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ON SMALL CARNOT-CARATHEODORY SPHERES

YU. BARYSHNIKOV

EURANDOM, Eindhoven, The Netherlands

ABSTRACT. The sphericity of small cc-spheres is proved for homogeneous and 2-step
distributions.

0. INTRODUCTION

0.1. The Carnot-Carathéodory or sub-Riemannian or non-holonomic geometry
deals with the (length) metrics associated to the pairs (totally nonintegrable dis-
tribution, norm on the distribution plane) and is prominent in applications such as
Brownian motion on manifolds, control theory or mechanics. An overview of the
theory can be found e.g. in [G, GV].

"The zero-order properties of this metric (like estimates of ball shapes and volumes)
are quite intuitive and easy to recover. The related differential-geometric properties
are, on the contrary, rather intricate. Thus it seems to be unknown (though widely
believed) that small spheres in Carnot-Carathéodory geometry are homeomorphic
to the sphere. The standard in Riemannian geometry proof via the exponential
map does not work as it is not a diffeomorphism in any vicinity of the origin for
cc-geometry.

The structure of such spheres is important for the studies of the small-time asymp-
totics of the fundamental solutions to the hypoelliptic heat equations.

0.2. In this note I show that the cc-spheres are spheres indeed, at least when
either the distribution admits a l-parametric group of contractions which leaves
it invariant, or when the distribution is of length 2 (this is the generic case when
the inequality N < n(n + 1)/2 relating the dimensions of the space and of the
distribution holds).

The method is to replace the contraction along the rays in the tangent space by the
contracting along the trajectories of a self-similarity flow in the space itself. The
homogeneity thus imposed is by no way canonic but is sufficient to shorten curves.

0.3. Acknowledgements. I am thankful to R. Montgomery (who told me about
this problem) for an informative discussion, to M. Gromov for support and to IHES
(where this work was begun) for hospitality.
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1. SETUP AND MAIN RESULTS

1.1. Let U 3 o be a vicinity of the origin in the Euclidean space V = RV (we
identify V' with the tangent space to U at o). Consider a totally nonintegrable
distribution H, that is a (locally) trivial subbundie of the tangent bundle such that
the sections of this subbundle generate the whole Lie algebra of vector fields on U.
The sheafs generate by the k-fold commutators of tangent vector fields (denoted as
Hy,k > 1) form a filtration of the tangent sheaf. The growth vector (at z) is the
vector of dimensions of the associated graded vector space GV = ®;Hjq1,2/Hjyx-
A projection p to V; gives a local trivialization p} : H; = Tp: Vi & V). The plane
T,H =V, C V will be called horizontal.

1.2. The (piece-wise) differentiable curves tangent to H at their smooth points will
be called horizontal. If the fibers of p are transversal to H (which will be assumed to
be the case in '), then one can lift any piece-wise smooth curve « in the horizontal
plane V} to a horizontal curve L+ (the lift of ) with the left endpoint at the origin.

1.3. Assume that a norm on H is given, that is a (smooth) family of fiber-wise
norms g(x,-) : H; - R The situation when g is fiber-wise Euclidean is often
referred to as sub-Riemannian.

The length of a horizontal curve v : {0,1] = U given by I(y) = fol g(y(s),7y'(s))dt
is reparametrization invariant; henceforth it will be assumed that all horizontal
curves are parameterized by the unit interval. The corresponding length distance is
called Carnot-Carathéodory (or cc-) distance. The cc-ball of radius r with the center
at the origin (that is the set of endpoints of horizontal curves of length at most
r starting at the origin) contains an open vicinity of the origin (Rashevsky-Chow
lemma). The topological boundary of the cc-ball is called the cc-sphere.

1.4. For a regular distribution, that is distribution with a constant growth vector,
there exists a limiting nilpotent graded Lie algebra approximating it (cf [GV]).
The standard construction is the following: take any splitting V = @;>1V; such
that the flag {F; = @.>;V;} coincides with the flag {H;}, and consider the family
of dilatations 8,,0 < A < 1 equal to A~* on V.. The family of distributions
H(A) = 83 H extends smoothly to A =0.

Lifts (using p) of the constant vector fields on V; to H(0) are vector fields which
generate a graded nilpotent Lie algebra L{H) (isomorphic to GV as a graded vector
space) generated by V].

Properly rescaled, the norm g converges to the L(H)-left invariant norm on H({0)
(again, just the lift to H(0) of the g-norm on V;). The dilatation flow d» leaves
H(0) invariant and multiplies the length element by A. It follows that the cc-
distance is degree 1 homogeneous with respect to § and therefore the cc-sphere is
homeomorphic to SV L.

1.5. Below we consider two situations where this sphericity persists. One is the
case when there exists a (globally contracting) flow which preserves the distribution
but does not necessarily act conformally on the norm, merely contracts it. This
case covers, e.g. all contact distributions (regardless of the norm).
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Such distributions are rarely generic: the germs of distributions diffeomorphic to a
homogeneous one {with respect to the Euler vector field} have infinite codimension
in the relevant functional space for all dimension except for n = N -1 and n =
2,N = 4 (again, see [GV]). As a partial remedy to this we prove that small
perturbations of distributions with 2-step nilpotent limit (that is the distributions
with the growth vector (n, N)) preserve the sphericity. This is the main result of
this note:

Theorem. Small cc-spheres for distributions of length 2 are homeomorphic to
spheres.

2. SELF-SIMILAR DISTRIBUTIONS
2.1 Notations and assumptions. Denote the Euclidean norm on V by | - | and
assume the constant dimension of the H (but not necessarily the regularity).

We use the trivialization p : U x H, = H to fix the coordinates (z,h),z € U,h € H,
on H.

We assume the (Finsler) metric defined by g: H = R to be C! (actually, Lipschitz
is enough}. More precisely, the following estimate will be used:

A. [(8z9 - v) (z, h)| < Alv||h|,v € T, U, h € H,

for some positive 4 (here 8; is the partial derivative with respect to ).

The length of a curve in the standard (Euclidean) metric will be denoted as I,.
Obviously, for a horizontal curve, C~1I, <1 < CI, for some positive C.

Let v be a vector field defined on U with the unique equilibrium point at the origin.
We assume that the shift along v takes U into itself and that the 1-parameter
(multiplicative) semigroup 8, = A¥,1 < X generated by v satisfies the following
properties:

B. The diffeomorphisms §, preserve the distribution H.

We denote by A, the induced (fiberwise linear) transfromation of H, Ay : (z,h) =
{6xz, (0x).h). Its derivative with respect to A at A = 1 defines an endomorphism of
H denoted by D = B%I,\=1AA‘

The linear vectorfield v = Dfo, ) on H, is the restriction of the linearization of v
at the origin to H,.

C. The norm g(o, -} is a strict Lyapunov function for v, i.e.
Ly,g(0,7) < -a| -]
for some positive a. By continuity this inequality is valid also in some vicinity of o.

2.2. The crucial fact is that given these three properties, A, B and C, the flow &,
shortens short horizontal curves.
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Lemma. Assuming A, B, C above,

a
e 63 < —al(x)
for some positive o and short enough horizontal curve .

Proof. Here is the calculation. The derivative above is given by
1
|} @eatorts). 71 o1rt6)) + dnglr(s), 7 (0] D), Y D .

(Here 8;, ), are the partial derivatives with respect to z, h correspondingly).

Estimating the first summand in absolute value using A and the second summand
using C (and using |v(z)| < Bjz| in U), we arrive at

3 ' ,
©) alaattir < [ (ABLEIN ()] - aly (s)) ds
which is less than —(a/2)C~1I{¥) if I(v) is small enough. 0

2.3. Now the last assumption on v:

D. The origin is Lyapunov stable equilibrium point for v.

Proposition. Let H is totally nonintegrable ot the origin and g, v satisfy the con-
ditions A-D above. Then for r small enough, the cc-spheres of radius r are home-
omorphic to the sphere S"~!.

Proof. As the origin is Lyapunov stable, one can choose some small ellipsoid $ such
that each (nonconstant) trajectory of v intersects S just once and transversally.
We want to show that each trajectory of v intersects the cc-sphere of small enough
radius 7 > 0 just once and that the intersection point depends on the trajectory
continuously. This, clearly, will prove the claim.

Let v be a horizontal curve with endpoints o,z. Consider he family of curves §,~.
The right endpoint of &, runs along a trajectory of the vector field v.

The estimate of Lemma 2.2 shows that the cc-lengths of §,y decreases as A grows.

As the estimate (S) is independent of the curve «, it follows that the cc-metric is a
strict Lyapunov function for v, which implies the result we need. a

2.4. An immediate corollary of this result is the sphericity of the cc-spheres for
the contact distributions (and arbitrary sub-Finsler metric). Indeed, by Dar-
boux’ theorem, all such distributions are diffeomorphic, locally, to the distribution
ann{dz + zdy} for which the Euler vector field v = —zd8/dz — y8/0y — 220/0z
satisfies the assumptions of the Proposition 2.3.

More generally, for a graded-nilpotent finite-dimensional Lie algebra L = @&;L;
(meaning that [L;, L;] C Liy; and L is generated by L;), the totally non-holonomic
distribution of right translates of L; on the corresponding Lie group and the Euler
vector field v = ~ 3" w(g)z,0/0z, (where the weight w(q) = i if e, € L;) satisfy
the conditions of Proposition 2.3.
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3. DISTRIBUTIONS OF LENGTH 2

3.1. As mentioned above, situations when there exists a contracting flow leaving
the distribution invariant are rare. One might hope that in the regular case, the
condition of transversality of the Euler vector field to the cc-spheres satisfied in the
limiting graded nilpotent Lie case survives small perturbations. While in general
certainly false, this holds for the distributions of length 2. Recall that H is of length
2 (at o) if the growth vector is (n, N) in a vicinity of o.

3.2. We consider a smooth deformation H{z) of the distributions H(0), where H{(0)
is left invariant on a 2-step graded nilpotent algebra V =V} & V3, H,(0) = v;. We
consider only small deformation parameters z so that all H(z)’s are of length 2.
Without restriction of generality assume that H,(0) = V; for all z.

Also we take g(2) to be the deformation of the left-invariant norm on H(0). In
this section we slightly strengthen our assumption on g requiring its level surface
in fibers to be strictly convex (or, equivalently, the level surface of the associated
Hamiltonians to be smooth). For simplicity sake assume also that all norms g(z)
agree on H,.

3.3. The Hamiltonian h : T"U —» R for a non-holonomic normed distribution
(H, g) is defined as

h(2)z,p] = suE ph — g(z,h).

Denote the 1-time shift along the Hamiltonian flow corresponding to (H(z), g(2))
as I'(z) and the level set of the Hamiltonian A(z) in T; U (topologically a cylinder)
as C. The (time 1) wave front W(z) € U is just the projection to U of T'(z)C, a
(singular) hypersurface.

3.4. Two facts about distributions of length 2 will be crucial for us:

E. The cc-sphere of radius 1 is a subset of the wave front. Moreover, it belongs to
the image of a compact subset of the cylinder C. This compact subset C; can be
chosen large enough to suffice for all z close enough to 0. These results are proved
in [AS].

F. For some ¢ > 0, the (Euclidean) ce-neighborhood of the cc-sphere of radius 1
belongs to the cc-ball of radius 1 + ¢, for € small enough. This is, probably, also
deducible from the results of [AS], but is easy to prove anyway, by considering
appropriate variations.

3.5. Let 85,1 < A be the l-parameter semigroup of homogeneous contractions of
V given by &, : (v1,v2) — (A7 v, A" 2w2), v € V. Let v be a horizontal curve.
Project it to Vi, contract there (by 8) and lift back to a horizontal curve Ldypy.
This defines a deformation of v parameterized by A. The right ends of the curves
in the deformation run along a curve c,(A) € V (projecting to the straight segment
in 14). Call 583\‘| a=167(A) the standard variation vector. Clearly, for a homogeneous
distribution H, the standard variation is just the Euler vector field at the endpoint,
independent of the curve.
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3.6. For p € C consider the 1-time trajectory of the Hamilton flow with Hamilton-
ian h(z) starting at (o, p) and denote its projection to U as 7p(2), its right endpoint
as z,(z) and the standard variation vector as vplz) € Tp 0U-

Let ¥(z,p, M) be the cc-length (with respect to g(z)) of Ld APyp(z) (lift with respect
to H(z)). One has #(z,p,1) =1 and ¥(0,p, A) = . As ¥ is smooth, it follows that
there exists @ > 0 such that for z close enough to 0,

(8h Yz A Si+a(d~1)forallpe C..
Restrict z to the vicinity of 0 where (S’) holds.

3.7. Let S(z) be the cc-sphere of radius 1 for the cc-pair (H(z), g(z)). By property
E, there exists p € C. such that ¥p(z) has the cc-length 1. By (S'), the cc-distance
to zero decreases at least linearly along ¢4 (z)- By property F, the same is valid for
all curves starting at z,{z) with tangent vectors within ¢ x |v,(z)|-distance to the
standard variation vector v,(2z). The vectors u,(z) depend smoothly on p,2 and
v,{0) is just the Euler vector at z(0). Hence, for all 2 close enough to 0, the Euler
vector at Zp(z) is within ¢ x lup(2)|-distance to vp(2), for all p € C.. Therefore the
ce-distance to zero, with respect to (H(z), g(z)) is the Lyapunov function for the
Euler vector field which implies the main result:

Proposition 3.8. Small cc-spheres for distributions of length 2 are homeomorphic
to spheres.

o
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