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Abstract

We consider an M/M /¢ queue with two classes of customers. We examine the effect of differ-
ent priority policies on the optimal number of servers to minimize the long-run expected average
server and holding costs of the system. Three different policies are considered; the non-idling
non-preemptive and preemptive policies as well as the idling policy which minimizes the long-run
expected average holding cost of the system in the class of non-preemptive policies. We show that
their effect on the optimal number of servers is not significant for many real life systems. This con-
clusion allows us to consider the design problem under any of the above policies, which introduces
significant computational simplification for the system under the idling policy.

1 Introduction

In a multiserver queueing system with multiple customer classes, several priority rules for scheduling
service of customers can be employed. Depending on the system modeled, some rules may be more
appropriate than others. For example, preemptive priority policies are not feasible in service systems
such as restaurants, or in production systems where service involves a chemical process that cannot
be interrupted. However they may be suitable in telecommunications (packet switching etc.).

In this paper we examine how different priority control policies affect the design of service capacity
of an M/M/c quene with infinite waiting room and two classes of customers. We consider three types
of priority policies. Under the first policy, class-1 customers have preemptive priority. Under the
second policy, class-1 customers have non-preemptive priority. Both policies are non-idling. The third
type of policy, on the other hand, is a non-preemptive threshold policy which gives service to class-2
customers only if there are at least a certain number of class-2 customers in the system. Thus, it allows
for some servers to remain idle while class-2 customers are present in the queue, in anticipation of
future arrivals of high priority class-1 customers. Specifically, the idling policy is the non-preemptive
policy which minimizes the long-run expected average cost of the system. Idling allows for more
favorable treatment of the high priority class than the standard non-preemptive rule and can be used
in situations where the preemptive rule is not feasible. We denote the three policy types described
above by the letters V, P, I.
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For customers of class i, 7 = 1,2, let ); denote the Poisson rate of arrivals, u; the exponential
service rate and h; a holding cost per unit of time for each customer. We assume p; = pz = u and
hi1 > ho. In this case, class 1 should be the high priority class with respect to minimizing holding
costs. Let ¢™(c) denote the expected average holding cost in a c-server system under priority policy
7. We incorporate the priority policy into the problem of service capacity design as follows. Let B
denote the cost per unit time for each server. Cost B will be referred to as the server cost and it may
represent the purchase cost distributed over the lifetime of the machine in addition to maintenance
and operating costs. Alternatively, it may be the annual cost over the machine’s lifetime computed
by straight-line depreciation, assuming that a server is repeatedly replaced by an identical one at the
end of its lifetime. The objective of the capacity design problem under policy 7 is to determine the
optimal number of servers to minimize G”(¢) = ¢™(c¢) + Bc.

For policies N and P, convexity of G™{c) in c is a natural consequence of existing results, therefore
efficient procedures can be employed to identify the optimal number of servers. However, showing the
convexity of G’(c) requires comparison of the value functions for different numbers of servers, each of
which is an output of an infinite state space MDP. We use G"(c) and G*(c} to draw conclusions for
policy I, instead of analyzing G'(¢) directly.

We analyze an upper bound, Ag"?, on the difference of average costs due to different priority
policies. We show that Ag"* is increasing in the traffic load, but stays finite even under heavy traffic.
It is also proved to be decreasing in the number of servers and Ag™” — 0 as the number of servers
tends to co. We also derive an upper bound on the maximum difference within the optimal number
of servers under P, N, I. These results in conjunction with extensive numerical experiments show that
the difference due to different priority rules is not significant.

The following section examines the sensitivity of G™(¢) in priority rules, P, N, and I. Section
3 provides an upper bound on the maximum difference within the optimal number of servers under
policies P, N, and I. Both Section 2 and 3 include numerical examples that support their analysis and
indicate the effect of different variables on the optimal design. In Section 4, we present the conclusion
and possible future research areas.

2 Sensitivity of average purchase and holding costs in the priority
rule

The system under policy P or N can be modeled as a continuous time Markov reward process (MRP)
and under policy I as a Markov decision process (MDP). Xu, Righter & Shantikumar (1992) uses the
MDP formulation for policy I to show that policy [ is characterized by numbers {f, i = 0,...,c — 1,
such that whenever there are ¢ busy servers out of ¢ servers, the number of class-2 customers waiting
in line must be greater than [ in order to start the service of one class-2 customer. In addition, I is
increasing in %, for all £ =0,1,...,c — 1 and IS = co. Policies P and N are static control policies since
they are described independent of the current state of the system, whereas policy [ is dynamic because
of the thresholds which depend on the current state. Regarding the relations among these policies, it
is easy to see intuitively that g*(c) < ¢'{c) < ¢"(c) for all ¢: Policy I is the optimal scheduling policy
in the class of all non-preemptive policies, so it performs better than policy N when the number of
servers is fixed. Thus, we conclude that g’(c) < g¥(c) for all e. Intuitively, it is also easy to see that
the preemptive policy performs better than any other scheduling policy, and so better than policy 1.
Ormeci (1998) uses the MDP/MRP formulation to show this formally.



The objective of the design problem is to find the optimal number of servers, ¢}, which minimizes
total purchase and holding costs per unit time under policy 7, G™ (e} = g™(c) + Be, i.e., to determine
¢y such that

G*(cr) = min {g7(c) + B}, (1)

where ¢pmin = min{c: A < cu} and A = Ay + Ay, The constraint A < cy ensures that the system is
stable so that g™(c) < co, for # = P, N, I. In this section, we consider the effect of different priority
rules on total costs (holding and purchase costs) per unit time. In particular, we are interested in
the quantity GV(c}) ~ G"(c}), the maximum difference in the minimum total costs due to different
policies. We observe that

0 < G"(e}) = G7(ch) S GY(ch) = G™(ch) < GM(ch) — G™(ch) = g™(ch) — g™(ch) = AgMP(ch),

where Ag™”(c) = g¥(c) — 9¥(c). The inequalities follow either from the definition of ¢y or from the
fact that g”(c) < g™(c) for all ¢. Thus, G¥(c%) ~ GP(ch) is non-negative and bounded from above
by the difference Ag"”(c}). Although the optimal number of servers under each policy depends on
the machine cost rate, B, the sensitivity of total average cost can be measured by Ag"F, which is
independent of the machine cost rate, B. Ag"” also provides the maximum difference in the average
holding costs due to priority rules for fixed number of servers. Therefore, we devote this section to
the analysis of Ag"” with respect to the traffic load, r = 11-'-,?2, as well as the number of servers.
We show that Ag"® is increasing in r, but has a finite limit when r — ¢. Also Ag"* is proved to be
decreasing in the number of servers, ¢, and limg .o Ag"F(c) = 0. The implications of these results are
discussed in the end of the section through numerical examples.

To show these results, we use the work conservation law, which is a formalization of the intuitive
property that one class of customers can be treated more favorably only at the expense of other classes
(see e.g., Kleinrock (1976)). This law applies only to work-conserving queues. The system under policy
I, which allows creation of work through idling, is not work conserving, whereas it is well-known that
the nonpreemptive nonidling policy is work conserving. The nonidling preemptive policy also induces
a work-conserving system because the service times for each class of customers follow an exponential
distribution, although it is not work conserving under general service time distributions.

When the service times of all classes follow exponential distributions, the work conservation law
reduces to the conservation of the total number of customers in the system under all work conserving
policies, i.e., the expected numbers of total customers in all these systems are the same. Let LT (r, 7y, c)
be the expected number of class-¢ customers in the system with ¢ servers and total traffic load r =
3‘-’—"‘—)‘2, of which r; = AL is due to class-1 customers, under policy 7, for ¢ = 1,2 and 1 = PN
and L*(r,c) the expected number of customers in an M /M/c system under first come first served
discipline. Then

lev('rr 1, C) + Lg{(i", T1, C) = Lf("'s 71, c) + Lg(rz 1, C) = LF(T) C) (2)

We note that LF, and so g™, depends not only on the number of servers, but also on the total traffic
load, r, and the traffic load with respect to class-1 customers, 7. For notational simplicity, only the
dependence on one variable may be indicated in the sequel. For m = P, N, g"(¢) can be expressed as:

g7 (e) = hL(e) + haL3(c),
and from (2),
9™(c) = M L(c) + ha(LF(c) = LT (e)) = (hy — ha)LF(c) + hoLF (). (3)
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Define ALY?(c) = LY(c) — Lf(c) as the difference in the average number of class-1 customers
between the nonpreemptive and preemptive policies. From equation (3), we have:

AgVP(c) = g"(c) — g"(c) = (b — h2) ALY F(e). (4)

We have the following expressions for LT (see Buzen & Bondi (1983) for 7 = P and Gross & Harris
(1974) for m = N):

1

L2, ) = + =D, (5)
Ly (i) =11+ TTI'D(T, c) (6)
where
Dir,c) = (_lj_;ﬁpo(r, ¢) and 1)
o G c -1
i = (554 ) ®

The quantity D(r, ¢), also known as the Erlang delay formula, is equal to the probability that all servers
are busy in an M/M/c system with load r and po(r,c) is the probability of having no customers in
the system with a traffic load of r and ¢ servers. Thus, by equations (5) and (6):

—= (D(r,¢) = D(r3,)) (9)

ALYFP(r,m,c) = .

Consider the behavior of Ag"® as a function of the traffic load r. The following theorem shows
that AgMF is increasing in 7, but has a finite limit when 7 — ¢. In this theorem, as the load of the
system increases, the load due to class-1 customers increases with the same rate, so that ry = 7y
with 0 < v < 1; therefore ¥100% of the arrivals are due to class-1 customers. However, the theorem
remains valid if vy is fixed.

Theorem 1 (i) Ag"F(r,rv,c) is increasing in .

(ii) lime—c Ag"F(r,rv,c) < co.

Proof From equation (4), it is sufficient to consider ALY,

(i) Take the partial derivative of ALY”(r, 7y, c) with respect to r. By equation (9):

PRI o (P 0) = D) + o (D) = 7D, ).

In Lee & Cohen (1983), it is shown that D(r,c) is nondecreasing and convex in r. Thus D(r,¢) >
D(r+, ¢) by monotonicity of D(r,¢) in r and D'(r,¢) = D'(rv, ) by convexity of D(r,¢) in r; since also

NP
v < 1, these imply that %L— > 0.

(ii) Equations (9) and (7) imply:

; 7y € ry)°©
ALYP(r,ry,¢) = P (1 — EPO(T:C) - 1(__ %PO(""Y,C)) - (10}



First consider lim, . A(r), where h{r) = erl Because both po(r,c) and 1 — L converge to 0 as
r — ¢, we can use L'Hospital’s rule:

po(r )
-1

c

lim A(r) = lim

r—=c

—_— 3 /
= C,l_l_ff}:Po("': c)

where py(r, ¢) = dpo(r,c)/dr. Now consider —pj(r, c):

c—1 n e =2 e-2 n c <
. : I 1_ T r T c 7
S ) PR - 55+ o
n -2
. : c!( S hm0 o T
= limpo(r,c) "',l-lm — r)2c ( cr(l —I)
(¢ — 1 ! —1)!
= 11‘1—*1% - (c )n 7= (c o€ g
(c!(l ~nyele +7“"-)
because limy_,c po(r,¢) = 0 and limr_c (1 — 2) 524 & = 0. Thus:
. c!

Therefore, from (10),

¥ (1_ {ex)©

: NP —
N AL 6) = 12 (1 2 (e e)) < oo )

(]

We want to establish the monotonicity and asymptotic behavior of AgV* with respect to the

number of servers, c. First, we need to consider the behavior of D(r,c) — D(r1,c¢) with respect to the
number of servers: ¢:

Lemma 1 D(r,c) — D(ry,¢) is nonincreasing in c.

Proof See the Appendix. a

Now, we present Theorem 2, which examines AgNF as the number of servers, ¢, varies.
Theorem 2 (i) AgVP(r,r,¢) is nonincreasing in c.

(ii) limeooo Ag¥P(r,71,¢) = 0.

Proof By equation (4), it suffices to consider AL¥? only.
(i) From equation (9):

T

ALINP(T1T‘1’C+1) = a—i_—[D(TC'i‘l) D(TI,C+1)]
< T [P(nd) - D(r,0)



where the inequality follows from Lemma 1. Thus, ALY*(r, 71, ¢) is nonincreasing in c.

(ii) Recall that AL{” is, by definition, equal to the difference in the number of class-1 customers
between the nonpreemptive and preemptive policies. When ¢ — oo, the behavior of class-1 customers
under both policies approaches that of an M/M/co system with traffic intensity r, since all incoming
customers find at least one idle server. Thus lim. o LY (v, 71,¢) = lime—eo L (r,71,€) = 71, which
proves (ii). 0

These results describe the behavior of AgM¥ with respect to traffic load, v, and the number of
servers, ¢: Ag™” is finite even under heavy traffic although ¢ — o0, and Ag"" — 0 as ¢ — co0. We
next consider a new quantity Ag"”/g”, which can be regarded as an upper bound on the relative
error due to different priority policies. Thus, it is a fair measure of the effect of priority policies for
fixed ¢. We first present an approximation of Ag"*/g”:

A (h1 = h2) 55 (D(r, ©) = D(ra, )
g° ho (r + = D(r, c)) + (h1 — h2) (7'1 + C—E:;D(T'l, C))
71
~ (hy—h
(M 2)c -7 X

[27' +(c=r)2 = (c—7)/Br+ (c—'r)z]+ - [27‘1 +{c=m)2 ={c—=r)/Br1 + (c— r1)2]+
hiry + ho(r — 1) + hals [21” +(c—7)2—(c~ r)\/m]+

where D(r,c) can be approximated as EB2 = [2'r +{c—7r)2 = (c—r)/Br+{c— 1‘)2]+, using results
from Harel (1988). Under low traffic, i.e., when r/c is low, EB2 = 0, and so Ag"*/g” = 0. Thus, we
need to consider the behavior of AgN¥”/g” only under high traffic. This quantity is neither monotone
nor convex or concave in r or ¢. Therefore, instead of analyzing this quantity analytically, we compute
AgNF/gf for 840 different examples to see the effect of different parameters. We set h = h;/hs
with A = 1 and g = 1 so that 1 = A; and r = A; + A2. We consider seven different values of A,
h=2,3,57,10,20 and as h — oo, and six different values of r, r = 3,7,11, 19,49,99. For each fixed
r and h, four different values of r; and five values of ¢ are considered; ry/r = 2/9,4/9,6/9,8/9 and
c=r+1,..,7+5.

We observe that Ag"F/g” tends to be higher for low » and high r/c in general. Under this
condition, the number of servers is low. Then the service level for class-1 customers under policy N
is substantially lower than that under policy P, since the servers do not get idle frequently. Thus the
effect of the control policy in this case is more significant. For example, Ag"¥"/g¢” has its maximum
at 16.8% for the system with r = 3, v = 4/9 and ¢ = 4 as h — o0, although for more reasonable
values of h, AgM®/gF is also more reasonable; e.g. see Figure 1 which shows the effect of the load, r,
on AgNF /g* for different values of 71 /r with h = 5 and ¢ = 7 + 1. An additional server in the systems
with low r decreases the traffic (v/c) decreases substantially, which, in furn, causes a considerable
decrease in Ag"*/g”. For example, when r = 3 and ¢ = 5, a maximum of 6.1% is observed as h — oo,
which is almost one third of 16.8%, the maximum for ¢ = 4. Thus, even with only one more server,
the effect of control policy almost vanishes. When r is high, different control policies do not affect the
total cost that significantly, since the servers become available more often. For example, when r > 19
and h < 20, Ag"F/gF has a maximum of 10%.

We next consider the effect of h = h;/hy (see Figure 2): Naturally, as h increases, the service level
of class-1 customers affect the total cost more; which increases the effect of control policies. Although
Ag"¥/g® can be high as h — co, it is always less than 9.5% for more realistic values of h, i.e., when
h < 5. Thus, unless & is high, the control policy does not influence the total cost very significantly.
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Figure 1: Behavior of Ag"*/g® with respect to r, where h=5and c=r + 1
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Figure 2: Behavior of AgV¥/g" with respect to h, where r =3 and ¢ = 4
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Figure 3: Behavior of AgV¥/g¢" with respect to r, where ri/r =4/% and h — o0

We observe that the effect of r; depends on the value of r: For low r, Ag"”/g® is high when
r1/7 is close to 50%, whereas for high r, it is high if r;/r is also high. In real life situations, =1 /r
can generally be expected to be low since class-1 customers are more expensive. When 1 = 2/9 and
h <5, AghP/gP < 5.6%, which is really low.

The number of servers is the most effective parameter of all, since we observe that although
Ag"f/g” can be high for ¢ = eyp, it is less than 5.5% for all » and 71 when ¢ > ¢pin + 1 even for
h — oo (see Figure 3). Thus, we can conclude that the effect of an additional server is much more
substantial than the choice of a control policy. When the load r is low, this can be explained by the
drastic decrease in r/c. For low r {r = 3,7), the decrease in Ag"”/g” is usually over 50%; whereas
for moderate r (r = 11, 19), the decrease is around 30-40%. When 7 is high (r = 49,99), Ag"F/g” is
low even when ¢ = ¢pin, and although the decrease can be around 20% in some cases, it is not that
significant in general.

To summarize, we observe that for more realistic values of different parameters, AgV¥/g” is low.
The results of this section also support this observation. Under the extreme cases, AghF/¢® — 0; in
particular, when r — ¢, AgV¥® < 00 g¥ — co and when ¢ — o0, Ag"? — 0 and ¢ > 0. Hence, we
can conclude that for many real life situations the effect of different priority policies is not significant.

3 Optimal number of servers under different control policies

In determining the optimal number of servers under policy m, the convexity of G™ in ¢ is an important
property which facilitates the solution process of the design problem. By definition of G™, it is enough
to consider the convexity of ¢". From equation (3), ¢” is convex in c if LF(c) and L{{(c) are convex.
Dyer & Proll (1977) have shown that the average waiting time of a customer in a single class M/M/c
system is nonincreasing and convex in ¢, thus by Little’s law, LF(¢) is also nonincreasing and convex
in ¢. For specific w, the following are known in the literature: Under preemptive priority, the behavior



of class-1 customers is not affected by class-2 customers, so that the probability distribution of the
number of class-1 customers is the same as that of the total number of customers in an M/M/c system
with arrival rate A; and service rate p (Buzen & Bondi 1983). Therefore, g¥(c) is nonincreasing and
convex in ¢. As for ", we first note that Harel {1990) has shown that D(r,c) is nonincreasing and
convex in ¢. Taking the appropriate differences with respect to ¢ in equation (6), it is easy to show
that ¢g" is also convex in e.

Using convexity of P and N, the optimal number of servers under policy P and N can be found
by:
¢t = min{e: g™ (¢) ~ ¢"(c + 1) < B} = min{c: Ag™(c) < B}, (12)

where Ag™(c) is equal to the savings in g"(c) achieved by adding a server to a system with ¢ servers.
Note that if the total operating cost of ¢ servers can be represented by an increasing and convex
function, f (rather than a linear function), we can still use a similar formula to find ¢z:

¢t = min{c: Ag"(c) < flc+1) = f(c}}-

Hence we stop adding servers when the savings in holding costs introduced by an additional server
are less than its marginal cost.

The above analysis applies to policies P and N, because the average holding costs under these
policies are convex. The situation is more complex for policy I, since it is determined by a set of
thresholds, which requires to solve an MDP with an infinite state space. Proving convexity of g'(c)
requires properties on the behavior of threshold levels as the number of servers varies. Although we
have not established that g’ (¢) is convex in ¢, we have not seen any counterexamples in our numerical
computations. Because of the lack of a convexity proof, we cannot employ efficient procedures which
use the first differences to check the global optimality of a current solution, as we could for policies P
and N. The design problem in this case is further complicated by the fact that for any ¢, g'(c) can
only be computed by solving an infinite state space MDP.

In this section, instead of solving the design problem under each priority rule, we concentrate on
the difference of optimal number of servers due to different priority rules and derive bounds on this
difference. For this, we first establish upper and lower bounds on the optimal number of servers for
all policies. This also facilitates the design problem under policy I, since it provides an upper bound
on the number of MDPs we need to solve. In fact, it further simplifies the whole problem, since these
bounds are very tight for many systems. This, with the conclusions of the previous section, suggests
that solving the problem under any of these policies performs good enough in terms of total cost rate.
Then, we can solve the problem for policy P or N, which has convex cost structure and closed form
solution for g”, instead of considering the system under policy 1.

We use two different approaches to derive an upper bound, one of which also provides a lower
bound. Both approaches make use of the convexity of g¥ and g®. The first method uses the difference
AghP(c) = g"{(c) - g7(c) to derive an upper bound, &', on ¢;. The second method uses only the
convexity of ¢¥ and g* and the fact g™ (c) < g’(c) < g7 (c) to provide a second upper bound % as well
as a lower bound c.

3.1 Method 1

Recall that Ag™{¢) is equal to the savings in g"(c) introduced by an additional server, i.e., Ag™(c) =
g7(c)~g™(c+1). From equation (1), adding a server to a system with ¢ servers results in an immediate



net benefit only when ¢"(c) — ¢"(c + 1) > B. Using the relation g*(c) < g’(¢) < g"(c) for the ¢- and
(c + 1)-server systems, we have: _
AgT(c) < Ag(c), (13)

where we set Ag(e) = g¥(c) — gF(c +1). To determine an upper bound on ¢}, it suffices to show that
Ag(c) is nonincreasing in ¢ and that there exists a & such that Ag(¢) < B. Indeed these imply that
for all ¢ > &, Ag™(c) < B, therefore ¢k < & To show the two claims, we rewrite Ag(c) as:

Ag(e) = g"(e)—g"(c+1)
= g"()—g"(c+ D) +g"(c+1)-g"(c+1)
= AgV(c)+Ag"F(c+1). (14)
Ag"(c) is nonincreasing in ¢ since ¢ (c) is convex in ¢. Also notice that Ag"(c) — 0 as ¢ — oco0. By

Theorem 2, Ag"?(c+ 1) is also nonincreasing in ¢ and Ag¥®(c+ 1) — 0 as ¢ — co. Then, we have
the following result:

Corollary 1 (i) Ag(c) is nonincreasing in c.
(i5) lime—,oo Ag(c) = 0.
Part (i1) of the corollary guarantees that there exists a é with Ag(é) < B, while part (7) ensures

that Ag(c) < B for all ¢ > é&. Let

& = min{c: Ag(c) < B}.
By Corollary 1, ¢! is well-defined and finite. Inequality (13) implies that Ag™(c) < B for all ¢ > &,
thus ¢t <& form= PN, I.

3.2 Method 2

For an alternative method of bounding ¢}, recall that for 7 = P,N, G™(c) is convex in ¢ and ¢}, is
well-defined. Define ¢? and ¢ as follows (see Figure 4):

&2 = min{c>c}:G¥(ch) <GP(c)} -1, (15)

¢ = max{c<ch:G(ch) <GP(e)}+1, and

¢ = max{c’ omin} (16)
where we set maxf) = —oo. Recall that ¢min = min{c: A < ep}. Since GV{(c) and G¥(c) are convex

inc g"(c) —g™(c+1) = 0asc— oo, B>0and G¥(c) > GF(c) for all ¢, quantities °> and ¢ are

well-defined. We now show that &2 and ¢ represent bounds for c%, for # = P,N, I.

Proposition 1 Let 22 and ¢ be defined as in (15) and (16). Then

QSC;SE2 for ;=P N,I (17)

Proof Consider the first inequality in (17). If ¢ = ¢min, then the statement is true by definition of
Cmin. Thus, assume that ¢ > ¢min. Then, we have:

G"(cy) S G'(e}) = GY(e}) £ G7(e) £ G{e) < G(¢)
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Figure 4: Upper and lower bound on the number of servers using Method 2

where ¢ < ¢. The first two and the last two inequalities are true since G¥(¢) < G'(c) £ G¥(¢) for all
¢, the third inequality follows by the definition of ¢ and because ¢ < ¢. Thus ¢}, performs better than
all ¢ < ¢ under all policies, therefore the optimal number of servers cannot be smaller than ¢ under
any of these policies; i.e.,, c < ¢}, for m = P, N, L

The second inequality in (17) is proven similarly. O

Let ¢ = min{¢!,2%}. Now Ac = ¢ - ¢ is an upper bound on the difference of optimal number of
servers due to different control policies. Analytic expressions on the average or worst case behavior of
Ac are very difficult to establish, due to the complexity of the formulas. Instead, we again present sets
of examples. We assume h = hy/hg, ho =1 and p = 1. As a point of reference, we consider a system
with parameters h =5, B = 10, r = 19 and r;/r = 4/9. In each of the tables below, we present
e, e, ¢, Ac,ct and c,, as each of the parameters vary, keeping others constant. The rationale for
selecting these particular values are the following: As the holding cost of class-1 customers increases,
the gap between different priority rules will also increase. We take h = 5, which is both sufficiently
large to induce a “large” gap and still realistic. In real systems the machine cost rate is often a higher
order magnitude than the holding cost rates. However, a very high machine cost rate, B, would force
the design problem under any priority policy to use 2 “minimal” number of machines. We set B = 10
as a compromise. If the traffic load is too high relative to the service rate, then many servers will
be needed to serve all the customers, which means that machines will frequently become available
and subsequently make the difference between preemptive and non-preemptive policies immaterial.
However, under low traffic the effect of one additional server is high since it reduces the traffic intensity
of the system to a great extent, so that the difference induced by the priority policies is low when
compared with the effect of an additional server (see Table 2). Thus, we consider a moderate size
problem with r == 19. In any real world system, more expensive jobs (class 1) arrive less often than
less expensive ones (class 2). However, if class-1 customers are very rare, then the effect of priority
policies cannot be observed at all. Therefore, we assume r;/r = 4/9.
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We first consider the effect of the machine cost rate, B. Table 1 presents ¢}, c¥, ¢, &', & and Ac
when £ =5, r = 19 and r; = 8.44. When B is high, the machine cost dominates the total cost, and so
the optimal number of servers does not vary with the priority policy: when B > 20, ¢} = cipin = 20 for
all P,N, 1, i.e., the system uses the minimal number of machines to serve all the customers. However,
even when B is small, the difference on the optimal number of servers is small, e.g., Ac = 2 for B = 1.

B BRI AL
1 |{2424122( 2 123{23
2 [23[23[21} 2 122|122
5 (121(21(21] 0 |21|21
10 [121121]20] 1 |20]|20
20 {|21120(20} 0 |20}20
50 |121{20120] 0 |20{20
1001(121120(20( 0 |20]20

Table 1: Effect of B when A =35, r = 19 and ) = 8.44.

In Table 2, we consider the effect of r with o =5, B = 10 and r; = 4r/9. Whenever r is relatively
small or large, the difference, Ac, is 0. In fact, Ac = 1 only when + = 19. Thus, under any traffic
load, the bounds on the optimal number of servers are very close.

(ri&l&]clAcle e
3] 4|4]4]0|4]4
7| 8{8|8|0o|8]8
112 fi2fi2fo|12]12
19121 |21 {20 1|20 20
49f 51|51 51| 05151
09 102|102|102| 0 102102

Table 2: Effect of r when A =5, B = 10 and r; = 4r/9.

In Table 3, we consider the effect of ry with A = 5, B = 10 and r = 19. As the arrival rate of
class-1 customers to all customers, ri, increases, Ac also increases. However, Ac < 1 in all cases.

_ The effect of h with r; = 8.44, B = 10 and r = 19 is given in Table 4, which, again, shows that
Ac <1 in all cases. We observe that Ac increases as h increases; however, it is always small.

The upper and lower bounds on the number of optimal sexvers are pretty tight. Thus, solving
the design problem under either policy N or P, which is relatively easier, is good enough for design
purposes. This also eliminates the problem of finding the optimal number of servers under policy I.
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v [e e[ c|Ac|cic)
4.222 |20[20[20] 0 [20]20
8.444 |[21{21]20] 1 [20{20
12,667 21(21[20 1 |20|21
16.889 12121 20| 1 [21]21

Table 3: Effect of v when A =5, B = 10 and r = 19.

D GIEIARNEAL
2120|20120| 0 |20(20
5121121120 1 |20120
7121121120| 1 120(21
10{{21)21120f 1 j20(21
2001211211201 1 (20|21

Table 4: Effect of A when r; = 8.44, B =10 and r = 19.

4 Conclusion and further research

We consider an M/M/c queue with infinite waiting room and two classes of customers and examine the
effect of different priority policies, namely P, N, I, on the design of this system. The capacity designs
under policy P and N are relatively easy, since we could show ¢g" and g” are convex in the number
of servers. The cost g’ and the thresholds for policy I, on the other hand, can be obtained only by
solving a corresponding MDP with an infinite state space, so the analysis of policy [ is carried through
the analysis of policies P and N. We define measures for the effect of different priority policies on the
average holding costs, AgN* and Ag"*/g”. We analyze the monotonicity and asymptotic behavior of
Ag"F with respect to the number of servers and traffic load of the system, and we present extensive
numerical examples for Ag"*/g®. We also derive upper and lower bounds on the difference within
the optimal number of servers under policies P, I and N. The numerical examples show that these
bounds are very tight.

Both the analytical and numerical results suggest that the effect of priority policies on the design
problem is not significant. In other words, optimizing the number of servers can be decomposed
from the problem of priority. For systems with different service requirements for different classes,
the priority policies may affect the average holding costs more heavily. A step in this direction is to
consider a system with puj # 9, or a system with two types of machines in two stations one of which
is allocated to only class-1 customers and the other station is shared by both classes as in Xu et al.
(1992). The effect of idling and preemption may be more significant in these cases.
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5 Appendix
For the Erlang delay formula D(r, ¢}, we show that D(r,e) — D(r},c) is nonincreasing in c.
Lemma 1 D(r,c) — D(r1,c) is nonincreasing in c.

Proof Since r1 < r, it suffices to prove that:

af
3 20

where f(r,c) = D(r,c) — D(r,c + 1). It is shown in Harel (1990) that:

r{c — r)D(r, ¢}
(c=7r)+ec—1D(r,e)

D(re+1) = -

We substitute this expression in f(r,¢) and we will denote D(r, ¢) as D in the rest of the proof. Hence:

o _ gy le—r=r)D+Drc—r)lelc=r)+c~7D] - [-c= D~ rD}r(c—7)D
it (clc— 1) +c—rD)?




To show %£ > 0 it is enough to prove A > 0, where

A

= D(c—1)+c—rD) —[(c~7)D—rD+7r(c—r)D][clc =7} +c—1rD]

+[c+D+rD]r(c—r)D

= 7 [c(c ¥ +{c—7D) +e(c—r)(c—TD) + (c~ (e — rD) +r¥{c - r)’D]

+D [—c(c ~7r2 —(e—rMe—1D)+ 2re(c—7) +7(c— 'rD)] +7(c— 7D

From Harel & Zipkin (1987):

,_Dl1-D)z+ell- 27
E S (S I

Substituting 7’ in equation(18), it follows after some algebra that:

A

D

(c—rD)? + c-—r(c_ rD)? + ¢(c = rD)(1 — D)

(c _;7.)3 (c—rD)+ r?(1 - D)D

+r(c =)D —cle — )2 = (c = 7){c — D) + 2rclc — 7) + r(c — D) + r(c — 7)D

cle - r)2(1 -D)+ ;(c —-r)t +

+§(c —r2(e—rD)+ (c—T)c—rD)(1-D) +

2
(e— 7‘)2(% ~2¢D + D)+ (c ~ r)(rD? + 2rc + 7D — ¢D)

¢ . L (c— D)2 + c(c — rD)(1 - D)

+§(c—r)4+ ?(c—r’D)2+
+(C—_—T)i(c — D) +7%(1 = D)D + 7(c — rD).

c —

The first term is nonnegative because

2 2 _ 2 _ D)2
¢ op+rp=C 2TCD+TD2(C ;T)) >0.
T r

The second term is nonnegative because ¢D < 7 (see e.g. Harel & Zipkin (1987)) and therefore

orc+ 7D+ 1D —cD > 2¢*°D — ¢D = cD(2c— 1) > 0.

Thus, all the terms are nonnegative and the lemma holds.
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