Report 99-032
Reconstruction of Sceneries
with Correlated Colors
Matthias Löwe
Heinrich Matzinger III
ISSN: 1389-2355
RECONSTRUCTION OF SCENERIES WITH CORRELATED COLORS

MATTHIAS LÖWE AND HEINRICH MATZINGER III

ABSTRACT. In [8] Matzinger showed how to reconstruct almost every three color scenery, that is a coloring of the integers \mathbb{Z} with three colors, by observing it along the path of a simple random walk, if this scenery is the outcome of an i.i.d. process. This reconstruction needed among others the transience of the representation of the scenery as a random walk on the three-regular tree T_3. Den Hollander (private communication) asked which conditions are necessary to ensure this transience of the representation of the scenery as a random walk on T_3 and whether this already suffices to make the reconstruction techniques in [8] work. In this note we answer the latter question in the affirmative. Also we exhibit a large class of examples where the above mentioned transience holds true. Some counterexamples show that in some sense the given class of examples is the largest natural class with the property that the representation of the scenery as a random walk is transient.

1. Introduction

The following problems to which this paper will make a contribution were discovered in the context of ergodic theory, for example in connection with the so-called $T - T^{-1}$-problem (see Kalikow [3]), and phrased as statistical questions independently by den Hollander and Keane [2] and Benjamini and Weiss. For our purposes we will consider the one dimensional lattice \mathbb{Z}. Actually, the following problems make sense also for arbitrary graphs, but as there are hardly any results apart from the case when this graph is \mathbb{Z}^d for some $d \in \mathbb{N}$, we immediately concentrate to our object of desire. Assume that \mathbb{Z} is colored with m colors. More precisely, we consider two such colorings, that is we consider two functions

$$\eta, \xi : \mathbb{Z} \to \{0, \ldots, m - 1\}$$

and call these functions m-color sceneries or simply sceneries. Let $(S_k)_{k \in \mathbb{N}_0}$ be symmetric and simple random walk on \mathbb{Z} starting in the origin and walking without holding, that is $S_0 = 1$ and

$$P(S_{k+1} = x + 1 | S_k = x) = P(S_{k+1} = x - 1 | S_k = x) = \frac{1}{2}$$

for all $x \in \mathbb{Z}$ and $k \in \mathbb{N}_0$. Moreover define $\chi := (\chi_k)_{k \in \mathbb{N}_0}$ to be the color record of $(S_k)_{k \in \mathbb{N}_0}$, that is either

$$\chi_k = \xi(S_k) \quad \text{for all } k \quad \text{or} \quad \chi_k = \eta(S_k) \quad \text{for all } k$$

depending on which scenery we observe the colors. The question now is: can we just by observing χ (and, of course, without any further knowledge of $(S_k)_{k \in \mathbb{N}_0}$) tell on which of the sceneries ξ or η this color record χ has been produced?

Date: September 13, 1999.
1991 Mathematics Subject Classification. 28A99, 60J15 (primary).
Key words and phrases. Scenery, Random walk, Coloring.
Remarkable answers to this question (even for the two-dimensional case) have been given by Benjamini and Kesten [1], who showed that if ξ and η are produced by an i.i.d. process on \mathbb{Z} (that is to say, if $\xi(z)$ and $\eta(z)$, $z \in \mathbb{Z}$ are i.i.d. random variables), then $\xi(z)$ and $\eta(z)$ can almost surely be distinguished by their color record, if the dimension $d = 1, 2$ and $m \geq 2$ is arbitrary. More precisely in this situation, there exists a test which tells with probability one on which of ξ and η the color record χ has been produced (even with a slightly stronger version of distinguishability excluding trivial solutions such as benefiting from the fact that e.g. $\xi(0) \neq \eta(0)$).

Also Kesten (see [4]) showed that in dimension one, if $m \geq 5$, and ξ is again i.i.d. we can almost surely detect a single defect in ξ from knowing χ, that is, we can almost surely tell, whether χ has been produced on ξ or a scenery η differing from ξ in one vertex $i \in \mathbb{Z}$, only. Here and in the following the notion "almost surely" will refer to a probability measure \mathbb{P} describing both, the randomness in $(S_k)_{k \in \mathbb{N}_0}$, and the randomness in ξ (or in ξ and η, if we are interested in two sceneries) and making $(S_k)_{k \in \mathbb{N}_0}$ and ξ (or $(S_k)_{k \in \mathbb{N}_0}$, η, and ξ, respectively) independent.

Indeed even more is true: In dimension one Matzinger showed in [8], [9] that for arbitrary $m \geq 2$ one can even almost surely reconstruct ξ from $\chi = (\xi(S_k))_{k \in \mathbb{N}_0}$, that is one can reproduce a scenery ξ' from χ which is equal to ξ up to translation and reflection at the origin.

All these results are particularly surprising, since on the other hand it is known that there are uncountably many sceneries which cannot be distinguished by their color record. This has recently been proven by Lindenstrauss [6].

The analogue to the reconstuctability of ξ from χ in two dimensions has been recently proven by the authors under the conditioned that m is large enough (see [7]).

Basically all reconstruction and distinction techniques cited above (with one exception) seem to strongly exploit the fact that the scenery is an i.i.d. process, that is that $\xi(z)$, $z \in \mathbb{Z}$ are i.i.d. random variables. Only the methods employed by Matzinger in [8] are partially combinatorial and therefore seem to allow for a generalisation to other sceneries. Indeed, den Hollander (private communication) asked what conditions for the scenery would be necessary to make the reconstruction ideas in [8] work. In fact, we consider an answer to this question interesting in its own rights as it sheds some light on the universality of the solution to the above problem. In particular, the roots of the scenery reconstruction problem in ergodic theory make it attractive to ask for the ergodic properties of the sceneries needed to ensure reconstructability. Moreover, it was pointed out to us, that similar ideas might be useful in the context of DNA reconstruction. As a DNA sequence usually is assumed to be Markov-dependent of some type (at least the assumption of i.i.d. letters is rather far fetched) an analysis of what kind of sceneries are reconstructable might also be helpful concerning possible applications.

This paper is divided into five sections. Section 2 contains a description of the basic setup and the central result of this paper. In Section 3 we describe the fundamental reconstruction algorithm, while Section 4 contains a proof that the algorithm actually works under the conditions of Theorem 2.1. Finally in Section 5 we give the most important examples where Theorem 2.1 applies and also cases where it does not apply and actually reconstruction along the ideas of this paper is not possible.
Furthermore, we indicate that for these examples not only we can reconstruct a randomly chosen scenery ξ, but also that there is a very powerful test for distinguishing it from any other scenery.

2. The Setup and the Main Result

Before we give the central result of our paper in this section let us quickly introduce and recall the most important notations. So, if not mentioned otherwise, in what follows ξ will always be a one dimensional 3-color scenery, that is

$$\xi : \mathbb{Z} \rightarrow \{0, 1, 2\}.$$

Actually, the generalisation to $m \geq 4$ is easy and straightforward, but there will also be examples with $m = 2$ where Theorem 2.1 applies. We will always choose ξ randomly from a class of sceneries in such a way that the conditions of Theorem 2.1 are fulfilled.

Moreover let $S = (S_k)_{k \in \mathbb{N}_0}$ be symmetric, simple random walk without holding on \mathbb{Z} starting in the origin. The measure \mathbb{P} will denote the product measure on the product space of all sceneries and all random walk paths (with the obvious marginals). Hence we will always assume independence of the walks and the sceneries. The central problem will be to reconstruct ξ from its color record

$$\chi := (\chi((S_k)_{k \in \mathbb{N}_0})) = ((\xi(S_k)_{k \in \mathbb{N}_0})$$

under S (by $\chi[[0, n]]$ we will denote the first $n + 1$ observations). More precisely, we want to find a measurable mapping

$$\mathcal{A} : \{0, 1, 2\}^\mathbb{N} \rightarrow \{0, 1, 2\}^\mathbb{Z}$$

such that \mathbb{P}-almost surely

$$\mathcal{A}(\chi) \sim \xi.$$

Here for two sceneries $\eta, \xi \in \{0, 1, 2\}^\mathbb{Z}$ we write $\xi \sim \eta$ (and say that they are equivalent), if there are $a \in \mathbb{Z}$ and $s \in \{-1, +1\}$ such that

$$\xi(z + a) = \eta(sz)$$

for all $z \in \mathbb{Z}$.

For the idea of the reconstruction algorithm the following representation of ξ as a path on a colored tree is essential. In our case this tree will be the 3-regular tree $T_3 := (V_3, E_3)$, that is the connected, infinite tree with all its vertices $v \in V_3$ having degree 3. We choose one (arbitrary) vertex and call it the origin o. We color T_3 (or more precisely V_3) in three different ways φ^0, φ^1 and φ^2. Up to isomorphisms of the tree these colorings are uniquely defined by the color of the origin (or root) o

i) $$\varphi^i(o) = i$$

for $i = 0, 1, 2$

and the following construction rule

ii) For each $v \in V_3$ let $\{v_1, v_2, v_3\}$ be the set of its neighboring vertices (according to the graph topology induced by E_3). Then

$$\{\varphi^i(v_1), \varphi^i(v_2), \varphi^i(v_3)\} = \{0, 1, 2\}$$

for each $i = 0, 1, 2$.

Now we can represent ξ as a nearest neighbor path R on T₃ (taking the randomness in ξ into account this will be a random path, but note that other than in [8] R is not necessarily a random walk on T₃). This will be done in the following way.

a) Choose the coloring φᵢ with i = ξ(0). (Note that we know ξ(0) as the random walk S is supposed to start in zero).

b) We let R = (R(z))ᵢ∈Z be the nearest neighbor random path (that is R(z) and R(z + 1) are adjacent for each z ∈ Z) on T₃ colored with φᵢ(0) such that

\[R(0) = o \]

and

\[ϕᵢ(R(z)) = ξ(z) \]

for all z ∈ Z.

Note that given T₃, the choice of o, and the coloring this path R is unique. This representation of ξ as a random path on T₃ colored with φᵢ(0) will indeed help us to reconstruct ξ up to equivalence. To this end note that knowing R plus knowing ξ(0) is indeed equivalent to knowing ξ. Unfortunately, we do not know R but only R ∘ S (the latter because of

\[ϕᵢ(R) ∘ S = ϕᵢ(S) = χ \]

and thus we can reconstruct R ∘ S from χ).

Interestingly, the only knowledge we require about R in order to reconstruct ξ is that it is transient, that is the random path R (again recall that R is random as ξ is random) visits each vertex v ∈ V₃ only finitely many times almost surely. This is a considerable improvement of Matzinger’s previous result [8], who even for i.i.d. sceneries needed some further conditions. A major tool in the proof of the following theorem will consist of reformulation of this transience in terms of crossings of some pieces of the tree T₃ by R. Here for some v ≠ w ∈ V₃ we say that a time interval [s,t] (without loss of generality s < t – otherwise we just reverse the order of v and w) is a crossing of (v, w), if R(s) = v, R(t) = w, or R(s) = w, R(t) = v, and

\[R(s') ≠ v \quad \text{and} \quad R(s') ≠ w. \]

for all s < s' < t. Observe that two crossings of (v, w) either agree or are disjoint (that is the time intervals are disjoint).

Moreover we say that [s, t] is a shortest crossing of (v, w) by R, if

\[t − s = \min\{|t' − s'|, [s', t'] \text{ is a crossing of (v, w) by } R\}. \]

Now we are ready to formulate the first central result of this paper (the other will be stated in Section 5).

Theorem 2.1. With the above definitions, assume that the random path R is transient. Then there exists a measurable mapping

\[A : \{0, 1, 2\}^{N} → \{0, 1, 2\}^{Z} \]

such that

\[P(A(χ) ∼ ξ) = 1. \]
3. The Algorithm

In this section we are going to present the basic reconstruction scheme, while details will be left to the proofs to follow in the next section. The core of this algorithm consists of stopping the random walk S infinitely many times at the same place. We will see in the next section that this indeed is already enough to be able to reconstruct ξ up to equivalence. Actually this stopping of the random walk is of a different nature, when ξ is essentially symmetric (by this we mean that there is a finite interval $I = (a, b)$ such that $\xi(a - x) = \xi(x - b)$ for all $x \in \mathbb{N}$). Therefore, we first test ξ on essential symmetry. This symmetry can also be expressed in terms of the path R on T_3 which will exploit in the first step of the algorithm.

Step 1 of the Reconstruction Algorithm:
Test whether there are $v \neq w \in V_3$ such that there is only one shortest crossing of (v, w)

From Step 1 the algorithm proceeds in two different directions depending on whether it has been successful (that is there are v, w with only one shortest crossing of (v, w) by R) or not. The first case will be called Case A the other one Case B.

Case A (there is at least one pair $v \neq w$ such that there is only one shortest crossing of (v, w)):

Here we proceed by producing infinitely many stopping times all stopping S at the same point.

Step 2 of the Reconstruction Algorithm:
Stop the random walk S infinitely often at the same point.

Finally, we use these stopping times to reconstruct ξ.

Step 3 of the Reconstruction Algorithm: Reconstruct ξ up to equivalence with probability one from these stopping times.

In Case B, where for every $v \neq w \in V_3$ there are at least two shortest crossings of (v, w) by R, we have to apply a slightly different techniques.

Case B (For all $v, w \in V_3$ there are at least two shortest crossings of (v, w)):

Step 2 of the Reconstruction Algorithm:
Stop the random walk S infinitely often at two different points.

Step 3 of the Reconstruction Algorithm: Reconstruct ξ up to equivalence with probability one from these stopping times.

Of course, this is a very rough description of the algorithm. We will fill its different steps with life in the next section, where we prove that it actually works.

4. Proof that the Algorithm Works

In this section we show that under the condition that R is transient the algorithm actually reconstructs ξ up to equivalence with probability one. This proof is split into different parts. In the first part we show that if the walk is transient, then almost surely there are vertices $v, w \in V_3$ such that there are at most two crossings of (v, w) by R.
Lemma 4.1. Let R be transient. Then for every fixed $v \in V_3$ and every sequence $v_n \in V_3$ in the image of R with $d(v, v_n) = n$ and $d(v_{n-1}, v_n) = 1$ (where here and in the following for two vertices $v, w \in V_3$, $d(v, w)$ will denote the distance of v and w in the graph T_3, that is $d(v, w)$ counts the minimum length of a path (minimum number of edges to be crossed) between v and w in T_3) almost surely the number $N(n)$ of distinct shortest crossings of (v, w) by R converges and the limit is \mathbb{P}-almost surely either 1 or 2.

Remark 4.2. Note that due to the transience of R the Image $\text{Im } R$ of the representation of the scenery ξ on T_3 (where $\text{Im } f$ denotes the image of a mapping f) is almost surely infinite. Hence such a points v and a sequence of points v_n as assumed in the above lemma actually exist.

Proof of Lemma 4.1. Without loss of generality we will take v to be the origin o. By transience of R the origin is visited by R only finitely many times with probability one. Thus with probability one the random variables

$$t_{\max} := \max\{t : R(t) = 0\}$$

and

$$t_{\min} := \min\{t : R(t) = 0\}$$

are well defined and obey

$$-\infty < t_{\min} \leq 0 \leq t_{\max} < \infty.$$

In particular, $\Delta t := t_{\max} - t_{\min}$ is finite with probability one. Now take $v_n \in \text{Im } R$ with $d(o, v_n) = n$ as assumed in the above lemma. Then for all n large enough $d(v_n, o) > \Delta t$. Moreover, since $v_n \in \text{Im } R$ there exists $t_n \in \mathbb{Z}$ such that $R(t_n) = v_n$.

As $d(v_n, o) > \Delta t$ we conclude that

$$t_n \notin [t_{\min}, t_{\max}].$$

Thus at most two crossings of (o, v_n) can occur, one of the form (t_{\max}, t_1) and another one of the form (t_2, t_{\min}), where

$$t_1 := \min\{t > t_{\max} : R(t) = v_n\}$$

and

$$t_2 := \max\{t < t_{\min} : R(t) = v_n\}.$$

Also note that because $v_n \in \text{Im } R$ one of the above two crossings really can be found.

As the we will see in the next lemma not only we either are in Case A or in Case B, but also is there a test which reveals with probability one (given a full color record) in which of the two situations we are.

Lemma 4.3. For each $v, w \in \text{Im } R$ there exists a test that on the basis of the observations χ decides with probability one whether there is only one shortest crossing from v to w or whether there is more than one such shortest crossing.

Proof. Let $v, w \in \text{Im } R$ be any two points reached by the random walk R. Note that S as a random walk on the integers is recurrent and hence so is $\text{Im } R \circ S$ as a random path on T. Therefore, $R \circ S$ will pass every finite path in $\text{Im } R$ infinitely often and thus,

$$\bar{T} := \min\{|s - t| : R(S(s)) = v, R(S(t)) = w\}$$
estimates the time for the shortest crossing of \((v, w)\) by \(R\) correctly with probability one.

Also note that the distribution function of the waiting time between two shortest crossings of \((v, w)\) by \(R \circ S\) is strictly larger if there is more than one shortest crossing of \((v, w)\) by \(R\) than if there is just one such shortest crossing.

To be more specific, in the case where there is only one shortest crossing of \((v, w)\) by \(R\) let \(W\) be the random variable that denotes the first time after which the random path \(R \circ S\) has walked from \(v\) to \(w\) in \(\hat{T}\) steps when starting with \(S\) in the point \(z\) corresponding to the point \(w\) (via the representation \(R\)) of the unique shortest crossing of \((v, w)\) by \(R\) at time \(0\). Moreover, when there are several shortest crossings of \((v, w)\) by \(R\), say \([y_1, z_1], \ldots, [y_k, z_k]\) with \(k \geq 2\) is the set of all shortest crossings of \((v, w)\) by \(R\) and (for our purposes without loss of generality) \(R(z_1) = R(z_2) = \ldots = R(z_k) = w\), then we denote by \(W_i\) the random variable of first time after which the random path \(R \circ S\) has walked from \(v\) to \(w\) in \(\hat{T}\) steps when starting with \(S\) in the point \(w_i\) at time zero, \(i = 1, \ldots, k\).

Note that the distribution function \(F\) of \(W\) then will be strictly smaller than the distribution function \(F_i\) of each \(W_i\) (by this we mean that \(F(t) \leq F_i(t)\) for all \(t\) and that \(F(t) < F_i(t)\) for all \(t \geq T_0\) for some finite \(T_0\)).

Moreover, notice that the distribution function of \(W\) can be explicitly calculated, when there is only one shortest crossing from \(v\) to \(w\) and we know its length. Indeed, denoting by \(l\) the length of such a shortest crossing and considering the renewal process, with a renewal after every time where the random path \(R \circ S\) has walked from \(v\) to \(w\) in \(l\) steps, we can calculate the probability that a time \(t\) is a renewal time. As a matter of fact, this can be done by observing that, if there is only one shortest crossing of \((v, w)\), this crossing corresponds (by the random path \(R\)) to two points \(z_1, z_2 \in \mathbb{Z}\) with \(R(z_1) = v\) and \(R(z_2) = w\) and \(|z_1 - z_2| = l\). So the probability of having a renewal at time \(t\) equals the probability of walking with \(S\) from \(z_2\) to \(z_1\) in \(t - l\) steps times \(2^{-l}\) (for a straight crossing from \(z_1\) to \(z_2\)). By a standard exercise in renewal theory, this also yields the probability that \(t\) is the time of a first renewal, hence the distribution function of \(W\).

As we can also estimate the length \(l\) by \(\hat{T}\) with probability one correctly, we can, in principal, calculate the distribution function of \(W\) in the case where there is only one shortest crossing of \((v, w)\) by \(R\).

Finally, we can also test whether there is only one shortest crossing of \((v, w)\) by \(R\) correctly with probability one.

In fact, if \([s_1, t_1], [s_2, t_2], \ldots\) denotes all intervals where the random path \(R \circ S\) walks from \(v\) to \(w\) in \(l = \hat{T}\) steps, so \(s_1 < t_1 < s_2 < t_2 < \ldots\) and \(R(S(s_i)) = v\) and \(R(S(t_i)) = w\) for all \(i = 1, 2, \ldots\). The by the law of large numbers (Glivenko-Cantelli-Lemma) the empirical distribution function of the “first renewal times”

\[
\frac{1}{n-1} \sum_{i=2}^{n} \delta_{t_i-t_{i-1}}
\]

converges to some distribution function \(\overline{F}\) with probability one as \(n\) goes to infinity (of course, again, here we exploit the recurrence of \(S\) which gives us infinitely many such crossings).
If there is only one shortest crossing of \((v, w)\) by \(R\), the distribution function \(\overline{F}\) will equal \(F\) with probability one, otherwise \(\overline{F}\) will be a mixture of the \(F_i\), hence larger than \(F\).

So, if
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=2}^{n} \delta_{t_i-t_{i-1}}
\]
differs from \(F\) (which we can calculate as indicated above) we conclude that there is more than one such shortest crossing, otherwise we decide that there is only one shortest crossing of \((v, w)\) by \(R\). As has been shown above this test succeeds in giving the correct number of shortest crossings of \((v, w)\) with probability one. \(\square\)

In the next steps we will see that the algorithm actually works in Case A. To this end we first have to show that we can indeed stop the random walk \(S\) infinitely often at the same place. So, let
\[
\mathcal{H}_k := \sigma \{ \xi(z), z \in \mathbb{Z}, S(0), \ldots, S(k) \}
\]
and define the filtration \(\mathcal{H}\) as
\[
\mathcal{H} := \bigcup_{k \in \mathbb{N}_0} \mathcal{H}_k.
\]

Lemma 4.4. If there are \(v, w \in \text{Im } R\) such that there is only one shortest crossing of \((v, w)\) by \(R\) we can stop the random walk infinitely often at the same place, that is we are able to construct an infinite sequence of stopping times \(\tau(1), \tau(2), \ldots\) such that
\[
S(\tau(1)) = S(\tau(2)) = \ldots = S(\tau(k)) = \ldots
\]
and each \(\tau(k)\) is measurable with respect to \(\mathcal{H}_{\tau(k)}\) (slightly deviating from standard terminology we will call such a sequence \(\tau(1), \tau(2), \ldots\) \(\mathcal{H}\)-adapted).

Remark 4.5. Observe that as has been already discussed in the context of Lemma 4.1 and in particular when motivating the algorithm in Section 3, Case A is is the relevant case for most distributions of the scenery we might think of. Indeed, whenever the distribution of the scenery exhibits some form of asymptotic independence, for example, the scenery will not be essentially symmetric and thus we will almost surely be in Case A.

Proof of Lemma 4.4. Let \(v, w \in \text{Im } R\) such that there is only one shortest crossing of \((v, w)\) by \(R\). Let the length of this shortest crossing be \(\bar{L}\). This length \(\bar{L}\) can be estimated correctly with probability one by
\[
\bar{T} = \min \{|s-t|; R(S(s)) = v, R(S(t)) = w\}.
\]
Thus, whenever we observe that the random walk \(R \circ S\) (which can reconstruct from \(\chi\)) walks from \(v\) to \(w\), in time \(\bar{T}\) we know that also with probability one the random walk \(S\) must be at the same place when \(R \circ S\) has reached \(w\). Hence we can construct a stopping rule and stop \(S\), whenever \(R \circ S\) has walked from \(v\) to \(w\) in time \(\bar{T}\). This rule stops \(S\) always at the same place. Now, by recurrence of \(S\) with probability one there are infinitely many time intervals of length \(\bar{T}\) where \(R \circ S\) walks from \(v\) to \(w\), and thus the above rule stops \(S\) infinitely often at the same place with probability one.

At first glance it might seem that the sequence of stopping times \(\tau(1), \tau(2), \ldots\) thus obtained is not \(\mathcal{H}\)-adapted in the above sense, since their definition involves \(\bar{T}\).
which only is measurable with respect to the whole path \((S(t))_{t \in \mathbb{N}}\). On the other hand, given the scenery \(\xi\), that is in particular given \(\tilde{L}\), we are able to construct stopping times \(\tau'(1), \tau'(2), \ldots\), such that \(\tau'(k)\) stops the random walk \(R \circ S\) when it has walked from \(v\) to \(w\) in \(\tilde{L}\) steps for the \(k\)th time. Obviously the \(\tau'(k)\) are \(\mathcal{H}\)-adapted in the above sense. On the other hand, the sequences \(\tau(1), \tau(2), \ldots\) and \(\tau'(1), \tau'(2), \ldots\) are equal \(\mathbb{P}\)-almost surely. Thus the \(\mathcal{H}\)-adaptedness of the sequence \(\tau(1), \tau(2), \ldots\) follows.

Finally, we shall see that a rule that stops \(S\) infinitely often at the same place, actually is helpful to reconstruct \(\xi\).

Lemma 4.6. If we can create a stopping rule (that is an infinite sequence of \(\mathcal{H}\)-adapted stopping times) that stops \(S\) infinitely often at the same place, we can also reconstruct \(\xi\) restricted to any finite interval (up to equivalence) with probability one.

Proof. We will proof this lemma by induction.

Say, we stop the random walk infinitely often in the point \(z \in \mathbb{Z}\). Of course, we then know the color of \(z\). To find out the color of \(z - 1\) and \(z + 1\) we let the random walk \(S\) run one further step (after we have stopped it in \(z\)) and read off the color of the next point. As we have infinitely many such stopping times we will eventually see both, the color of \(z + 1\) and the color of \(z - 1\) with probability one. Since we are only interested in reconstruction up to shifts and reflection of the scenery this knowledge suffices to reconstruct \(\xi\) on \([z - 1, z + 1]\). This is the beginning of the induction.

For the induction step assume we already have reconstructed \(\xi\) up to shifts and reflection on the interval \([z - n, z + n]\). First assume that \(\xi\) is not symmetric under reflection at \(z\) on \([z - n, z + n]\), that is \((\xi(z-1), \ldots, \xi(z-n)) \neq (\xi(z+1), \ldots, \xi(z+n))\).

The other case will be treated similarly at the end of this proof.

First we introduce the set of all nearest neighbors paths of length \(n + 1\) that starting in \(z\) in the first \(n\) steps read the same color sequence as a straight walk to the right:

\[
\mathcal{S}_n := \{\rho : \{0, \ldots, n + 1\} \rightarrow \mathbb{Z} : \rho(0) = z, |\rho(t + 1) - \rho(t)| = 1, \forall t = 0, \ldots, n \text{ and } \xi(\rho(t)) = \xi(z + t) \forall t = 0, \ldots, n\}
\]

and its subset where we exclude the straight walk to the right (the straight walk to the left is automatically excluded as we have already assumed that \(\xi\) is non-symmetric with respect to reflection at \(z\))

\[
\mathcal{S}_n' := \{\rho \in \mathcal{S}_n : \rho(n) \neq z + n\}.
\]

With the help of the sets \(\mathcal{S}_n\) and \(\mathcal{S}_n'\) we construct two measures on the space \(\{0, 1, 2\}\):

\[
\pi_n(\cdot) := \frac{1}{|\mathcal{S}_n|} \sum_{\rho \in \mathcal{S}_n} \delta_{\xi(\rho(n+1))}(\cdot)
\]

and

\[
\pi_n'(\cdot) := \frac{1}{|\mathcal{S}_n'|} \sum_{\rho \in \mathcal{S}_n'} \delta_{\xi(\rho(n+1))}(\cdot)
\]

(if \(\mathcal{S}_n' = \emptyset\) we simply set \(\pi_n' \equiv 0\).)

Now the following three observations are crucial: First note that the desired color of \(z + n + 1\) is the only color with a higher value (probability) under \(\pi_n\) than under \(\pi_n'\), hence

\[
\xi(z + n + 1) = \text{supp}((\pi_n(\cdot) - \pi_n'(\cdot))^+)
\]
where \(\text{supp} \) denotes the support of a function and for a real number \(a \) we write \(a^+ \) for \(\text{sup} \{ a, 0 \} \).

Second, observe that from knowing \(\xi([z-n, z+n]) \) (which we know by our induction hypotheses), we can construct \(S_n' \) and therefore also calculate \(\pi_n' \).

Finally, we also have an arbitrarily good approximation for \(\pi_n \). Indeed, let us denote by \(\mathcal{T} \) the set of all times \(t \leq T \) where we stop the random walk \(S \) in the point \(z \). Then by the strong Markov property of the stopping times and the law of large numbers

\[
\bar{\pi}_n^T(\cdot) := \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \delta_{\xi(S_{t+n+1})}(\cdot)
\]

converges to \(\pi_n \), when \(T \) becomes large. Thus with probability one

\[
\lim_{T \to \infty} \text{supp}((\pi_n^T - \pi_n')^+)
\]

consists of precisely one element and reveals the color of \(z + n + 1 \).

The same technique can be applied to reconstruct \(\xi(z - n - 1) \). To this end we simply replace \(S_n \) by \(\bar{S}_n \) defined as

\[
\bar{S}_n := \{ \rho : \{0, \ldots, n+1\} \to \mathbb{Z} | \rho(0) = z, |\rho(t+1) - \rho(t)| = 1, \forall t = 0, \ldots, n \text{ and } \xi(\rho(t)) = \xi(z-t) \forall t = 0, \ldots, n \}
\]

and \(S_n' \) by

\[
\bar{S}_n' := \{ \rho \in \bar{S}_n : \rho(n) \neq z - n \}
\]

and proceed as above.

If finally, \(\xi \) restricted to \([z-n, z+n] \) is symmetric under reflection at \(z \), the support of \((\pi_n - \pi_n')^+ \) (\(\pi_n \) and \(\pi_n' \) defined as above) may either consist of one or of two elements. More precisely, it will be one-elementary, if also \(\xi(z - n - 1) = \xi(z + n + 1) \), in which case we simply assign this color to each of the two vertices \(z - n - 1 \) and \(z + n + 1 \). If \(\xi(z - n - 1) \neq \xi(z + n + 1) \) indeed

\[
\text{supp}((\pi_n(\cdot) - \pi_n'(\cdot))^+)
\]

and also

\[
\lim_{T \to \infty} \text{supp}((\pi_n^T - \pi_n')^+)
\]

will consist of two elements (with the notation introduced above the latter will be the "right colors" with probability one, again). As we only aim at reconstructing \(\xi \) up to translations and reflections we do not need to care about to which of \(z - n - 1 \) and \(z + n + 1 \) we assign which of the two colors.

This finishes the proof of the lemma.

\(\square \)

Finally, we remark that Lemma 4.6 implies that we can reconstruct \(\xi \) up to equivalence with probability one.

Corollary 4.7. If we can create a stopping rule (that is an infinite sequence of \(\mathcal{H} \)-adapted stopping times) that stops \(S \) infinitely often at the same place, we can also find a mapping \(A : \{0,1,2\}^\mathbb{N} \to \{0,1,2\}^\mathbb{Z} \) with

\[
A(\chi) \sim \xi.
\]

Proof. Just paste the different pieces of scenery together.

\(\square \)
So the above steps show that the algorithm proposed in Section 3 works in Case A. The next lemmata will show that the same holds true in Case B.

To this end one strategy would be to give the equivalent of Lemma 4.3 in the sense that given we know that for each \(v, w \in \text{Im} \, R \) there at least two shortest crossings of \((v, w)\) by \(R \), we want to test whether there are precisely two such crossings or if there are more than two. Such a test may be very difficult to find. Indeed, recall that every shortest crossing of \((v, w)\) by \(R \) corresponds to two points \(z_1, z_2 \in \mathbb{Z} \) with \(R(z_1) = v \) and \(R(z_2) = w \). Now it may be very hard to decide at first glance from the empirical distribution function of the waiting time between two shortest walks from \(v \) to \(w \) by \(R \circ S \) whether we have two such intervals which are far apart from each other or whether we have three (or more) of them which are rather close.

To overcome this difficulty we apply another strategy. We first demonstrate how to reconstruct \(\xi \) (up to equivalence) if we know that there are \(v, w \in V_3 \) for which there are precisely two shortest crossings of \((v, w)\) by \(R \). We then see in a final step that in view of Lemma 4.1 this technique already suffices to find a general reconstruction algorithm.

Actually the situation where for each pair \(v, w \in \text{Im} \, R \) there at least two shortest crossings of \((v, w)\) by \(R \) can again be split into two different cases. In the first case there are \(v, w \in \text{Im} \, R \) such that there is a shortest crossing of \((v, w)\) by \(R \) with a color sequence different of all other shortest crossing. By this we mean, that there is a shortest crossing of \((v, w)\) by \(R \), say the first shortest crossing, such that the sequence of colors read by \(R \) when going form \(v \) to \(w \) say, is different from the corresponding sequence of colors for all other shortest crossing of \((v, w)\) by \(R \). We will call such shortest crossings distinct as opposed to the non-distinct shortest crossings, where each sequence of colors read by \(R \) when following such a shortest crossing of \((v, w)\) agrees with the sequence of colors of another shortest crossing of \((v, w)\).

The case of distinct shortest crossings is actually quite similar to Case A, and actually we will also apply Lemma 4.6 for the reconstruction.

Before doing so we show that we really can find out whether there are distinct or non-distinct shortest crossings of \((v, w)\) by \(R \).

Lemma 4.8. Assume that for each \(v, w \in V_3 \) there are at least two shortest crossings of \((v, w)\) by \(R \), then there is a test which decides with probability one whether these crossings are distinct or not.

Proof. Note that due to the recurrence of \(S \) (and hence of \(R \circ S \)) the random path \(R \circ S \) will follow each shortest crossing of \((v, w)\) by \(R \) infinitely often. These "direct" passages from \(v \) to \(w \) can be determined as above, since they are the only ones happening in the "shortest observed time"

\[
\bar{T} = \min\{|s - t|; R(S(s)) = v, R(S(t)) = w\}
\]

with probability one. So comparing the color record (that is the color read during such a fastest passage) of these shortest crossings form \(v \) to \(w \), we see whether there is only one such color record or whether there are different ones. In the first case the shortest crossings are definitely non-distinct while in the latter case we can test whether the limiting empirical distribution function of any fixed of these color records is different from the distribution function of a color record of length \(\bar{T} \).
given that it is produced on one shortest crossing between two points at distance \tilde{T}.

Exactly as in the proof of Lemma 4.4 we conclude that the crossings are distinct if
the two distribution functions above agree, otherwise we deduce that the crossings
are non-distinct. Just as in Lemma 4.4 this test works with probability one. □

Next we see that we can reconstruct ξ if we can find (v,w) with distinct shortest
crossings of (v,w) by R.

Lemma 4.9. Assume that there are $v,w \in V_3$ such that there are at least two shortest
crossings of (v,w) by R and assume that these shortest crossings are distinct.
Then we can find a mapping $A : \{0,1,2\}^N \to \{0,1,2\}^\mathbb{Z}$ with

$$A(\chi) \sim \xi.$$

(Note that in this case A will depend in general on R and (v,w).

Proof. Recall that we call shortest crossings of (v,w) by R distinct if there is one
shortest crossing, say $[s,t]$, of (v,w) by R such that the sequence of colors read
by R when going from v to w say, in time $[s,t]$, is different from the corresponding
sequence of colors for all other shortest crossing of (v,w) by R. Also note that by the
representation of ξ as a random path R on T_3 there is an unique interval $[z_1,z_2] \subset \mathbb{Z}$
corresponding to this unique shortest crossing $[s,t]$ of (v,w) by R (without loss of
generality $R(z_2) = w$).

Hence, whenever the random path $R \circ S$ walks from v to w in time \tilde{T} and produces
the color record characteristic for the unique shortest crossing $[s,t]$ of (v,w) by R we
know that the random walk S is in a certain point, namely that it is in z_2. By
recurrence of S this will happen infinitely often with probability one, thus we have
a stopping rule which allows us to stop S infinitely often at the same point z_2 with
probability one. Thus we can apply Lemma 4.6 together with Corollary 4.7 to prove
the statement of the lemma. □

Next we will see what to do, if we know that there are $v,w \in V_3$ for which there are
exactly two non-distinct crossings.

Lemma 4.10. Assume that there $v,w \in V_3$ for which there are precisely two cross-
ings of (v,w) by R. Then we can find a mapping $A : \{0,1,2\}^N \to \{0,1,2\}^\mathbb{Z}$ with

$$A(\chi) \sim \xi$$

for \mathbb{P}-almost all walks S and fixed R (note that A will depend on v and w).

Proof. Note that we only need to prove this theorem in the case where the two
crossings have the same length τ and are non-distinct, otherwise there is one shortest
crossing or Lemma 4.9 applies.

Again will prove this lemma in two steps. In the first step we will show how to
reconstruct every finite piece of scenery under the assumptions of the lemma. In the
second (short) part we then will prove that this already suffices to reconstruct the
whole scenery (up to equivalence).

So let us assume we know that for two fixed points $v \neq w \in V_3$ that there are precisely
two crossings of (v,w) by R. By the representation R of ξ these two crossings
 correspond to two intervals, say $[z_1,z_2]$ and $[z_1',z_2']$ (without loss of generality $z_2 < z_1'$ with

$$|z_2 - z_1| = |z_2' - z_1'| = \tau,$$
$R(z_1) = R(z_2') = v, R(z_2) = R(z_1') = w$ or $R(z_1) = R(z_2') = w, R(z_2) = R(z_1') = v$ (other situations for the z_1, z_2, z_1', z_2' cannot occur due to our assumption that there are only two crossings of (v,w) by R), and such that $\xi(z_1 + x) = \xi(z_2 - x)$ for all $0 \leq x \leq \tau$.

Now, first of all note that we can estimate τ by

$$\hat{\tau} = \min\{|s-t|; R(S(s)) = v, R(S(t)) = w\}$$

(and this estimate is correct with probability one).

Moreover, we can also give a good estimate for $z_1' - z_2$. Indeed, observe that the empirical distribution function of the observed walks from v to w converges. More precisely let $[s_1, t_1], [s_2, t_2], \ldots$ denote all intervals where the random path $R \circ S$ walks from v to w in $\tau = \hat{\tau}$ steps, so $s_1 < t_1 < s_2 < t_2 < \ldots$ and $R(S(s_i)) = v$ and $R(S(t_i)) = w$ for all $i = 1, 2, \ldots$. Then by the law of large numbers (Glivenko-Cantelli-Lemma) the empirical distribution function of the “first renewal times”

$$\frac{1}{n - 1} \sum_{i=2}^{n} \delta_{t_i - t_{i-1}}$$

converges to some distribution function \overline{F} with probability one as n goes to infinity. Then with probability one \overline{F} will be different from the distribution function F we would have if, there would be only one crossing from v to w. Note also, as already remarked in the proof of Lemma 4.3 that we can actually calculate \overline{F}. Denote by θ_1 the smallest t where F and \overline{F} differ, that is

$$\theta_1 := \inf\{t : F(t) \neq \overline{F}(t)\}.$$

In the same way let $[s_1', t_1'], [s_2', t_2'], \ldots$ denote all intervals where the random path $R \circ S$ walks from w to v in τ steps (in particular, $s_1' < t_1' < s_2' < t_2' < \ldots$) and $R(S(s_i')) = w$ and $R(S(t_i')) = v$ for all $i = 1, 2, \ldots$. Again by the law of large numbers (Glivenko-Cantelli-Lemma) the empirical distribution function of the “first renewal times”

$$\frac{1}{n - 1} \sum_{i=2}^{n} \delta_{t_i' - t_{i-1}'}$$

converges to some limit \overline{F}, which with probability one is different from F. Put

$$\theta_2 := \inf\{t : F(t) \neq \overline{F}(t)\},$$

and finally

$$\hat{\theta} := \min\{\theta_1, \theta_2\}.$$

Then $\hat{\theta} - \hat{\tau}$ will estimate $z_1' - z_2$ correctly with probability one. The reason for this is that the distribution of the “first renewal times” will first notice that there is more than one shortest crossing of (v,w) by R when the time t is $t = z_1' - z_2 + \tau$.

Moreover, from these estimates we can also deduce in which of the two situations $R(z_1) = R(z_2') = v, R(z_2) = R(z_1') = w$ or $R(z_1) = R(z_2') = w, R(z_2) = R(z_1') = v$ we are. Indeed, if $\hat{\theta} = \theta_1$, then $R(z_1) = R(z_2') = w, R(z_2) = R(z_1') = v$, whilst if $\hat{\theta} = \theta_2$, then $R(z_1) = R(z_2') = v, R(z_2) = R(z_1') = w$ holds true. For the rest of this proof we will without loss of generality assume that $R(z_1) = R(z_2') = w, R(z_2) = R(z_1') = v$.

Next we will reconstruct $\xi[[z_2, z_1']]$. To this end we stop the random walk S, whenever $R \circ S$ has walked from w to v in time T (which will happen infinitely happen, again, since S is recurrent). According to the above we then know with probability one that S is either in z_2 or in z_1', both with positive probability. Just as in the proof of Lemma 4.6 the empirical distribution of the first color read after $R \circ S$ has passed from w to v in time T then reveals the color of the points neighboring v but outside $[z_1, z_2]$ and $[z_1', z_2']$.

To understand this in greater detail, first consider the Markov chain on $\{z_2, z_1'\}$, that enters z_2 after each time S has walked from z_1 to z_2 in time τ and that enters z_1' after each time S has walked from z_2' to z_1' in time τ and otherwise stays where it is. It is easy to see, that this Markov chain has the uniform distribution (charging each of z_2', z_1' with probability $1/2$) as its invariant measure. Hence also, the empirical distribution of the colors read in the next step after each time the path $R \circ S$ has walked from w to v will converge to a distribution that assigns probability $1/4$ to each of $\xi(z_2 - 1), \xi(z_2 + 1), \xi(z_1' - 1), \xi(z_1' + 1)$ (of course, some of these colors will agree, in this case the probability of this color is just the sum of the above probabilities). Now note that we indeed know $\xi(z_2 - 1) = \xi(z_1' - 1)$. Hence we are able to figure out the colors of $\xi(z_2 + 1)$ and $\xi(z_1' - 1)$. As a matter of fact, if the limiting empirical distribution π of the colors read in the next step after each time the path $R \circ S$ has walked from w to v, satisfies $\pi(\xi(z_2 - 1)) = 1$, then $\xi(z_2 + 1) = \xi(z_1' - 1) = \xi(z_2 - 1) = \xi(z_1' + 1)$. If $\pi(\xi(z_2 - 1)) = 3/4$, then there will be exactly one $i \in \{0, 1, 2\} \setminus \{\xi(z_2 - 1)\}$ with $\pi(i) \neq 0$ and the colors of $\xi(z_2 + 1)$ and $\xi(z_1' - 1)$ will be this i and $\xi(z_2 - 1)$. If finally $\pi(\xi(z_2 - 1)) = 1/2$ there will be one or two i's with $i \in \{0, 1, 2\} \setminus \{\xi(z_2 - 1)\}$ and $\pi(i) \neq 0$ the color(s) of $\xi(z_2 + 1)$ and $\xi(z_1' - 1)$ will be this i (resp. these i's). Actually, $\pi(\xi(z_2 - 1))$ cannot be less that $1/2$ since $\xi(z_2 - 1) = \xi(z_1' - 1)$.

Following these ideas and the ideas already presented in the proof of Lemma 4.6 we are then able to reconstruct ξ inductively on $[z_2, z_1']$ (note that due to symmetry we do not need to care about whether we reconstructed ξ from z_2 to z_1' or from z_1' to z_2).

So up to now, we know $\xi[[z_1, z_2']]$ (up to reflection symmetry). It remains to reconstruct ξ on $Z \setminus [z_1, z_2']$. To this end recall that we are in the situation, where between every two points $v_1 \neq v_2 \in \text{Im } R$ there are at least two shortest crossings of (v_1, v_2) by R and that there are exactly two crossings of (v, w) by R. Now let us take a sequence of vertices $(v_n)_{n \in \mathbb{N}_0}$ in V_3 such that such that $v_0 = w$, $d(v_n, v_{n+1}) = 1$, and such that $d(v_n, v)$ increases. Note, that then there can be at most two crossings of (v_n, v) by R. According to the above we can then reconstruct $\xi[[z_1^{(n)}, z_2^{(n)}]]$, where $z_1^{(n)}, z_2^{(n)} \in Z$ are associated to v_n via the representation of ξ as a random path on T_3 (more precisely the intervals $[z_1^{(n)}, z_2^{(n)}]$ and $[z_1', z_2'']$ are the intervals associated to the crossings of (v, v_n) by R. As $d(v, v_n) \to \infty$ also $|z_1^{(n)}| \to \infty$ and $|z_2^{(n)}| \to \infty$. Hence we can find an algorithm that reconstructs $\xi[[a, b]]$ for each finite interval $[a, b]$.

The last step is just as in Corollary 4.7 to concatenate the different reconstruction to reconstruct ξ up to equivalence on all of Z. □
The last step in proving that the algorithm proposed in Section 3 really works consists of showing that Lemma 4.10 implies that it works in Case B.

Lemma 4.11. In Case B we can find a mapping $A : \{0, 1, 2\}^N \to \{0, 1, 2\}^Z$ with $A(\chi) \sim \xi$.

Proof. All what is left to show is, how we can get into the situation of Lemma 4.10, in particular, how we can guarantee the existence of two points $v, w \in \mathcal{V}_3$ such that there are precisely two crossings of (v, w) by R.

To this end take any sequence $v_n \in \text{Im } R$ such that $d(v_n, v_{n+1}) = 1$ and $d(o, v_n)$ is increasing to infinity (o the origin of T_3). Then, according to Lemma 4.1, the number of crossings N_n of (o, v_n) by R with probability one converges to a limit which is either 1 or 2. As we are in Case B this limit can only be 2. As N_n is always an integer this means that N_n equals 2 for all but a finitely number of n’s. Hence if we apply the reconstruction algorithm proposed in Lemma 4.10 to $v = o$ and $w = v_n$, we will get the correct scenery with probability one for all but a finite number of n’s. Thus, if we denote by A^n the reconstruction proposed in Lemma 4.10 based on the points $v = o$ and $w = v_n$, we know that

$$A(\chi) := \lim_{n \to \infty} A^n(\chi)$$

exists with probability one (up to equivalence) in any reasonable topology as the sequence will be essentially constant (constant for all but a finite number of n’s). With probability one this limit will agree (up to equivalence) with ξ.

\[\square \]

This finishes the proof of the fact that the algorithm proposed in Section 3 works.

5. Examples

In this section we shall discuss situations where the only assumption of Theorem 2.1, the transience of the representation R of the scenery ξ is satisfied and also such examples, where this assumption is violated, although the distribution of the colors is stationary and ergodic.

Before we start with these examples, let us remark that, of course, the situation where the colors are the output of an i.i.d. experiment, that is the situation where $\xi(z)$ are i.i.d. random variables for $z \in \mathcal{Z}$ and

$$\min\{P(\xi(0) = 0), P(\xi(0) = 1), P(\xi(0) = 2)\} > 0,$$

is covered by Theorem 2.1. As a matter of fact, this was already shown by one of the authors in [8] and has been the starting point of the present paper.

Before presenting a large class of examples where the condition of the transience of R is satisfied, we first discuss three counterexamples, which will motivate the conditions in this main class of examples below. The counterexamples will show that in a certain sense the class of distribution we give below is the largest “natural class” for Theorem 2.1 to hold. As a matter of fact, weakening the assumptions of the class “in a natural way” results in a representation R of the scenery ξ which is no longer transient.

The first example will be one, where R trivially cannot be transient.
Example 5.1. Consider a distribution of ξ produced by the following mechanism: Take a time-homogeneous Markov chain X_n on the set of colors $\{0, 1, 2\}$ with the following transition probabilities

$$P(X_{n+1} = 0|X_n = 0) = P(X_{n+1} = 1|X_n = 0) = P(X_{n+1} = 2|X_n = 0) = \frac{1}{3},$$

and

$$P(X_{n+1} = 0|X_n = 1) = P(X_{n+1} = 0|X_n = 2) = 1.$$

This Markov chain is irreducible and aperiodic (due to the holding in 0), and hence ergodic (even mixing of any kind). Now choose a coloring of the integers \mathbb{Z} according to X_n, by, for example, attaching the color 0 to $0 \in \mathbb{Z}$, and then first coloring the positive integers \mathbb{Z}_+ according to X_n and then \mathbb{Z}_- independently according to the same distribution. Then, of course, the distribution of the colors inherits the properties of the the Markov chain X_n, in particular, it admits a stationary distribution, is ergodic and mixing of any kind.

Note however, that $\text{Im} R$ consists of 6 points only. Thus, of course, R as a random path on T_3, cannot be transient and hence the main assumption of Theorem 2.1 is not fulfilled.

The above example illustrated that R might be recurrent, although all nice ergodic properties (such as stationarity and mixing properties) are fulfilled. The reason, of course, is that, as demonstrated above, R despite of fulfilling all these nice properties, may still have a finite image. The next example shows that on the other hand also, $\text{Im} R$ may be infinite and R is still not transient.

Example 5.2. Probably the easiest example where $\text{Im} R$ is infinite and still not recurrent, is that of a one-dimensional walk. More precisely, we choose

$$P(\xi(0) = 0) = P(\xi(0) = 1) = \frac{1}{2},$$

and, of course, $P(\xi(0) = 2) = 0$ and let the $\xi(z), z \in \mathbb{Z}$ be i.i.d. Then R is equivalent to a one-dimensional random walk on the integers \mathbb{Z} without drift and holding. As, of course, such a random walk is recurrent, so is R and hence the main assumption of Theorem 2.1 is again not fulfilled.

This example might, of course, not be too surprising, as it is well-known that a one-dimensional random walk on the integers \mathbb{Z} without drift and holding is recurrent. However, we gave this example, as it is the building block of the following example, which is definitely more surprising. It basically states, that the condition of transience of R might even be violated, when $\text{Im} R$ is infinite and the distribution of the colors has nice ergodic properties. Even more is true in the example below $\text{Im} R$ will be as “truly two-dimensional” as possible, in the sense that there are three infinite branches in $\text{Im} R$.

Example 5.3. Consider the distribution of ξ produced by the following random mechanism. Take the following set of words (by which we mean a sequence of colors)

$$S := \bigcup_{l \geq 0} \{ (x_0, x_1, \ldots, x_{2l}) : x_0 \in \{0, 1\}, x_1, \ldots, x_l \in \{0, 1, 2\}, x_{l+x} = x_{l-x}, x = 1, \ldots, l \}$$
and introduce the following probability distribution \(\pi \) on \(S \):

\[
\pi((x_0, x_1, \ldots, x_{2l})) = \frac{1}{2^{(l+1)}}
\]

for \((x_0, x_1, \ldots, x_{2l}) \in S \).

First note that \(\pi \) is indeed a probability distribution on \(S \). Indeed, selecting an element from \(S \) according to \(\pi \) corresponds to first choosing its length \(2l + 1 \) (note that \(S \) only consists of vectors of an odd length) with probability \(2^{-(l+1)} \) (which works as \(\sum_{l \geq 0} 2^{-(l+1)} = 1 \)) and then selecting one of the elements of \(S \) of length \(2l + 1 \) with uniform probability. Note that, as a matter of fact, there are \(2 \times 3^{l} \) different choices for \((x_0, x_1, \ldots, x_{2l}) \in S \). Hence \(\pi \) is indeed a probability on \(S \).

Moreover, let us choose a random scenery \(\xi \) according to \(\pi \). More precisely we choose two sequences of words independently according to \(\pi \). We attach the first of these two sequences to the positive integers starting with 1, that is we attach the first word of, say \(L \) letters, to \(1, \ldots, L \in \mathbb{N} \), after that the next word of, say \(L' \) letters, to the points \(L + 1, \ldots, L + L' \), and so on. After that we do the same thing for the second sequence and the non-positive integers \(\mathbb{Z}^0 \).

With the help of renewal theory we now show that the sequence of colors produced by this mechanism is stationary and ergodic. Indeed, if we consider the renewal process, such that there is a renewal time, whenever a word from \(S \) is finished, then the greatest common divisor of these renewal times is one (since all words have odd length) and the mean renewal time is finite (which follows immediately from the definition of \(\pi \)). Hence it follows from renewal theory that there exists a stationary measure for the renewal times. Hence also the corresponding distribution of the colors on \(\mathbb{Z} \) inherits this stationarity property.

To see that this distribution also is mixing and hence ergodic we have to understand that the shift is ergodic under the distribution induced by \(\pi \). So let \(\Theta \) be the right-shift on \(\mathbb{Z} \). We have to prove that for any two measurable events \(A \) and \(B \)

\[
\lim_{l \to \infty} \mathbb{P}(\Theta^l(B)|A) = \mathbb{P}(B).
\]

First of all observe that for every \(A, B \in \sigma(\xi_i, i \in \mathbb{Z}) \) the probabilities \(\mathbb{P}(A) \) and \(\mathbb{P}(B) \) can be arbitrarily well approximated by \(\mathbb{P}(A^n) \) and \(\mathbb{P}(B^n) \) where

\[
A^n, B^n \in \sigma(\xi_i, i \in \{0, \ldots, n\})
\]

for some \(n \in \mathbb{N} \) large enough. Hence we may without loss of generality assume that

\[
A, B \in \sigma(\xi_i, i \in \{0, \ldots, n\})
\]

for some \(n \in \mathbb{N} \) large enough.

Moreover let us decompose \(\mathbb{P}(B) \) in the following way

\[
\mathbb{P}(B) = \sum_{s \geq 0} \mathbb{P}(B|\text{the last renewal before } 0 \text{ is at time } -s) \quad (5.1)
\]

\[
\times \mathbb{P}(\text{the last renewal before } 0 \text{ is at time } -s).
\]

Similarly,

\[
\mathbb{P}(\Theta^l(B)|A) = \sum_{s \geq 0} \mathbb{P}(\Theta^l(B)|\text{the last renewal before } t \text{ is at time } t-s, A) \quad (5.2)
\]

\[
\times \mathbb{P}(\text{the last renewal before } t \text{ is at time } t-s|A).
\]
Now

\[P(\Theta^t(B) | \text{the last renewal before } t \text{ is at time } t-s, A) \]
\[= P(\Theta^t(B) \cap \text{there is a renewal between times } n \text{ and } t | \text{the last renewal before } t \text{ is at time } t-s, A) \]
\[+ P(\Theta^t(B) \cap \text{there is no renewal between times } n \text{ and } t | \text{the last renewal before } t \text{ is at time } t-s, A) \]
\[= P(B \cap \text{there is a renewal between times } n-t \text{ and } 0 | \text{the last renewal before } t \text{ is at time } t-s) \]
\[+ P(\Theta^t(B) \cap \text{there is no renewal between times } n \text{ and } t | \text{the last renewal before } t \text{ is at time } t-s, A) \]
\[= P(B | \text{the last renewal before } t \text{ is at time } t-s) \]
\[- P(B \cap \text{there is no renewal between times } n-t \text{ and } 0 | \text{the last renewal before } t \text{ is at time } t-s) \]
\[+ P(\Theta^t(B) \cap \text{there is no renewal between times } n \text{ and } t | \text{the last renewal before } t \text{ is at time } t-s, A) \]

where we have used the stationarity of \(P \).

Now we have a finite expected renewal time implying that as \(t \to \infty \)

\[P(B \cap \text{there is no renewal between times } n-t \text{ and } 0 | \text{the last renewal before } t \text{ is at time } t-s) \to 0 \]

as well as

\[P(\Theta^t(B) \cap \text{there is no renewal between times } n \text{ and } t | \text{the last renewal before } t \text{ is at time } t-s, A) \to 0. \]

This establishes equality between the first factors in (5.1) and (5.2).

For the second factors in in (5.1) and (5.2) observe that due to the same arguments by which we established the existence of an stationary measure

\[P(\text{the last renewal before } t \text{ is at time } t-s | A) \]

converges independently of \(A \) to a number, which actually is

\[P(\text{the last renewal before } 0 \text{ is at time } t-s). \]

Hence the right hand sides of (5.1) and (5.2) converge to each other as \(t \to \infty \) yielding that

\[P(\Theta^t(B) | A) \to P(B) \]

as \(t \to \infty \). Thus the distribution of the colors induced by \(\pi \) is stationary, mixing and hence ergodic.

Moreover, note that almost surely \(\text{Im } R \) consists of all vertices in \(V_3 \). However, still \(R \) is not transient. To understand why, observe that the scenery \(\xi \) in this example may be considered as a scenery drawn according to the distribution considered in Example 5.2, modified by random excursions of length 2l. As already remarked in Example 5.2, \(R \) there is equivalent to a one-dimensional symmetric random walk. In terms of this random walk the excursions of length 2l may be interpreted as a holding.
As the expected holding time is $\sum_{t\geq 0} 2t(1/2)^{t+1}$ and hence finite this holding does not spoil the recurrence of the random walk. Thus also in this example R is recurrent and therefore the condition of Theorem 2.1 is not fulfilled again.

At this point a little remark seems to be due.

Remark 5.4. Note that although in the examples above (in particular Examples 5.2 and 5.3) R is not transient and hence our main result Theorem 2.1 is not applicable, this does not mean that these sceneries can not be reconstructed at all. As a matter of fact, the scenery in Example 5.2 has been proven to be reconstructable in [9] by completely different methods and the same might hold true for the scenery in Example 5.3.

Before we give our main class of examples, let us quickly mention that there indeed are examples of two color sceneries that can be reconstructed with the help of Theorem 2.1.

Example 5.5. Like in Example 5.2 the easiest example of a two color scenery that can be reconstructed with the help of Theorem 2.1 is that of an i.i.d. biased scenery. More precisely, we choose

$$\mathbb{P}(\xi(0) = 0) = p \quad \text{and} \quad \mathbb{P}(\xi(0) = 1) = 1 - p,$$

(and, of course, $\mathbb{P}(\xi(0) = 2) = 0$) for some $p \in (0,1)$ with $p \neq 1/2$, and let the $\xi(z), z \in \mathbb{Z}$ be i.i.d. Then R is equivalent to a one-dimensional random walk on the integers \mathbb{Z} with drift. As, of course, such a random walk is transient, so is R and hence the main assumption of Theorem 2.1 is fulfilled and thus ξ can be reconstructed.

Let us now give our main class of examples. We will avoid the troubles we had in Example 5.3 by assuming that ξ is generated by a hidden Markov chain on a finite state space. To also avoid the troubles we had in Example 5.2 we additionally have to require that ξ is "essentially tree-like". So, below we will call a scenery ξ essentially tree-like, if its representation R consists of three distinct branches, or, more precisely, if there is a finite subset $V \subset V_3$ such that $\text{Im } R \setminus V$ consists of three disjoint, infinite components. (Even more precisely, we only need that $\{x : P(x \in \text{Im } R) > 0\}$ is essentially tree-like). The counterexamples above show that the class of distribution we give below is the largest "natural class" for Theorem 2.1 to hold.

Theorem 5.6. Consider the distribution of ξ produced by the following random mechanism. Take an aperiodic, irreducible, stationary Markov chain $(X_n)_{n \in \mathbb{Z}}$ on a finite state space X. Let

$$f : X \to \bigcup_{i \geq 1} \{(\zeta_1, \ldots, \zeta_i) : \zeta_i \in \{0,1,2\}, i = 1, \ldots, l\}$$

be a mapping from X the set of all words of finite length. Now select a scenery according to X_n and f. By this we mean, that we take a realization of X_n, and place $f(X_0)$ to the integers $0, 1, \ldots, |f(X_0)| - 1$, the we place $f(X_1)$ to the next integers and so on placing one word after the other. In the same way we color the negative integers by $(f(X_n))_{n \in \mathbb{Z}}$.

If then ξ is essentially tree-like, R is almost surely transient.
Theorem will be proved after the following lemma which justifies the notion “essentially tree-like”.

Lemma 5.7. Under the conditions of Theorem 5.6 assume that Im R is essentially tree-like. Then there exists a constant κ such that for each $v \in V_2$ and $r \in \mathbb{N}$ the ball of radius r centered in v

$$B(v,r) := \{w \in V_2 : d(v,w) \leq r\}$$

contains at least $c^\kappa r$ vertices.

Proof. To show this lemma we will prove that under these conditions Im R is indeed an infinitely branching tree by exploiting the essential self-similarity of Im R. By the latter we mean that given two vertices $v_1, v_2 \in \text{Im } R$ such that both are, for example, colored by reading the endpoint of a word $f(x), x \in X$, then the neighborhoods of v_1 and v_2 are isomorphic.

So, if Im R is essentially tree-like, by definition, it will contain three infinite branches b_1, b_2, b_3. As any two of them (merged together) are isomorphic to a double infinite straight line, there exists a point $v_0 \in V_3$ such that b_1, b_2 and b_3 meet in v_0 (without loss of generality we can assume that $v_0 = o$). For convenience let $X = \{x_0, \ldots , x_l\}$ and $f(x_0) = (\zeta^1, \ldots , \zeta^\lambda)$ where $\zeta^i \in \{0,1,2\}$, $(i = 1, \ldots , \lambda)$, and assume that the color of o is produced by reading ζ^λ.

Take $L = \sum_{i=0}^{l} |f(x_i)|$. As the random walk $(X_n)_{n \in \mathbb{N}}$ on X is irreducible, we know that

$$P(X_n = x_j | X_1 = x_i) > 0 \quad \text{for some } n \leq l$$

and all $x_i, x_j \in X$. This immediately implies that for all $v_1 \in \text{Im } R$ there is a $v_2 \in \text{Im } R$ such that $d(v_1, v_2) \leq L$ and the color of v_2 as read at the same position of the same word as the color of v_1.

We will apply these considerations to the origin o. We take two auxiliary points $a_1, a_2, a_3 \in V_3$ with $a_i \in b_i$ and $d(o, a_i) = 2L$ for $i = 1, 2, 3$. Applying the above shows that there are vertices $v_1, v_2, v_3 \in V_3$ with $v_i \in b_i$ and $d(v_i, a_i) \leq L$ for $i = 1, 2, 3$, such that the color of v_i is read by R at ζ^λ. Obviously, $v_i \neq o$ for each i.

On the other hand, the situation at v_i is the same as at o, that means, in particular, at v_i there are three different infinite branches for all i.

Continuing inductively yields the desired result. \hfill \Box

Now we are ready to prove that R is transient.

Proof of Theorem 5.6. The basic idea of the proof will be to show that for any fixed vertex $v \in \text{Im } R$ the expected distance $E[d(v, R_n)]$ is increasing (here and in the following E denotes the expectation with respect to P). This will be shown by comparing this expected distance to that of a random walk with a bias to escape from v.

More precisely in what follows take $d_1 < d_2 \in \mathbb{N}$ and typically we will think of d_1 as being much smaller than d_2 (a more precise description will be given below).

Again let $X = \{x_0, \ldots , x_l\}$ and $f(x_0) = (\zeta^1, \ldots , \zeta^\lambda)$ where $\zeta^i \in \{0,1,2\}$, $(i = 1, \ldots , \lambda)$, and take $L = \sum_{i=0}^{l} |f(x_i)|$. Consider the following Markov chains induced by R, X_n, and ζ. Take

$$\Omega = \{0,1,2\} \times X \times \{1, \ldots , \max_{i \in \{0,\ldots , l\}} |f(x_i)|\}$$
and

\[\tilde{X}_n := (X_{n,1}, X_{n,2}, X_{n,3}) := (R(n), w, k) \]

where \(w \in X \) is the word where \(R(n) \) is read, and \(k \) is the position in \(w \) where \(R(n) \) is read. Note that \(\tilde{X}_n \) is again a Markov chain. Moreover, introduce a sequence of stopping times \((t_n)_{n \in \mathbb{N}} \) such that \(t_0 = 0 \) and

\[t_n := \inf \{ t > t_{n-1}, d(R(t), R(t_{n-1})) = d_2 \}, \quad n \in \mathbb{N} \]

and

\[t_{-n} := \sup \{ t < t_{n+1}, d(R(t), R(t_{n+1})) = d_2 \}, \quad n \in \mathbb{N}. \]

Let \(\tilde{Y}_t = (Y_{t,1}, Y_{t,2}, Y_{t,3}) \) where for \(t \in [t_n, t_{n+1}) \) \(Y_{t,1} = X_{t_n,1}, Y_{t,2} = X_{t_n,2} \) and \(Y_{t,3} = X_{t_n,3} \). Note that \(\tilde{Y}_t \) inherits the Markov property from \(\tilde{X}_t \). We will prove that \(\tilde{Y}_t \) is transient, which implies also that \(R(t) \) is transient since

\[d(R(t), Y_{t,1}) \leq d_2 \]

and \(d_2 \) is independent of \(t \).

The transience of \(\tilde{Y}_t \) will be proved by showing that for any fixed vertex \(v' \in V_3 \) the expected distance \(\mathbb{E}[d(v', Y_{t,1})] \) is strictly increasing in \(t \) which implies transience. To this end for any \(n \in \mathbb{Z} \) denote \(y_{n,t} := Y_{t,n} \). Let \(n_0 \in \mathbb{N} \) be fixed and without loss of generality in the following we will assume that the color of \(y_{n_0} \) (that is \(\varphi(y_{n_0}) \)) is read at \(\zeta_1 \) (that is, it is equal to \(\zeta_1 \) and read at the last position of \(f(x_0) \)).

Also for \(v \in V_3 \) and \(r \in \mathbb{R} \) introduce the ball

\[B(v, r) := \{ w \in V_3 : d(v, w) \leq r \} \]

of radius \(r \) centered in \(v \) and also the corresponding sphere

\[S(v, r) := \{ w \in V_3 : d(v, w) = r \}. \]

Let us assume that \(4|d_2 \) and take the unique point \(x_0 \) such that \(d(y_{n_0}, x_0) = \frac{1}{4}d_2 \) and \(d(y_{n_0-1}, x_0) = \frac{3}{4}d_2 \). Observe that for all \(v \in S(y_{n_0}, d_2) \) and

\[v \notin S(y_{n_0}, d_2) \cap S(z_0, \frac{3}{4}d_2) \]

we have that

\[d(v, v') \geq d(y_{n_0}, v') + d_2/2. \]

Moreover, for

\[v \in S(y_{n_0}, d_2) \cap S(z_0, \frac{3}{4}d_2) \]

we obtain that

\[d(v, v') \geq d(y_{n_0}, v') - d_2. \]

Hence, if we can, for example, show that

\[\mathbb{P}(y_{n_0+1} \in S(y_{n_0}, d_2) \cap S(z_0, \frac{3}{4}d_2)) \leq \frac{1}{4} \]

we are done, since then \(\mathbb{E}(d(y_{n_0+1}, v')) \geq \mathbb{E}(d(y_{n_0}, v')) + \frac{1}{8}d_2 \).

In order to bound \(\mathbb{P}(y_{n_0+1} \in S(y_{n_0}, d_2) \cap S(z_0, \frac{3}{4}d_2)) \) we consider the ball \(B(y_{n_0}, d_1) \) with \(d_1 \ll d_2 \). As we have shown in Lemma 5.7 this ball contains exponentially many points (in \(d_1 \)). By the same argument one can show that there exists a sphere inside \(B(y_{n_0}, d_1) \) containing \(M := e^{d_1} \) many points (for some \(\kappa > 0 \)) the color of which is read at the same point \(\zeta \). Let us call these points \(v_1, \ldots, v_M \).
Now let us assume, that our proposition was wrong and \(R \) would be recurrent. Then for any given \(\epsilon > 0 \) we could choose \(d_2 \) large enough such that with probability larger than \(1 - \epsilon \) the random path \(R \) will visit each point inside a ball of radius \(d_1 \) around its starting point before first exiting a ball of radius \(d_2 \) around the starting point. Instead of bounding now

\[
P(y_{n_0+1} \in S(y_{n_0}, d_2) \cap S(z_0, \frac{3}{4}d_2))
\]

we will rather bound

\[
\Delta := \max_{z \in S(y_{n_0}, \frac{3}{4}d_2)} P(y_{n_0+1} \in S(y_{n_0}, d_2) \cap S(z, \frac{3}{4}d_2))
\]

and in order to do so, we will bound

\[
\Delta' := \max_{z \in S(y_{n_0}, \frac{3}{4}d_2)} P(y_{n_0+1} \in S(y_{n_0}, d_2 - d_1) \cap S(z, \frac{3}{4}d_2 - d_1)),
\]

where \(y_{n_0+1} \) is the vertex where the path \(R \) first exits \(S(y_{n_0}, d_2 - d_1) \) when starting in \(y_{n_0} \). Note that both maxima are actually attained and let \(z_{\text{max}} \) be such that

\[
\Delta' := P(y_{n_0+1} \in S(y_{n_0}, d_2 - d_1) \cap S(z_{\text{max}}, \frac{3}{4}d_2 - d_1)).
\]

Note that the stretch \(\overline{y_{n_0}z_{\text{max}}} \) is uniquely defined by its corresponding sequence of colors and its starting point \(y_{n_0} \). Since the situation is completely identical in each of the points \(v_1, \ldots, v_M \) and in \(y_{n_0} \) we can find \(z_1, \ldots, z_M \) that correspond to \(z_{\text{max}} \) when we replace \(y_{n_0} \) by \(v_1, \ldots, v_M \). More precisely the points \(z_1, \ldots, z_M \) are defined by the fact that the stretch \(\overline{v_i z_i} \) has the same color sequence as \(\overline{y_{n_0}z_{\text{max}}} \) (for each \(i = 1, \ldots, M \)). Obviously, the probability of first exiting \(S(v_i, d_2 - d_1) \) via \(S(v_i, d_2 - d_1) \cap S(z_i, \frac{3}{4}d_2 - d_1) \) when starting in \(v_i \) also equals \(\Delta' \). Let us call \(z_i \) and \(z_j \) equivalent, if the stretches \(\overline{v_i z_i} \) and \(\overline{v_j z_j} \) intersect inside \(B(y_{n_0}, d_1) \). Note that if \(z_i \) and \(z_j \) are not equivalent, then the stretches \(\overline{v_i z_i} \) and \(\overline{v_j z_j} \) do not intersect at all and \(z_i \) and \(z_j \) and \(S(v_i, d_2 - d_1) \cap S(z_i, \frac{3}{4}d_2 - d_1) \) and \(S(v_j, d_2 - d_1) \cap S(z_j, \frac{3}{4}d_2 - d_1) \) have distance at least \(2d_2 - 2d_1 \). Moreover, observe that for a given \(i \in \{1, \ldots, M\} \) at most \(2d \) of the \(\{z_1, \ldots, z_M\} \) can be equivalent to \(z_i \). This follows from the fact that two stretches \(\overline{v_i z_i} \) and \(\overline{v_j z_j} \) can only intersect at different “times” (that is their distance from \(v_i \) or \(v_j \), respectively – must be different). As each stretch hast to leave \(B(y_{n_0}, d_1) \) after at most \(2d_1 \) steps, there, indeed can be at most \(2d_1 \) of the \(z_j \) equivalent to \(z_i \). As \(M \) is an exponential in \(d_1 \), but \(2d_1 \) is of course only linear, we can have as many non-equivalent \(z_i \)’s as we wish. Now

\[
\Delta \geq \Delta'(1 - \epsilon)
\]

as well as

\[
1 - \Delta \geq (1 - \Delta')(1 - \epsilon),
\]

both because when we reach a certain point at distance less than \(d_1 \) from \(S(y_{n_0}, d_2) \) then with probability \((1 - \epsilon) \) we will hit a boundary point in \(S(y_{n_0}, d_2) \) at distance at most \(d_1 \) before hitting any other boundary point. These two inequalities imply that \(\Delta \) and \(\Delta' \) are arbitrarily close together. On the other hand, because all the non-equivalent \(z_i \) belong to a segment which has probability \(\Delta' \) of being hit, each of the points in this segment is at distance less than \(d_1 \) from \(S(y_{n_0}, d_2) \), the segments
are at distance $2(d_2 - d_1)$ of each other, and with probability at least $(1 - \epsilon)$ all the corresponding v_i are hit before R exits $S(y_{n_0}, d_2)$ we obtain
\[M' (1 - \epsilon)^2 \Delta' \leq 1. \]
Thus Δ' and hence also Δ are as small as we wish, for example less than $1/4$. Therefore, under the assumption that R is recurrent,
\[\mathbb{E}(d(y_{n_0 + 1}, v')) \geq \mathbb{E}(d(y_{n_0}, v')) + \frac{1}{8} d_2. \]
As the last line immediately implies that R is recurrent, we obtain a contradiction. Thus R is transient.

\[\square \]

The next theorem basically states that under the conditions of Theorem 5.6 the random path R (the representation of ξ as a random path on T_d) is not only transient but also has positive speed with probability exponentially close to one. Theorem 5.8 will be the basis for an exceptionally good test for distinguishing two sceneries.

Theorem 5.8. Under the conditions of Theorem 5.6 (in particular we also assume that ξ is essentially tree-like) there exist constants $c_0, c_1, c_2 > 0$ such that for all $n \in \mathbb{N}$ and every fixed $v_0 \in V_3$
\[\mathbb{P}(\min\{d(v_0, R(n)), d(R(-n), v_0)\} \leq c_2 n) \leq c_0 e^{-c_1 n}. \]

Proof. The proof is intrinsically related to the proof of Theorem 5.6. Thus we will make use of the notations introduced there. Let $Y'_m := X_{t_m}$. Then the proof of Theorem 5.6 reveals that Y'_m already has the desired property, as its distance from any fixed vertex v_0 can be dominated from below by a random walk with a bias to escape from v_0. Hence the existence of constants $c'_0, c'_1, c'_2 > 0$ such that
\[\mathbb{P}(\min\{d(v_0, Y'_m) \leq c'_2 m\} \leq c'_0 e^{-c'_1 m} \] (5.3)
follows immediately from an exponential estimate for this dominating random walk. In order to conclude the desired result from (5.3), we need to understand that there exists a constants $c_3, c_4 > 0$ such that
\[\mathbb{P}(t_n \geq c_3 n) \leq e^{-c_4 n}. \] (5.4)
But this follows form decomposing t_n into
\[t_n = (t_n - t_{n-1}) + (t_{n-1} - t_{n-2}) + \ldots + (t_1 - t_0). \]
By the Markov property of \hat{X}_t and \hat{Y}_t the $t_m - t_{m-1}$ are independent random variables. Also as the state space X of the Markov chain X_n is finite we can dominate all these $t_m - t_{m-1}$ can be stochastically dominated from above by a random variable T_{max} (describing the exit time of \hat{X}_t from a circle of radius d_2 when starting in the state with the longest exit time). Now T_{max} has a finite moment generating function
\[\mathbb{E}e^{t T_{\text{max}}} < \infty. \] (5.5)
This follows, since X is finite and therefore we can find constants $L_1 < \infty$ and $p > 0$ such that independent of where we start with R_n we have hit the sphere of radius d_1 centered in the starting point after L_1 steps with probability at least $p > 0$. This implies (5.5) and therefore by large deviation estimates also (5.4). Thus the statement of the theorem follows.

\[\square \]
Theorem 5.8 is extremely useful when we try to attack one of the original problem of this area, that is the scenery distinguishing problem, where we have to tell from the color record on which of two sceneries the this color record has been produced. Of course, in principal, already Theorem 5.6 shows that we can distinguish two sceneries drawn independently and at random from a distribution satisfying the conditions of Theorem 5.6. On the other hand, for all possible applications this test is not practicable. We now show that, indeed, as a consequence of Theorem 5.8 there is a practicable test based on very little information that works “exponentially well”.

More precisely, we show that given any scenery ξ randomly drawn from a distribution satisfying the conditions of Theorems 5.6 and 5.8 and another scenery η of which we know nothing at all, there is a test that works exponentially well for a set of sceneries with probability exponentially close to one. Here the notions “exponentially well” and “with probability exponentially close to one” stand for the following. Given that we know $\chi[[0, n]]$ (so the first $n + 1$ observations) and, for example,

$$v = R(m^+) \quad \text{where} \quad m^+ := \min\{m \in \mathbb{N} : d(o, R(m)) \geq n^{1/3}\}$$

and

$$w = R(m^-) \quad \text{where} \quad m^- := \max\{m \in \mathbb{Z}_- : d(o, R(m)) \geq n^{1/3}\}$$

we can find a test, which for a subset of ξ’s of probability larger than $1 - k_0 e^{-k_1 n^{1/3}}$ has failure probability less than $e^{-k_2 n^{1/3}}$. Let us formalise this in a theorem:

Theorem 5.9. Let ξ be randomly drawn from a distribution satisfying the conditions of Theorems 5.6 and 5.8 and let η be another scenery of which we know nothing at all. Assume that we know $\chi[[0, n]]$,

$$v = R(m^+) \quad \text{where} \quad m^+ := \min\{m \in \mathbb{N} : d(o, R(m)) \geq n^{1/3}\},$$

and

$$w = R(m^-) \quad \text{where} \quad m^- := \max\{m \in \mathbb{Z}_- : d(o, R(m)) \geq n^{1/3}\}.$$

Then we can find a test

$$T : \{0, 1, 2\}^{n+1} \times V_3 \times V_3 \to \{\xi, \eta\}$$

constants $k_0, k_1, k_2, k_3 > 0$ and a set $\Xi \subseteq \{0, 1, 2\}^2$ with

$$\mathbb{P}(\Xi) \geq 1 - k_0 e^{-k_1 n^{1/3}}$$

such that, whenever $\xi \in \Xi$

$$\mathbb{P}(T(\chi[[0, n]], v, w) = \xi | \chi \text{ has been produced on } \eta) = 0,$$

and

$$\mathbb{P}(T(\chi[[0, n]], v, w) = \eta | \chi \text{ has been produced on } \xi) \leq k_2 e^{-k_3 n^{1/3}}.$$

Remark 5.10. Note that we are able to improve the known tests for scenery distinguishing in the following important features:

1. ξ can be drawn from a large class of distributions admitting correlations between the color of different sites.
2. η can be arbitrary.
3. No knowledge is required about η.
4. Only very limited knowledge about ξ is required.
Proof of Theorem 5.9. We propose is the following test. Whenever $R \circ S$ reaches v or w within $[0, n]$ we say that the scenery is ξ, otherwise we say that it is η. As a consequence of Theorem 5.8 the probability that v or w also appear on any given scenery η is less than $k_0 e^{-k_1 n^{1/3}}$. So, let Ξ be the set of all sceoneries ξ such that $v(\xi) := v$ and $w(\xi) := w$ are different from the corresponding $v(\eta)$ and $w(\eta)$, when R is produced by η. Then
\[
P(\Xi) \geq 1 - k_0 e^{-k_1 n^{1/3}}.
\]
Moreover, for $\xi \in \Xi$ it immediately follows that
\[
P(T(\chi)[0, n], v, w) = \xi | \chi \text{ has been produced on } \eta = 0
\]
simply because $\text{Im } R$ does not contain v or w, if it is produced from η. On the other hand, by a simple exponential bound, the probability that the random walk S does not hit the vertices in Z associated with v and w (by R) is less than $k_2 e^{-k_2 n^{1/6}}$. Hence also
\[
P(T(\chi)[0, n], v, w) = \eta | \chi \text{ has been produced on } \xi \leq k_2 e^{-k_2 n^{1/6}}.
\]
This finishes the proof. \[\Box\]

REFERENCES

[9] H. Matzinger; Reconstruction of a one dimensional scenery seen along the path of a random walk with holding, Ph. D. Thesis, Cornell University (1999)

(Matthias Löwe) EURANDOM, PO BOX 513, NL-5600 MB EINDHOVEN, THE NETHERLANDS E-mail address, Matthias Löwe: loewe@eurandom.tue.nl

(Heinrich Matzinger) EURANDOM, PO BOX 513, NL-5600 MB EINDHOVEN, THE NETHERLANDS E-mail address, Heinrich Matzinger: matzinger@eurandom.tue.nl