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Abstract

We consider the nonlinear filtering problem where the observation
noise process is n-ple Markov Gaussian. A Kallianpur-Striebel type

Bayes formula for the optimal filter is obtained.
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Introduction

Professor Hida has been interested in non-linear problems and the study
of n-ple Markov processes. The purpose of this work is to obtain a Bayes
formula for the optimal filter in the case where the noise process is n-ple
Markov in the sense of Levy - Hida ([6], {3]). We apply the general result
obtained by us in [7). The main effort here is to compute tractable form of
the reproducing kernel Hilbert space (RKHS) using Goursat representation
of n-ple Markov processes obtained by one of the authors [8] under active

encouragement of T. Hida. As a consequence of our work we are able to
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obtain a proper form of the Bayes formula given by Kunita [5] for the noise
process being a solution of stochastic differential equation of order n. It is
a great pleasure to dedicate this work to Professor T. Hida who has been a
friend and a mentor for one of the authors (Mandrekar) for more than thirty
years.

The article is organized as follows. In section 1, we start with the main
result from [7) that we will be using. We also introduce the notations and
definitions we will follow throughout this article. We identify the suitable
form of the RKHS of an n-ple Markov Gaussian process in Section 2. Finally,

in section 3 we obtain the Bayes formula for n-ple Markov Gaussian process.

1. Preliminaries and Notations

The general filtering problem can be described as follows. The signal or
system process {X;,0 < t < T} is unobservable. Information about {X,} is
obtained by observing another process ¥ which is a function of X corrupted

by noise i.e.,

Yi=p8(tX)+N 0<t<T, (1)

where 3, is measurable with respect to F;X, the o-field generated by the
“past” of the signal i.e., o{X,,0 < u < t} (augmented by the inclusion of
zero probability sets) and N, is some noise process. The observation o-field
FY¥ = 0{Y,,0 < u < t}. The aim of filtering theory is to get an estimate of
X, based on FY. This is given by the conditional distribution of X, given F*
or equivalently, the conditional expectations E(f(X,)|F;") for a large enough

class of functions f. Iallianpur and Striebel [4] provided an explicit Bayes
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formula for the conditional expectation in case N, is a Brownian Motion W,.
In [7), this formula was extended to general N;, a Gaussian process, with
certain restriction on 3(¢, X). In order to explain it we need to introduce the

idea of Reproducing Kernel Hilbert Space (RKHS).

Given a Gaussian process {N:,0 <t < T) (WLOG assume EN;=0) let
Rn(s,t} := EN(t)N(s) be its covariance function. It determines uniquely
the distribution of N. Once the Gaussian process is clear in the context we
will drop the subscript N. Given 3 symmetric, non-negative definite function
R (covariance) we can associate with it a unique Hilbert space of functions

called RKHS H(R) of R satisfying

{ (&) R(\t)€ H(R) for 0<t<T -

(b) For all e H(R), (f,R(~8)=f(t), 0<t<T.

Here (-,-) denote the inner product in H (R). Thus there is one-one corre-
spondence between Gaussian processes and RICHS’s generated by covariances
({21]). In fact, the simplest way to describe H(Ry) is to consider functions
f(t) = EN(t)U, where U € sp{N(),0 < t < T} and (fy, fo) = EUU,. We
denote the unique U by < N, f >. Under the assumption that g(-, X) €
H(Ry) a.s., the following extension of Kallianpur-Striebel formula was given
in [7]. We use the notations < N, f >, and Il - |le to denote < N, f > and

the norm, respectively, corresponding to the RICHS of Rwlio.qxj0.9-

Theorem 1. Suppose that the observation process 1s given by (1) with noise

N a Gausstan process with covariance R and B(, X{(w)) € H(R) a.s. w.

3



Then for an Fi measurable and integrable function g(T', X)

E(g(T, X)|FY) [ o(@, )< ot 1M Py (2
9(T, b/ = f e<YBC2)>=3llBC2NE g py ()

where <Y, B(-,z) >=< N, B(-,x) > +18(-, z)117.

As stated in the introduction, we want to compute explicitly the above
formula in case of n-ple Markov processes, which involves computing the
RKHS of such processes. For this we need the form of L*(M), the space
of vector valued functions, square integrable with respect to matrix valued
measure M (Rozanov [10)). Let M be a non-negative n x n matrix val-
ued measure M on a measurable space (S,S). For two n-dimensional (row)

vectors, ¥, and ¢, we define the integral

[wndnews = [0}

for any non-negative o-finite measure p which dominates the measures m; j,
(i,7=1,2,...,n), the entries of M. Here M’ = ((dm;;/du)). It can be easily
seen that the definition above does not depend on p.

In particular, trM = Y%, m;; is a dominating measure. We denote by
LA(M) = {w S — R'(row) such that [ dMy” < oo}.

Then L*(M) is a Hilbert space under the inner product (1, %) = [ 1 dM Y3
for ¥y, 42 € L*(M).
Let {Z(t),0 <t < T} be an n-dimensional (row) Gaussian Martingale,
then
E(Z(t) — Z(s))"(Z(t) — Z(s)) = F:(t) - F(s) (3)
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where F' is a non-negative matrix valued “increasing” function (that is,
F,(t) — F,(s) is non-negative definite matrix if s < ¢). Let M, be the matrix-

valued measure associated with F,. Then it is easy to see that we can define
J@w,dzw) = Y- [w@izi) )
=1
for all ¥ € L*(M.) and 5p{Z;(u),i =1,2,...,n,u < t} equals

{[ 0wz, ve o).

2. n-ple Markov Gaussian Processes

Following Hida [3] and Levy [6], we define a Gaussian process N to be

n-ple Markov if for each s, the set
{BE(N()|F),t > s}

in L*(Q, 7, P) has exactly n linearly independent elements. It was shown

in [8] (see also [9]) that such processes have Goursat representation, i.e.,

N(t) = wilt)Z:i(t) (5)
=1
where Z = (Z),...,Z,) is a non-singular vector valued martingale and

det((i(t;))) # 0 for any 0 < t; < t; < --- < t, < T. Here by nonsin-
gular we mean F.(¢) of (3) is a non-singular n x n matrix for each ¢. In

particular, N has representation (5) with

H(N :t) :=35p{N(s),s <t} = H(Z: t) :=3p{Zi(s),s < t,1 < i < n}.
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We now derive the RKHS generated by N of the form (5).

Lemma 1. Let N(t) = Y%, i(t)Z:(t), where Z(t) is an n-dimensional

Gaussian martingale. Then

H(Ry) = H={: /0) = [ odM.0w"(w), ¥ € L2(M)}

with
T
(Fus fdn = [ wr(@)aM.(u)ds ().

Proof : Note that

Ry(,t) = EN()N(t)
= 3> @i (t)mi;(e, )

i=1j=1
Define
Pe(w) = (01(H)1g(n), 2(t) (), - -, @a(t)Lpg(n))-

Then
b€ LX(M,) and Ry(.t) = jo'(,o(-)dM:(u)«p:(u),

ie., Ry(-t) € H. Also, if f(t) = f; o(t)dM.(u)y*(u) then
(f,R(-,t)) = /DT Yo (w)dM.(u)Y*(u)
= [ oaM @ = £2).

(6)

Thus H and Ry satisfy the conditions (a) and (b) described in equation (2)

and hence the lemma is proved.

From the definition of < N, f > and lemma 1 it is easy to check that for
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f € H(Ry) such that f(t) := J§ p(£)dM,(u)y*(u), we have

<N.f > [ (W), daz (), (7

where the integral is defined as in (4).
Now, suppose N(t) is a solution of the stochastic differential equation of

order n given by
LN(t) =W (t) with W (t) “white noise” (8)
and where

n n—1
L(t) = an(t) (';E) + @y (%) +e 4 ao(t), (With an(t) >0 )

More precisely, N(t) is (n — 1) times differentiable Gaussian process and

satisfies
an()ANTD(E) + (anes ONCI(E) + .. + ao(t)N(t)) dt = dW ().
Then ([2]),
N =[5 eilt)g(u)aw (),
i=]1

where {g:(u)}}., are solutions of the adjoint homogeneous equation cor-
responding to L,k = 0 and {p;(t)}", are determined so that F(t,u) =

i1 wit)gi(u) satisfies the following conditions :

O*F(t,u) _ 0, k=0,1,...,(n-2)
Ot sy | (=)0 (0), k=(n-1).

Hence with Z;(t) = f} g:(w)dW (u)

N(t) = ijt,o,-(t)z,-(t)
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is of the form as in Lemma 1. Here m;(B) = [p gi(u)g;(u)dA(u) where Ais

the Lebesgue measure. The space L?(M,) consists of the functions 1 so that

[ (Z wi(u)gi(u))g .

fit) = _/ot (i (Pi(t)gi('“')) (i ?Pj(“)gj(“)) dA(u)

i=1 F=1
t
= [ Fwg @

for some ¢* € L2(}), if we assume H(N : t) = H(W :t). This is the case for

Levy - Hida n-ple Markov processes. In this case we get as in [7]
4
<N, f>= f g (w)dW (w).
0

This also is the case if N(t) is a solution of (8) as g € L*(A) and
gLF(t, )1j,g(-) for all £, implies

t
fo F(t,u)g(w)du=0 Vt.
Then using the fact that F(t,u) is the Riemann function ([2]) we get

o)=L [ Fluglw)iu=0.

3. Bayes Formula for n-ple Markov
noise processes

We now obtain a Bayes formula for the filter in case the observation
process Y is of the form (1) with N(t) = £%,; wi(t)Zi(t) and Z(t) an n-

dimensional Gaussian martingale.



Theorem 2. Let X be a system process and Y be given by (1) with N as

above and
Bt X) = [ Co)dM. (W) (w, X) with ¥(-, X) € (M) ae.
Then for an F -measurable and integrable function 9(T, X},
E (o(T, X) |7} )
/ 9(T, z)e Jo@w)af @)-1 [, bluaddh (uyp* (u.2) g Py(z)

/ efo W) d¥ ()=} J; Wua)dMe (i (wo) g p (z)

where

V() =26+ | ", X)dM. (u).

Proof : First notice that, from lemma 1, B(-,X) € H(Rn). Also, from (6),
it follows that
1B, = [ plu)db (u (u).
Then the theorem follows from Theorem 1 and equation (7). ]
In case Zi(t) = f§ g:(u)dW (u), we get a more appealing one dimensional

form because in this case
t
B(t, X) = [0 F(t,0)6" (u, X)dA(x)

where

n

¢"(w, X) = 3 gi(w)i(w, X)

=1

and
f 9T, :v)ef; ¢ (wa)a? (u)-3 f; ¢ (weldNw) g p. (1)
N [ efo &R (W= [ (waydrw) g p (z)
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where Y () = [ ¢*(u, X )du + W(t) .

In particular, when the noise process (/V;) has derivative n, satisfying the
stochastic differential equation (8) and the observation process (y;) is defined
by

Yo = h{X) + 1,

where h(-) = h(X)) is n times continuously differentiable, we get the following

(corrected) formula due to Kunita [5]

[ a@el b et [{EM I 4Py (2)
E X .FY = - t
bexa) [ el rte b [ b e gy (a)

where
Vi) = f;Lsh(X,)dHW(t)

t gn-l )
= [ a@a™ 0w + [ 3 aupyO(w)de.

i=0

This follows immediately once we note that here

Bt X) = h(X) = [ *F(t, ) Luh(X )du.
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