, in one
move, defined by

BC(7):= _min  H(@")-H(7) (7 €Cy), (7.49)
7" €Cq: (7,7 )>0

where we put EC(77) = oo if q(77',7") = 0 for all 7" & Cj.
Note that, by the definition of the set Ci in (7.28), the exit cost is strictly
positive for all 77 € C5 and thus EC(77’) assumes the values U, A, 2U, 3U.

Lemma 41 For all ij € X3\ L the following hold:

(i) If i’ € Cy, then its contour is larger than or equal to that of ] (i.e, || > |7|)
and its number of internal particles nj belongs to the interval [ng—£;+2,no+1],
where ng s the number of internal particles of 7 and ¢y is the minimal side
length of 7.

(ii) Let i € Cq, |Y'| = |v| and n/ =0. Then

ny=mng—1" for somel =0,1,...,0; —2. (7.50)
Moreover, i € Xy and

BC(7) = 3U if ¢ =0,1,...,0 —3 750
BC(7) = 2U  iff =0 —2. '
(iii) Let 7 € Cy, |Y'| = |v| +2 and n' = 0. If ny > ng — 4 + 3, then ' & X,
and EC(7') = A, while if nfy =ng — €1 +2, then i € X \ X} and EC(1) = U.
(iv) Let i’ € Cy, |¥'| =|y| +4 and n' =0. Then i € X \ X} and EC(7) = U.
(v) Let if € C and n' =1. Then if € X\ Xy and || = |y| and BEC(7)') = U.
(vi) If |5 > |y| +4 orn' > 1, then i & Cj.

2. We next consider the following partition of the set C?,—,:

%1 = Cino U Chia U Cyip U Cia, (7.52)
where
‘o = {7 €Cpn X}
Cite = {7 €CGN(X\X): Y| = |y +2, 0 =0}
i = AT €GN (X\X): [Y|=]|+4,n =00 |yY|=]ln =1}
7,2 = {77, € Cﬁ N (Xl \ XQ)}

(7.53)
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Definition 42 (1) An interval of time [t1,t2] in [O,T@% AT3] is an INSTABILITY

INTERVAL if i 5 & Xa for all t € [ty,1o].

(2) An interval [t1,ts] contained in an instability interval is of TYPE 1 if
|z € X\ Xy for all t € [ti,ts] and of TYPE 2 if |z € X1 \ X for all
t € [t1,t2]. A type 1 interval is of TYPE 1A if iit|5y € Ciia and of TYPE 1B if
M|z € Ca,1p-

(3) An instability interval can be the union of intervals of different types (i.e.,
la,1b and 2).

(4) The remaining intervals of time in [O,Té% A T3] that are not instability in-
tervals are called intervals of TYPE 0.

An immediate consequence of the recurrence property of (7j;);>0 to the sets
X1, Xy is the following:

Lemma 43 With probability 1 — SES the instability intervals of type 1 are
shorter than T and the instability intervals of type 2 are shorter than T.

3. Let us now return to the estimate of P(Aj;). We have
Aj=ALUAT, (7.54)
where
— A} = Aj; N {the final exit move is due to the arrival of a red particle};

- gA7 = Aj N {the final exit move is due to a move inside A}

By Lemma 41, we can estimate P(Ag’”) after decomposing it according to the

different kinds of exit through the set
Cq=1{i € X: 7|3 €Cq} (7.55)

by considering the starting point of the final exit move. More precisely, if we
abbreviate 7; := ﬁTég_lh, M2 = T, |z and AHy o := H(72) — H(71), then we
n n

have - B
P(A7) = P(A7P N {1 € Cyo} N{AH > =3U})

n
+P(A7 N {7 € Cyia} N{AH» > A})
+P(A7 N {71 € Cqup} N{AH12 > U})
_ i (7.56)
+P(AT N {m € Cra} N{AH, > A})
+P(AT N {71 € Cyo} N{AH » =2U})

—HP(Aﬁm N {ﬁl € éﬁ,la} N {A.E[LZ = U})
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The first term in the r.h.s. of (7.56) can be easily estimated, since on the event
AT N{AH, 3 =3U} we have a move of cost 3U in the interval [0, T3], i.e.,

P(AZ N {71 € Co} N{AH 2 =3U}) < e 3T, (7.57)

The control of the last two terms is postponed to Lemma 49. As far as the
estimate of the remaining three terms is concerned, we can proceed in a similar
way, provided we can estimate the total length of the instability intervals of
type la, 1b, 2. This means that we need to control the number of instability
intervals of the different types via a priori SES probability estimates.

4. Let us next consider the random times 7; < T3 A 75, ¢« € N, of arrival in A of

n
red particles. By definition, each 7; is the initial point of an instability interval
of type 1b. Indeed, by Lemma 41, 7; < T3 A 75, implies that 7, 1[5 € Cj,0 and
n

Nrlx € éﬁ,lb- Namely, the arrival of a red particle during an instability interval
produces the exit from the cycle Cj.

In a similar way, let us denote by o, j € N, the random times corresponding
to the exit of particles from A, (i.e., the appearance of red particles) before the
exit from the cycle. These times must be the final point of an instability interval
of type 1b, and 7js; 41|53 € Cyp-

The interaction between red particles and particles in A is active only during
instability intervals containing subintervals of type 1b. Now consider a realiza-
tion of our process in the time interval [0, 75 A 75]. This means, in particular,
that we have a realization of instability intervals and of random times 7; and
oj. Let us look at the process from the point of view of the red particles: this
is a system of independent quasi random walks (QRW) given by the following
rules:

— When a red particle enters A at a time 7;, it disappears as red particle
during the instability interval starting at 7;. During this interval the red
particle can be killed if the final time of this instability interval is not a

time o;. Otherwise the particle reappears at a time o; at some point in
OA.

— A new particle appears at a time o, which is the final point of an insta-
bility interval not starting with a 7;. Call the starting point of such an
instability interval a coloration time ay.

— Outside A red particles move like IRW’s.

Thus, the difference between our process and a process of IRW’s not only comes
from the fact that particles can be created and annihilated (with a random
law), but also from the fact that particles can disappear for random intervals
of times when they touch A and can reappear again at a different point in OA.

5. More precisely, for each coloration time «aj define a quasi random walk
(QRW (g )¢)¢>0 and a delay time DT(¢, o) as follows:
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— Look at the particle exiting from A at the end, say oj, of the instability
interval starting with aj. Let n; be its label, (£(n1):)i>0 its path, and
TRuaa, (n1) its first hitting time of the set AU 0A,_. If 75,95, (n1) >

T5 A 7ce, then the QRW (cy;) associated with oy, is (£(n1)¢)e>o0, iee.,
QRW (ag)s = &(n1) 540, Vs € [0, (T A 7ee) — o], (7.58)
and its delay time is
DT(t,ar) = (t A oj) — ag, (7.59)
corresponding to the time spent in A up to time .

- If Ta00n, (n1) < Tz A Tee and the particle n; hits 0A;  before A, then

the particle is annihilated when exiting Ay_. So in this case QRW(ay)s =
£(n1)sto; Vs € 10,707, (n1) — 0j] and DT(¢, ag) = (t A 0j) — a.

- If Ta00n, (n1) < Tz A Tee and the particle n; hits A before dA,_, then
TAugA, = Ti; for some index ¢; and we look at the end of the insta-
bility interval starting at 7;,. If this end time is not a time oj, then
the red particle is annihilated in this instability interval, so QRW (ay)s =
f(n1)5+gj Vs € [O,Til - Uj] and DT(t,ak) = (t VAN Uj) — Q.-

— If the end of the instability interval starting with 7;, is a time o;,, then we
look at the red particle exiting at this time from A. We let ny be its label
(not necessarily equal to n1), and we follow &;(n2) for ¢ > o;,. As before,
we have to distinguish between different possibilities. If 7555, (n2) >

T5 A TCe then

QRW etk )
[ &svo;(m1) for s € [0,7;, — 0]
B £S+Uj1,(7ilfgj)(n2) for s € [Til — 0y, (T3 A TC%) — 05 + 7Ty — Uj]
(7.60)
and
_ (t/\Uj)—Ozk for t € [ak,nl]
DT(t’ ak) - {Uj — o + (t A Ujl) — Ty for t € [Til,Tg A TC%] ’ (7'61)

Similarly, we can iterate the previous construction in the other cases.

Roughly speaking, the process (QRW(a)¢)¢>0 is obtained by glueing together
the pieces of random walk performed by red particles outside A, where the
paths of two red particles n; and n;y; are glued together if particle n; hits A
at the beginning of an instability interval ending with the exit of particle n;41
from A. The delay time DT(¢, o) is defined as the total length of the union of
the instability intervals cut out in this glueing procedure up to time ¢. By this
construction it is clear that, starting from a configuration in X3, to each red
particle we can associate a creation time «.

6. By using the above construction of QRW’s, we will be able to control:
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— the number of instability intervals;

— the probability of the arrival of a red particle in a given time interval.

To do so, we start with the following observation. For any pair of types s, s’,
s # ', we define the transformation TC(s, s’):

TC(s,8') :=  min  [H(f) — H(72)]+ (7.62)
MEC o:M2€Cq,s

for s =0, 1a,1b,2 and s’ = la, 1b, 2.

Lemma 44 The following hold:

TC(0,1a) = U, TC(0,10) = A, TC(0,2) = 00,

TC(la,1b) = U, TC(la,2) = oo, (7.63)
TC(1b,1a) = 0, TC(16,2) = 0,
TC(2,la) = o0, TC(2,1b) =U.

(The transitions that are not possible in one step get transition cost co.)

Lemma 44 implies that, starting from C?,—,, the initial time of an interval of
type 1b is either a time 7; or a time corresponding to a move of probability
< e 2. An instability interval containing an interval of type 1b can also be
realized by an interval of type la followed by an interval of type 1b. Also in
this case Lemma 44 implies, by (7.63) and Lemma 43, that we have two moves
of probability e~U# within a time interval of length e’?. Thus we may conclude
that each coloration time «y corresponds to a move (or a couple of moves) of
probability smaller than e=4.

7. We have the following a priori estimates:

Lemma 45 Let n(T3,A) be the number of moves in [0,T3e"5] of probability
< e 2B, Then for all § >0

P(n(Ts,A) > el1+98) = ggg. (7.64)

Lemma 45 implies that the number of red particles created in [0, T3] is less than
€20 with probability 1 — SES.

Lemma 46 Let v(t) be the number of visits to A of a QRW describing a red
particle during a time t. Then

P(v(t) > (logt)?) < e*1081)’, (7.65)
for some k > 0.
From Lemmas 45 and 46 we obtain that with probability 1 — SES the number

of instability intervals containing intervals of type 1b is less than e(20+0)6 In
a similar way we can prove the following:
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Lemma 47 There exist 0% (0o, 01, 02,7), satisfying lims, 5, 5, v10 05 (00, 01,02,77) =
0, and By > 0 such that for all B > By with probability 1 — SES: (i) The total
number of instability intervals of type 1b in [0, A Tc‘%] is less than e%P.

(11) The total number of instability intervals of type 1a in [0, t/\TC‘%] is less than
o(A-U+83)8

(iii) The total number of instability intervals [t1,t2] of type 1a in [0, tATé%] such

that in [t; — e(A_U""S)B] there exists an interval of type 1b is less than €%,
(iv) The total number of instability intervals of type 2 in [0,t A TC‘%] is less than
033

e%F,

8. We now return to the estimate of the 2-nd, 3-rd, 4-th term in the r.h.s. of
(7.56). By applying Lemmas 43 and 47 we obtain:
PAT N {7 € Cpaa} N{AH1 2 > A}) < A UDFH"BedBe A5 4 gpg

P(A7 N {7 € Cu} N{AH12 2U}) < e FePe U0 +ES

P(AT N {1 € Caa} N{AH 19 > A}) < & Pel/File 85 4 ks,
(7.66)
We have now to control the term IP’(A%). Let us denote by 7; < T3 A 7, the
n

times of arrival of red particles in A up to time T3 A Tz (including 75 if the exit
n n

is due to the arrival before T3 of a red particle inside an instability interval). We
observe that, by Lemmas 43 and 47, for each 7; the delay time DT(T3 A 7., o)
n

spent by the red particle inside A is less than eVf+(01493)8 with probability
1 — SES, where o, denotes the coloration time of the red particle.

Lemma 48 There exist 04(d1,03), satisfying lims, 5,10 04(61,03) = 0, and By >
0 such that for oll B> By, to >0 and T >0

P(37; € [to,to + 1)) < [ef(AfU)ﬂ +e A8 log tg 4B, (7.67)

9. Let P(1a), P(1b), P(2) be the probabilities of the events where a red particle
arrives during an instability interval of type la, 1b, 2, respectively. Obviously,

IP’(A%) < P(la) + P(1b) + P(2). (7.68)
By using Lemmas 43, 47 and 48, we have
P(1b) < SES+ P(E! an interval [t1,t2] of type 1b
with t9 — t; < 65*8 and dr; € (tl,tg))

< SES + e0Be(A-U)Bdsf
(7.69)
P(2) < SES+ P(E! an interval [t1, t2] of type 2

with ty — t; < eVP*98 and 37, € (tl,t2)>
< SES + 653526*(A*U)5+255_
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10. As far as the term P(1la) is concerned, we have to distinguish between two
cases depending on the existence of an interval of type 1b at a distance less
than e(V+98 from the interval of type la we are considering:

P(1a N {3 interval of type 1b in [t; — VA8 41]}) < ' (A-U-40)8

P(la N {A interval of type 1b in [t; — VA0 1 ]}) < e(UH0")Fe—(A-0)8,

(7.70)
Indeed, in this last case the first term in the estimate in Lemma 48 is absent,
since it comes from the event that there exists a creation time oy, at a distance
less than e(Ut9)0 from the interval of type la we are considering and this is
forbidden by the event { A interval of type 1b in [t; — eV#+9% 4]}, (See (7.91)
in the proof of Lemma 48 below.) It remains to estimate the probability of exit
by contraction. This is given by the following:

Lemma 49

P(AZ N {1 € Cpo} N {AH, =20})

+ P(A%" N{m € Caia} N{AH; 2 = U}) < e-leU-a)t-1)-4]8.
(7.71)

This completes the proof of Proposition 39 for the case 7 € X3\ £. QED

For the case i1 € L we can proceed in a similar way. We indicate here only
the differences with the case 77 € X3\ L.
The characterization of the set C2U can be done as follows. By Lemma
26(iii), we know that F(@%U) = C?IU NX3 = C%U NXs. A direct check shows that
H(7') € {H(7),H(7)+A-U,H(7)+ U, H(j) + A} for any i € C%U. Moreover,
configurations with H (') > H(n)+U are not in X;. Indeed, if such an 7' is not
0-reducible, then this inequality implies that for each 7" with H(7") < H(7')
we have H(',7") > H(7') + U, and so if we choose " = 7, then we obtain

H(i7,7) > H(7) + U + U, which contradicts 7' € C2V.

Thus the partition of the set C,T%U uses

Gy = wegiokl
C_Z,u; = {7 € QZ N (X\ &) with H(7') = H(7) + U}
Ch = {7 eCUn (X \ &) with H(i') = H(p) + A - U}.
The exit costs in this case are given by
i e q%% . EC(7')=2U

ﬁ'Eq%Ib: EC(7)=U
ﬁ’ecgg: EC(7') = A,
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where we use that 2U — A < % The transition costs are given by

TC(0,1a) = U, TC(0,10) = A, TC(0,2) =00
TC(la,1b) = 0o, TC(la,2) =00, TC(1b,1la) = o0 (7.74)
TC(1b,2) =0, TC(2,1la) =00, TC(2,1b) =T.

We can prove also for this case the result in Lemma 47, and the rest of the
proof follows exactly the same calculations performed for the case 7 € X3\ L.

7.7 Proof of the lemmas

In this section we prove the lemmas that were used in Section 7.6.

Proof of Lemma 41. (i) Let 41, /5 be the side lengths of n, with 0 < fo—/; < 1,
and let 7y be its contour. For any 7’ such that |'| < |y|, we have nf < ng—¢;. On
the other hand, by the results in Section 4 we know that f:{(./\/’glgz,./\/’gl(b,l)) >
r(n) + A+ H(n), so that such a configuration 7’ is not in C5. In the same way,
by using the results in Section 4, we immediately see that if nj > ng + 2 or
ny < mng — ¢ + 1, then the configuration 7' is not in C;. (ii) Equation (7.50)

follows from (i) and the fact that ng is the maximal number of internal particles
given a contour of length |y|. To prove that ' € X3, we only have to observe
that 4/ must be a monotone contour, after which we can apply Proposition 25.
To evaluate the exit cost of 1/, note that

H(n') = H(f) +¢'(2U — A), (7.75)
while, by the definition of EC in (7.49),
H(') +EC(7) — H(7) > r(7) + A+ > (6 —1)(2U — A) + A. (7.76)

So we obtain
EC(7) > (4, —1—0)(2U — A) + A. (7.77)

(iii) We argue by contradiction. Suppose that |y'| = |y| +2,n' = 0 and 7' €

C; N Xy. Then, since nf, < ng + 1, we have

H(7') > H(7)+ U — (2U — A). (7.78)
But B B
H(7',7) — H(7') > A. (7.79)
Hence
H(7',7) > A+ A —U+ H(7) > r(77) + H(7j), (7.80)

which contradicts the hypothesis 77/ € C;. So 77 € Xs. To compute EC(77'), we
note that B B
BC(7) > H(7) — H(7') + () + 4, (7.81)

and since

H(n) — H(if') = (=2U + A)(no — np) = U, (7.82)

we obtain the result.
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(iv) In a similar way, H(') > H() + 2U — (2U — A), and if i’ € X}, then

>
H(7,7) > A+ U + H(q) > r(7) + H(#). (7.83)

Now EC(7') = U, since

H(f')+U—-H(p) >A+U>r(n)+A. (7.84)
(v) Note that
H(7) = (—2U+A)n6+%IV'I+A > (—2U+A)+%(|7’I—|7|)+A+H(ﬁ), (7.85)
so if |y'| > |v|, then
H(i)> 2U+A+U+ A+ H(7) =2A~U+ H(q) > r(7) + H(7), (7.86)
while if |[y'| = |y| and 7’ € X, then

H(n',n) > U+ H(j') > U +2A —2U + H(n) > r(n) + H (). (7.87)

(vi) If 4| > |y| +4 or n' > 1, then H(7') > U + A+ H(n) > r(n) + H(n) or

H(ij') > 3A —2U + H(77) > r(7) + H(7]). QED

Proof of Lemma 43. The claim is an immediate consequence of Proposition
32. QED

Proof of Lemma 44.

1. Let s = 0,s" = la. Then |y2| = |y1| + 2 and ny = n4, since the move
71 — 72 has to be inside Ag. Therefore H(f2) — H(71) = U. Analogously, let
s =0, s =1b. Then |y| = |y|+ 4 and ne = n; or |y2] = |y1| and n}, =1, so
that H(no) — H(71) =2U A A = A.

2. The transition 7; € éﬁ,O — 7}y € C},,z is not possible. Indeed, we have
H(m) # H(n2), since 71 is not 0-equivalent to 72, and if H () < H(7j2), then
the move 7y — 7, shows that 7, € Xy, while if H(;) > H(72), then the move
71 — 72 shows that 7; ¢ A?l.

3. If s = la, s’ = 1b, then we have two possibilities:

(1) |72l = Inl+ 2 and nj =nj = 0,11 = ny;

(2) sl = 17l Inl = Iyl + 2 and ny = 1, n}, = 0.

In the first case H(72) — H(f1) = U, in the second case the move must be
between Ay and the ring A \ Ag, so ny = ny — 1 and H(2) — H(71) = (-2U +
0)(ne —m) + Gl = Im) +A=0U.

4. The transition 7y € Cgziqa — 72 € Cp2 is not possible. Indeed. we have
H(m) # H(f2), since 7; is not O-equivalent to 7, and |y1| = |y| +2 = |y2| and
ny = ng, since nj = ny = 0, but this is a contradiction.

5. If s = 1b, s’ = 2, then we have a creation cost zero (as given, for instance, by
the transition in which a particle reaches the square or quasi-square cluster).
A similar argument holds for the case s = 1b, s’ = la.

6. The transition 2 — 1a is forbidden by an argument equal to that used in
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the transition la — 2.

7. If s = 2,5 = 1b, then we have two possibilities:
(1) el = Iyl +4, Im| = |v[ + 2 and n} = n) = 0;
@) bl = Iyl Il = Iyl +2 and ny = 1, ) = 0.
In both cases we have H(7j2) — H(71) = U. QED

Proof of Lemma 45. This is an elementary large deviation estimate for a bi-
nomial distribution obtained by applying an exponential Chebyshev inequality.
QED

Proof of Lemma 46. For any ¢t > 1
P(u(t) > (log?)?)

< P(3(logt)® IRW’s starting at A and returning to A within time #)

< (1 - @)(logt)?’ -~ efn(logt)Q’
(7.88)

where we use Proposition 11. QED

Proof of Lemma 47.
1. Let N'(1b) be the number of instability intervals containing at least an
interval of type 1b within time T3e? A Tee- We have

P(N'(1b) > e00)8) < P(n(Ty, A) > e@11D8) L P(u(T3) > e'F)

+ P({N'(18) > e®503}  {n(Ty, A) < elP+D9} (1 {u(T3) > e7F}).
(7.89)
By using Lemmas 45 and 46, we get P(N'(1b) > e(20+0")F) < gEs.
2. In any instability interval containing intervals of type 1b, the maximal
number of intervals of type 1b is €’? with probability 1 —SES. This follows from
Lemma 44 and the analogue of Lemma 45 for the quantity n(T%,U). Thus we
have that the total number N(1b) of intervals of type 1b within time 75 A Tee
is smaller than e*"? with probability 1 — SES.
3. The number N (2) of intervals of type 2 is estimated by N(2) < N(1b), again
by Lemma 44. With similar arguments we can conclude that the number N'(1a)
of intervals of type la starting from an interval of type 0 is, with probability 1 —
SES, smaller than e(2~U)F+96 and the number of intervals of type 1a contained

in an instability interval containing intervals of type 1b is less than ehh , so that
N(la) < N'(1a) + N'(1b)e’®. QED

Proof of Lemma 48. Let oy be a coloration time. If g < eVAH(01402)8 then

P(3r; € [to, to + T]) < P(Hak € [0,eVA+H01+02)8 4 T])

038 (UB+(S1+52)8 1T
<3 S P(ay = s) + SES (7.90)
k=1 s=0

< e ABHIB(UAT(O1402)8 1 T) 4 SEs.
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On the other hand, if ty > eVFT(01402)8 then

P(HTZ' S [to,to + T])

- P(an € [to, to + T] N {ay, infty — eUFHO102)8 4 4 T]})

+ P(an € [to, to + T] N {ay, < to — eUﬂ+(6l+éz>ﬁ})

e208 to+T
<X Y. Plag =5s)

k=1 s=to—eUB+238

€938 to—eUB+(81+02)8 o4 T

+ k; 2 t; P(‘{ak = s} N{QRW;_;_DT(t,0) (k) € /_X}) + SES.

s=0
(7.91)
2. For QRW similar estimates hold as for SRW. namely,
klogt
m;iXIP(QRWt =1z) < . (7.92)
Indeed, we can write
QRW; = SRW; + JP; (7.93)
where JP; is a sum of jumps
v(t)
P =Y J (7.94)
n=0
with |Jp| < 2lp and with v(t) estimated in Lemma 46.
3. From (7.92) we obtain
P(HTZ' € [to,to + T])
to+T to—eUB+(01+52)8
S e*AﬁeUﬂ+(51+253)ﬂ + tzt ZO e*Aﬁ#‘(ﬁgﬁm & SES
=to s§=
(7.95)
QED
Proof of Lemma 49.
1. For m=ng—41 +2,...,n9 + 1, define

where N}, = {7/ € &: _n6 +n' = m}. By Lemma 41, C; = UZfiéofélJrQCﬁ(m).
We note that the sets Cy(m) are not necessarily connected. We write

_ notl _
Ca(>m)=|J Cy(m). (7.97)

m’'=m+1
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Let (;(m), j € N, denote the return times to the set Cz(m) within T4 ATee, ie.,
G(m) = (T5 A Tc‘%) A min{t > 0: 7; € Cy(m)}
(7.98)

Cj’(m) = (T5 A Tg%) A min{t > (;(m): 7y & C?,—,(zn)}
Gi+1(m) = (T3 A 7ee) Amin{t > (j(m): 7, € Cy(m)}.

2. Let mg be the minimal index m, i.e., o = ng—¢1+2. We say that the process
(Mt)e>0 exits by contraction from the set Cy(my) if it exits without increasing
the number of particles in A, i.e., if Y 5 7:(z) = myp for all ¢ < Tée (o) On
the events _ _

{Aﬁm N {’171 € Cﬁ,g} N {AHLQ = 2U}}

{A7 N {1 € Chaa} N{AH1 2 =TU}} (7.99)

the process (7j;);>o0 exits from Cj by visiting C(mo) and then leaving it by
contraction. So we have the estimate

P(A7 N {71 € Cyo} N{AH 5 =2U})
P(A7" N {71 € Cpia} N{AH1 2 =U})
66”6

<2 X PGlmo) <Ts A Tee Nijg, = y) X (7.100)
=1 yeCy(mo)

P, ((ﬁt)tzo exits by contraction from C},(m@)

—i—l?(max{i >1: (G <T3N TC‘%} > 66”’3).
3. By using the coupling between (7););>0 and (7;);>0 we obtain

sup P, ((ﬁt)TZO exits by contraction from @ﬁ(mo))

yec_;,(mo)
(7.101)
< sup Py, ((ﬁt)tz[] exits by contraction from éﬁ(mo)).
yec},(mo)
On the other hand, by using reversibility we can estimate
P, ((flt)tzo exits by contraction from éﬁ(m0)> < e~ PU-A-08, (7.102)
Moreover,
P(Gi(mo) < T3 A7ee) < P(1g,(me) < T3 A 7¢e), (7.103)
and thus we obtain
r.h.s. of (7.100) < eallﬂlP(Tc-ﬁ(mo) < T3 N TC‘%) e (QU-A=0)5
(7.104)

-i—IP’(max{i >1:( <T; /\7'5%} > e‘suﬁ).
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4. Each entrance into the set C5(myo), i.e., each (;(mo), is a time at which a
particle exits from A and so it is the endpoint of an interval of type 1b. So,
by Lemma 47, we have that the last term in (7.104) is SES. The proof of
the lemma can now be concluded by iteration after we note that on the event
{Tc‘ﬁ(mo) < T3 A TC‘%} the process (7;);>0 exits from the set Cy(> mg + 1) by

visiting C(mo + 1) and then leaving it by contraction. QED

7.8 Additional results

We close by collecting some consequences of Proposition 35 that will be needed
in Section 8.

Proposition 50 There exist § = §(dg,01) > 0, satisfying limg, 5,10 6(dp, 1) =
0, and By > 0 such that for all B > By

Po(TR,, < 82008 5 =08, (7.105)
Proof. We need the following lemma.

Lemma 51 Let N, := {n € X: N5(n) =n}. Then

nren]\ifr:g P, (1x, < T3e?1P) > e~ (BA-2U)B=05, (7.106)

This result implies Proposition 50 as follows. For every n € N, we have
Pn(TRQ,Q < TQeélﬁ) > 676’3, and so

Po(TR,, < 6(4A72U)*8+5’3) > Po(my, < 6(4A72U)’3+5’”8)€75”8 § < (7.107)

and the probability in the r.h.s. of (7.107) is 1 — SES if 6 > 2§;. Indeed, if
TN, > e(4A-2U)6+0"6 , then in any subinterval of length T3e¢2'# contained in
the interval [0, e(*A=2V)8+0'8] we have not yet reached Ny. By (7.106), the
probability of this event is SES if §' > 24;. QED

Proof of Lemma 17b.1.
1. It suffices to show that Po(ry, < T3e?"18) > =(3A-2U)8=08  [ndeed, by
using the recurrence to X3 within time T3¢*# we have

Py (ta, < T36261ﬁ) > Py(ta, < Tse018 N TN, > Txs)

(7.108)
> Po(ry, < T3e?P — T3efP) — SES.
2. Let
A={n€ Xo: Ny, \x(n) > 4}. (7.109)
Then, for §' < dy,
Po(7a, < Tse?1P)
= ({TA < 3T5e® 0} N {1y, > %Tw%ﬁ}) (7.110)

X min P, (tyn, < Tze%5).
neANN<2NX)y 77( Na 3 )
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The first probability in r.h.s. of (7.110) can be estimated by using (3.6):

P ({TA < %Tge%lﬁ} N {T/\/22 > %T36261ﬁ}>

|Ae \A|\* _ A 2
> (%Tie%lﬂ) — P(rn,, < 1T3e2018) > ¢~ (042045 _ <%T3\62|61B) _
(7.111)

The second probability in r.h.s. of (7.110) can be estimated by similar standard
estimates on SRW. Indeed, the fact that n € A allows us to estimate from
below by e 42898 the probability that the first 4 particles arrive in A during
given interval of times [t1,t; + 1], [te,to + 1], [t3,t3 + 1], [t4,t4 + 1], provided
t1 > +T3e778 and ¢4 < Tye P, If we denote by 7/, 75,7}, 7} the random times
corresponding to the arrival of the first 4 particles, then we obtain

!
min P, (1n, < Tye 0P
nEANN <2NXo n(7Ns 3

. 273¢0'5 t+1
> 3 s Pp(T] € dt YR, (T4 e dt
= e ANN LN o féTgeﬂi s Py ) [ n(72 2) (7.112)

UB—-63 UB-46p3
ftt22+e ]P’n(T?l, € dtl) ftig-'_e Pn(Ti € dtl)

S o—(3A—2U)5-06

QED

Finally, let 7;, ¢ € Ny be as in Definition 34 and let 7; = min{r;: 0, &
E3(Nry)}, i-e., the first time 7; at which the reduced Markov chain changes
configuration.

Proposition 52 (i) If n € Ry, ¢, with 1 < L. and 7' € Ry, 11,4,, then

miInIP>,,<{nﬁ ely}n{m < e<2A—UW+5ﬁ}) > o ~(A=U-T(MB-28 (7113
nely

(ii) If 7 € Ro, 4, with £y > L. and 77 € Ry, 414, then

milnlpn({nﬁ €ly}n{m < em*UW”ﬂ}) > e 208, (7.114)
neiy
(iii) If 77 is a lacunary set and 7jj, j = 0,1,...,n, is the sequence of configura-

tions defined in Proposition 35(iii), then

. . - 2A-U)3+5 —26
j:()rfl.%_ln?éll% Py, ({77;1 €l tN{n < el )i+ ﬁ}) >e 20 (7.115)

Proof. (i) Estimate

PR(n, Iy) PR(n, Iy)
P, (- € Iy) = /A 0 , (7.116
alim € Iy) 1—PR(n, Iz) — C(|A|)maix ma); " )PR(n,Iﬁu) ( )
n€ls n'" X3, ¢E3(7
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where C(|A|) > 0 is some constant depending only on |A|. From Proposition
35(1,iv) we have
By (17, € Iy) > e~ (A-U-r(m)5-205 (7.117)

By Proposition 35(i) we also have

) (2A-U)B+58
P, (7 > 6(2A—U),6'+5B) < SES+ PR(Tla-[ﬁ)j| T4ed1F
) L(2A-U)B+53
= SES+[1—- X PR(n,Iﬁ”)} Taet1?
- G))

) c(2A—U)B+53
< SES+ 1—PR(n,Iﬁ')] 7 = s,

(7.118)
Parts (ii) and (iii) follow in the same way. QED

8 Proof of the main theorem

In this section we collect the results from Sections 4-7 and prove Theorem 3.

8.1 Lower bound for the nucleation time
We begin by proving the lower bound in Theorem 3(c), i.e.,

lim P, (ra<T )=0 VY6>0 withT =7 (8,0) =29 (81)
[B—00

1. Let
A={neXx:HOn)-HO) <T}. (8.2)

Note that .A can be viewed as a subset of X and that H () = 0. Since I is the
communication height between [0 and B, as was shown in Proposition 16(iii),
we have 794 < 7m and so

P (m <T ) <Puy(r94 <T-). (8.3)

2. To estimate the r.h.s. of (8.3) we use reversibility. For that it is convenient to
pass to the discrete-time setup. Let T;, © € Ny be the successive times at which
some clock in A* U OA* rings. Let P*(n,n') denote the transition probabilities
of the Markov chain that is obtained by observing our process at these times:

P*(n,n') =Py(nr, =1n). (8.4)
Let
it = inf{i e No: np, € 0A}
N, = #{0§Z<’L* T —T; <a} (85)
N, = #{0<i<i* Ty —T; > a},
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where a > 0 is a constant that will be chosen shortly. Since :* = N7 + Ny and
{Toa <T_} C{N2 <T_/a}, we have for any M € N

Py (toa <T-) <P(N1 > M,No <T_/a) + Py (i <M +T_/a).  (8.6)

Moreover,
Ny M
P(N, > M,Ny < T_/a) < IP’( > ) .
(N> M N <T-/0) SP\ G, 2 s 7 Ja (8.7)
Now pick a, M such that
1
P(T; <a) < 3 M=T_Ja. (8.8)

Then the probability in the r.h.s. of (8.7) equals the probability that among
the first Ny + Ny of a sequence of Bernoulli trials with success probability % a
fraction at least % is successful. However, this probability is SES, and so we get

Py (Toa <T-) = SES + P, (i* < 2T /a). (8.9)

3. Let us next consider the Markov chain obtained from our process when
some clock in the large volume Ag rings. Let 15(77,77' ) denote its transition
probabilities. This Markov chain is easily seen to be reversible w.r.t. the same
invariant measure v as the continuous-time process. From this observation we
deduce the reversibility of the Markov chain with transition probabilities given
by P*(n,n') in (8.4). Indeed,

P*(n,n'")
~ I w A~ I
=P(n,n)+ X2 > P(n,n1) X -+ x P(ni—1,n')
t=2 MLseees Nt—1
nilg=nly G=1,...,t—1)
v(n) [ . Aot
= [P0 + 2 > P(n',ni-1) x -+ x P(n1,n)
t—=2 Nseomp—1

nilg=nly (=1,...,t—1)

(8.10)
Hence we get

P, (i* < 2T_/a)

27T *
= 205 Lt Lonamea PX(ume) oo x Plmoi,m)  (g.11)

7”63./4

21 v(€)
< = SUPgeaa Vo)

From (8.2), (8.9), (8.11), Proposition 16(iii) and Proposition 53 we get the
result. Namely, we replace v by p, making an error that is SES because

limg 00 %log|A[3| = oo, and we use that supgcgq p(§)/n(lg) < e? because
of (8.2) (recall 4.9).
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8.2 Upper bound for the nucleation time
Next we prove the upper bound in Theorem 3(c), i.e.,

ﬁlim P, (rm>Ty)=0 V6>0  withT}, =T(8,0) =TT (8.12)
— 00

1. The idea is to construct an event E, 7 leading from any n € A to B in an
appropriate time T' = T'(3,d) and having a sufficiently large probability. Let
us first describe this event in words. The time 7' will be chosen of the form
T eUA—2U+3)B for suitably small § > 0. Note that, for g sufficiently large,

> TJr with TJr = (A+3)8, But, given n € I5, we know from Proposition
27 that within time T+ our process visits X3 with a large probability. Then,
by Proposition 25(iii) and Remark (2) following it, either of the two following
situations prevails:

1. There exist £, € N\ {1}, [¢ — ¢'| < 1 such that our process visits Ry ¢
within time T;‘ .
2. The process passes through a configuration containing a large lacunary

square or quasi-square (recall Remark (2) in Section 5.2).

In case 2, within another time % with a large probability our process goes to a
large (highly supercritical) square or quasi-square. Indeed, it follows from the
results in Section 7 that for this to happen for § sufficiently large it suffices to
have a time e2U+3)8 for any ¢ > 0. But for § > 0 small we have > e(U+3)8,

From the square or quasi-square present in each configuration in RMI we start
growing following a sequence of squares or quasi-squares of increasing side
lengths, leading eventually to B. Of course, it may happen that the initial
square or quasi-square is empty (£ = ¢' = 0). i.e., the configuration on which
we fall during the first part of our event is just [J.

2. Let us now give precise definitions. We set

T = AT T = eU+D)8 (8.13)
For n € X, define the set of trajectories
B0y ={# do=n J0<E<T: g e X} (8.14)
Let Q be the set of square or quasi-square configurations:
Q= Uppz1: je-e|<1Ree, (8.15)
and recall that Q = X3\ L. For n € X3, define the set of trajectories

EEI’T+ ={¢: po=n, I0<t<T}: € Q) (8.16)

and put
To = ’f'g(gb) = inf{t >0: ¢ € Q} (817)

76



Note that for any n € A5\ Q the interval 7o — 7y, is strictly positive, while for
any n € X3NRy e with £, € N\ {1}, [¢{—¢'| <1 it is zero and the corresponding

@) .
set En,T -+ is trivial.
3. Given £, ¢/ € N\ {1}, |[£ —¢'| < 1, we next introduce E%)WT as the set of
trajectories starting from Ry ¢ and passing (at the successive times 71, 7y,... of

return to X3 to a different configuration in A) through the following sequence
1) = 11,19, ... of pairs of integers:

~ 0, 0)=(0),L>2:p=(LL),(L+1,8),(+1,L+1),...,(L,4).
— (0, 0) = (L, 441),£> 2 ¢p = (£,0+1), ((+1,41), (£+1,£+2),..., (Lo, o).
- (£,0") =(0,0): ¥ =1(2,2),(2,3),(3,3),..., (%, %)
More precisely, put 7o = 0 and, for i € N,
7 =min{t > 1_1: g € A3\ I}, (8.18)

where 7, = m¢|5. (The 7; are the r_andom times at which the reduced Markov
chain changes configuration inside A; see Definition 34.) Let R, be the sequence
of sets of configurations Ry, 4, with (¢, £2) following the sequence . Then we
define

E%),[,,T = {¢; bro € Rupr,r, € Ry, Vi €N,

(8.19)
max; (741 — 7)) < 6(4A_2U+%)ﬁ}.
4. Our event E; 7 can now be defined as
1 2 3
Er= | {ED 0 =} fn{EY fn, =} nED,. (820
nEAX3,M2EQ
We will estimate the probability of each of the parts.
5. We have, for § sufficiently large,
inf _inf Py (BY)) > e (T-1a+2U-9)5, (8.21)

£1,82 NERyy 1y ’

Indeed, suppose first that (£1,¢5) = (0,0). Then it follows from Proposition 35
that

P (7‘1 € RQ,Z, T < 67(4A72U+g)*8> =1

va
(8.22)

min Py, (1, € Ry 11 < oFHAHDI) a0,

nEY;

where =< denotes logarithmic equivalence in  and, for ¢; = (¢,£+ 1) or ¢; =

(¢,0) with £ < 4., we put r; = (2U — A)(£ — 1). If, on the other hand, ¢ > £,

then we have s

sz (T’Tl E R¢i+17 Tl < 6(2A_U+5)/6> = ]. (823)
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The case (¢1,¢2) # (0,0) can be treated in a similar way: it turns out that the
worst lower estimate corresponds to the case (¢1,¢2) = (0,0). Equation (8.21)
follows from an immediate computation.

6. It follows from the results in Section 7.8 that for all p € X and n; € &3

P(ES’T;) =1, P(Ef}?{ﬁ) = 1. (8.24)

From (8.20), (8.21) and (8.24) we thus get

P(B, 1) > e T 4A+20+5)8 (8.25)

We can now apply Proposition 6 with

vV = V|j’
T = €(4A72U+%)5, T — TN — e(p+5)5, (8_26)
A=RB=X,p= o~ (T—4A+2U+5)3

to complete the proof.

8.3 The gate for the nucleation

In this section we prove Theorem 3(b).

1. Abbreviate

N(n) = Nx(n) = _n(=) (8.27)
TEA
and consider the sets
G = {neX: N(n) <l(—1)+2}
G- = {neX: Nn)=4L.(0.—1)+ 1} (8.28)
gO = {77 € A: N(Tl) :ec(ec_ 1) +2}'

Given a path ¢ = ¢1,..., ¢, (m € N) with ¢1 = O, ¢, = B, let 0 = i%(p) be
the first hitting time of G°:

" =inf{i € N: ¢; € G"}. (8.29)
Then B
H(gio) = H(ppo 1) + A, (8.30)
since H increases by A when we add a particle to A.
2. We have
,6‘1i—>rgo PV@ (nﬂ'go ¢ Dgc—l,zc) = 0. (8.31)

Indeed, since P, (750 < Tm) = 1, it follows from Theorem 3(c) that
lim P, (Tgo > e(”‘”ﬂ) —0 V&0 (8.32)
B—oo H

On the other hand, from the results of Section 4 we know that

HO,§°\D,_,,)<HD;_,,)+U. (8.33)
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Using (8.33) we can deduce, via an argument based on reversibility similar to
the one used to prove (8.11), that

: r+9)8\ —
Jim Py, (eg. <Tgvpp_,, <o) ) ~0. (8.34)

—1,0¢

3. The claim now follows from (8.32) and (8.34) after choosing ¢ sufficiently
small.

8.4 Criticality for squares and quasi-squares

In this section we prove Theorem 3(a).

1. For 41,4y with 0 < ¢ < ¢y and |£; —{5] < 1, let R>1:82) denote the set of all
configurations whose restriction to A gives rise to a single square or quasi-square
strictly larger than Ry, 4,, i.e.,

R>(41,52) _ U RZ’,E”? (835)
(07> (£1,02)

where (¢/,0") > (£1,45) (with ¢ < ¢" ¢; < ¢5) means either ¢/ > ¢1,0" > 45 or
0= 61,6” > 0. Let

st LY rRop N[ U Rew) (8:36)

(o0 (001> (01 ,£5)

Similarly, we define R<(1:£2) and R=(1:t2),

2. Let us first consider the subcritical case. With the help of reversibility,
like in (8.11), we can prove that, for every § > 0 and every /i, ¢y such that
0</4; <ty |ty =¥ <1land? </,

lim Py, (TR>(¢’1,£2) < e(M*U*‘W) —0. (8.37)

B—00
Indeed, it follows from Proposition 16(ii) that the saddle of exit from REGl)
e., the configurations realizing the communication height between R=(f1:2)
and R>W:E2) s 2A — U,

3. For /1,05 such that 0 < /1 < ly < V1 4+ 1 and ¢; < /. — 1, we define
a shrinking event Ej , containing the set of trajectories starting from Ry, o,

and passing, at the successive times 71, 7,... defined in (8.18), through the
following sequence ¢® = {,13, ... of pairs of integers:
= (b1,0) = (£,0), £>2: p° = (£,0),(L —1,4),({ —1,£—1),...,(0,0).
— (0,0 = (6, +1),£>2: 2 = (4,0 +1),(£,0), (£ —1,£),(£1,£2),...,(0,0).
- (6,0) = (1,2): ¥* = (2,1),(1,1),(0,0).
- (6,0) = (1,1): * = (1,1),(0,0).
— (¢,£") = (0,0): ° is the trivial path with no move.
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More precisely, we denote by Rys the sequence of sets of configurations Ry s
with (¢,¢') following the sequence v*, and define

Bl . = {¢; bry € Ry oy br; € Rys Vi €N,

max;(Tit1 — 7i) < e[(QU_A)(51—2)+2U+6]ﬁ}. (8.38)

4. Let us next consider the supercritical case. Again, with the help of reversibil-
ity like in (8.11), we can prove that, for every 6 > 0 and every ¢;, /5 such that
be <y <y <ty + 1,

(U-a)ee-2420-05) _o. (3.39)

Jim o, (st <

Indeed, it follows from Proposition 16(i) that the saddle of exit from R=(¢1:2)
is e[(ZU—A)(Z,;—?)—i—ZU},B.

5. For [, < /41 < ¥4y < ¢+ 1 we define a growing event S(gél ) containing
the set of trajectories starting from Ry, 4, and passing, at the successive times

1,72, ..., through the following sequence 19 = 1{ 13, ... of pairs of integers:
— (U1,02) = (£,0): 9 = (£,0),(¢+1,0),({+1,£+1),..., (o, 4o).
~ (0=l +1): 9 =L l+1),(L+1,041),..., (Lo, Lo).
— (£,0") = (Lo, £p): 19 is the trivial path with no move.

More precisely, we denote by R,s the sequence of sets of configurations R; s
with (¢,¢') following the sequence 17, and define

Bl ) = {# b € Reprybr € Ry Vi €N, .40
max; (741 — 7)) < 6(2A*U+5)5}. .
6. In the following we abbreviate
6s = 3(2A—-U-[2U — A)(4, — 3) + 2U] (5.41)
5, = 3([QU—-A)(t.—2)+2U]-2A-U).

7. In the subcritical case 0 < £ < ly < l1+1, £1 < 4. we have, for 3 sufficiently
large,
IP)VRZI,ZZ (T. < Tl:l) S ]P)VR[I,[z (TR>(ZI’Z2) < Tl:l)' (8.42)

On the other hand, by (8.37) we have

2A-U-3s
IPJ,,RZI,[2 (Tr>1,ty) < T0) < ]P’,,Rll,[2 (e( 38 < TR>(1,t5) < 7'|:|> + o(1).
(8.43)
Moreover,

2A—U—-125)3
IP)VR’LQ (e( 7) < Tr>ly) < TE])

s _ _ 3s
< PVRzl,z2 (e(m U-%5)8 T (st lQU-2)(=2)+2U+5%18 .

- (8.44)
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We know from Proposition 35 that if 0 < /1 < /{ly < ¥ + 1, 41 < 4., then for all
0 > 0 and g sufficiently large

Prg,, ., (Bfg,) > e (8.45)

The first claim in Theorem 3(a) now follows from (8.42), (5.13), (5.15), (8.45)
and Proposition 6 with

vV = VR[l,lg’
T = el@U-MNB-214 20315 g7 — g — (PA-U=3)5, (8.46)
A=0 B=R>t) = -

8. In the supercritical case £, < £1 < fy < {1 + 1, we proceed in a similar way.
We have

Pr, , (1 <7m) <Puy, , (Trewin < m). (8.47)

On the other hand, by (8.39) we have

Py, . (Tt <7Ta)

s (8.48)
S PVRU Lo (e[(ZU*A)(fc*2)+2U7—§—]ﬂ < TR<(1:¢2) < T.> + 0(1)-
Moreover,
)
vy, 0 (e[(zU—A)(ec—2)+2U—79]ﬁ < Tpeitriy < Tl)
J 5
< P”Rll,zz (e[(QU—A)(éc—2)+2U—79]ﬁ < Tr<ttity)s l@D-U)+416 T.).
(8.49)

We know from Proposition 35 that if /. < ¢1 < ¥y < ¢ + 1, then for all § > 0
and [ sufficiently large

P (Ef, ,,) > e (8.50)

YRey ity

The second claim in Theorem 3(a) now follows from (5.17), (8.48), (8.50) and
Proposition 6 with

V=URy 4y . .
T = [CA-D+18 i — i — [U-A) (242015 (8.51)

)

A=W B=R<L) p— ¢ T8,

9 Appendix: comparison of ensembles

The grand-canonical Gibbs measure for our system on a torus A = Ag C 72
with activity z is:

pa,z () = [H

TEA

2N(@)

n(z)!

exp[—AH (n3)]
Z (A, z,B)

(na € Xa), (9.1)
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where Xy = {0,1}* x NMA 5+ is the restriction of 7 to A,

H(ng)=-U Y nl@)mly) (15 € Xy), (9.2)
(:L‘,y)GAO
Xz = {0,1}*, and
Z(A,z,B) = e?MM N p2eenn(®) exp[—BH (). 9-3)
NaEXR

The canonical Gibbs measure with n particles is

_ 1 | exp[—BH (n3)]
VA,n(nA) = xe];{[\ n(x)| Z(A, n, ,B)A l(nAEXA,n)’ (9'4)
where X, = {nr € Xn: Y, can(z) =n} and
znp) = 3 | T = | ool (9.5)

NAEXAn [zEA\A

It is straightforward to verify that both these measures are reversible with
respect to the Kawasaki dynamics with Hamiltonian H in (1.45).

We want to compare the expected values with respect to the above two mea-
sures of a cylindrical function f with support in A. In what follows, we give an
elementary estimate showing that the difference between the two expectations
is inversely proportional to the total volume |A|. With the help of asymptotic
expansions, like the ones used to get a local central limit theorem, it would be
possible to get better estimates, even in more complicated situations (see Yau
[24], Bertini, Cirillo and Olivieri [1]). However, for our purpose it suffices to
have a rough estimate.

Proposition 53 There ezists ¢ = c(A) > 0 such that for all f: X5 — R with
I flloo < 1, allm €N and all A D A

Wan(f) = pas ()l < W when z = % (9.6)

Proof. 1. Put v = vy, and p = pp .. We have

_ 19 (1n=n)
p(1n=n)

where N = N(n) = 32,2 n(z), g = f — p(f) and p?(h) = u((1 + g)h). Note

that p9 is a probability measure: 9(n) > 0 and pf(1) =1, [|g]loo < 2| flloc < 3

and g has mean zero under p.

2. Let N =N(n) =3 ,cxn(z) and N = N(n) =3, cn\xn(z). From (9.1) we

see that the grand-canonical measure factorizes:

w(f) = n(f)l -1 (9.7)

(Ma)ka\A (Ma\R)
(M3)Ba\A (Ma\R)

p(na) = p

pI(na) = p 98)

1R >
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where B
exp[—BH (n)] 278

#alm) - = S g e @xp[=BH (n5)]=" A
(9.9)
gy — (tg(ny))exp[-BH(ny)]z" "8
Y > cx expl BH ()| )
and (@)
AR AT
pa\a(MaR) =€ M H 7 (9.10)
_n(z)!
zEA\A
From (9.8) we have
A i )
p(dn=n) = pN=n) = 3 pg(N=n)uyz(N=n—n)
ﬁﬂ (9.11)
pve) = WV =n) = TV = AV = n 7).
3. Set k = |A\ A] and m = n — 7. Then from (9.10) we get
- B (zk)me—zk
paa (N =m) = ———. (9.12)
Thus R R B
pai(N =n—n) = ppx(N =n —[A]) ¢5(n) (9.13)
with A
_ (zk)2 "
- — - . 9.14
¢5(7) (n—m)n—n—1)x...x (n—|A|+1) (9.14)
Substitution of (9.13) into (9.11) gives
A _
PN =n) _ Snto (N =) g3 (n) .15
= o A _\ ’
N =n) R s (N =) g (n)

From (9.14) it follows that there exists a ¢ = ¢(|A|) > 0 such that for all A D A

_ c
sup [pz(n) — 1] < - (9.16)

0<n<|A| Al
4. From (9.7), (9.15) and (9.16) the result in (9.6) follows. QED

Remark: It is clear from the above calculation that the assumption | f|lo < %
does not represent any loss of generality: in the generic case we get 4c||f |00
instead of ¢ in the r.h.s. of (9.6). Moreover, the same estimate holds when the
support A of f is replaced by any A’ D A: we get a different constant ¢ = c(A').
It is easy to check that ¢(A’) < k|A’| for some x > 0.
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