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Abstract

Maximum likelihood ratio theory contributes tremendous success to parametric inferences� due to

the fundamental theory of Wilks ������	 Yet� there is no general applicable approach for nonparametric

inferences based on function estimation	 Maximum likelihood ratio test statistics in general may not exist

in nonparametric function estimation setting	 Even if they exist� they are hard to 
nd and can not be

optimal as shown in this paper	 In this paper� we introduce the sieve likelihood statistics to overcome the

drawbacks of nonparametric maximum likelihood ratio statistics	 New Wilks� phenomenon is unveiled	

We demonstrate that the sieve likelihood statistics are asymptotically distribution free and follow �
��

distributions under null hypotheses for a number of useful hypotheses and a variety of useful models

including Gaussian white noise models� nonparametric regression models� varying coe
cient models and

generalized varying coe
cient models	 We further demonstrate that sieve likelihood ratio statistics are

asymptotically optimal in the sense that they achieve optimal rates of convergence given by Ingster

������	 They can even be adaptively optimal in the sense of Spokoiny ������ by using a simple choice of

adaptive smoothing parameter	 Our work indicates that the sieve likelihood ratio statistics are indeed

general and powerful for nonparametric inferences based on function estimation	
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� Introduction

��� Background

One of the most celebrated methods in statistics is maximum likelihood ratio tests� They form a useful

principle that is generally applicable to most parametric hypothesis testing problems� An important funda


mental property that contributes signi�cantly to the success of the maximum likelihood ratio tests is that

their asymptotic null distributions are independent of nuisance parameters� This property will be refereed to

as the Wilks phenomenon throughout this paper� A few questions arise naturally how such a useful principle

can be extended to in�nite dimensional problems� whether the Wilks type of results continue to hold and if

the resulting procedures possess some optimal properties�

An e�ort of extending the scope of the likelihood ratio tests to nonparametric settings is the empirical

likelihood due to Owen 
	����� This extends the scope of applications to a class of nonparametric functionals�

These functionals are usually so smooth that they can be estimated at root
n rate� See also Owen 
	�����

Hall and Owen 
	����� Chen and Qin 
	����� Li� Hollander� McKeague and Yang 
	���� for applications of

the empirical likelihood� Further extension of the empirical likelihood� called the random
sieve likelihood�

can be found in Shen� Shi and Wong 
	����� The random
sieve likelihood method allows one to deal with the

situations that the stochastic errors and observable variables are not necessarily one
to
one� Nevertheless� it

can not be directly applied to nonparametric function estimation setting� Zhang and Gijbels 
	���� incor


porated the idea of local modeling into the framework of empirical likelihood and proposed an approximate

empirical likelihood� called sieve empirical likelihood� The sieve empirical likelihood can e�ciently handle

nonparametric function estimation setting even with inhomogeneous error�

Nonparametric modeling techniques have been rapidly developed due to the availability of modern com


puting power that permits statisticians exploring possible nonlinear relationship� This raises many important

inference questions such as if a parametric family adequately �ts a data set� Take for instance additive models


Hastie and Tibshrani 	����

Y � m�
X�� � � � �� mp
Xp� � � 
	�	�

or varying coe�cient models 
Cleveland� Grosse and Shyu 	����

Y � a�
U�X� � � � �� ap
U�Xp � �� 
	���

where U and X�� � � � � Xp are covariates� After �tting these models� one often asks if certain parametric forms

such as linear models �t the data adequately� This amounts to testing if each additive component is linear

in the additive model 
	�	� or if the coe�cient functions in 
	��� are not varying� In both cases� the null

hypothesis is parametric while the alternative is nonparametric� The empirical likelihood and random sieve

likelihood methods can not be applied directly to such problems� It also arises naturally if certain variables

are signi�cant in the models such as 
	�	� and 
	���� This reduces to testing if certain functions in 
	�	� or


	��� are zero or not� For these cases� both null and alternative hypotheses are nonparametric� While these

problems arise naturally in nonparametric modeling and appear often in model diagnostics� we do not yet

have a generally acceptable method that can tackle these kinds of problems�

�



��� Sieve likelihood ratios

An intuitive approach to handling the aforementioned testing problems is based on discrepancy measures


such as the L� and L� distances� between the estimators under null and alternative models� This is a

generalization of the Kolmogorov
Smirnov and the Cram�er
von Mises types of statistics� We contend that

such a kind of method is not as fundamental as likelihood ratio based tests� Firstly� choices of measures and

weights can be arbitrary� Take for example the problem of testing H� � m�
�� � m�
�� � � in model 
	�	��

The test statistic based on a discrepancy method is T � c�k �m�k � c�k �m�k� One has not only to choose

the norm k � k but also to decide the weights c� and c�� Secondly� the null distribution of the test statistic

T is in general unknown and depends critically on the nuisance functions m�� � � � �mp� This hampers the

applicability of the discrepancy based methods�

To motivate the sieve likelihood ratio statistics� let us begin with a simple nonparametric regression

model� Suppose that we have n data f
Xi� Yi�g sampled from the nonparametric regression model�

Yi � m
Xi� � �i� i � 	� � � � � n� 
	���

where f�ig are a sequence of i�i�d� random variables from N
�� ��� and Xi has a density f with support

��� 	�� Suppose that the parameter space is

Fk � fm � L���� 	� �

Z �

�

m�k�
x��dx � Cg� 
	���

for a given C� Consider the testing problem�

H� � m
x� � �� � ��x �� H� � m
x� �� �� � ��x� 
	���

Then� the conditional log
likelihood function is

�n
m� � �n log

p

����� 	

���

nX
i��


Yi �m
Xi��
��

Let 
���� ���� be the maximum likelihood estimator 
MLE� under H�� and �mMLE
�� be the MLE under the

full model�

min

nX
i��


Yi �m
Xi��
�� subject to

Z �

�

m�k�
x��dx � C�

The resulting estimator �mMLE is a smoothing spline� De�ne the residual sum of squares RSS� and RSS� as

follows�

RSS� �

nX
i��


Yi � ��� � ���Xi�
�� RSS� �

nX
i��


Yi � �mMLE
Xi��
�� 
	���

Then it is easy to see that the logarithm of the conditional maximum likelihood ratio statistic for the problem


	��� is given by

	n � �n
 �mMLE�� �n
H�� �
n

�
log

RSS�
RSS�

� n

�

RSS� �RSS�
RSS�

�

Interestingly� the maximum likelihood ratio test is not optimal due to its restrictive choice of smoothing

parameters� See Section ���� It is not technically convenient to manipulate either� In general� MLEs 
if exist�

under nonparametric regression models are hard to obtain� To attenuate these di�culties� we replace the

�



maximum likelihood estimate under the alternative nonparametric model by any reasonable nonparametric

estimate� leading to the nonparametric likelihood ratio

	n � �n
H��� �n
H��� 
	���

where �n
H�� is the log
likelihood with unknown regression function replaced by a reasonable nonparametric

regression estimator� This relaxation extends the scope of applications and removes the impractical as


sumption that the constant C in 
	��� is known� Further� the smoothing parameter can now be selected to

optimize the performance of the likelihood ratio test� For ease of presentation� we will call 	n as a Sieve

likelihood ratio statistic�

The above sieve likelihood method can readily be applied to other statistical models such as additive mod


els and varying
coe�cient models� One needs to compute the likelihood function under null and alternative

models� using suitable nonparametric estimators�

��� Wilks phenomenon

We will show in Section � that based on the local linear estimators 
Fan� 	����� the asymptotic null distri


bution of the sieve likelihood ratio statistic is nearly 
� with large degrees of freedom in the sense that

r	n
a	 
�bn 
	���

for a sequence bn �
 and a constant r� namely� 
�bn�����
r	n�bn�
L�� N
�� 	�� The constant r is shown to

be near � for several cases� The distribution N
bn� �bn� is nearly the same as the 
� distribution with degrees

of freedom bn� This is an extension of the Wilks type of phenomenon� by which� we mean that the asymptotic

null distribution is independent of the nuisance parameters ��� �� and � and the nuisance design density

function f � With this� the advantages of the classical likelihood ratio tests are fully inherited� one makes a

statistical decision by comparing likelihood under two competing classes of models and the critical value can

easily be found based on the known null distribution N
bn� �bn� or 
�bn � Another important consequence of

this result is that one does not have to derive theoretically the constants bn and r in order to be able to use

the sieve likelihood ratio test� As long as the Wilks type of results hold� one can simply simulate the null

distributions and hence obtains the constants bn and r� This is in stark contrast with other types of tests

whose asymptotic null distributions depend on nuisance parameters� Another striking phenomenon is that

the Wilks type of results hold in the nonparametric setting even though the estimators under alternative

models are not MLE� This is not true for parametric likelihood ratio tests�

The above Wilks phenomenon holds by no coincidence� It is not monopolized by the nonparametric model


	���� We conjecture that it is valid for a large class of nonparametric models� including additive models


	�	�� To demonstrate its versatility� we consider the varying
coe�cient models 
	��� and the testing problem

H� � a�
�� � �� Let �a��
��� � � � � �a�p
�� be nonparametric estimators based on the local linear method under the

null hypothesis and let �n
H�� be the resulting likelihood� Analogously� the sieve likelihood under H� can

be formed� If one wishes to test if X� is signi�cant� the sieve likelihood ratio test statistic is simply given

by 
	���� We will show in Section � that the asymptotic null distribution is independent of the nuisance

parameters and nearly 
�
distributed� The result is striking because the null hypothesis involves many

nuisance functions a�
��� � � � � ap
�� and the density of U � This lends further support of the sieve likelihood

ratio method�

�



The above Wilks� phenomenon holds also for testing homogeneity of the coe�cient functions in model


	���� namely� for testing if the coe�cient functions are really varying� See Section ��

��� Optimality

Apart from the nice Wilks phenomenon it inherits� the sieve likelihood method is asymptotically optimal in

the sense that it achieves optimal rates for nonparametric hypothesis testing according to the formulation

of Ingster
	���� and Spokoiny 
	����� We �rst develop the theory under the Gaussian white noise model in

Section �� This model admits simpler structure and hence allows one to develop deeper theory� Nevertheless�

this model is equivalent to the nonparametric regression model shown by Brown and Low 
	���� and to the

nonparametric density estimation model by Nussbaum 
	����� Therefore� our minimax results and their

understanding can be translated to the nonparametric regression and density estimation settings� We also

develop an adaptive version of the sieve likelihood ratio test� called the adaptive Neyman test by Fan


	����� and show that the adaptive Neyman test achieves minimax optimal rates adaptively� Thus� the sieve

likelihood method is not only intuitive to use� but also powerful to apply�

The above optimality results can be extended to nonparametric regression and the varying coe�cients

models� The former is a speci�c case of the varying coe�cient models with p � 	 and X� � 	� Thus�

we develop the results under the latter multivariate models in Section �� We show that under the varying

coe�cient models� the sieve likelihood method achieves the optimal minimax rate for hypothesis testing�

This lends further support for the use of the sieve likelihood method�

��� Related literature

Recently� there are many collective e�orts on hypothesis testing in nonparametric regression problems� Most

of them focus on one dimensional nonparametric regression models� For an overview and references� see the

recent book by Hart 
	�����

An early paper on nonparametric hypothesis testing is Bickel and Rosenblatt 
	���� where the asymp


totic null distributions were derived� Azzalini� Bowman and H�ardle 
	���� and Azzalini and Bowman 
	����

introduced to use F
type of test statistic for testing parametric models� Bickel and Ritov 
	���� proposed a

few new nonparametric testing techniques� H�ardle and Mammen 
	���� studied nonparametric test based

on an L�
distance� Various recent testing procedures are motivated by the seminal work of Neyman 
	�����

Most of them focus on selecting the smoothing parameters of the Neyman test and studying their properties

of the resulting procedures� See for example Eubank and Hart 
	����� Eubank and LaRiccia 
	����� Inglot�

Kallenberg and Ledwina 
	����� Kallenberg and Ledwina 
	����� Kuchibhatla and Hart 
	����� among oth


ers� Fan 
	���� proposed simple and powerful methods for constructing tests based on Neyman�s truncation

and wavelet thresholding� It was shown in Spokoiny 
	���� that wavelet thresholding tests are nearly adap


tively minimax� The asymptotic optimality of data
driven Neyman�s tests was also studied by Inglot and

Ledwina 
	�����

Hypothesis testing for multivariate regression problems is di�cult due to the curse of dimensionality� In

bivariate regression� Aerts et al� 
	���� constructed tests based on orthogonal series� Fan and Huang 
	����

proposed various testing techniques based on the adaptive Neyman test for various alternative models in

multiple regression setting� These problems become conceptually simple by using our sieve likelihood method�

�



��� Outline of the paper

We �rst develop the sieve likelihood ratio test theory under the Gaussian white noise model in Section ��

While this model is equivalent to a nonparametric regression model� it is not very convenient to translate

the null distribution results and estimation procedures to the nonparametric regression model� Thus� we

develop in Section � the Wilks type of results for the varying
coe�cient model 
	��� and the nonparametric

regression model 
	���� Local linear estimators are used to construct the sieve likelihood ratio test� We

demonstrate the Wilks type of results in Section � for model diagnostics� In particular� we show that the

Wilks type of results hold for testing homogeneity and for testing signi�cance of a few variables� We also

demonstrate that the sieve likelihood ratio tests are asymptotically optimal in the sense that they achieve

optimal rates for nonparametric hypothesis testing� The results are also extended to generalized varying

coe�cient models in Section �� The merits of the sieve likelihood method and its various applications are

discussed in Section �� Technical proofs are outlined in Section ��

� Maximum likelihood ratio tests in Gaussian white noise model

Suppose that we have observed the process Y 
t� from the following Gaussian white noise model

dY 
t� � �
t�dt � n����dW 
t�� t � 
�� 	� 
��	�

where � is an unknown function and W 
t� is the Wiener process� This ideal model is equivalent to models in

density estimation and nonparametric regression 
Nussbaum 	��� and Brown and Low 	���� with n being

sample size� The minimax results under model 
��	� can be translated to these models for bounded loss

functions�

By using an orthonormal series 
e�g� the Fourier series�� model 
��	� is equivalent to the following white

noise model�

Yi � �i � n�����i� �i 	i�i�d� N
�� 	�� i � 	� �� � � � 
����

where Yi� �i and �i are the i
th Fourier coe�cients of Y 
t�� �
t� and W 
t�� respectively� For simplicity� we

consider testing the simple hypothesis�

H� � �� � �� � � � � � �� 
����

namely� testing H� � � � � under model 
��	��

��� Neyman test

Consider the class of functions� which are so smooth that the energy in high frequency components is zero�

namely

F � f� � �m�� � �m�� � � � � � �g�
for some given m� Then twice the log
likelihood ratio test statistic is

TN �

mX
i��

nY �
i � 
����

Under the null hypothesis� this test has a 
� distribution with degrees of freedom m� Hence� TN 	
AN
m� �m�� The Wilks type of results hold trivially for this simple problem even when m tends to 
�

�



By tuning the parameter m� the adaptive Neyman test can be regarded as a sieve likelihood ratio test� We

will study the power of this test in Section ����

��� Maximum likelihood ratio tests for Sobolev classes

We now consider the parameter space Fk � f� �
P�

j�� j
�k��j � 	g� By the Parseval identity� this set in

the frequency domain is equivalent to the Sobolev class of functions f� � k��k�k � cg for some constant c�

For this speci�c class of parameter spaces� we can derive explicitly the asymptotic null distribution of the

maximum likelihood ratio statistic� The asymptotic distribution is not exactly 
�� Hence� the traditional

Wilks theorem does not hold for in�nite dimensional problems� This is why we need an enlarged view of the

Wilks phenomenon�

It can easily be shown that the maximum likelihood estimator under the parameter space Fk is given by

��j � 
	 � �
j�k���Yj �

where �
 is the Lagrange multiplier� satisfying the equation
P�

j�� j
�k���j � 	� The function F 

� �

P�
j�� j

�k
	�


j�k���Y �
j is a decreasing function of 
 in ���
�� satisfying F 
�� � 
 and F 

� � �� almost surely� Thus�

the solution F 
�
� � 	 exists and is unique almost surely� The asymptotic expression of �
 depends on unknown

� and is hard to obtain� However� for deriving the asymptotic null distribution of the maximum likelihood

ratio test� we need only an explicit asymptotic expression of �
 under the null hypothesis 
�����

Lemma ��� Under the null hypothesis ����	


�
 � n��k���k���
�Z �

�

y�k


	 � y�k��
dy

��k���k���

f	 � op
	�g�

The maximum likelihood ratio statistic for the problem 
���� is given by

	�n �
n

�

�X
j��

�
	� j	k �
�


	 � j�k �
��

�
Y �
j � 
����

In Section � we show the following result�

Theorem � Under the null hypothesis ����	
 the normalized maximum likelihood ratio test statistic has the

asymptotic 
� distribution with degree of freedom an� rk	
�
n

a	 
�an 
 where

rk �
�k � �

�k � 	
� an �


�k � 	��

�k � 	

�
�

�k� sin
 �
�k �

��k���k���
n����k����

It is clear from Theorem 	 that the classical Wilks type of results do not hold for in�nite dimensional

problems because rk �� �� However� an extended version holds� asymptotic null distributions are independent

of nuisance parameters and nearly 
�
distributed� Table 	 gives numerical values for constant rk and degrees

of freedom an�

Surprisingly� the maximum likelihood ratio test can not achieve the optimal rate for hypothesis testing


see Theorem � below�� This is due to the fact the smoothing parameter �
 determined by
P�

j�� j
�k ���j � 	

is too restrictive� This is why we need sieve likelihood ratio tests which allow one the �exibility of choosing

smoothing parameters�

�



Table 	� Constants rk 
r�k in Theorem �� and degrees of freedom in Theorem 	

k � � � � �

rk �	���� �	���� �	���� �	���� �	����

an� n � �� ��	���� �	���� �	���� �	���� �	����

an� n � ��� ��	���� �	���� �	���� �	���� �	����

an� n � ��� ��	���� ��	���� �	���� �	���� �	����

r
�

k �	���� �	���� �	���� �	���� �	����

Theorem � There exists a � � Fk satisfying k�k � n��k�d����k��� with d � 	�� such that the power function

of the maximum likelihood ratio test at the point � is bounded by �
 namely


lim supPfrk	�n � an � z�
�an����j�g � ��

where z� is the upper � quantile of the standard normal distribution�

Thus� the maximum likelihood ratio test 	�n can detect alternatives with a rate no faster than n��k�d����k����

When k � 	��� by taking d su�ciently close to 	��� the rate n��k�d����k��� is slower than the optimal rate

n��k��	k��� given in Ingster 
	�����

��� Sieve likelihood ratio tests

As demonstrated in Section ���� maximum likelihood ratio tests are not optimal due to restrictive choice of

smoothing parameters� Sieve likelihood tests remove this restrictive requirement and allow one to tune the

smoothing parameter� For testing problem 
����� we take the sieve likelihood ratio test as

	n �
n

�

�X
j��

�
	� j	k
�n


	 � j�k
n��

	
Y �
j � 
����

with 
n � cn�	k��	k��� for some c � �� This ameliorated procedure achieves the optimal rate of convergence

for hypothesis testing� which is stated as follows�

Theorem � Under the null hypothesis ����	
 r�k	n
a	 
�a�n
 where

r�k �
�k � 	

�k � 	
� ��k�

��k� � 	�k � 	
�

a�n �

�k � 	��

�k � 	
� ��k�c�����k�

��k� � 	�k � 	

�
�

�k� sin
 �
�k �

�
n���	k����

Furthermore
 for any sequence cn �

 the power function of the sieve likelihood ratio test is asymptotically

one�

inf
��Fk
 k�k�cnn��k���k���

Pfr�k	n � a�n � z�
�a�n����j�g � 	�

��� Adaptive minimax optimality

The maximum likelihood ratio statistic 
���� and the sieve likelihood statistic 
���� depend critically on the

value of k� Can we construct an adaptive version that achieves adaptively the optimal rates of convergence�

The answer is a�rmative and the construction is simple�

�



Based on power considerations� Fan 
	���� proposed the following adaptive version of the sieve likelihood

ratio statistic 
�����

T �AN � max
��m�n

mX
i��


nY �
i � 	��

p
�m� 
����

He called the testing procedure as the adaptive Neyman test� Note that the adaptive Neyman test is

simply the maximum of the normalized likelihood ratio statistic 
����� It does not depend on the degree of

smoothness k� Following Fan 
	����� we normalize the test statistic as

TAN �
p

� log log nT �AN � f� log logn � ��� log log logn� ��� log
���g�

Then� under the null hypothesis 
����� we have

P 
TAN � x� � exp
� exp
�x��� as n�
�

Thus� the critical region

TAN � � logf� log
	� ��g
has asymptotic signi�cance level �� The power of the adaptive Neyman test is given as follows� A similar

version was presented in Fan and Huang 
	�����

Theorem � The adaptive Neyman test can detect adaptively the alternatives with rates

�n � n��k��	k���
log logn�k��	k���

when the parameter space is Fk with unknown k� More precisely
 for any sequence cn � 

 the power

function

inf
��Fk
 k�k�cn�n

P �TAN � � logf� log
	� ��gj�� � 	�

The rate given in Theorem � is adaptively optimal in the sense that no testing procedure can detect

adaptively the alternative with a rate faster than �n� according to Spokoiny 
	����� Hence� the sieve likelihood

ratio based test achieves this adaptive optimality�

Remark ��� By choosing the parameter m � O
n���	k���� when the parameter space is Fk
 the Neyman test

can also detect alternatives with the optimal rate O
n��k��	k����� This follows from the proof of Theorem ��

By choosing m to maximize ���
	
 we obtain an adaptive version of the Neyman test
 which is independent of

the degree of smoothness k� This test achieves the adaptive optimal rate because the maximum of the partial

sum process in ���
	 grows very slowly� This is why we pay only a price of order �log log n	 to achieve the

adaptive minimax rate�

� Sieve likelihood ratio tests in varying coe�cient models

In this section we develop asymptotic theory on the sieve likelihood ratio statistics and derive the optimal

minimax rates of the corresponding tests under model 
	���� Wilks phenomenon is unveiled in this general

setting�

Suppose f
Yi�Xi� Ui�gni�� are a random sample from the varying
coe�cient model 
	���� Namely�

Y � A
U��X� �� � 	 N
�� ����

�



with X � 
X�� � � � � Xp�� � U � 
U�� � � � � Uq�� � and A
U� � 
a�
U�� � � � � ap
U��� � For simplicity� we consider

only q � 	� Extensions to the multi
dimensional case are similar� Consider the simple null hypothesis testing

problem�

H� � A � A�� �� H� � A �� A�� 
��	�

We use the local linear approach to construct a sieve likelihood ratio statistic�

For each given u�� let �
u�� � 
A
u��
� � hA�
u��� �� � Let � � 
A�� hB� �� � where A� and B are vectors of

p
dimensions� Then� the local log
likelihood at the given point u� is given by

l
�� � �n log

p

����� 	

���

nX
i��


Yi � ��Zi�
�Kh
Ui � u���

where Zi � Zi
u�� � 
X�
i � 
Ui � u���hX

�
i �� and Kh
�� � K
��h��h with K being a symmetric probability

density function and h a bandwidth� Then� the local maximum likelihood estimator� denoted by ��
u��� is

de�ned as argmax l
��� The corresponding estimator of A
u�� is denoted by �A
u��� Using this nonparametric

estimator� the likelihood under model 
	��� is

�n log

p

�����RSS��
�����

where RSS� �
Pn

k��
Yk � �A
Uk��Xk��� Maximizing over the parameter �� leads to the sieve likelihood

under model 
	����

�n
H�� � �
n��� log
���n�� 
n��� log
RSS��� n���

Similarly� the maximum likelihood under H� can be expressed as

�n
H�� � �
n��� log
���n�� 
n��� log
RSS��� n���

where RSS� �
Pn

k��
Yk �A�
Uk��Xk��� Now� the sieve likelihood ratio statistic is

	n
A�� � ��n
H��� �n
H��� �
n

�
log

RSS�
RSS�

� n

�

RSS� �RSS�
RSS�

� 
����

The above approach can be extended to the composite null hypothesis testing problem�

H� � A � A�� �� H� � A �� A� 
����

where A� is a set of functions� As before� we can use the sieve estimator to construct the log
likelihood

�n
H�� for H�� Assume that we can use MLE or some sieve estimators to build the log
likelihood �n
H���

Let A�� denote the true value of the parameter A� Then the sieve likelihood ratio 	n
A�� for the testing

problem 
���� can be decomposed as

	n
A�� � 	n
A���� 	�n
A���� 
����

where 	n
A��� � �n
H��� �n
H �
�� is the sieve likelihood ratio for the hypothesis testing problem

H �
� � A � A��� �� H� � A �� A��

and 	�n
A��� � �n
H��� �n
H �
�� is the likelihood ratio for another hypothesis testing problem

H �
� � A � A��� �� H �

� � A � A��

	�



The above two hypothesis problems are fabricated because A�� is unknown� Therefore the sieve likelihood

ratio for the composite null hypothesis can be decomposed into two sieve likelihood ratios for two fabricated

simple null hypothesis problems� The asymptotic theory for composite null hypothesis can be easily derived

by those for the above fabricated simple null hypotheses 
see the proofs of Theorems � and ��� Thus� we

focus �rst on the simple null hypothesis testing problem 
����� In order to include the above fabricated

testing problems� we assume that A� is unknown� We should point out that when A� is known� the testing

problem 
���� is equivalent to the problem H� � A � � by a simple transform� So without loss of generality�

A� can be assumed zero in this case�

��� Asymptotic null distribution

To derive the asymptotic distribution of 	n
A�� under H�� we need the following conditions�

Condition �A�

�A�� The marginal density f
u� of U is Lipschitz continuous and bounded away from �� U has a bounded

support ��

�A�� A
u� has the continuous second derivative�

�A�� The function K
t� is symmetric and bounded� Further� the functions t�K
t� and t�K �
t� are bounded

and
R
t	K
t�dt �
�

�A�� Ej�j	 �
�

�A	� X is bounded� The p� p matrix E
XX� jU � u� is invertible for each u � �� 
E
XX� jU � u��
��

and

E
XX���
X� U�jU � u� are both Lipschitz continuous�

These conditions are imposed to facilitate the technical arguments� They are not weakest possible� In

particular� 
A	� in Condition 
A� can be relaxed by using the method in Lemma ��� in Zhang and Gijbels


	����� For example� we can replace the assumption that X is bounded in 
A	� by the assumption that

E exp
c�jjXjj� �
 for some positive constant c�� The following results continue to hold�

Note that in the above conditions� the normality of � is not needed� De�ne

�
u� � E�XX� jU � u�f
u�� w� �

Z Z
t�
s � t��K
t�K
s � t�dtds�

Let �i � Yi �A�
U��Xi� Set

Rn�� �
	p
n

nX
i��

�iA
��
� 
Ui�

�Xi

Z
t�K
t�dt
	 � O
h� � O
n�������

Rn�� �
	

�

	p
n

nX
i��

�iX
�
i �
Ui�

��A��� 
Ui�
�E
XijUi�w��

Rn�� �
	

�
EA��� 
U��XX�A���
U�w�
	 � O
n�������

�n �
pj�j
h


K
��� 	

�

Z
K�
t�dt��

��n �
�pj�j
h

Z

K
t�� 	

�
K 
K
t���dt�

d�n � ���fnh	Rn�� � n���h�
Rn�� �Rn���g � Op
nh	 � n���h���

		



where K 
K denotes the convolution of K� Note that both Rn�� and Rn�� are asymptotically normal and

hence are stochastically bounded�

We now describe our generalized Wilks type of theorem as follows�

Theorem 	 Suppose Condition �A� holds� Then
 under H�
 as h� �
 nh��� �



���n 
	n
A��� �n � d�n�
L�� N
�� 	��

Furthermore
 if A� is linear or nh��� � �
 then as nh��� �

 rK	n
A��
a	 
�rK	n 
 where

rK �
K
��� �

�

R
K�
t�dtR


K
t�� �
�K 
K
t���dt

�

Remark ��� As pointed out before
 when A� is known
 the testing problem ����	 is equivalent to the problem

H� � A � � �� H� � A �� � by a simple transform� Hence
 the condition in the second part of the

theorem always holds and so does the Wilk�s phenomenon� Further
 when nh� � �
 d�n � o
�n�
 namely

the term d�n is of secondary nature� In this relaxed sense
 even if A� is unknown
 the Wilk phenomenon is

valid when the condition nh��� � � is relaxed as nh� � ��

Remark ��� The degree of freedom in the asymptotic distribution depends on pj�j�h� This can intuitively

be understood as follows� If one partitions the support of U into intervals of length h and uses piecewise

constant functions to model the functions in A
 then we have total number of parameters pj�j�h under model

����	� In this view
 local linear �ts can also be regarded as sieve approximation to nonparametric functions

with e�ective number of parameters rK�n�

Remark ��� If local polynomial estimators of degree v instead of the local linear estimators are used to

construct the above sieve likelihood ratio
 then the result holds when K is replaced by its equivalent kernel

induced by the local polynomial �tting �Fan and Gijbels
 ����	� In this case
 the second part of Theorem � is

replaced by the condition that either A� is a polynomial of degree v or nh�	v����� � ��

Remark ��� Suppose Condition �A	 holds and the second term in ����	 is op
h����� �for example
 in testing

a parametric model
 under some regularity conditions this term equals Op
	��� Then it follows directly from

Theorem � that under the null hypothesis ����	 the result in Theorem � continues to hold�

We now consider the more challenging and more interesting case where null hypotheses depend on many

nuisance functions� Nevertheless� we will show that asymptotic null distributions are independent of the

nuisance functions� Write

A�
u� �

�
A��
u�

A��
u�

�
� A
u� �

�
A�
u�

A�
u�

�
� Xk �

�
X

���
k

X
���
k

�
� Zk �

�
Z
���
k

Z
���
k

�

where A��
u�� A�
u�� X
���
k and Z

���
k are p�
� p� dimensional� Consider the testing problem

H�u � A� � A�� �� H�u � A� �� A�� 
����

with A�
�� completely unknown� For the same purpose mentioned above� 
���� allows to be a putative hy


pothesis problem in which A�� is unknown but the true underlying functions� Following the same derivations�

the logarithm of the sieve likelihood ratio statistic is given by

	nu
A��� � 	n
A��� 	n�
A��jA���

	�



with 	n
A�� the full likelihood ratio de�ned in 
���� and

	n�
A��jA��� �
n

�
log

RSS�
RSS�

where

RSS� �

nX
k��


Yk �A��
Uk��X
���
k � eA�
Uk��X

���
k ���

Here eA�
Uk�� is the local linear estimator at Uk when A�� is given�

Recall that �
u� � E�XX� jU � u�f
u�� Write

� �

�
��� ���

��� ���

�
� and ���
� � ��� � ����

��
�� ����

where ��������������� are p��p�� p��p�� p��p� and p��p� matrices and p� � p�p�� De�ne �nu and �nu

the same as �n and �n except replacing p by p�� Similarly� de�ne d�nu by replacing X and � respectively

by X��� � ������X
��� and ���
� in the de�nition of d�n�

Theorem 
 Suppose Condition �A� holds� Then
 under H�u in ����	
 as nh��� �
 and h� �
 we have

���n 
	nu
A��� �nu � d�nu�
L�� N
�� 	��

In addition
 if A� is linear or nh��� � �
 then

rK	nu
A��
a	 
�rK	nu �

Theorem � provides convincing evidence that the Wilks type of phenomenon holds for nonparametric

sieve likelihood ratio tests with composite hypotheses�

��� Power approximations and minimax rates

We now consider the power of sieve likelihood ratio tests based on local linear �ts� For simplicity of our

discussion� we focus only on the simple null hypothesis 
��	�� As noted in Remark ��	� one can assume

without loss of generality that A� � �� But� we don�t take this option because we want to examine the

impact of biases on sieve likelihood ratio tests� This has implications to the case of composite hypothesis


���� because the biases inherited in that problem are genuine�

When A� is linear� the bias term in Theorem � will be zero� When A� is not linear� we will assume that

hn � o
n����� so that the second term in the de�nition of d�n is of smaller order than �n� As to be seen

in Theorem �� the optimal choice of h for the testing problem 
��	� is h � O
n������ which satis�es the

condition h � o
n������ Under these assumptions� if nh��� � 
� by Theorem �� an approximate level �

test based on the sieve likelihood ratio statistic is

� � �h � If	n
A��� �n � �vn � z��ng�

where with ��� � RSS��n�

�vn �
	

�
nh	����EA��� 
U��XX�A��� 
U�

Z Z
t�
s � t��K
t�K
s � t�dtds�

	�



The power of the test under the contiguous alternative of form

H�n � A
u� � A�
u� � Gn
u��

can be approximated by using the following theorem� where Gn
u� � 
g�n
u�� � � � � gpn
u��� � is a vector
valued

function�

Theorem � Suppose that Condition 
A� hold and that A� is linear or nh� � �� If

nhEG�
n
U�XX�Gn
U� � C
G� and E
G�

n
U�XX�Gn
U����� � O

nh�������

for some constant C
G�
 then under H�n


	n
A��� �n � �vn � v�n � d�n����n
L�� N
�� 	��

where

d�n �
n

�
EG�

n
U�XX�Gn
U��

��n �
p
��n � n���EG�

n
U�XX�Gn
U��

v�n �
nh	

���
EG��

n
U��XX�G��
n
U�

Z Z
t�
s � t��K
t�K
s � t�dtds�

Theorem � can be extended readily to sieve likelihood ratio tests based on local polynomial estimators

of degree v and to the case with nuisance parameter functions� It allows functions Gn of forms not only

gn
u� � 
nh�����g
u�� but also gn
u� � a��n g
anu� with an � 
nh������ The former function has a second

derivative tending to zero� which is restrictive in nonparametric applications� The latter function has also a

bounded second derivative� which does not always tend to zero� when g is twice di�erentiable� This is still

not the hardest alternative function to be tested� A harder alternative can be constructed as follows� Let

fujg be a grid of points with distance a��n apart and g be a twice di�erentiable function with support ��� 	��

Then� Theorem � also allows functions of form gn
u� � a��n
P

j g
an
u� uj�� with an � 
nh����	�

We now turn to studying the optimal property of the sieve likelihood ratio test� We �rst consider the

class of functions Gn� satisfying the following regularity conditions�

var
G�
n
U�XX�Gn
U�� �M
EG�

n
U�XX�Gn
U����

nEG�
n
U��XX�Gn
U� � Mn �
� 
����

EG��
n
U��XX�G��

n
U� �M�

for some constants M � � and Mn �
� For a given � � �� let

Gn
�� � fGn � Gn � EG�
n
U�XX�Gn
U� � ��g�

Then the maximum of the probabilities of type II errors is given by

�
�� �� � sup
Gn�Gn���

�
��Gn��

where �
��Gn� � P 
� � �jA � A� �Gn� is the probability of type II error at the alternative A � A� �Gn�

The minimax rate of � is de�ned as the smallest �n such that

	�




i� for every � � �n� � � �� and for any � � �� there exists a constant c such that �
�� c�� � � � o
	� 


ii� for any sequence ��n � o
�n�� there exist � � �� � � � such that for any c � �� P 
� � 	jA � A�� �

� � o
	� and lim infn �
�� c��n� � ��

It measures how close the alternatives that can be detected by the sieve likelihood ratio test �h� The rate

depends on the bandwidth h� To stress its dependence� we write it as �n
h��

Theorem � Under Condition �A�
 the sieve likelihood can detect alternatives with rate �n
h� � n�	�� when

h � c�n���� for some constant c��

Remark ��	 When p � 	 and X � 	
 the varying�coe�cient model becomes an ordinary nonparametric

regression model� In this case
 Lepski and Spokoiny �����	 proved the optimal rate for testing H� is n�	���

Thus the sieve likelihood ratio test is optimal in the sense that it achieves the optimal rate of convergence�

Similarly
 we can show the sieve likelihood ratio test
 constructed by using local polynomial of order v
 can

detect alternatives with rate n���v�����	v���
 uniformly in the class of functions satisfying

E�G�v���
n 
U��X�� � M�

for some M �
� The corresponding optimal bandwidth is c�n����	v��� for some constant c��

Remark ��
 In the proof of Theorem �
 we in fact show that the bandwidth h � c�n���� is optimal


optimizing the rate of �n
h�
 subject to the following constrains�

�a	 h� � and nh��� �

 if A� is linear�

�b	 nh�
 and nh� � �
 if A� is non�linear with continuous second derivatives�

� Model diagnostics

In this section� we demonstrate how the sieve likelihood ratio tests can be applied to check the goodness
of
�t

for a family of parametric models� This kind of problems occur very often in practice� Our results apply

readily to this kind of problems� We also note that the Wilks phenomenon continue to hold under general

heteroscedastic regression models�

��� Testing linearity

Consider the nonparametric regression model 
	��� and the testing problem

H� � m
x� � �� � ��x �� H� � m
x� �� �� � ��x�

where �� and �� are unknown parameters� Following the same derivations as in Section �� sieve likelihood

ratio tests based on local linear �ts are given by

	n � ��n
H��� �n
H��� �
n

�
log

RSS�
RSS�

�

where RSS� �
Pn

i��
Yi � ��� � ���Xi�
� and RSS� �

Pn
i��
Yi � �mh
Xi��

�� By using Remark ���� one can

easily see that Wilks type of results hold under the null hypothesis�

rK	n
a	 
�rKcK j
j�h� 
��	�

	�



where � denotes the support of X � and

cK � K
��� ���kKk���

Note that when K
�� � max
x

K
x�� we have K
�� � kKk��� cK � ���K
�� and whence rK � ��

To help one determine the degree of freedom in 
��	�� the values of rK and cK are tabulated in Table �

for a few commonly
used kernels� Among them� the Epanechnikov kernel has the closest rK to ��

Table �� Values of rK and cK in 
��	�

Kernel Uniform Epanechnikov Biweight Triweight Gaussian

rK �	���� �	���� �	���� �	���� �	����

cK �	���� �	���� �	���� �	���� �	����

Two inter
relationships concerning the degrees of freedom will be exposed� If we de�ne a !smoothing

matrix" H based on local linear estimates just as a projection matrix P in the linear regression model�

then under H�� RSS� � RSS� � �� 
H� � H � H�H � P ��� Denoting the bracket matrix as A� we have

tr
A� � �cK j�j�h following the proof of Theorem �� Thus� tr
A� is approximately the degree of freedom

only when rK � �� The second one is to note that K
�� � K 
 K
�� � kKk�� implies approximately

tr
H�H� � tr
H� � �tr
H� � tr
H�H�� a property holding exactly for H based on smoothing splines in

�xed designs �Hastie and Tibshirani 
	����� section �����

Remark ��� When one wishes to test parametric families other than the linear model such as H� � m
x� �

m
x� ��
 then one can apply sieve likelihood ratio tests to the residuals fYi �m
Xi� ���g
 where m
Xi� ��� is a

�tted value under the null hypothesis� The Wilks type of result ����	 continues to hold�

Remark ��� For more general regression model ����	
 where we assume only E
�jX � x� � � and E
��jX �

x� � ��
x�
 one can use the weighted residual sum of squares�

RSS� �
nX
i��


Yi � ��� � ���Xi�
�w
Xi�� RSS� �

nX
i��


Yi � �mh
Xi��
�w
Xi��

If the weight function w
�� is continuous with a compact support contained in fx � f
x� � �g
 then we can

show that under H�
 a generalized version of ����	�

r�K	n
a	 
�a�n �

where

r�K � rK �E��
X�w
X��

Z
��
x�w
x�dx

�Z
�	
x�w�
x�dx

���
�

a�n � rKcKh
��
�Z

��
x�w
x�dx

�� �Z
�	
x�w�
x�dx

���
�

When ��
x� � v
x��� for a known function v
x�
 the sieve likelihood ratio test corresponds to using w
x� �

v
x���� In this case
 the Wilks type of result ����	 continues to hold�

	�



��� Testing homogeneity

Consider the varying
coe�cient model de�ned in Section �� A natural question arises in practice is if these

coe�cient functions are really varying� This amounts to testing the following problem�

H� � a�
U� � ��� � � � � ap
U� � �p�

If the error distribution is homogeneous normal� then sieve likelihood test based on local linear �ts is given

by 
���� with RSS� �
Pn

i��
Yi � ���Xi�
� where �� is the least
square estimate under the null hypothesis�

To examine the property of the sieve likelihood ratio statistic 
���� under the general heteroscedastic

model� we now only assume that

E
�jX � x� U � u� � �� E
��jX � x� U � u� � ��
x� u��

with a continuous function ��
x� u�� Strictly speaking� the statistic 
���� is no longer a sieve likelihood ratio

test under this heteroscedastic model� The sieve likelihood ratio test in this heteroscedastic case should

involve weighted residual sum of squares when ��
x� u� � ��v
x� u� for a given v� See Remark ���� Let

��
u� � E�XX���
X� U�jU � u�f
u��

Then� we have the following result�

Theorem 
 Assume Condition �A�� Then under H�
 as h� �
 nh��� �



r��K	n
a	 
�a��n �

where

r��K � rK �E��
X� U��

Z



tr
��
u��
u����du
�Z




tr
��
u��
u�����du
���

�

a��n � rKcKh
��
�Z




tr
��
u��
u����du
�� �Z




tr
��
u��
u�����du
���

�

It is clear that when ��
x� u� � ��� Theorem � reduces to Theorem � and 
���� is a sieve likelihood

statistic� Hence the Wilks type of result continues to hold for testing homogeneity� It can also be shown

that the Wilks phenomenon is still valid for the sieve likelihood ratio in the heteroscedastic model with

��
x� u� � ��v
x� u�� bearing in mind that sieve likelihood ratio statistics are now based on weighted residual

sum of squares�

� Extensions

The Wilks type of results hold not only for the various problems that we have studied� They should be valid

for nearly all regular nonparametric testing problems� In this section� we mention various possible extensions

to indicate their versatility�

	�



��� Generalized varying coe�cient models

The inferences on generalized varying coe�cient models have been empirically studied by Hastie and Tib


shirani 
	���� and Cai� Fan and Li 
	����� The results in the previous sections can be directly extended to

this setting�

Consider a generalized varying
coe�cient model with the following log
likelihood function

lfg��
�
x� u��� yg � g�
g
��
�
x� u���y � b
g�
g

��
�
x� u����

where �
x� u� � g
m
x� u�� � A
u��x� g is called a link function and g� � b� is the canonical link� Poisson

regression and logistic regression are two prototype examples�

De�ne

l
g��
s�� y� � g�
g
��
s��y � b
g�
g

��
s����

q�
s� y� �
�lfg��
s�� yg

�s
�
g��
s�
g�
s�


y � b�
s���

q�
s� y� �
��lfg��
s�� yg

�s�
� 
g����g

� � g��g
���
g����
y � g��
s��� g���
g����

q�
s� y� �
��lfg��
s�� yg

�s�

� 
g���� �g
� � g���g

���g�� � 
g���g
�� � g���g����g

�� � �g��g
����g���
y � g��
s�� � �g����g

�� � g��g
���g���

In particular� when g � g� is the canonical link� we have

q�
s� y� � �b��
s�� q�
s� y� � �b���
s��

As in Section �� we can de�ne a local linear estimator �A for A� Lemma ��� yields the following asymptotic

representation for �A �

�A
u���A
u�� � r�n
e�
u��

��
nX
i��

�iXiK

Ui � u���h�
	 � op
	�� � Hn
u��
	 � op
	���

where

e�
u�� � �E�q�
A
� 
u��X� Y �XX� jU � u��f
u��� �i � q�
A
Ui�

�Xi� Yi��

Hn
u�� � r�ne�
u��
��

nX
i��

�q�
�
u���Zi� Yi�� q�
A
Ui�
�Xi� Yi��XiK

Ui � u���h��

The sieve likelihood ratio for testing the null hypothesis H� � A � A� is de�ned as

	ng
A�� � �
nX
i��

�lfg��
 �A
Ui�
TXi�� Yig � lfg��
Ai
Ui�

�Xi�� Yig��

Denote

qn� � qn�
U�X� Y � � sup
u�
jj�jj�c�rn

jq�
�
u���Z
u�� � ��Z
u��� Y �j

where rn � 	�
p
nh� For j � 	� �� � and c� � �� de�ne

#nj � #nj
U�X� Y � � sup
uo
jj�jj�c�rn

jq�
�
u���Z
u�� � ��Z
u��� Y �jjU � u�
h

jj��K

U � u�

h
��

The following technical conditions are needed�

Condition �B�

	�



�B�� Ejq�
A
U��X� Y �j	 �
�

�B�� E�q�
A
U��X�XX� jU � u� is Lipschitz continuous�

�B�� The function q�
s� y� � � for s � R and y in the range of the response variable� For some function

q�
y�� si � C� i � 	� �� jq�
s�� y�� q�
s�� y�j � q�
y�js� � s�j� Further� for some constant 
 � ��

Ef#nj
U�X� Y � jjXX� jjg� � �
	�� j � 	� �� ��

Eqn�
U�X� Y �jjXjj� � �
	�� Eq�
Y �jjXjj� �
�

sup
u�
jj�jj�c�rn

Eq��
�
u���Z
u�� � ��Z
u��� Y �K�

U � u���h��hjjXX� jj� � �
	�� j � 	� �� ��

Set

Rn��g �
	p
n

nX
i��

�iA
��
� 
Ui�

�Xi

Z
t�K
t�dt
	 � O
h� � O
n�������

Rn��g � �	

�

	p
n

nX
i��

�iX
�
i
e�
Ui�

��A���
Ui�
�E
q�
A�

�
U��X�XjUi�w��

Rn��g � �	

�
EA��� 
U��q�
A�
U��X� Y �XX�A���
U�w�
	 � O
n�������

where w� �
R R

t�
s�t��K
t�K
s�t�dtds� Note that both Rn��g and Rn��g are asymptotic normal and hence

stochastically bounded� Let d�ng � nh	Rn��g � n���h�
Rn��g � Rn��g�� Then� d�ng � nh	Rn��g
	 � op
	��

if n���h� � 
� The following theorem shows that Wilks type of results continue to hold for generalized

varying coe�cient models�

Theorem �� Under Conditions �A�	 � �A�	 and �B�	 � �B�	
 as h � �� nh��� � 
 and n�������h �
c�
logn�� for some � � 

 � 	��

 � ��
 we have the following asymptotic null distribution�

���n 
	ng
A��� �n � d�ng�
L�� N
�� 	��

Furthermore
 if A is linear or nh��� � �
 then as nh�

 rK	ng
A��
a	 
�rK	n 
 where �n and rK are given

in Theorem ��

Extensions of the other theorems and the remarks in Section � are similar� In particular the optimal

minimax rate and the optimal bandwidth are the same as those in Section �� The sieve likelihood ratio

tests can be employed to check the inhomogeneity of the coe�cient functions and signi�cance of variables

in the generalized varying
coe�cient models� The related theorems in Section � hold true after some mild

modi�cations� The details are omitted�

��� Additive models

Consider the additive model 
	�	� and the following problem

H� � m� � � �� H� � m� �� �

with m�� � � � �mp are completely unknown� One can use the local linear estimators proposed in Fan� H�ardle

and Mammen 
	���� or other methods to build sieve likelihood ratio tests� The results in the previous

sections can be extended to this case� A rigorous justi�cation of the statement is beyond the scope of this

paper�

	�



��� Empirical likelihoods

As pointed out in the introduction� neither Owen�s empirical likelihood nor its extension� random sieve

likelihood �Shen� Shi and Wong 
	����� can be directly used to make inference on a nonparametric regression

function� However� the idea of sieve empirical likelihood �Zhang and Gijbels 
	����� can be e�ective in

this situation� In a forthcoming manuscript� Fan� Liu and Zhang 
	���� have developed the corresponding

theory� The advantages of sieve empirical likelihood ratios include that no parametric models are needed for

stochastic errors and that it is optimal in some sense and adapts automatically for inhomogeneous stochastic

errors� The main disadvantage is that it requires intensive computation�

� Discussion

��� Other tests

There are many nonparametric tests designed for certain speci�c problems� Most of them are in univariate

nonparametric regression setting� See Section 	�� for an overview of the literature� While they can be

powerful for their problems where the tests were designed� extensions of these tests to multivariate setting

can pose some challenges� Further� these tests are usually not distribution free� when null hypotheses involve

nuisance functions� This would hamper their applicability�

Nonparametric maximum likelihood ratio tests are a natural alternative� Usually� they do usually exist�

If they do� they are hard to �nd� Further� as shown in Section ���� they are not optimal� For this reason�

they can not be a generic and powerful method�

��� Conclusions

The sieve likelihood method is widely applicable� It applies not only to univariate setting� but also to

multivariate nonparametric problems� It is ready to use because of the Wilks phenomenon� It is powerful

since it achieves optimal rates of convergence� It can also be adaptively minimax when tuning parameters

are properly tuned 
Section ����� The tuning method for local polynomial based sieve likelihood ratio test

can be surprisingly simple� Motivated by the adaptive Neyman test constructed in Fan 
	����� when the

null hypothesis is linear� an adaptive construction of the sieve likelihood would naturally be

T �ASL � max
h��n�a
n�b�

r
h�	n
h�� d
h�p
�d
h�

� for some a� b � �� 
��	�

where r
h� is the normalizing constant� 	n
h� is the sieve likelihood ratio test and d
h� is the degrees of

freedom� Therefore� the sieve likelihood is a very useful principle for all nonparametric hypothesis testing

problems�

While we have observed the Wilks phenomenon and demonstrated it for a few useful cases� it is impossible

for us to verify the phenomenon for all nonparametric hypothesis testing problems� The Wilks phenomenon

needs to be checked for other problems that have not been covered in this paper� More work is needed in

this direction�

��



� Proofs

Proof of Lemma ���� For each given 
n
c � cn��k���k��� 
c � ��� under the null hypothesis 
����� by using

the mean
variance decomposition� we have

F 

n
c� � n��
X

j�k
	 � j�k
n
c�
�� � Op

h
n��f

X
j	k
	 � j�k
n
c�

�	g���
i
� 
��	�

Note that gn
x� � x�k

���x�k�n�c��
is increasing for � � x � 


�����k�
n
c and decreasing for x � 


�����k�
n
c � By using

the unimodality of gn and approximating discrete sums by their corresponding integrals� one can show that

n��
X

j�k
	 � j�k
n
c�
�� � c���k������k�

Z �

�

y�k


	 � y�k��
dy � O
n�����k����� 
����

Using the same arguments as those obtaining 
����� we have

n��f
X

j	k
	 � j�k
n
c�
�	g��� � O�n���f���k���g��

This together with 
��	� and 
���� yield

F 

n
c� � 
c��c�
��k������k� � Op
n���f���k���g�� 
����

where c� � 

R�
�

y�k
	 � y�k���dy��k���k����

For any � � �� since the function F 
x� is strictly decreasing�

P 
jn�k���k���
�
 � 
n
c��j � �� � P 
F 
�
� � F 

n
c��
�� � P 
F 
�
� � F 

n
c��
�� � o
	��

which implies �
 � 
n
c� � op
n��k���k����� This completes the proof�

Proof of Theorem �� De�ne the j
th coe�cients in F 

� and 	�n as

F 
j 
� �
j�k


	 � j�k
��
� 	
j 
� �

	 � �j�k



	 � j�k
��
�

Then

F �
j 
� � � �j	k


	 � j�k
��
� 	�
j 
� � � �j	k



	 � j�k
��
� 
F �
j 
�� 
����

Let c� be de�ned the same as in Lemma ��	� For any �n
j between �
 and 
n
c� � it can easily be shown

that

jF �
j �n
j�� F �
j 
n
c��j � jF �
j 
n
c��jop
	� 
����

uniformly in j � 	� �� � � � and that for any �n
j between �
 and 
n
c� �

j	�
j �n
j�� 	�
j 
n
c��j � j	�
j 
n
c��jop
	�� 
����

uniformly in j � 	� �� � � ��
Let 	n

� � �

�

P�
j��

���j�k�
���j�k��� �

�
j � By using Taylor�s expansion together with 
����� 
���� and 
����� under

the null hypothesis 
�����

	�n �
	

�

�X
j��

h
	
j 
n
c�� � 
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 � 
n
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j �n
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i
��j
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n
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�X
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	 � j�k
n
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��j �

	

�
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����k��� � op
n������k������ 
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De�ne 	n
� � �
�

P�
j��f	 � j�k
n
c�g����j in 
���� and Vn � �

�

Pn
j��f	 � j�k
n
c�g����j � we have

max��j�nf	 � j�k
n
c�g��qPn
j��f	 � j�k
n
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� f
nX
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	 � j�k
n
c����g���� � O

���	k�n
c� � � ��

which implies that Vn�E�Vn�p
var�Vn�

L�� N
�� 	� by Lemma ��	 of Huber 
	����� Note that

var
	n
� � Vn� � 	
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	 � x�k
n
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Hence
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�����k�n
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This implies that
	n
� �E
	n
��p

var
	n
��

L�� N
�� 	�

�by Theorem ����	� of Randles and Wolfe 
	������ where

E
	n
�� � ���
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� O
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�����k�n
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This together with 
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Namely� rk	
�
n

a	 
�an � where
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�k �
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This completes the proof�
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Proof of Theorem �� Take j�kn � n��k�d����k���� Let � be a vector whose jn
th position is j�kn and

the rest are zero� Then� � � Fk and k�k � n��k�d����k���� For 
n
c � cn��k���k���� we have

j�kn 
n
c � cn�d���k����

Under this speci�c alternative� by using model 
����� we have for d � 	��

F 

n
c� � F 

n
cjH�� �
j�kn


	 � j�kn 
n
c��

�j�kn n�����jn � j��kn � � F 

n
cjH�� � op
n���f���k���g��

where F 

n
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j��
j�k

���j�k�n�c��
��j � By the arguments as those in the proof of Lemma ��	� one can

see that

�
 � 
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where �
 solves F 
�
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Next� consider the likelihood ratio statistic 	�n under the alternative hypothesis� Let
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X
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By similar proof of Theorem 	� rk	n
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Pfrk	�n � an � z�
�an����j�g � � � o
	��

This �nishes the proof�

Proof of Theorem �� This �rst part of result follows directly from the central limit theory using similar

arguments to those in the proof of Theorem 	 for 	n
�� We now establish the power of the test� Under the

alternative hypothesis�
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�a�n���� � r�kE
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To show 
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Proof of Theorem �� For any given m� when n is su�ciently large� we have

P �TAN � � logf� log
	� ��gj�� � PfT �AN � �
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� Pf
mX
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f
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have means zero and variance one� By normalizing the random variables in 
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the power of the adaptive Neyman test is at least
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for some choice of m�

Note that for any � � Fk�
�X

j�m��

��j � m��k
�X
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Thus�

m����
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Maximizing the above expression with respect to m leads to the choice of m � O
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The following four lemmas are used in the proofs for the theorems in Sections �� �� and ��

Lemma ��� Suppose the matrix $ � 
�ij�
n
i
j�� is symmetric
 w�� � � � � wn are independent random variables


with 	 	 �th moments Ewi � �
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Lemma ��� Under Condition �A�
 as h� �
 nh�
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 there exists M � � such that

sup
Gn�Gn

P 
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Proof� It follows from some direct but tedious calculations�

Using Lemma ���� we can easily show the following Lemma�

Lemma ��� Let �A be the local linear estimator de�ned in Section �� Then
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Lemma ��� Under Condition �A�
 as h� �
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It is easy to see that as h� ��
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Using Hoe�ding�s decomposition for the variance of U
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Sn�� �
�

n

X
��i�j�n

�i�jX
�
i

	

n

X
k ��i
j

�
�
Uk���XkX

�
k���
Uk�Kh
Uk � Ui�Kh
Uk � Uj�

�
Xj �

Sn�� �
K
��

n�h

X
i ��j

�i�j
�
X�
i �
Ui�

��XiX
�
i �
Ui�

��Xj �X�
i �
Uj�

��XjX
�
j �
Uj�

��Xj

�
Kh
Ui � Uj��

It can easily be shown that

var
Sn��� � O
	�
n�h��� � o
	�h�

which implies

Sn�� � op
h������ 
�����

Let

Qijkh � ���
Uk�XkX
�
k�
Uk���Kh
Uk � Ui�Kh
Uk � Uj��

Note that

E�X�
i

	

n

X
k ��i
j


Qijkh �E
Qijkhj
ui� uj����Xj �
�

� trace
�
n��

nX
k ���
�

E
Q��khX�X
�
�Q��khX�X

�
�

�
� O
	�
nh����

��



which leads to

Sn�� �
�
n� ��

n�

X
��i�j�n

�i�jX
�
i E
Qijkhj
Ui� Uj��Xj � op
h������ 
���	�

Combining 
��	�� 	 
���	�� we complete the proof�

Proof of Theorem 	� Note that

RSS�
n

� ��
	 � Op
n����� � Op
h�����

Then it follows from the de�nition that

�	n
A���
� � �r�n

nX
k��

�kf
nX
i��

�iX
�
i �
Uk���gXkK

Ui � u���h�

�
	

�
r	n

nX
k��

nX
i��

nX
j��

�i�jX
�
i �
Uk���XkX

�
kXj�
Uk���K

Ui � Uk��h�K

Uj � Uk��h�

�Rn� � Rn� � Rn� � Op

	

nh�
��

Applying Lemmas ���� ��� and ���� we get

�	n
A�� � ��n � d�n �W 
n�h������ � op
h�����

where

W 
n� �

p
h

n��

X
j ��l

�j�l��Kh
Uj � Ul��Kh 
Kh
Uj � Ul��X
�
j�
Ul�

��Xl�

It remains to show that

W 
n�
L�� N
�� v�

with v � �jj�K �K 
Kjj��pEf��
U��

De�ne Wjl �
p
h
n bn
j� l��j�l��

� 
j � l�� where bn
j� l� is written in a symmetric form

bn
j� l� � a�
j� l� � a�
j� l�� a�
j� l�� a	
j� l��

with

a�
j� l� � �Kh
Uj � Ul�X
�
j�
Ul�

��Xl� a�
j� l� � a�
l� j��

a�
j� l� � Kh 
Kh
Uj � Ul�X
�
j�
Ul�

��Xl� a	
j� l� � a�
l� j��

Then W 
n� �
P

j�lWjl� To apply Proposition ��� in de Jong 
	����� we need to check �


	� W 
n� is clean �see de Jong 
	���� for the de�nition� 


�� var
W 
n�� � v 


�� GI is of smaller order than var
W 
n�� 


�� GII is of smaller order than var
W 
n�� 

��




�� GIV is of smaller order than var
W 
n���

where

GI �
X

��i�j�n
EW 	

ij �

GII �
X

��i�j�k�n

EW �

ijW
�
ik � EW �

jiW
�
jk � EW �

kiW
�
kj ��

GIV �
X

��i�j�k�l�n

EWijWikWljWlk � EWijWilWkjWkl � EWikWilWjkWjl��

We now check each of the following conditions� Condition 
	� follows directly from the de�nition�

To prove 
��� we note that

var
W 
n�� �
X
j�l

EW �
jl�

Denote K
t�m� � K 
 � � � 
K
t� as the m�th convolution of K
�� at t for m � 	� �� � � �� It can be shown by

straightforward calculations that

Ea��
j� l��
�
j�

�
l �

��	

h
K
�� ��pEf��
U�
	 � O
h���

Ea�
j� l�a�
j� l��
�
j�

�
l �

��	

h
K
�� ��pEf��
U�
	 � O
h���

Ea��
j� l��
�
j�

�
l �

�	

h
K
�� ��pEf��
U�
	 � O
h���

Thus� it follows that

Eb�n
j� l���j�
�
l �

�	

h
�	�K
�� ��� 	�K
�� �� � �K
�� ���pEf��
U�
	 � O
h��

which entails

v � �

Z
��K
x��K 
K
x��

�
dx pEf��
U��

Condition 
�� is proved by noting that

E �a�
	� �������
	

� O
h���� E �a�
	� �������
	

� O
h����

which implies that EW 	
�� � h�

n�O
h��� � O
n�	h���� Hence GI � O
n��h��� � o
	��

Condition 
�� is proved by the following calculation�

EW �
��W

�
�� � O
EW 	

��� � O
n�	h����

which implies that GII � O
	�
nh�� � o
	��

To prove 
��� it su�ces to calculate the term EW��W��W�	W	�� By straightforward calculations�

Ea�
	� ��a�
�� ��a�
�� ��a�
�� 	�����
�
��

�
��

�
	 � O
h����

Ea�
	� ��a�
�� ��a�
�� ��a�
�� 	�����
�
��

�
��

�
	 � O
h����

Ea�
	� ��a�
�� ��a�
�� ��a�
�� 	�����
�
��

�
��

�
	 � O
h����

Ea�
	� ��a�
�� ��a�
�� ��a�
�� 	�����
�
��

�
��

�
	 � O
h����

Ea�
	� ��a�
�� ��a�
�� ��a�
�� 	�����
�
��

�
��

�
	 � O
h����

��



and similarly for the other terms� So
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Proof of Theorem 
� Analogously to the arguments for �A� we get


 eA�
u���A�
u��� � r�n����� 
u��

nX
k��

�
Yk �A�
Uk��X

���
k

���
u��X���
k � Uk�

�
X

���
k K

Uk � u���h�
	 � op
	��

where ��
u��X
���
k � Uk� � A�
u��

�X
���
k � A��
u��

�X
���
k 
Uk � u��� Note that

	nu
A��� � 	n
A��� 	n�
A��jA���

Similarly to the proof of Theorem �� under H�u� we have

	n�
A��jA����� � r�n

nX
k��

nX
i��

�iK

Ui � Uk��h�X
���
i ����� 
Uk�X

���
k �k

�	

�
r	n

nX
k��

�

nX
i��

�iK

Ui � Uk��h�X
����
i �
����� 
Uk�X

���
k X

����
k ����� 
Uk��

��

nX
i��

�iK

Ui � u���h�X
���
i � � op
h������ d�n��

where d�n� is de�ned by replacing X and � by X��� and ��� in d�n�

Observe that

X�
i �
Uk���Xk � 
X

����
i �X

����
i �

�
�

�����
�
Uk� ������
�
Uk����
Uk������ 
Uk�

������ 
Uk����
Uk������
�
Uk� ����� ����
��
��
�����

��
�� � �����

��
X

���
k

X
���
k

�
� fX����

i �X
����
i ����� 
Uk����
Uk�g�����
�
Uk�
X

���
k � ���
Uk������ 
Uk�X

���
k �

�X
����
i ���
Uk���X���

k �

Consequently�

�	nu
A����� � �r�n
X
k
i

�k�iX
�
i �
Uk���XkK

Ui � Uk��h� � op
h�����

�
r	n
�

X
i
j

�i�jX
�
i f

nX
k��

�
Uk���XkX
�
k�
Uk���K

Ui � Uk��h�

�K

Uj � Uk��h�gXj � r�n
X
k
i

�k�iX
����
i ����� 
Uk�X

���
k K

Ui � Uk��h�

�r
	
n

�

X
i
j

�i�jX
����
i f

nX
k��

����� 
Uk�X
���
k X

����
k ����� 
Uk�K

Ui � Uk��h�

��



�K

Uj � Uk��h�gX���
j � op
h�����

� �r�n
X
k
i

�k�i
X
���
i � ���
Uk������ 
Uk�X

���
i �������
�

�
Uk�
X
���
k � ���
Uk������ 
Uk�X

���
k �K

Ui � Uk��h�

�
r	n
�

X
i
j

�i�j

nX
k��


X
���
i � ���
Uk������ 
Uk�X

���
i ��

������
�
Uk�
X
���
k � ���
Uk������ 
Uk�X

���
k �

�
X
���
k � ���
Uk������ 
Uk�X

���
k �������
�
Uk�

�
X
���
j � ���
Uk������ 
Uk�X

���
j �

�Rn	 � Rn� � op
h����� � d�n � d�n�

where

Rn	 �
r	n
�

nX
i
j

�i�j

nX
k��


X
���
i � ���
Uk������ 
Uk�X

���
i �������
�
Uk�

�
X
���
k � ���
Uk������ 
Uk�X

���
k �X

����
k ����� 
Uk�X

���
j

�K

Ui � Uk��h�K

Uj � Uk��h��

Rn� �
r	n
�

nX
i
j

�i�j

nX
k��


X
���
j � ���
Uk������ 
Uk�X

���
j �������
�
Uk�

�
X
���
k � ���
Uk������ 
Uk�X

���
k �X

����
k ����� 
Uk�X

���
i

�K

Ui � Uk��h�K

Uj � Uk��h��

A simple calculation shows that as nh��� �
�

ER�
n	 � O


	

n�h	
� � o
h���

which yields Rn	 � op
h������ Similarly� we can show Rn� � op
h������ Therefore�

�	nu
A����
� � �r�n

X
k
i

�k�i
X
���
i � ���
Uk������ 
Uk�X

���
i �������
�
Uk�

�
X
���
k � ���
Uk������ 
Uk�X

���
k �K

Ui � Uk��h� � op
h�����

�
r	n
�

X
i
j

�i�j

nX
k��


X
���
i � ���
Uk������ 
Uk�X

���
i �������
�
Uk�

�
X
���
k � ���
Uk������ 
Uk�X

���
k �

�
X
���
k � ���
Uk������ 
Uk�X

���
k �������
�
Uk�
X

���
j � ���
Uk������ 
Uk�X

���
j �

�K

Ui � Uk��h�K

Uj � Uk��h� � d�nu � op
h������

The remaining proof follows the same lines as those in the proof of Theorem ��
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where W 
n� is de�ned in the proof of Theorem �� The rest of the proof is similar to the proof of Theorem

�� The details are omitted� The proof is completed�
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Before proving Theorem 	�� we introduce the following lemma�
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A�
Uk��Xk�� Yk�Hn
Uk��XkX
�
kHn
Uk��

The remaining proof is almost the same as that of Theorem � if we invoke the following equalities�

E��ij
Xi� Ui�� � �� E���i j
Xi� Ui�� � �E�q�
A�
Ui�
�Xi�� Yi�j
Xi� Ui���

The proof is completed�
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