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A BAYES FORMULA FOR GAUSSIAN NOISE PROCESSES AND
ITS APPLICATIONS
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Abstract. An elementary approach is used to derive a Bayes type formula, extend-
ing the Kallianpur-Striebel formula, for nonlinear filters associated with Gaussian noise
processes. In particular cases of certain Gaussian processes, recent results of Kunita and
of Le Breton on fractional Brownian motion are derived. We also use the classical ap-
proximation of the Brownian motion by the Ornstein-Uhlenbeck dispersion process to
solve the “instrumentability” problem of Balakrishnan. We give precise conditions for the
convergence of the filter based on the Ornstein-Uhlenbeck dispersion process to the filter
based on the Brownian motion. It is also shown that the solution of the Zakai equation

can be approximated by that of a (deterministic) partial differential equation.
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1 Introduction

The general filtering problem can be described as follows. The signal or system
process (X,,0 < t < T) is unobservable. Information about (X;) is obtained by

observing another process ¥ which is a function of X corrupted by noise, i. e.,
Yi=068+MN, 0t<T, (1.1)

where (3, is measurable with respect to F;X, the o-field generated by the signal
{X., 0 <u <t} (augmented by the inclusion of zero probability sets) and (V,)

is some noise process. The observation o-field FY = o{Y,, 0 < u < ¢} contains
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all the available information about X,. The primary aim of filtering theory is to
get an estimate of X, based on the information FY. This is given by the condi-
tional distribution v; of X, given FY, or equivalently, the conditional expectation
E(f(X)|FY) for a rich enough class of functions f. Since this estimate minimizes
the squared error loss, v is called the optimal filter.

In the classical case one considers the observation model
dY, = h(t, X;) dt + dW,, (1.2)

where W is the Wiener process independent of X and h satisfies the conditions for
the Girsanov theorem (for details see [9]). Kallianpur and Striebel ([11}) derived
a Bayes type formula for the conditional distribution v; of the form 1, = TJ:?B’

where ¢, is the so called unnormalized conditional distribution. In the case when

the signal process X, is a Markov process, satisfying the SDE
dX, = A(t, X)) dt + B(t, X;) dW,,

where W is another Wiener process independent of W, Zakai ([20]) showed that o,
is the unique solution of a measure valued stochastic differential equation.

That the noise process (/V;) is a Wiener process plays an important part in
deriving all of the above equations and formulas. However, in the real physical
system, the noise process (N;) may not be exactly a Wiener process. In this case
no effective way of computing the filter is known. In a recent paper Kunita {[12])

considered the filtering problem with the observation process
4
xthmg@+m,
0

where N, is a particular Gaussian process connected to W; by a kernel. He derived
a Bayes type formula extending the one by Kallianpur and Striebel. We generalize
this result to any Gaussian noise process N, with 8 in the model (1.1) belonging
a.s. to the RINHS of the covariance of (#V;). It should be noted that this result with

a modified Kallianpur-Striebel proof was first obtained by one of the authors ([18]).
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However, the proof presented here is entirely new and is based on an extension of a
one-dimensional result which makes (¥;), under a change of measure, Gaussian with
the same distribution as that of (/V;) and independent of (X;). As an immediate
consequence we get the result of Kunita, and Kallianpur and Striebel with a simple
proof.

Recently, stochastic models appropriate for long-range dependent phenomena
have been given a great deal of interest and numerous theoretical resets and suc-
cessful applications have been already reported (see, e.g., Beran [3] and references
therein). In this view we consider the filtering problem with the fractional Brow-
nian motion noise process. We obtain a general form of the filter in this case.
In particular, if X, = % for all ¢, then we obtain all the results in [5], under his
assumptions.

We also discuss the issue raised by Balakrishnan ([2]) regarding “instrument-
ing” the filtering problem. An approach to this problem using finitely additive
measures was given by Kallianpur and Karandikar in their well-known monograph
([10]). They work on the Cameron-Martin space with a finitely additive measure
and approximate the filter through an extension. Our method is to follow the clas-
sical approach of Physics; namely, to approximate the Wiener noise process by the
Ornstein-Uhlenbeck dispersion process (see, e.g., Nelson [15]). Using our Bayes
formula we show that the usual filtering theory with the Wiener process can be
obtained as a limit. The latter uses the ideas of Kunita ([12]} on stability. We give
here the precise conditions for the validity of stability. It should be observed that
the theory with the Ornstein-Uhlenbeck dispersion process can be instrumented.
We approximate the dispersion process by neglecting a term of order ¢~ for &
large (cf. (6.15)) and for this process we obtain a Zakai equation which can be
approximated by an ordinary partial differential equation.

The article is organized as follows. In section 2, we give a brief overview of

RIKHS and its connection with stochastic processes. The extension of the Kallianpur



Striebel formula is obtained in section 3. We discuss Kunita's result in section 4.
Section 5 deals with the filtering problem with the fractional Brownian motion as
the noise process. Finally, in section 6, the filtering problem corresponding to the

Ornstein-Uhlenbeck dispersion noise process is considered along with its limit.

2 Reproducing Kernel Hilbert Space
and Stochastic Processes

Definition : A Hilbert space H consisting of real valued functions on some set T
is said to be a reproducing kernel Hilbert space(RICHS), if there exists a function X
on T x T with the following two properties: for every ¢ in T and g in H,

() K(,t) € H,

(it} (g(-),K(-,t)) = g{t). (The reproducing property)
K is called the reproducing kernel of H.
The following basic properties can be found in Aronszajn([1]).

(1°) If a reproducing kernel exists, then it is unique.

(2°) If K is the reproducing kernel of a Hilbert space H, then {K(-,t),t € T} spans
H.

(3°) If K is the reproducing kernel of a Hilbert space H, then it is nonnegative

definite in the sense that for all ¢;,...,t,in T and a;,...,a, € R

n

Z K(ti,tj)aiaj > 0.

i.5=1

The converse of (3°), stated in Theorem 2.1 below, is fundamental towards under-
standing the RIKHS representation of Gaussian processes. A proof of the theorem

can be found in Aronszajn ([1}).



Theorem 2.1 (E. H. Moore) A symmeiric nonnegative definite function K on
T X T generates a unique Hilbert space, which we denote by H(K') or sometimes by

H(K,T), of which K is the reproducing kernel.

Now suppose K(s,t), s,t € T, is a nonnegative definite function. Then, by Theo-
rem 2.1, there is a RKHS, H(K, T), with K as its reproducing kernel. If we restrict
K to T' x T where T C T, then K is still a nonnegative definite function. Hence
K restricted to T' x T' will also correspond to a reproducing kernel Hilbert space
H(K,T') of functions defined on T”. The following result from Aronszajn ([1]; pp.

351) explains the relationship between these two.

Theorem 2.2 Suppose Kr, defined on T x T, is the reproducing kernel of the
Hilbert space H(Kt) with the norm |} -||. Let T' C T, and K1+ be the restriction of
Kp on T x T'. Then H(Ky/) consists of all f in H(Kt) restricted to T'. Further,
for such a restriction f' € H(Kx) the norm || f'|| (k.. is the minimum of || f|| s

for all f € H(Kt) whose restriction to T’ 1s f'.

If K(s,t) is the covariance function for some zero mean process Z,,t € T,
then, by Theorem 2.1, there exists a unique RKHS, H(K,T), for which K is
the reproducing kernel. It is also easy to see (e.g., see Theorem 3D, [17]) that
there exists a congruence (linear, one-to-one, inner product preserving map) be-
tween H(K) and 5p%°{Z,,t € T} which takes K(-,t) to Z,. Let us denote by
< Z,h >e5pY°{Z,,t € T}, the image of h € H()K,T) under the congruence.

We conclude the section with an important special case.

2.1 A useful example

Suppose the stochastic process Z; is a Gaussian process given by

t
e fo Ft,u)dW,, 0<t<T,
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where f; F2(t,u)du < oo for all 0 < ¢ < T. Then the covariance function
ths
K(s,t)= EZ,2, = jo F(t,w)F(s,u)du (2.1)
and the corresponding RKHS is given by

H(K)={g:9() = [ F(tu)g"(wdu,0 <t < T} (22)

for some (necessarily unique) ¢* € 5p~° {F(t, )10 4(-),0 < ¢ < T}, with the inner
product
T * *
(91592)H(K) =f0 4] (u)g‘Z(u)du)
where

a(s)= [ Fls.wgiwdu and gy(s) = [ F(s, u)g3(w)du.

For 0 < t < T, by taking K(-,t)* to be F(t,-)1jp4(-), we see, from (2.1) and
(2.2), that K(-,t) € H(K). To check the reproducing property suppose h(t) =
Jo F(t,u)h*(u) du € H(K). Then

T 3
(hy K (o) ey = [0 R (W) K (- 1) du = /U R* () F(t,u) du = R(2).

Also, in this case, it is very easy to check (cf. [16], Theorem 4D) that the
congruence between H(K) and 5p~*{Z,,t € T} is given by

T
<Z.g>= fu g* (w)dW,. (2.3)

3 Extension of the Kallianpur-Striebel formula

Suppose X,,0 < t < T, is a real-valued signal process and the observation process
1s given by

where §: [0,T} x R®T) — R is a non-anticipative function and the noise process

(NV,) is independent of the signal process (X,). We are interested in finding the
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best estimate of f(X,) based on F which is given by the conditional expectation
E(f(Xu)|FY). First we consider the one dimensional analog of the problem which
captures the main idea of obtaining a Bayes type formula for E(f{X,)|F)).

Let (Q, F, P) be a probability space. Suppose Z is a standard normal random
variable independent of X and ¥ = X + Z. Consider the problem of computing
E(X|Y). Suppose P <« Q and G C F is a sub-o-field. Then
e xig) = Fo X 8G9

Bo (%)

If we define

dQ = exp {—XY + %Xz} dP,
then @ is a probability measure. Also, considering the joint characteristic function,
under @, of X and Y it is easy to see that under @, Y is a standard normal random
variable independent of X, and X has the same probability distribution as under
P.

Now we consider the stochastic process version of this result. Let N; be a
(Gaussian process with zero mean, i.e., m; = E(N,) = 0, and with the covariance
function R(s,t) = E(N,N,). Let {£,0 <t < T} be another process with values in
a space S and be independent of {N,,0 < ¢t < T}. Suppose

Y= f(t,6) + N, 0<t<T,

where f is a measurable non-anticipative functional on [0,7) x SI®7T).

Let H{R;t) denote the RICHS corresponding to Rl xo,¢, With norm || - ||, and
H(R) = H(R;T). Also, let < N,- >, denote the congruence between H(R;t) and
'ﬁLz{NS,O < s < t} so that for g,h € H(R;t), the random variables < N, g >,
and < N,h >; are normal random variables with mean zero and covariance

E(< N,g > < N,k >;) =(g,h)n(rs)- Then we have the following
Theorem 3.1 Suppose f(-) = f(-,£) € H(R) a.s. Define for eacht, (0<t < T),
dQ, = e~<M/>—3lMligp (3.2)

"'.'



Then Q; is a probability measure, and under Q,,

(1) (Y:)o<s<t ts a Gaussian process with zero mean and covariance function R, and

is independent of (§s)ocs<T-

(i) (&)o<s<r has the same distribution as under P.

Proof: Fix 0 <t < T. First note that since f(-) € H(R) a.s., by Theorem 2.2,
flo.g € H(R;t) a.s. That Q, is a probability measure follows from the fact that N
and £ are independent and for g € H(R;t), < N, ¢ >, is a zero mean normal random
variable with variance ||g||?. Now suppose 0 < 81,...,8m <t 0 < t,...,t, < T,
- --39n : & — IR are measurable, and ¢,...,a,,71,...,¥m are real numbers.
Consider the joint characteristic function
EQtei(mgl (Eer ) tangn(€en NHHN Yo+t ymYem)

= Epe Lnm o)+ 0 %Ve; o= <N f>e-HISIE
- Epei 2oeag rgn(Ee, ) I FUZ +i ;.';l‘y,-f(sj)eizf‘ L YiNa; —<N. f>:
= Ep [ # s ke, )= §IAUE+ T 2 7(s5) Ep (e" S Wil — <N | 7§ )]

iy e k(e V=S NFIF+E 3T Wi Fsi) = 3T v R(sjs) =32 30 v f(si)+ 2 FIEE
= Eple 3 e i i

- E, -ei Yoren o:kgk(&k)] e b B R(s;s0)

Hence the assertions (i) and (ii) follow. m
Let us now consider the observation process (Y;) given by (3.1). It is easy to

see, from (3.2) with S = R, £ = X and f(-,£) = B(-, X), that

dP i 1 ,
G =P {< VB X) > 318 0} as. (04
This is because if f"(:) = Z;‘-'gl anjR(-,17) € H(R;t), n = 1,2,... are such that
A" — f=p5(,X)in H(R;t), then

<Y, B> = nh_nc}o <Y, 8" >  (@Qas. and hence P-as. )

Fon kn ko
= lim Ui ¥n = lim a.; Ny + lim Gn; Pin
n—»oo.Z:I ity n—'oo.z1 T +n-—ocozl "Jﬁti

= lim <N, G >+ lim (8, 8"y = < N, 8> +|Bl} P-as. (3.3)
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Then for any F#¥ measurable integrable function ¢(T, X), we have
Eq. (9(T, X) 45| 7))

Eo. (anIFty)
EQ: (g(T, X)e<Y.ﬁ(.,X)>g—-;—”,e(.'x)"? }_ty)
EQt (e<Y,ﬁ(-,X)>t—-%"p(.,x)uf| fty)

Ep(g(T, X)|7) =

(3.4)

From Theorem 3.1, {Y,0 < s < t}, under @, is independent of {X,,0 < s < T},
and the distribution of X, under Q, is the same as that under P. Hence the

conditional expectations of the form Ep,(¢(X,Y)|FY) can be evaluated as

Eq(oX VIF)w) = [ o(X(), Y (@)Quld) = [ d(z, ¥ (w))dPx(z)

where Py is the probability distribution of X.

Hence, from (3.4), we have the following
Theorem 3.2 Suppose that the observation process Y; is as in (8.1). If
B(-, X(w)) € H(R) for almost all w, (3.5)

then for an Ff -measurable and integrable function g(T, X),

fg (T, z)e<YAlm)>e=3lBC.2)IE dPx(z)
[ <Y B(x)> e 518G @)IE dPx(z)

E (o(T, X)|FY ) = (3.6)

We next consider an important special case from which it can be easily shown
that the formula (3.6) extends the Kallianpur-Striebel formula, as well as the one

by Kunita.

3.1 An important special case

Suppose the noise N, is of the form

t
M:Aﬂmwm“ (3.7)



where 7 J{ F?(t,uw)dudt < co. Denoting by R(s,t), the covariance function of (Ny),

from the example considered in section 2.1 we have

H(R1) = {9: 9(5) = [ Fls,u)g"(Wdu, " € 597 {F(s,Mp.a(),0 < s < 8}

(3.8)
with the inner product
t * »*

(91, 9mimn = [ giwgsu)du,

where
a1(s) = [ Fls,u)gi(wdu and go(s) = [ F(s, u)gi(w)du.
Suppose the observation process is given by
t -
Y= [ Ftwh(u, X)du+ N, (3.9)

such that
(-, X(y) € 595 {F (3, Mpq(),0 < s < t.
Then, by (2.3) and by an argument similar to the one used in (3.3), we have for

g() = J§ F(-,u)g"(w)du € H(R),

< bl > ¥ (/3 u us

where
Y, =/ h(u, X )du+W,, 0<s<T.
0

Hence the Bayes formula (3.6) becomes

/ o(T, z)efo Perzdha=} [§ waultas yp. ()
E(g(T,X)|F) = o - o
(g( | | t ) j efo h(uzu)d¥e -] fo LECENES dPx (l-')

(3.10)

Remark: [t is now easy to see that the Bayes formula (3.6} is indeed an

extension of the Kallianpur-Striebel formula. Take F(¢,u) = 1 in the model (3.7)
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and k in the model (3.9) to be k € L2[0,T] = 55 {1j0.4(:),0 < ¢ < T}, so that
[0.1]

N, = W, and the observation process satisfies the usual model
t
Y, = fo h(u, X, )du + W,.

Note that, in this case, ¥; = ¥,. Therefore the Bayes formula (3.6) reduces to the

Kallianpur-Striebel formula

/Q(T, 3:) ef(: h(uszu)dYu—% ‘:lh(u,zu)Pdu dPX (CC)
E(g(T, X)|FY) = t __ : .
fefo h{u,ze)dYu -3 fo |h(w,20 )| du dPX (CC)

Our result also generalizes a similar result by Kunita. We show that in the next

section.

4 Kunita’s Result

In this section we shall derive Kunita’s result ([12], Theorem 2.1), when d = 1, as
a corollary of our result. Suppose the signal process (X;) is a continuous process
taking values in a complete metric space S. Suppose the observation process is
given by

Yt:foth(Xs)ds—#M, 0<t<T, (4.1)

where £ is a continuous map from S into R and the noise process (,) is given by
t

N, = mt+/ W(t,s)dW, 0<t<T, (4.2)
0

with ¥(t, s) and m, satisfying the following three conditions.
Condition 1 : (t,s) is continuously differentiable in (¢,s) € [0,T] x [0,T].
Let Cj be the set of all r-times continuously differentiable functions from [0, T|

to JR which vanish at zero. Define ¥ : Cp = C) — C, such that

(¥a) = [ w(t,9)6/() ds (4.3
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for ¢ € C}. For general ¢ € Cy, it is extended by integration by parts as
(W) =96, 09(0) — [ 9(5) 0 (1,9) do. 44
Let R(¥)={¥¢: ¢ € Cp}. Note that for f,gc Coand 0 <u<t<T,
(¥ e = (R9). = $(u, ) (f(2) — 9w ~ [ (F(5) = 9(6)) Sty s)ds
Hence ¥ is causal in the sense that
(T f). = (¥g), holds for u < ¢, if f(s) = g(s) holds for s <. (4.5)

Condition 2 : The transformation ¥ has a causal inverse transformation K :
R(¥) — Cp such that K¥¢ = ¢ holds for all ¢ € Cy. Further, Kg is differentiable
whenever g € C) N R(¥) and the derivative is in L?[0,T}].

Condition 3 : m, is continuously differentiable in ¢ and it belongs to R(\¥).

Set
. d
Fng = 7'":*-, (4.6)
d t
(L) = =(Kg), where g = [ fods (4.7)

Since R(s,t) = EN,N, = [ ¥(t,u)¥(s,u) du, is as in the special case considered

in section 2.1, from (3.8) we have

H(R) = {g: 9(t) = [ 9°(w(t, o) du,g" €55” ({t, () :0 St T}
(4.8)
With the help of the following Lemma 4.1 we can further simplify the form of H(R).

Lemma 4.1 If 9 satisfies Condition I and Condition 2, then
7 {0(t, () : 0 <t < T} = L0, 7).

Proof : It suffices to show that if f € L?(0,T] is such that f L 4(t, )ljpy(-) for all
t € [0,7), then f = 0. So suppose f € L*[0,T].

]0 “w(t s)f(s)ds = 0 Vit
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= ¥g =0, where g(¢) ff
= g=KUg=0 =>f s)ds=0Vt = f=0.

Hence the lemma is proved. [

Therefore, from Lemma 4.1 and from (4.8), we have

H(R) = {g 1 g(t) = [)t 7" (w)¥(t, v) du, for some g* € LZ[O,T]} . (4.9)

The following proposition describes a relationship between the spaces R(¥) and
H(R).

Proposition 4.2 Let R(¥) and H(R) be as above. Then
Co N R(¥) C H(R) C R(T).

Furthermore, for ¢ € H(R), (Kg), = Jsg*(u)du and if f € CyNR(¥), then
f* = L(f"), where L is given by (4.7).

Proof : Let g € H(R). From (4.9),
i
gt) = [ 9(t,5)g"(s) ds. (4.10)
0
Considering ¢ = f() g*(u) du, we have ¢ € Cy and from (4.4),

(¥) = w(t.06) — [ T2t 5)0(s) ds

- ¢(t,t)/ g*(u)du—fo {Eg(t,s)/:g”(u) du} ds

= / P(t,s)g"(s)ds, using integration by parts

Hence H(R) C R(¥) and for g € H(R), (Kg): = f; g*(u) du.
On the other hand, for f € Cy N R(Y), letting ¢ € Cy to be such that ¥ = f, by
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Condition 2, we have ¢ = KW¥¢ = K f is differentiable with ¢’ = L(f") € L*{0,T].
Now

5O = B9(0) = Y060 - [ )5t 9)ds

t
= [) Y(t,s)¢'(s)ds using integration by parts. (4.11)

Hence the proposition follows from (4.9). |
We are now ready to derive the result of Kunita ([12], Theorem 2.1) as a corollary

of our result, Theorem 3.2.

Theorem 4.3 (Kunita) Suppose the noise process (Ny), given by (4.2), satisfies
Conditions 1 — 3, and the observation process (V) is given by (4.1). Let Px denote
the probability distribution of X on C[0,T]. Assume further that (f; h(X,)ds) be-
longs to R(¥) a.s. Then for any measurable function g on S, the signal state space,
such that E|g(X,)] < o0

_ Jau(mV)g(a(®) dPx ()
E(e(XlF)) = 2 S

where

ou(z,Y) = exp { / CL(h(z) + ), dY, — % / |L(R(z) + 1h)s[? ds}

and

- t t
Y, = fo Lh(z), ds + [o (L), ds + W,

Remark : To check that oq(z,Y) in the theorem is in fact F} -measurable it has
been shown in Kunita{[12]) that ¥; = (KY), and then the causality of K is used.
In the proof given below we show that ¢,(z,Y) =< Y, 8(-,x) >, which proves that
it is indeed FY-measurable.

Proof of Theorem 4.3 : Let £ with P(§) = 1 be such that [y A(X(w))ds €
R(Y) for all w € Q. Fix w € Q. Since A(X,(w)) is continuous in s € [0,T],
é') h{X,(w))ds € Cj N R(¥). So, by Proposition 4.2, fé') h( X (w)) ds belongs to
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H(R). Hence (fy h(X,)ds) belongs to H(R) a.s. with (J; h(X,) ds)*(¢) = (Lh(z))..
Similarly, since by Condition 3, m € C§NR(¥), we have m € H(R) with m* = L.

Rewriting the observation model (4.1) we have,
t t
Y, = jo h(X,)ds +mq + /0 b(t, s)dW,
t t
= /0 L(h(z) + ), (t, 5)ds + [0 b(t, s)dW,.

The theorem then follows from the special case considered in section 3.1 with

F(t,s) = ¥(t,s) and h = L(h(z) + m) € L*[0,T). »

5 Fractional Brownian motion noise process
Suppose the observation process is given by
4
Y, = fo h(X.)du+By(t), 0<t<T (5.1)

where By(t) is a fractional Brownian motion (fBm) with Hurst parameter H ¢
(3,1) and is independent of the signal process (X;). Assume that A{u) = h(X,) is

continuous a.s. To apply theorem 3.2 we shall need the following

Lemma 5.1 Let (By(t),0 <t < T) be an fBm with H € (3,1) and the covariance
function R(s,t). For any continuous function c¢(-) on [0,7] (T > 0), suppose g ()

satisfies the egquation (see Carleman [6])
fT W)HQRH — D —u|** 2du=clv), 0<v<T (5.2)
0

Suppose a(-) is continuous on [0,T]. Then [’ a(u)du € H(R) with

2

= /Otg;(u)a(u)du.

) t )
<f0 a(u)du,B;{> =/0 9t (w)dBy(u) and H/ a(u)du

t 0 t
Proof: Recall that there exists a congruence between the RKHS, H(R), and

spY"{Bu(s) : s € [0,T]} under which R(:, t)  By(t). Clearly, T ¢7(v)dBy(v) €
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sp~ {By(s) : 0 < s < T}. Hence there exists § € H(R) such that the image of g,
under the congruence, is f7 g7 (u)dBy(u). Then for 0 < s < T, by (5.2),

is) = (RC,8).9am = E Buls) [ o (u)dBulu)

s ¢T §
_ T _ L 2H-2 _
= /0 /0 g, (W) HQ2H — 1)|v — u| dudv /0 a(v)dv.

This proves that fo(') a(u)du € H(R) and following the notation of section 2 we
have ( 18 afw)du, B H) = [T gT(u)dBy(u). Exactly in the same way it follows that
(§5” a(u)du, By), = f; 04(w)dBy(v). Finally,

2

[ awan| = B[ wiButw) [ diwdBatw)

¢

i rt
= [ [ @i HEH - lu - v dvdu
0 Jo
t
= fa gt(u)a(u)du, from (5.2) -
Note that from theorem 3.1, under a suitable change of measure (Y;) becomes a

fractional Brownian motion. Therefore, from the Bayes formula (3.6) with 5(t, X') =

Js h(u)du, and N, = By(t), and from lemma 5.1, we have

£ [f(X ) I}_Y] _ /f(rc:)exp {/0‘ gh(u)dY (u) — %/o‘ gﬁ(u)h(u)du} dPx(z)
¢ |7 fexp {jot gr(u)dY (u) — %/; gi(u)h(u)du} dPx(z)

. (53)

When the signal process is actually a random variable n (independent of the
noise process By(t)) such that h{u) = na(u) where a is a continvous (deterministic)
function, then using the fact that for a constant k, gi, = k¢t, from (5.3), we have

[ f@yexo {1: | Lot w)dY (u) — 222 / t g;(u)a(u)du} 4P, (z)

2
[t 7] = fexp {a: fotgf;(u)dy(u) - émz ]0‘ gi(u)a(u)du} SRS

(5.4)
If we further assume that 7 is a Gaussian random variable with mean 7 and variance

o, then 77 being independent of { By (t)), we have (#,Y) jointly Gaussian. Hence the
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conditional distribution of  given F} is also Gaussian with mean E(n|F)) = #,,

say, and variance E ((n — %)’ |FY) = 4, say. Then

E (e‘"’ |J-'ty) = exp {aﬁ + %a‘?"‘yt} .

Now from (5.4}, taking f(z) = e**, we have

[emen s [ dware) ~ 5o [ giulatuiin} olz;m, widz

fexp {a:/ot gi(w)dY (u) — %x fo gt (u)a(u) u} qb(:c;no,fw/o)d::; |
9.5

E [e‘"’ |fty] =

where ¢(z;m9,70) is the density of a Gaussian random variable with mean 7, and
variance 7yg.
Let us consider the numerator of the right hand side of {5.5) :
/ex(a+ IN gz(u)dv(u))—%mz fyotntwan 1 eyt
V2T Y

13+ fy st watw)an ) 2z (a5 o f; ab(u)a¥ (w))+v5 n3] o

\/21%
v 27f Yo

where 77! = 5 +f gi(wa(u)du and m;, =5 no-i-/ gt (u)dY (v) (5.6)

= 5y e T (et my, (5.7)

. - 2 -1
e [22—2z(a+me}n+(atme) ‘ft]e 3% M+ 2""(°+m‘)2d:r,

Putting @ = 0 in (5.7) we get the denominator of the right hand side of (5.5) :

. - N PR - a2
Denominator = /5y, "% TotiTem:

Therefore, from (5.5), we have

[ an l}:‘)"] %[—n(a-ﬁ-mg)z-—-wmt] _ ez‘na(0+2mt)

Collecting the coefficients of @ and a? and using (5.6), we get

t
== (350 + [ gy (@),

17



somre= (5 + [ dwatd)
Note that these equations for the filter are exactly the same as those obtained by
Breton ([5]).

Remark: Recently, Breton ([4]) considered the parametric estimation problem
in a simple deterministic regression model setup with the fBm noise process . Our
general Bayes formula can be used to study the parametric estimation problem in
a more general setup with the {Bm noise process, as done in Liptser and Shiryayev
([14]) in parameter estimation of the drift coefficient for diffusion type processes

with the Wiener noise. We leave that for a future note.

6 Ornstein-Uhlenbeck noise process

Although the use of the Wiener process as noise produces elegant, powerful mathe-
matical techniques to calculate the optimal filter, one of the main criticism against
it (as expressed by Balakrishnan [2]) is from the practical point of view. Since the
sample paths of a Wiener process are of unbounded variation with probability one,
the actual data samples have zero probability of occurring and hence the results
obtained cannot be instrumented. On the other hand, it has been argued by Nelson
([15]) that the Ornstein-Uhlenbeck (dispersion) process is natural to consider as
an approximation to the Wiener process and the Ornstein-Uhlenbeck processes are
realizable. In this section we consider the filtering problem corresponding to the
Ornstein-Uhlenbeck noise process and show that it leads to the conventional theory
with the Wiener noise process.

Suppose v(t) is an Ornstein-Uhlenbeck velocity process satisfying the stochastic

differential equation
du(t) = —Bv(t)dt + odW (1), (>0, c>0) (6.1)
with the initial value v(0) = 0. Consider the Ornstein-Uhlenbeck (dispersion) pro-
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cess given by
£t = | “u(s)ds. (6.2)
It is easy to see that if # and ¢ tend to infinity in such a way that ¢?/3% — 1, then
&(t) converges in distribution to the standard Wiener process. See, for example,
Theorem 9.5 of Nelson ([15]).
Now suppose the noise process (V) is given by an Ornstein-Uhlenbeck process

so that, from (6.2) and (6.1}, we have

t 5 t o .
N, = /D o /0 exp{—p(s — r)}dW,ds = /0 E(1~e-ﬂ<‘ ) dw.,.
Also, suppose that the signal process X is independent of W and the observation
process is given by

£
YA = [ h(X)du+ N, (6.3)
0
where h(u) = h(X,) is differentiable in [0, 7] and A'(u) € L*[0,T].
Then, the covariance R(¢, s) of (NV,) is given by

ths
R(s,t) = EN,N, = fo F(t, w)F(s, u)du,

where

Ft,u)= 2 (1-e®™), 0<u<t<T (6.4)

g
B

Also, it is easy to see that
sPY{F(t, Mpg(-),0 <t < T} = L*0, 7).
This is because if f € L2[0,T] such that f L F(t, (), forall 0 <t < T, then
t
f FF(t,w)du=0 Vvt
0
. o)
(1 — o Blt—u) _
= /of(u),@(l e )du—O vt
t t
o — o=Bt [ Bu _
= /o fluw)du —e [0 e flu)du=0 Vit
t
= f(t)+ ﬁe'ﬁtfo e flu)du — e PP f(t) =0 a.et]
i
Bu du =
= fo e fu)du =0 a.e.ft]
= f(t)=0 eaelt]
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Hence from (3.8) we have
H(R) = {g 1 g(s) = [s F(s,u)g*(u)du, for some g* € L*[0, T]}
0
It is also easy to check (assuming, without loss of generality, h(Xo) = 0) that

foz h(X.)du = /Oi F(t,u) [—i—h(Xu) + %h’(u)] du.

Hence the noise process and the observation process are as in the special case
considered in section 3.1, that is, N, is of the form (3.7) with F(¢,s) given by
(6.4) and Y is of the form (3.9) with

R(u, X.) = gh(Xu) + éh'(u).

In this case, therefore, from (3.10), we have

BT PV yoor _ [ f(@)of(z, Y5 Py(d)
PUNYP) = BUKIF) = = e s e

3

where
t 1 . 1 t[8 1 2
B.0 B0 — _ﬁ_ ont Beo _ [l ot
o (z,Y?7) = exp {/; [ah(mu)—t- crh (u)] ay;’ 2/0 [Jh(:ru) + gh(u)] du}
(6.5)
and
gpe = [ B hed) + 20| du+ e (6.6)
0 {0 c
Now suppose that v, is the classical filter based on the observation process
4
Y, = ] R(X)ds + W,
0
Recall from the Kallianpur-Striebel formula that
; T z,Y ) Px(dz)
VY .= X ¥y I flaouz
WD) = BUKIIF) = =5 e G3p Gy
where
t 1 t
o (z,Y) = exp {/ h(z,)dY, — —/ h2(.ru)d'u,} : (6.7)
0 2 Jo

The following result shows that the conventional filter can be approximated by

suitable filters corresponding to the Ornstein-Uhlenbeck noise process.
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Theorem 6.1 Suppose h satisfies the following condition
E {exp {7]; R* (X, )du + /OT (B (u))? du}] < 0. (6.8)
Then for bounded function f, as 8, o0 — oo, with 0%/8? — 1,
YR — u(HY)  as (6.9)
through an appropriate subsequence.

Proof: Denote by a.(3,0) and a, the expressions in the curly brackets in
the equations (6.5) and (6.7), respectively. Then as § — o0,0 — oo such that

0?/B? — 1, we have
t [ 1,, 1 (8 N
a(f,0) = /0 [Eh(:ru)-i-;h (u)] qu+§f0 [;h(:cu)-i-;h (u)] du
B 1, 1 t[g 1, J°
= U/O h(:cu)qu+;f0 h(u)qu+§/o lah(xu)+ah(u)] du
t ¢
— [ h(xu)qu+% [ Ih@)Pdu =0 ae. z[Px] and a.e[P) (610
Hence it is enough to show that
f P (2. YP9) Py (dz) — f ai(z,Y)Py(dz) i L}, (6.11)

for L'-convergence will imply a.s. convergence through a subsequence and then the
theorem will follow from Scheffe’s theorem.

It is easy to check that for any numbers a and b,
le® — €} < |a — b] - max (e'“', e'bi) i
Then
E’f af‘”(x,Yﬂ"’)Px(da:) - /cr,(:::, Y)Px(dz)
< Eflexp{at(ﬁ,a)} — exp{a:}|Px(dz)
< Ej la,(8, o) — a;| - max (e""(ﬁ"’)', e'“") Py (dzx)
1/2
{/Ela;(ﬂ,a) _ atlsz(dx) . /E (EQIac(ﬂ,a)] + e2|a:1) P,\(d’l.)}
1/2 1/2
([ IIP,\-(d.r)) (f IQP,\-(d:z:)) ., say. (6.12)
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Then,

L = Elaf(B,0)} — asf

/ot { (g _ 1) h(z) + %h’(u)} aw,
+ % / t { (gh(:ru) + Elr-h'(u))z _ h2(a:u)} du
°F ‘fot {(ﬁ - 1) h(z) + lh’(u)} aw, 2

0 (?ﬂz -1) h2(z) du+/ (w))? du

a2

= F

2

IA

2

2_
+ 4

2 ]Ot { (g - 1) h(za) + —h’(u)}2 du

rra{ (59 ([« S([ )]
4 (g - 1)2 / ‘(e )du+ % / L (h )’ du

() ([ ream) & (oot a)

Hence from (6.8) it follows that

A

A

2
fIIP,\»(dx) . 0as B, o — oo, with Zﬁ = (6.13)

Now, using the fact that for a normal random variable Z with zero mean and

}

. 2
variance o2, Eel?l < 2¢7°/2 we have

I = B (Heol 4 o)

EeT { 2 [ t lgh(xu) n Elr—h’(u)] .+ [ t [gh(:cn) + %h’(u)r du
+Eexp{‘2j; h(:cu)qu—l—fotlh(xu)Pdu‘}

2exp {3 / ‘ [ﬁh(xu) + -(l;h’(u)l 2 clu} +2exp {3 [D t |h(xu)|2du}

2exp{ ﬁz/ h2 (2 )du + — / (w)) du} +2exp{3_[0t h?(:cu)du}.
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Therefore, from (6.8), we have for large ¢ and 3, f IyPx(dz) is bounded and con-
sequently, (6.11) follows from (6.12), and (6.13). ]
Remark: Note that the condition (6.8) in theorem 6.1 will hold if one assumes

that the functions h(-) and A(-) are bounded.

Next we address the issue of implementation of the results obtained by consider-
ing the Ornstein-Uhlenbeck dispersion process as the observation noise process. We
would like to obtain a Zakai-type evolution equation for the so called unnormalized
conditional density of X, given the observations up to time ‘t’. So let us assume
that the signal process X, is a Markov process.

First, we shall prove the following properties of ¥; = ¥ and its relationship

with Y, = Y"°.
Lemma 6.2 Suppose Y, is given by (6.6). Suppose Q is defined by
[ 1 . 1 T[p 1 2
1P =exp{ [ [Sh(X.) +—H d¥u -5 [ [2h) + oK dQ.
€ exp{ A [ah(X )+Uh,('u)] 5 ) [ah(X )+a (u)] a’u} Q
Then
(i) Under Q, Y, is o Wiener process.
(ii) 5P Y,,0< s <t} = @T,,0 < s < 8}
(i) FY = F¥.
Proof: Clearly (iii) follows from (ii) as under @, (Y;) and (¥;) are Gaussian. (i)
follows from Lemma 11.3.1 of [9], since (X) is independent of (W,). For (ii) note
that
t t
Y, = /0 (X, )du + / F(t, w)dW,
0

= ./Ol F(t,u) lgh(Xu) + éh’(u)l du + ]Ot F(t,u)dW,
- fo Pt ), (6.14)
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Hence
@Y, 0 < s <t} C OV, 0< s <t}
To show the reverse inclusion suppose £ € @Lz(Q){f’;, 0 < s <t} and Eg(éY,)=0,
for all 0 < s < t. Since ¥}, under @, is a Wiener process we can express £ as an Ito
integral, say, £ = fI ¢(u)dY,. Then
Eo(€Ys) =0 forall0<s<t
t - ] ~
= Eg ( [ otwat. [ FGs, u)dYu) —0 forall0<s<t
0 0
= ]stﬁ(u)F(s,u)du:O forall0<s<t
0

P o) T (1 = e=Be=v gy = <s<
= ./o¢(u)ﬁ(1 e )du 0 forall0<s<t

= /s d(u)du — e™P* /Os Pp(u)ePdu =0 forall0<s<t
0
= (by differentiating) fe?* ]s p(u)efdu=0 a.e s€0,1
0

= ¢(u)=0 a.e. ué€l0f

Hence
Y, 0< s <t} cspHA{Y,, 0 < s <t}
This completes the proof of part (ii). ]

Because of property (iii) of Lemma 6.2 the filter based on {Y;,0 < s < t} will
coincide with the filter based on {1?5, 0 < s < t}, where
L1 g

N 1
_ Lt ' - / W .
Y: /0 [gh()xu) + crh (u)] du + W,

We shall consider the observation process to be given by
: t
Y, = jo gh(Xu)du+ W, (6.15)

which, for large o, will approximate Y. We can then use the classical theory with
the Wiener noise process to obtain the following result.
Suppose A; with domain D is the generator of the Markov signal process {X,).

Denote by ®(u,t) the unnormalized conditional density of X, given F}. Then

®(u, 1) = ®(u, 0) + fo “Ar®B(u,5)ds + /0 ‘ [gh.(xs)] (x, 5)dYs, (6.16)
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where A} is the formal adjoint of A,.

Now note that from equations (6.14) and the form (6.4) of F' we have
g [t N g [~ t -
_- — _ p—B(t=u) —_ Bt Bu
Yt—ﬁ/o[l e ]dYu_ﬁ[Yt e /Oe dYu]

. . t . :
L [Yt—e'ﬁt {eﬂ‘Yt—f ﬁeﬁ“Yudu}] = ae"'@‘/ e’ Y, du.
0 0

B
Hence,
d —pt t Pux) —fBt Bty ¥
y = Y= oe (—ﬂ)foe Yidu + oe™™ Y, = oY, - gY,,
that is,

5 ¥ 1 rt reoon 1 ; ! ﬁ
Y, = Y}——/ Fuydu = —{yc—/ h(u)du}-l—-—Yt.
o Jo o 0 o
Therefore ignoring the first term in the expression for ):’t above, which is of the
order of ¢7!, we see that the solution of the Zakai equation (6.16), for large o,

can be approximated by the solution of the following ordinary partial differential

equation
B

2
ditcp(u, t) = AlD(u,t)+ (;) h(X:) @(x,t) g
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