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Abstract

Let (X,Y) have regression function r(x) = E(Y|X = z). We consider
the problem of nonprametric tests for a variety of hypotheses including
specification, significance, monotonicity and convexity. The proposed tests
involve an estimator of r(z) and its first and second derivatives. The esti-
mates used are a variant of the Nadaraya-Watson kernel type proposed by
Mack and Miiller (1989). The asymptotic distribution for these estimates
of the maximal deviation from 7 (z) (p > 0) is proved. Limit theorems
for quadratic norms for the estimates are also obtained. Using these results
we study the behavior of the nonparametric tests.

1 Introduction

Our starting point is a random sample (X3,Y3), ..., (Xa, Yz) from a bivariate pop-
ulation with distribution function G (z,y) and density g(z, y} with respect to the
Lebesgue measure. This probability distribution is assumed to be unknown. The
paper investigates the tests of hypothesis like specification, significance, mono-
tonicity and convexity for the unknown regression function r(z) = E(Y|X = z).
The literature on nonparametric tests is extensive. Specification tests are pro-
posed by Hausman (1978}, Bierens (1982, 1990), Lee (1988), Eubank and Spiegel-
man (1990), Wooldridge (1992), Yatchew (1992}, Hardle and Mammen (1993),
Hong and White(1995) and Yatchew and Bos (1997). Stoker (1989, 1991) pro-
poses tests of significance. Surveys in testing monotonicity and convexity include
Schlee (1980), Yatchew (1992), Yatchew and Bos (1997), Diack and Thomas
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(1998), Bowman and al. (1998), Diack (1998, 1999(7],1999(8]) and Doveh and
al.(1999).

In this paper, we continue this effort by proposing new consistent nonpara-
metric tests. The proposed tests are based on the asymptotic distribution of
either a normalized maximal deviation quantity or a quadratic norm of the same
quantity. They involve an estimator of r(z) and its first and second derivatives.
We use the kernel method to estimate the regression function.

The kernel estimate # (z) of r (z) (due to Watson 1964 and Nadaraya 1964)
is motivated by the formula:

r@={ [wenan} /1@

where f denotes the marginal density of X. The Nadaraya-Watson estimator is
defined by:

7 (z) = {(nhﬂ)-1 gmc (““" }‘lnX") } {(nhn)'l gK (’” ;nX") }ﬂl (1)

where h, is a bandwidth sequence and K is a kernel function. It is natural to
consider an estimator of the p-th derwa.twe of r(z) to be the p-th derivative of

#(x). The difficulty in computating 57 (z) alone is incentive enough to seek
more convenient forms of estimates for T(P) (z). Thus, we will use the following
variant of the Nadaraya-Watson kernel type estimator proposed by Mack and
Miiller (1989):

Fop (3) = (nhEF) T K® (“";X") Yi/ fa (X2) (2)

= (nhy)~ ZK ( ) (3)

is the kernel estimate of the marginal density f (z) and K% is the p-th derivative
of K. Consistency and asymptotic normality of these estimators are proved in
Mack and Miiller (1989). We extend these results by proving the asymptotic
distribution of the maximal deviation from r{P). We also provide limit theorems for
quadratic norms of the normalized deviations of the estimates from their expected
values. Using a kernel estimate when f is known and the Yang estimate when
f is known or unknown, Johnston (1982) gives results about the the asymptotic
distribution of the maximal deviation from (). Thus our results extend in some
sense the results of Johnston (1982).

The remainder of this paper is as follows. In Section 2, we introduce further
notation and results about some global measures of deviations. These results
are used to provide nonparametric tests in Section 3. We also discuss their
consistency and power. Section 4 is for the proofs of our results.

i=]1

where
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2 Uniform and quadratic confidence bands

In this section, we give uniform confidence bands for the regression function r (z)
and its derivatives. To be more precise, we provide the limit distribution of the
maximal absolute deviation

SUp_[fnp (@) =@ (2)] )

0<z<1

A similar result follows if one considers the maximun deviation (rather than
absolute deviation) of the regression function. The asymptotic distribution of the
functional

IR IR ®

s (x)

where s (z) = E(Y?|X = z), is also evaluated under appropriate conditions as
n — 00.

Now, we prepare some assumptions which are a restatement of assumptions
of Mack and Miiller (1989) in this setting. As in Mack and Miiller (1989), let
the density estimate appearing in (3) incorporate a different bandwidth sequence

{on}.

Assumptions on the kernel K:

(A1) The kernel K vanishes outside of [-1,1].

(A2) K € Pt [—1,1], with K@ (-1) = K® (1) = 0. Here C? [—1, 1] denotes
the set of all real-valued p times continuously differentiable functions.

(A3) We assume the kernel is of order k — p for some integer & > p.
Recall that a kernel K is of order £ — p means

| 1 if j=0
f’ﬂK(m)dx‘{o if 0<j<k—p}

Assumptions on the marginal density f:

(A4) f is continuous and positive on an open interval containing {0,1].

(A5) fis k — p continuously differentiable.
Assumptions on the regression function r:

(A6) r is k continuously differentiable on an open interval containing [0, 1}.



Assumptions on the bandwiths (h, and b,):

(A7) b, = 0, b, =07 with o= < 7 <

2(k—p)+1 p)+1 2p+1

(A8) nb2* P, logn — 0, b1k, log (1/b,)logn — 0.
(A8") b2 P pL% 0, b1k * log (1/b,) — 0

With these assumptions, b, must converge to zero slower than A, but still
suiﬁmently fast for (A8) to hold. {A7) and (A8) hold for b, = n~? for all 8 >
2( = (A7) holds and 3 < 7/2, then (A8') holds.

'Ge’henever the marginal density is known we do not need to 1ncorporate the

bandwidth b, thus (A8) can be removed and (A7) becomes h, = n~" with
TR S S e

Because the major difficulty in proving the asymptotic distribution of the
maximal deviation from r® is the possible unboundedness of Y, we will need

some additional hypotheses about Y as in Johnston (1982).

Assumptions on the observable Y:

(A9) There exists m > 2 such that E{Y|™ < 400 and s(z) is bounded away:
from zero.

Let a,, be a sequence of real variable such that
(A10) an, (nha) "% (logn)¥? = 0, al=™ (nh,)"? (logn)*/% — 0.
(A10") apn~2h21 (logn)? — 0, a.,l,,“"”'nI/Zh,}/4 — 0.

(A11) (logn) sup Siza, V29 (2,9) dy — 0.

(A1) A1 21[101>l|f|y|3% y*g (z,y)dy — 0.

. 1/2 )
(A12'} We assume that { f_:n g (z,y) dy} (as function of z) has uniformly
bounded and continous first derivatives on [—1,1].

Observe that assumption (A10) is weaker than the corresponding assumption
(A2) of Johnston (1982). To approximate the empirical distribution function of a
uniformly distributed random variable, Johnston (1982) used a result of Révész
(1976) while we use an improved result from Tusnddy (1977). The asymptotic dis-
tributions for the quadratic norms of the normalized deviations of the estimates
will be obtained by substituting (A8'), (A10’) and (A11’) (which are stronger)
for (A8), (A10) and (A11) respectively.



Limit Theorems
The asymptotic distribution of the maximal (absolute) deviation is calcu-
lated with the aid of the following theorem.

Theorem 1 . Suppose (A1)-(A12) hold and h, =n"" (0 < 7 < 1/2). Define

Map = ()" sup [(7(0)/5 @} (s () = 0)

and
Mo = (") a1 [(£@) /5 @F" {70s ()= (0}].
Then
B {(2rlogn)? [Ma,/ {X (K)}"* - d np| <zp o e (6)
and
]P{(ZT logn)'/2 [ M, [ ol X (K@)} - d,,,p] <z}ore (7)

where A (K(”)) =f{K(p) u) } du and

@)1 ! (p+1)
d,p = (27log n)l/2 + (27 logn)'l/2 log ({2)\ &S )}2ﬂ_ (S )) .

A similar theorem is given in Schlee (1982), but in this paper a different
version of kernel estimator is used and only the asymptotic distribution of the
supremum on a sequence of points is considered. Thus our results are stronger.
Furtheremore, theorem 1 improves the results of Johnston (1982). Indeed,
we generalize his results (when the density function f is known} by giving the
asymptotic distribution to the supremum of the derivative. On the other hand,
theorem 1 extends the results of Mack and Miiller (1989).

The following result is for the quadratic functional (5).

Theorem 2 . Under the assumptions of Theorem 1 and substituting (A8'),
(A10') and (A11’) respectively for (A8), (A10) end (Al1), if 7 > 1/(2k+1/2)

then
h-l/z[ (nh2+1 f {fnsp (:v)—r“”) @)} (“’)dx—A(K"”)] (8)

is asymptotically normally distributed with mean zero and variance
2
2/ {[K@) (z +y) K@ (:c)d:c} dy

All proofs are given in Section 4.

asn — 0.



3 Application to nonparametric tests

The statistical interest of theorem 1 is twofold: not only this is a convenient
way to obtain a confidence band for 7, but it also provides a way for nonpara-
metric tests of hypotheses including specification, significance, monotonicity and
convexity. It would be hard to obtain an explicit confidence band from theorem
2, nevertheless, one can use it to construct nonparametric tests. In this section,
we present consistent nonparametric tests. We prove these tests have asymptotic
powers for some local alternatives. Note that for pratical applications, one would
estimate both s (z) and f (z). This can be done by using kernel type estimates.
Thus, we will suppose s (z) and f (z) are known.

3.1 Hypotheses and test statistics

Specification test:

A standard procedure to approximate r is to specify a parametric model. In
this case, r is assumed to belong to a parametric family of known real functions
(that is E(Y|X) = m(X,0) where € ©, is an unknown vector parameter).
Thus, there are two competing models. Therefore a specification test may provide
a way to prevent wrong conclusions.

The null hypothesis to be tested is that the parametric model is correct. That
we can describe in the following form

H,:P[r(X;) =m(X;,8,)]=1 for some 8, € O.

In what follows, we will assume that © is a subset of R? and m (z, 8) is linear in
6. That is

m(z,0) = 8'Ny (z) +--- + 67N, (z)

where ¢ = (¢',--- ,Bq)t and {NN;(z)} is a sequence of basis functions. Two
important cases are the polynomial regression (with N; (z) = z*~!) and the spline
regression (with N; (z) given by the basis splines depending on chosen knots and
a given order).

The following corollary of theorem 1 is of some interest.

Corollary 3 . Let 8 denote an estimator consistent for 8,. Define

M= (nho)!"* sup |0 @ /s @P [fa0 &) - m (1,8)]|.

Under the assumptions of theorem 1 if the null hypothesis is true and if

sup }m (t,8) —m (t,é)| = o, ({n]ogn}-1/2)

te[0,1)

then one can substitute Mn‘@, for My in theorem 1.
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This corollary follows from theorem 1 quite easily. Under some mild regular-
ity conditions, such estimators as least squares, generalized method of moments
or adaptive efficient weighted estimators satisfy the assumption required by this
corollary.

As a consequence of this corollary, a consistent test against a nonparametric
model may be based on the statistic

T,5 = (2rlogn)'”” [M, 5/ (AN - dng

Thus, the null hypothesis is rejected at level « if

2
T2 (i)

In the case when the regression function is linear (that is the case whenever the
second derivative of the regression function is identical to zero), a consistent test
against the nonparametric model can be based on the statistic T;, 2 given by

Tna = (27logn)'/? [sup IToa ()] / {A (K@)} - dn,z]
te(0,1]

where T, 5 (£) = (nh3) {f (t) /s (t)}*/? (#n2 (t)) with the same cutoff point as
T, ;- A similar test (of linearity) was used by Schlee (1980).

In the same spirit as above, and using now theorem 2, one can also construct
a consistent test based on the statistic

2
Ti’é,=h;1*'r2 (nhn /{Tno S Tsn(gs 9)} f(m)dm——)\(K)

but we will need a stronger condition about . Namely, we assume that

sup ‘m (t,0) —m (t, a) ‘ —o, ({nhn}-lﬁ) . 9)

te(0,1]

It follows from theorem 2 that as n — oo,7, is asymptotically normally
distributed with mean zero and variance ’

2/{/.?{(?) (z+y) K@ (a:)d:r}zdy.

The statistic T1 ; 18 similar to Hérdle and Mammen’s test (cf. Hardle and Mam-
men 1993). The1r test is based on a modification of the squared deviation between
the Watson-Nadraya kernel estimator of the regression function and m (t, 0) .

7



Here, as in the case of linearity, a competitive statistic is

Tri,2 — h;1/2 [(nhi) f {f'n,2 (x)}zf(m)dx Y (K(2)):| )

s (x)
Significance test:

To test Hp : v = o against an unrestricted alternative, it is natural to use the
statistic T, o given by

Tno = (27logn)*? [st |Tno )]/ {X(K)}? - dn,(,]
te 0,1_‘

with Yo (£) = (nha)2 {f () /5 (£)}*/? (Fno () — 10 (£)) and reject the null hy-
pothesis for large values. So the null hypothesis is rejected at level o if

2
> —_ .
I ( log (1 - a))

The test statistic provided by theorem 2 is defined by

Tri,() — h;l/2 [(nhn)f {'f'n,O (33) — 7'0}2 f (IE) do — \ (K):l )

s ()

Monotonicity test:

We consider testing whether the regression function is monotonically increas-
ing. The regression function is nondecreasing if its first derivative is non-negative.
Then the test statistic can be based on the greatest discrepancy between the es-
timate of the first derivative of the regression function and zero. Therefore,
monotonicity is rejected at level o when

~ 1
> -
i ( log (1 — a))

where ﬁ,lis given by

Tn,l = (2rlog n)l/2 [sup Tai(t)/{X (K’)}ll2 — dn,ll
telo,1)

and

Yot (&) = (nh3) 2 {F (8) /s (£)}* (Fun (8))-



Convexity test:
As in the monotone case, we reject the convexity of the regression function

when
T.o>1o B T}
n,2 = g 1 (1 )

with

Tz = (27 log n)Y/? [sup Ta2(t) /{2 (K(2))}1/2 - dnﬂ] _
0,1

te(0,1]

Notice the statistic reflects the greatest discrepancy between the estimate of the
second derivative of the regression function and zero. Similar statistics for mono-
tonicity and convexity tests are obtained by Schlee (1980), but in a more restric-
tive setting since he considered the supremum of T, ,(t) only on a sequence of
points on {0,1].

3.2 Asymptotic power

Here we focus our attention on the specification test, although similar results are
valid for the other tests.
To make a local power calculation for the tests of the null hypotheses described
above, we need to consider the behavior of the different statistics (calculated
under a fixed but unknown point r¢ = m(.,6,) of the null) for a sequence of
alternatives of the form

o () =m(z, 0.} + v, (z),

where r, satisfies (A6}, ¢ (.) is a known function and 1, is a sequence of real
variables converging to zero.

Theorem 4 . (1) : Let v, =n~Y2+"/2 {27 logn} /2. Under the assumptions of
corollary 3,

P (Tn,a < :c) — exp (—¢ () exp (~z))

where
1
P (p) = [ {ew(t)/{m(zﬂon(x)}‘” + e-w(t)/{m(z,ea)z\(x)}m} dt.
0

(2) : Under the assumptions of theorem 2, if (9) is true and if y, = n~ 27/
then T ; is asymptotically normally distributed with mean

@) (),
/ s@
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and variance

2]{]}{@) (z +y) K® (m)da:}2dy

(1) follows readily from theorem Al of Bickel and Rosemblatt (1973) while
(2) is obtained after staightforward calculations.
We see that T1 is more powerful than T, ; for large samples, however T, ;

may well be preferable for moderate sample 31zes and some alternatives. One can
prove similar results for T}, » and T ,, but these tests are less powerful than T, 5
for large samples. For all these tests, it would be desirable to study their small
sample behavior through Monte Carlo simulations.

4 Proofs

Obtaining the limit theorems 1 and 2 is a conceptually simple extension of Bickel
and Rosenblatt ’s (1973) results. Here, we adapt the proof of Johnston (1982) for
regression estimate when the density function f is known. The major technical
difficulty in adapting Johnston’s (1982) proof in our case is the unknown f.

However, we prove under the conditions assumed that is plausible to replace fn

by f in (2)

4.1 Proof of theorem 1
Proof. let r,, defined by

g (@) = () 30 KO ("’ i X") Yi/f (X:)

i=1 n

We also make the definitions
Uno () = (nh2) ' (£ (0) /5 (O} 72 (P () = 7 (1))
and
Uing (8) = (nh27*) 72 (£ (8) /5 ()} (rap (8) = 72 1))
First of all, we prove that it is reasonable to replace Uy, by Unp.

e replacement cost:
Let |[V|| = sup {|V (¢)| : O<t<1}.

10



1Vnp = Uingll = (mh2)"* sup (7 (1) /5 @} (Fap 2) = 7 ()

Thus,
1 .
1Unp — Uinll < (B )2 || £/ g = Tl

As in lemma 1 of Mack and Miiller (1989) and under the conditions as-
sumed, we have

1Unp = Usngll = Oy ((nha)”* { [(nba) ™ 10 1/5a] 7 + 87}
= o, ({logn}_m) by (AS8).

Now, as in Johnston (1982), we consider a truncated version of Uy, p.

Truncated version of Uynp(.)
Define

) Vil{ivil<an)

'ran,p ( nhp+l Z: K(P) (
where V; = Y;/f (X;) and 1y is the indicator on a set.
‘We also define
Unap (8) = (A2 Y2 (£ (8) /5 (0} (Panp (V) — Biranp (2))
Thus

[V = Unngll < (00 Z*) V21 £ /51 [y = Tanp = (1 = Brre )|

Then, using (2.12) and (3.1) of Mack and Miiller (1989) and (A6), (A10)
we see that

[Uinp = Unnlt = Oy ({21} + @k (mh}'?) - (10)
= o, ({log n}—m) .

11



Next, we approximate U,, , by an appropriate Brownian bridge. It is con-
venient to introduce the two-dimensional empirical process Z, (z,v) based
on the sample {(X;V;},i =1,...,n} and given by

Za (z,0) = n!* {F, (2,v) - F (z,9)},

with F and F;, the distribution function of (X, V) and the empirical dis-
tribution function of {(X;V;),? =1, ...,n} respectively. Define ¥ to be the
transformation of (X,V) to a uniform random variable on [0,1]?, given
by ¥ (u,v) = (Fx (u), Fy|x (v)) , where Fx and Fyjx are the distribution
function of X and conditional distribution function of V given X respec-
tively.

Approximation by Brownian bridge
We can write
t—zx

Usn ) = (£ 8) fs )22 [ e K ( R

£

) dZ, (z, vj

Now, from formula (2.9) and (2.10) of Mack and Miiller (1989) we have

Vs ) = (£ /5012 [
lvl<an

+0, (an {nha}"V2 {log n}z) , (11)

oK@ (t - ”’) dB, (¥ (z,v))

7

where B, is the two-dimensional Brownian bridge given by B, (u,s) =
W, (u,s) — usW, (1,1) and W, is the two dimensional Wiener process.

Let us define

t—zx

Unp = (f @ /2P 2 [[ o (2

) dB, (¥ (z,v)).

(1]

By (A10) we see that (logn)"/? ||Us,|| and (logn)"/? ||Us,, ,||have the same
distribution. Define now,

s (t) = E (Y?Ljy|can) | X = 1)

and

Upp (8) = {82 (1) /s (1)} V2 U3, , (1) -

Under the conditions assumed, one can prove as in lemma A.4 of Johnston
(1982), that

”USn,p - U4ﬂ,p” =% ({logn}hlﬁ) . (12)

12



On the other hand,

Uiy &= (7 0 sn 0152 [[ ok (52) a9 0.

lvl<an

This latter formula can be rewritten in the following form

) dB, (¥ (z,v))

t—zx

Usnyp (8) = {9 (&) F ()} 2 B/% f f . ( h

n

where ¥, (t) =E (V21{|V|5a,,}|X = t) .
Define

Upns () = {80 ) £ O} 2137 [ [

vK® (t; ‘”) AW, (¥ (z,v))

lvl<en n

Using the results of Tusnady (1977), (A10) and integration by parts (see
formula (A.1.1) of Johnston 1982), one can prove

|Usnp = Uingll = Op (@ {nha}* {logn}*)
= o, ({logn}ﬂl/z) . (13)

Now, it is easy to see that Uy, , has the same covariance function as U, ,
defined by

t—zx

Usnp (£) = (B (8)  (£) i} ™2 ] {9 (@) f (@)}/2 KO ( -

) dW (z)

(13

where W is Brownian motion on (—o0,400). Moreover, since Us,, and
Usn,p 8re both Gaussian, then they have the same distribution.

Now, define

Up, (£) = B2 f K® (t - "’) W (z).

T

We obtain, as Johnston (1982) (see lemma A.6 therein), that

“Uﬁn,p - U?n,p” == Op (h}t/2) = o, ({logn}—1/2) -

Thus, to prove the theorem we only need to determine the asymptotic dis-
tribution of the (absolute) supremum VE , which is given in the following
lemma. This lemma is easily derived from Bickel and Rosemblatt (1973).

13



Lemma 5 (Bickel and Rosemblatt 1973). Let d, and A (K (P)) be as in
theorem 1 and let h, =n"" (0 < 7 < 1/2). Define

Onp (t) = B2 f K®) (t,;x) dW,, (z) .

Then

P {(27‘ log n)*/ [sup |on, @)/ {X (K(”))}l/z - dn,p] < m} — e 27"
te(o,1]

and

P {(2710gn)1/2 [sup np () / {2 (K("’))}I/2 dn,p:| < x} — e

te(0,1]

with d,, , as in theorem 1.

4.2 Proof of theorem 2

Proof. The following lemma is an immediate consequence of theorem 4.1 of
Bickel and Rosemblatt (1973).

Lemma 6 Let define ¢, by

0= [P @ e (L2

n

) dW (z)

with 9 (t) =E(V3X =t) and V =Y/f (X). We assume that w is an integrable
piecewise continuous and bounded function.Under the assumptions of theorem

2,
[l @re@a-2E&) [0 0w

18 asymptotically normally distributed with mean zero and variance

[2 f { f K® (g 44) K® (a:)da:}2dy] f (90) f ©w () dt

as n — O0.

14



Define

t—zx

Cun () = 172 [ (00 (0) £ @O (5

)dW(:r,).

(]

Lemma 6 is valid for (;,. Besides, one can set w(z) = {# (z) f (z)}”'. Now
using (A11') and applying lemma 6, straightforward calculations show

2
h;1/2 [/ {C1n (j)(i) f(t) dt — A (K(P))] (14)

is asymptotically normally distributed with mean zero and variance

2/{/K(”)(m+y)K(P)(a:)dw}2dy

as n — o0o. Moreover, we have noticed that ¢, has the same distribution as (5,
defined by

Gn® =1 [ K (t; "’") AW (¥ (z,0)).

T

So ¢, can be substituted for (,, in (14) . Define

Can (£) = hZ1/2 / f KD (t - -") dB, (¥ (z,v)).

n

To prove that one can substitute (s, for ¢;, in (14) ,we will apply the following
remark from Bickel and Rosemblatt {1973).

Remark 7 if {g,} is a sequence of functionals on D[0,1] (cf.Billingsley 1968)
satisfying Lipschitz conditions

|gn () = 9= ()] <72 Iz — 9l

and An, B, are stochastic processes realizable in D such that || A, — Ball = op (1/7,)
then g, (A,) converges in law if and only if g, (Bn) does, and to the same limit.
We will apply this proposition to the functional

il [ (¢ OF w (£) dt = A (K®)

with v, = 2

15



As in (13) and using (A10’), we see that
1¢3n = Canll = 05 (R2/%) -
Using (12) and (A10’) one can prove in a similar way
1€3n = Canll = 05 (h/?) ,

where (,,, is defined by

Cn® =13 [[ UK ("" ;n’”) dZ, (2, v).

We finish by applying the same rule and using respectively (11) and (10) with
the assumptions (A10’) and (A8'). =
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