Report 99-035
Supporting points processes
Yuliy Baryshnikov
ISSN 1389-2355



SUPPORTING POINTS PROCESSES
AND SOME OF THEIR APPLICATIONS

Yu. BARYSHNIKOV

EURANDOM, Eindhoven, PB 513, MB 5600, The
Netherlands. e-mail: baryshnikov@eurandom.tue.nl

ABSTRACT. e introduce a stochastic point process of S-supporting points and prove that
upon rescaling it converges to a Gaussian field. The notion of S-supporting points specializes
{for adequately chosen S) to Pareto (or, more gererally, cone) extremal points or to vertices
of convex hulls or to centers of generalized Voronoi tessellations in the models of large scale
structure of the Universe based on Burgers equation. The central limit theorems proven here
imply i.a. the asymptotic normality for the number of convex hull vertices in large Poisson
samples from a simple polyhedron or for the number of Pareto (vector extremal) points in
Poisson sampies with independent coordinates.

0. INTRODUCTION

0.1. Imagine a sea bottom which someone attempts to measure using a measuring rod. If
the rod is thick, the measuring is not ideal, and not all points at the bottom will be touched.
In this paper we deal with the model in which the “bottom” is a realization of some Poisson
point process, homogeneous in the horizontal direction. The points that are touched form
a certain new point process and its properties are the subject of this paper. The Figure 1
illustrates the model. We will call the point process loasely described above the supporting
points process.

This model seems to carry some aesthetic appeal by itself. Our interest in it, however, is
motivated by its intimate connections with several much more attended problems of applied
and geometric probability theory.

0.2. In this paper we prove central limit theorems for the supporting point process in the
situation where the template S modeling the measuring rod of the informal description above
is described as the superset of a function growing at least linearly and at most polynomially
at infinity, and the intensity rate of the underlying Poisson point process is bounded by the
exponent of the height and is essentially positive at negative heights (exact formulations
see in section 1, assumptions A and B). These assumptions are not, of course, necessary,
and can be relaxed in a variety of ways; the form used in this paper is a result of efforts to
minimize volume of the paper while retaining the scope of applications of results.

The suggestions of the anonymous referee are gratefully acknowledged.
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Figure 1. The "measuring rod”
process. Supporting points are
filled, Template S is depicted
as the dotted line.

0.3. The central limiting theorems we prove here, while apparently new, are not very
surprising. The main novelty of this paper are the applications of these results, which
include the investigations of the point processes of Pareto (vector) extremal points in a
sample with independent coordinates and the processes of the convex hulls vertices for the
standard Poisson sample from infinite orthant or from the interior of the paraboloid. These
latter processes are well-known to be the main ingredients in the study of the asymptotic
behavior of convex hulls of large ¢id samples from uniform distribution in simple polyhedra
or strictly convex bodies with smooth boundary, respectively. We derive the central limit
theorems for all these processes and deduce, for example, the CLT for the number of Pareto
extremal points with independent coordinates, a long standing problem.

Yet another application is the CLT for some point processes associated with asymptotic
sclutions of the Burgers’ equation

Ov /it + vOu /O = eAv

in the inviscous limit, ¢ =+ 0. These processes describe the spatial distribution of matterless
cells in some models of the large scale structure of the Universe.

There are certainly other models of applied probability theory which fit into the general
scheme of supporting points processes, for example the crystal growth model of Johnson-
Mehl (see[M] for a thorough treatment). They will not be discussed here to save place.

0.4. Plan of the paper. Section 1 contains the basic construction and main results,
Theorems 1.8.1 and 1.9.2. The applications of these results to the problems discussed above
are given in Section 2. The proofs of all technical results are contained in Section 3 and
miscellaneous results and remarks in Section 4. The proofs are rather elementary and use
the moments method in the guise of B-mixing and exponential clustering.

1. CONSTRUCTIONS AND RESULTS

1.1. Basic notations. We consider point processes in Euclidean N = (n + 1)-dimensional
space W = V x R,V = R", with generic point denoted as w = (z,h),z € V,h € R. The
projections to corresponding factors will be denoted as z(-) and h(-) correspondingly, that
isz(w) =z and h(w) =h for w = (z,h). We will also imply that V" and R are embedded
into W and will sometimes denote {z,0) simply as z and (0, k) simply as h when there can
be no confusion.

It will be assumed throughout the paper, that in the Euclidean metric on W, the V-plane
and h-axis are orthogonal. The metric on W as well as the induced metrics on V' and h-axis
is denoted as | - |.
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The sums of set are understood always in Minkovski sense; the notations A +w, A+, A +
h for A C W are reserved for A + {w}, A + {z}, A+ {h} correspondingly.

1.2. Assumption A. The role of the “measuring rod” of informal discussion in the In-
troduction is played by a fixed subset S C W which we assume to be a supergraph of a
function,

S ={(z,h): h 2 ¢(z)},
where the function ¢ is assumed to be continuous and to grow at least linearly and at most
polynomially at infinity:

aa +balz| € ¢(z) < Aa + Balz|™ (A)

for some positive ba, Ba and ya > 1.

The intericr of § we dencte by §° = {(z, h) : h > ¢(x)}, the boundary of & as 85 = {(z,h) :
h = ¢(z)}.

1.3. Poisson point process. Let p be a locally integrable nonnegative function on R.
We consider the Poisson point process £ on W with the intensity measure p given by the
density p(h)dhdz. We assume that the u-content of the shifted set S + h is finite for all A,
and denote this p-content as

k(R) = /s , plhdhdz

By construction, p(S + w) = k(h(w)).
We will use the same notation £ for the random measure associated with discrete point
process & (that is the sum of deltas at points of £).

1.4.1. Definition. A point w is (S, £)-supporting (or simply £-supporting, or just sup-
porting when the context is unambiguous), if there exists a point w' such that £(5° + w') =
0 and w € A0S +w'. Such a set S + w' is celled supported set, and w' its apex.

The set of (S, £)-supporting points in & will be denoted as £5.

For w' = (z', h'), the “depth” h’ is exactly the first instant of hitting the “bottom”, that is
an element of £, by a set in the family of vertical shifts S+z' + h, —c0 < h < o0, conforming
with the intuitive description from the Introduction.

The point process &s is the central object of this paper.

1.5. Assumption B. Throughout the paper we will assume that the intensity rate is
bounded by an exponential function of the negated height and is essentially positive when
h = —oo0, that is

p(h) < Ap exp(—Cgh)) everywhere; p(h) > ag >0 for R <0, (B)

where Ap,ap and Cp are some positive constants.

1.6. Correlation functions. For a point process # in W, the value of the correlation
function 7] : W* — R at the tuple {wi, ... ,w;} of pairwise distinct points w; € W,w; # w;
can be defined as

E,n{w + e1B) - - - plwg + €. B)

€1=+0,...e =0 e{v ioa ef'ual(B)k

where B is (say) the unit ball in W.
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In our situation the correlation functions can be calculated as follows. For a point w € W
let I(w, &) = 1, if w is £&-supporting and 0 otherwise. For a k-tuple {wy,... ,w} of pairwise
distinct points in W, let

Fr(wi,. .. wp) = B [] 1wy, 8).

The function 7y is the probability that all points in the tuple are &-supporting. The corre-
lation densities for the supporting point process £s are then equal to

i = - [I p(h(w;)) dw;.

This follows from the standard properties of the Poisson point processes: indeed, conditioned
on {wy,...,wx} C &, the point process § — {ws,...,w,} is again Poisson with the same
intensity measure.

1.7. Properties of £{s. Henceforth both A and B are assumed.

The distribution of the point process £s is, apparently, invariant with respect to shifts along
V C W. Further, as £s C £, its first moment measure has a density r < p with respect to
the Lebesgue measure on W (one has, r = r; as defined above). The following Proposition
says that £g is essentially concentrated near V:

1.7.1. Proposition. The correlation functions ry, of s decrease exponentially with |h|:

rk(wl,... ,wk) S Ak exp (—Ck max h,l)

for some positive constants Ay, Cy..

Proof of this and the following Propositions will be given in Section 3.
The next important property of the correlation densities r;, is the exponential clustering.

1.7.2. Proposition. For any natural k,l there exist positive constants Ay, Cy 1 such that
|Tk+i(wl yeee Wiy w;?‘ .. sw;) - rk(wla s 1wk)rl(w;: < :‘w;)l < Ak.f exP(_Cde):

where d is the distance between sets {wy,... ,wi} and {wi,...,w;} (the smallest of the
pairwise distances between points in these finite sets).

1.8. These two Propositions imply the main result on the asymptotics of the processes of
S-supporting points.

Let {s.v = z(£s) be the z-projection of {s. The point process {s v is homogeneous in V
(as the distribution of £g is invariant with respect to shifts along V') and has finite intensity
density rv dz with ry = [ - T(0,h) dh (the integral converges by 1.7.1). Consider the
rescaled random measure given by &5 v,2(A4) = £s,v(AA) for Borel A C V, and normalize it

_Esva—E(lsva)
= o, (1.8.1)

L8

The following result is our main tool in applications:
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1.8.1. Theorem. Asymptotically, as A = 00, s vA(A)/A" converges to r vol(A) in proba-
bility, and v\ converges in law to a generalized Gaussian random field with covariance kernel
Cé(z — 2'),C = (fy, a2,v(0,y)dy + rv)/2, where qo v is the second cumulant density for
Esv.

Proof. It follows more or less straightforward from the Propositions 1.7.1 and 1.7.2. Propo-
sition 1.7.1 implies that s v has finite constant (as {s is invariant under shifts along V)
intensity rv = fio r(h)dh. Further, Propositions 1.7.1 and 1.7.2 together imply that &5 v
clusters exponentially. Indeed, denote by r¢ v the k-th correlation function for &sv. It
is easily seen that ry v (z1,...,Z¢) is just the integral of k-th correlation function for the
supporting point process £s along the fiber consisting of all (wy,... ,w)’s projecting to the
tuple {z,... ,z¢},

'f'k,V(iL'l, e "Tk) = j Tk((xl?hl)’ Coa; (xk:hk))dhl cet dhka
hy,e by

whence the estimate follows immediately.

The cumulant densities gi(zy,... ,%+) for &s,v are related to the correlation functions r v
via logarithmic transformation (see, e.g. [Ruj, Ch. 4.4, “algebraic method”), and it is
standard that the exponential clustering of ry, v is equivalent to the exponential decreasing
of gi(x1,...,zx) as a function of the differences z; — ;4 at infinity ((Ru] again'). This
latter property implies the Brillinger’s B-mizing for the point process £s v [Bri):

lge (1, ..., 2x)|dzs - - dzy < 0O
k-1

for all k£ and, consequently, the central limit theorem for £5 v (see, e.g. [Iv]). 0

1.9. Asa corollary, one can deduce the central limit theorem for the £s-content of reasonably
behaving large open subsets of W. The condition we need is the following. Let A C W be
open and Ay = ANV be its intersection with V.

1.9.1. Definition. We sey that A is quasitransversal to V if the boundary of Ay is the
intersection of the boundary of A with V.

1.9.2. Theorem. For any open bounded A C W | let N()) be the number of points of £5
in AN, de. N(X) = Es(AA). If A is quasitransversel to V and has nonempty intersection
with V, then:

a) both expectation and veriance of N()) grow as [Ay|\™ as X — oo:

EN(A) e YN(A) N
[Ay|an ! |Av|an

for some positive constants e,v (depending on S, p only}, and
b) the distribution of N()) is asymptotically normal:
N(A) — |[Av]are

\/IAvl)\“’v

! Although in this reference just the equivalence of clustering of r and vanishing of g at infinity is shown,
the modification of the result to the ezpenential decreasing is immediate.

—= N(0,1)
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in distribution.

Proof. The claim of Theorem 1.9.2 apparently follows from Proposition 1.8.2 for cylinders
over an open base in V: if A = 271 (z(A)), then £s(A) = £€s v(A N V). To prove the claim
for arbitrary open bounded A C W, we make first some intermediate estimate. Let A be
the symmetric difference between A and the cylinder over Ay, A = (z71(Av) — A)U (A -

21 (Av))

1.9.3. Lemma. If A is guasitransversal to V', both the expeclation and the variance of
Ls-content of AA are o(A™) for A = o0.

Proof. This can be deduced as follows. Denote the volume of the intersection of r-tube
around V with A as b(r). The n-dimensional Lebesgue measure of Ay = ANV = dAy
vanishes (here A is the closure of A), and the condition of quasitransversality implies that
b{r)/r = 0 asr — 0. The expectation of £s-content of AA is given by E£s(AA) = [, , r(z)dzx
can be then estimated as (here 4, and C; are the constants provided by Proposition 1.7.1)

/ r(z)dz < 4, [ e~C1Ih=N gy = A AntH! f e~ O gy = 4 AnH! / e~ " db(r),
AA A4 A 0
which is o(A™) by Tauberian thecrem for Laplace transforms [P].

Similarly, let ba(r) be the volume of A2 C W?2 within the distance r to the V-diagonal
Ay = {(z,z),z € V} C W2. The measure of Aa, = A>N Ay in V? is zero, whence, by
quasitransversality condition again, by /r®*2 — 0 as r — 0 (the exponent n + 2 here is the
codimension of Ay in W).

The variance of £5{AA) is given by
[ g2(z, y)dzdy +/ r(z)dz.
(AA)? AA

The second term is already known to be o{A™). The integral in the first term is estimated
in absolute value as (here A; ; and C1; are the constants implied by Proposition 1.7.2)

Lo a]
Ary / e Crale=vlgpdy = 4, | A2+2 f e~ M=ty dr — A, [ e~ C1M 2 ghy (1),
(r4)2 A? 0

which is o{A™) by Tauberian theorem again . o

Lemma 1.9.3. implies evidently the part a) of Theorem 1.9.2.

To prove the part b} it is enough to notice that the difference of (centered) £s5-contents of
AA and z=1(AAy), the cylinder over its intersection with V, is majorized by the (centered)
&s-content of AA, which is of smaller order than any of them. 0O

2. APPLICATIONS
2.0. In this section we consider the applications of our main results, Theorems 1.8.1 and
1.9.2.

2.1 Pareto extremal points. Consider N = n + 1-dimensional vector space W and a
convex cone K C W. This cone defines a partial (“vector”) order on W : z > 2’ <=
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z — 2' € K. The case we will be interested here is that of Pareto cone, that is of positive
orthant Kp = {z:2; >0,i=1,...,N}.

Given a subset X C W, one defines K-extremal points in X (or Pareto extremal for Kp)
as follows: a point 2z € X is K-extremal, if there is no 2’ € X,z # 2/, such that 2’ > z.

2.1.1. Pareto extremal points with independent coordinates. Let X be a finite iid
sample of size m with independent coordinates without atoms, and P(m) is the number of
Pareto extremal points in X. What can be said about P{(m)?

The pioneering work [B-NS) provides with the following information:

» The expected number of Pareto extremal points, explicitly given as “multidimensional
harmonic series”

EP(m) = 3 ——,

f1v...-4
1€ €...Cin<m ! B

grows as log" m/n!;

o In dimensions V = 2,3 the growth of variance is of the same order log" m as that of
expectation;

e In dimension V = 2, the distribution of P(m) is asymptotically normal (actually, the
generating function of P(m), closely connected with the symmetric group parapherna-
lia, has been found explicitly).

The series representation for the variance of P{m), also reminiscent of “multidimensional
harmonic” were found in [In]. However, it is difficult to extract the asymptotic behavior
from them.

2.1.2. Pareto extremal points and supporting point process. The connec-
tion between just described mode! and supporting point processes is rather immedi-
ate. First, the monotone increasing continuous coordinate-wise changes (that is changes
z2=1(z1,...,28) = (fi(21),..., fn(2n)) with functions f; strictly increasing and continu-
ous) do not change the Pareto partial order. Taking f; to be the distribution function of
z;, we reduce the problem to the case when z is uniformly distributed in the unit cube. For
convenience, we shift the cube by {(—1,...,—1) to arrive at the uniform distribution in the
cube I = {-1<w; <0},i=1,...,N.

The intuition suggests that the chances to find an extremal point somehow far from the
union of coordinate hyperplanes are slim, whence it is enough to concentrate on the domain
close to the coordinate hyperplanes. The restriction of the iid sample X of large size m to
this domain is nearly Poisson. It is intuitive, therefore, to consider, as an approximation
step, a variation of the initial problem, where the sample X is a realization of the Poisson
point process with intensity density mdw in I, or, equivalently, with Lebesgue intensity
measure in m /N,

One can extend the probability space so as to assume that X is just the intersection of
m!/NT with the standard Poisson point process {& (with Lebesgue intensity measure) on
W_:={2:2<0,¢=1,...,N}). Moreover, it is clear that Pareto extremal points in
£g N (MmN 1) is just the Pareto extremal points of £ which lie in m!/N1.

Now we choose new coordinates on F_:

yi = —In{-2),i=1,... ,N. (2.1.1)
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Figure 2. Logarithmic transfor-
mation of the negative orthant.

This change takes W_ to RN = ¥ and is again monotone and coordinate-wise, thus Pareto
order preserving.
Let

1 X
The hyperplane V' := {h = 0} has dimension n. We choose some orthonormal coordinates
(z:),i=1,...,non V and take the h-axis to be spanned by (1,...,1). This makes (z,, k)
an orthogonal coordinate system on W. One expresses the functions y; in the new basis,
yi =h-1Ii(x),i=1,... ,N, where l; are some linear functions on V (one has }_, 1, = 0).
The Pareto partial order on W is given by the conditions

(@, h) >k (@', /) = yilz,h) > yi(z’,h') foralli=1,...,N,
or, equivalently, that (z,h) € §° + (2', ') for S given by
S={(z,h):h>1; for i=1,...,N}. (2.1.2)

In other words, § is defined as in assumption A with the function ¢ = max;{; on V.

By definition, if w is Pareto extremal in X, then w +S°NX isempty andw e w+ 8. It
follows that w = (z, k) is Pareto extremal if and only if it is S-supporting for £ = X.

It remains to find the intensity measure in the new coordinates: an immediate calculation
gives that its density with respect to Lebesgue measure is e~ V%,

2.1.3 Limit theorems for Pareto extremal points.

Now we are in the position to apply the results of the previous section. Indeed, the as-
sumptions A and B can be checked immediately. The supported set template & defined by
the function (2.1.2) satisfies apparently the conditions of assumption A. That the intensity
density of the Poisson point process satisfies assumption B is clear as well.

Hence we arrive at the following result.

2.1.4 Proposition. Let £ be the standard Poisson point process in W_ (with Lebesgue in-
tensity measure) and £p be the process of Pareto extremal points in £. Let €5 be the image of
£p under transformation (2.1.1). Then the rescaled process vy defined as in (1.8) converges
in distribution to a generalized Gaussien rendom field supporied by V and invariant with
respect to shifts along V as A — co.

Proof. This is an immediate corollary of the Proposition 1.8.1. O

The transformation (2.1.1) sends the cube m!/VT to the displaced positive orthant Ay =
{yi 2 -Mi=1,...,N}, where A = (1/N)Inm. As A, = AA;, and the set A, is clearly qua-
sitransversal to V, we are in the situation of Theorem 1.9.2, which implies the central limit
theorem for the number of Pareto points in a Poisson sample with independent coordinates:
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2.1.5 Corollary. If X is the Poisson point process in the unit cube with intensity density
mdw. Then the number P{m) of Pareto extremal points in X is asymptotically normal with
both expectation and vaeriance growing as In" m.

2.1.6. In fact, one can derive from 2.1.5 similar statements for the number of Pareto
extremal points in the #d samples of fixed size m from the unit cube I. The estimates
for the growth order of the variance for the Poisson sample case can be modified mutatis
mutandis to the fixed size m case implying the log" m growth.

The central limit theorem in this case is also rather straightforward. Indeed, consider the
subset Sy, C I defined as S, = {[]; |2:] < In* m/m}. One can show that the probability to
find just one Pareto extremal point outside this set (estimated from above by the expected
number of Pareto points there, which can be derived easily e.g. from results of [B-INS])
tends to zero when m — co. Analogous estimate is valid for the Poisson sample from [
with intensity density m dw. Further, the standard arguments (e.g. results of Prokhorov
on the total variation differences between binomial and Poisson random values) show that
one can find coupling of iid size m sample from I and of the standard Poisson point process
with intensity density mdw on I which coincide on S, with probability converging to 1
as m — oo. It follows that the centered normalized distributions for the number of Pareto
points in the samples of fixed size and in Poisson point processes in I converge to the same
limit as the sample size increases indefinitely. Summarizing this sketch of a proof, we claim

2.1.6 Corollary. The number of Pareto eztremal points in an iid size m sample with in-
dependent coordinates is asymptotically normal, with ezpectation and veriance both growing
as In™ m when m — co.

2.2. Convex hull vertices. Let P be a convex body in N-dimensional linear space E and
X be an iid size m sample from uniform distribution in P. The distribution of the number
of vertices of convex hull of X has been discussed in literature many times. Detailed surveys
of what is known can be found in [Sch] or [Buc], and here I just sketch the results relevant
to our situation, restricting my attention to asymptotics.

2.2.1. Asymptotics of the number of convex hull vertices.

Let X be the size m #id sample from P and C{m) the number of vertices of the convex hull
of X. The following is known about the asymptotics of C'(m) for m — oo:

o Let P be a simple polyhedron, which means that near each vertex P is affinely isomor-
phic to the positive orthant (or, equivalently, each vertex belongs to exactly N faces).
Then the expectation of C(m) grows as fo(P)en In™ ! m, where f; is the number of
vertices of P and cy is a constant depending only on the dimension [Dw].

o If P is strictly convex with smooth enough boundary, then the expectation of N(m)
grows as m{V=1/(N+1) (Raynaud, Wieacker, see references in [Sch]).

» Let the dimension N = 2 and P be either a polygon (all plane polygons are simple) or
strictly convex plane domain with smooth boundary. Then the growth of the variance

of N(m) is of the same order as that of the expectation and the central limit theorem
holds [Gr].

The intuition behind these results is that, similarly to the case of vector extremal points, the
vertices of the convex hull of large sample concentrate near the boundary, more specifically, in
a neighborhood of the boundary where the “floating volume” [Bi, BL] — the function which
associates to a point the minimal volume of the piece cut from the body by a hyperplane
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through the point — is small. As in the extremal vertices case, this justifies the replacement
of the large fixed size sample by the Poisson sample as a valid approximation for the convex
hull. In this paper we concentrate on this Poisson approximation.

2.2.2. Limit case: orthant. Here we deal with P a simple polyhedron. To localize the
vertices of the convex hull of the sample “close” to a vertex of P, we associate to P its dual
simplicial fan. Recall that this is the partition of the space W* of linear functionals on W
into the simplicial cones, one for each facet of P. The cone corresponding to the facet F
consists of the linear functionals attaining maximum at a (relative) interior point of . The
cones of maximal dimension N correspond to the vertices of P and their number is therefore
fo(P). We will denote by Cp, the cone associated to the vertex p of P.

A point in a closed subset X C W is an extremal point of the convex hull of X if it maximizes
a linear functional on X. We denote the set of all extremal points in X as extr(X), so
that C(m) = |eztr(X)| for X an #id sample of size m. If we restrict the linear functional
whose maxima on X we consider to a cone C C W*, we get a smaller subset of extremal
points which we denote as extre(X) C X. If C = W* — {0}, extre(X) is again just all
the extremal points of the convex hull of X

Clearly, extr(X) = U,erp) extre,(X). Fix a vertex p of P (and denote C,, just as C to
save on typing). The extremal points in extrc, (X) flock around p and it is convenient to
study those subsets independently.

As the operation of forming the convex hull commutes with affine transformations, one can
assume that p is at the origin and that near p the polyhedron coincides with the negative
orthant W_.

Now we focus on the Poisson sample X from P with intensity density m dw. Equivalently,
one can assume that X is the intersection of m'/N P with the standard Poisson sample £
from the negative orthant W_, similarly to the construction of 2.1.2. Again, one can define
the C-convex hull of the whole (a.s. infinite) Poisson point process £&. Unlike the Pareto
case, however, the set of C-extremal points of the convex hull of £ N (m'/N P) is not equal
the set of the C-extremal points of the convex hull of £ (intersected with m!/~ P): the latter
set is smaller in general. One can show that the difference between these random sets is
small enough, so that the main contribution is just the part of the C-convex hull of £ falling
within m!/N P. We will give the details elsewhere and refer to this result only to justify the
attention to the process C-convex vertices of £.

We notice that the C-convex hull of the standard Poisson sample from W.. equals almost
surely the plain convex hull (recall that in our assumptions C = W, the Pareto cone), and
that the vertices of conv(¢) are all Pareto extremal points in £. Somewhat more surprising
is that the logarithmic transformation (2.1.1) takes the process of convex hull vertices into
the S-supporting point process for an adequate S.

We preserve the notations of 2.1.2 (so that z; are the coordinates on E and W_ = {z; <
0,i=1,...,N}). The condition that w is a vertex of conv(£) is equivalent to the existence
of a linear functional I = 3" a;2;,4; > 0 whose maximum on £ is attained at w: a =
{(w) > l(w') for alt w' € £. Any hyperplane H = {Y a;z; = a, a < 0, a; > 0} can be
obtained from a fixed hyperplane, say Hy = {3} z; = —1}, by coordinate-wise dilations
zi— Kz R > 0,i=1,... ,N.

In (z, k) coordinates the hyperplane Hy is given by

S et =, (2.2.1)
H
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The equation (2.2.1) describes the hypersurface bounding the set

S={(z,h) : h2In(3 e}, (2.2.2)

The coordinate-wise dilations are just the shifts by vectors (Inky,...,Inkpx’s in y-
coordinates. Summarizing, this shows that a point is a vertex of the convex hull of the
sample ¢ if and only if it is an S-supporting point for S given by (2.2.2) after the trans-
form (2.1.1). The assumption A is clearly satisfied. The intensity measure is, as in 2.1.2,
e N* dhdz, implying B.

Therefore, we immediately obtain the following results.

2.2.3 Proposition. Let £ be the standard Poisson point process in W_ (with Lebesgue
intensity measure) and £c be the process of convex hull vertices for £. Let {s be the image of
¢ under transformation (2.1.1). Then the rescaled process vy defined as in {1.8) converges
in distribution to a generalized Gaussian random field supported by V and invariant with
respect to shifts along V as A = oo.

Proof. Immediate. g

Analogously, we get the central limit theorem for the number of convex hull vertices for £
within the inflated polyhedron m!/¥ P,

2.2.4 Corollary. The number of points of ¢ within mY/N P is asymptotically normal with
both expectation and variance growing as In" m when m — oco.

2.2.5 Convex hull of the fixed size sample in P. The results obtained so far form a
compelling evidence that the central limit theorem for the number of vertices of convex hull
of large fixed size samples holds for any simple polyhedron P. This is indeed the case. The
detailed proof will be presented elsewhere, because, while no new ideas are involved, some
rather tedious technical estimates should be done. The lacking pieces are the following:

e One has to work out the size of the relevant neighborhood of the boundary of P which
contain almost all extremal points of the convex hull for both binomial and Poisson
samples and small enough to provide the coupling one needs;

* One has to estimate the difference between the sets of C-extremal points of the convex
hull of the Poisson sample from P and the set of C-extremal points of convex hull of '3
falling into P. This difference can be shown to have both expectation and variance of
order In"~! m so that its contribution is small compared with that of extro(€) N P;

¢ One has to estimate the overcount of the convex hull vertices caused by the fact that
some of them are Cp-extremal for several vertices p. Intersection of different cones
Cp.p = CpNCyp is contained in a linear subspace L € W* of positive codimension and
each point, that is a vertex which is both C,- and Cy extremal in the convex hull of
X, is a vertex of the convex hull for projection of X along the annulator of L. The
number of such convex hull vertices in less dimensional situation can be estimated and
is of smaller order than the main contributions of Cp-convex hull vertices.

2.2.6. Limit case: paraboloid. Assume now that the convex body P C W has smooth
enough boundary and is strictly convex in the sense that the second fundamental form is
positive definite everywhere. Repeating the mantra of previous sections one is led to the
standard Poisson sample with Lebesgue intensity measure in the inflated body AP. Again,
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as the convex hulls formation commutes with the affine transformations, one can always
transform AP to a body Py of the same volume with origin on the boundary, tangent plane
at the origin coinciding with V € W and with given second quadratic form at the origin
(say, —|-|?). The smoothness of the boundary implies that at arbitrarily large vicinity of the
origin, Py is arbitrarily close to paraboloid P = {h < ~ 3" z}} (we assume that {z;} form
a coordinate system on V, as in the setup of section 1). Hence the limiting point process
approximating the vertices of the convex hull of a strictly convex body near a point is the
process of convex hull vertices for the Poisson sample (with Lebesgue intensity) from P. A
point w € £ belongs to the convex hull of £ if and only if there exists a hyperplane through
w bounding a halfspace H; = {h > I(z)}, I linear, without further points of £.

The transformation
g Thr bty ol (2.2.3)
i

takes the paraboloid P into the halfspace {h < 0} and the family of halfspaces H; into the
family of shifts of the set
S={h>) 2z}
i

Therefore, the transformation (2.2.3) takes the convex hull vertices into the S-supporting
points of its image. The assumption A is clearly satisfied. The Lebesgue measure is preserved
by (2.2.3), and the resulting sample is standard Poisson in the halfspace {h < 0}, whence
the assumption B is satisfied too.

2.2.7 Proposition. Let {s be the transformation of the convex hull vertices process for the
standard Poisson sample in the infinite paraboloid P and vy its rescaling defined as in (1.8).
Then v), converges to a generalized Gaussian process concentrated on V.

2.3. Large-scale structure of the Universe. Another area of applications of the S-
supporting points processes is related to the asymptotic solutions of the Burgers model for
turbulence with random initial data, which is used commonly as a working approximation for
the evolution of the large-scale structure of the Universe. The body of literature dedicated
to this equation is enormous, and I mention here only the book [GSS] and recent papers
[AMS, MSW] as starting points and collections of references.

In the limit of vanishing viscosity, the solution of the Burgers equation in R® (without
external forces) and with potential initial velocity v = 85p/8z, Sp : R* — R is given by

'Ut(x) = 5-5}/6.’1:; Sl = ef!(z)

~ (@ - 7)? (2.3.1)
filz) = 328 [fo(y) - T]

If Sp is a random function and oscillates strongly enough, then only its local maxima matter.
A standard simplifying assumption (valid, e.g. in the zero-range shot-noise model) is that
the positions  and heights & of these local maxima form a Poisson process £ in R* x R.
Another situation where the Poisson process of maxima realizes is the case of Gaussian
random field fg. Under some assumptions on the correlation function for f, it is shown
in [MSW] that the process of relevant local maxima of oy f(x/L) (where o1, = L?InL is
the standard scaling in the theory of extremal values of Gaussian processes) converges in
appropriate sense to the Poisson point process with the intensity e=* dhdz.
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Whenever the Poisson approximation for the local maxima process is valid, one can apply
the approach of this paper. The solutions of (2.3.1) are then just the boundary of the
union of all £-supporting sets, where the template S is the paraboloid {h > |z|?}. The
supporting points of this process correspond in the physical picture to the matterless voids
in the Universe.

The results of section 1 imply the central limit theorem for the number of such areas, if the
density of h decreases rapidly enough. Details are straightforward and are omitted.

3. Proors

3.0. In this section the proofs of the technical results are given.

3.1. We will need some constructions first. Let B4 g be given by
Bap = {(z,h):h 2 A+ Bjz]"*} C W,

with ya the exponent from the assumption A. One can choose A, B large enough and § > 0
small enough so that the sum of B4, g with the horizontal d-disk K5 = {(z,0) : |z| <é}C V
is contained in S:

Bap+ K5 C6S.

We fix these A; B, § once and forever and denote B, g simply as B. Further, we fix a lattice
L in V such that the §-neighborhood of L in V is the whole of V.

3.1.1 Lemma. For any = € V there exists a lattice point | € L such that B+1C S + .

Proof. The é-neighborhood of x contains a lattice point I, whence B+ (I —z) C B+ K C S.
a

3.2. Proof of the Proposition 1.7.1. One has, obviously, 7 (wy,... ,wg) < 7 (w;) for
any i.
3.2.1 Lemma. The function 71 (w) is bounded and decreases more rapidly then any ezpo-
nent of h{w) as h{w) = —oo:

Ti(w) < A(C) exp(C min(h(w), 1)),

for any positive C.

Proof. To estimate F{w) we use the following discretization argument. If w is supporting
and S + (z, k) is the supported set, then, by Lemma 3.1.1, there exists a lattice point {
within é-distance to z, such that B + ({,h) C S + (z,h). Now

h =h(w) — ¢(z(w) - z)
<h{w) — ba — aalz(w) — =]
<(h{w) — ba +aad - aalz(w) - 1),
(assumption A and associated constants used). Hence, as £&(S + w) = 0, the £ content of

B+1+ h(w) + h(l), where A(l) = —ba + apd — aa|z(w) — |, vanishes as well. If we denote
as m(h) the g-content of B + h, then the probability that £(B + h(w) + k) = 0 is just
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exp(—m(h(w) + k). For h,h' < hy < 0 one has m(h + h'} > m(h) — ah' for a positive
constant a, whence the latter probability is at most ce~™{Mw)g=ssalz{w)=I| for 5 positive c.
The sum of these probabilities over all I € L majorizes the probability that w is supporting,
which gives the estimate

El (w, €) < =) 3™ gmancle(w)-tl,
el

where the second multiplier obviously converges to some continuous, L-periodic, and, there-
fore, bounded function. Now, m(h) > C(Aa — h)**t7/74 for a positive C and Aa,va from

assumption A. This proves the Lemma. O
Proof of 1.7.1: Final. The rest is simple. Indeed, if h. = min;(h{w;)), hy =
max;(h(w;)), then 7 < A(C)exp{(Cmin{h_,0)) (Lemma 3.2.1), and [];p(w:) <
AL exp(—kCghy). The product of these two functions, for ¢ > 2Cg, is

[y

O(exp(—Cp max(hy,—h_))); max(hy,~h_) = max; |h(w;)|, and the Proposition 1.7.
follows.

O

3.2.2 Remark. Actually, the same reasonings prove that for any a > 0, the function
FE(wy,. .. ,wi) [I, p(w:) is bounded. This fact will be used later.

3.3 Next we prove that the apexes of the sets supported by a point, are localized near V.

3.3.1 Proposition. The probability P(w, H) that a point w supports a set S + (z,h) with
h < H decreases exponentially when H - —co:

P(w,H) < Ah(w)” exp(CH)

for some positive A,C.

Proof. This follows essentially from the construction of Lemma 3.2.1. The probability in
question is majorised by the sum of probabilities P{&(B + I + [h(w) + ﬁ]) = 0} taken over
only such , where the k() < H+ leald. The number of lattice points at distance < R grows
as R™; the summand decreases as exp(—aaa R), and the summation starts at the distance
R of order (h{w) — H)/aa. An easy estimate implies that the sum is bounded from above
by a constant multiple of (h{w) — H)" exp(aH), whence the the desired inequality follows.O

3.4 Proof of Proposition 1.7.2. Consider two tuples of points in W, {wy,... ,w;} and
{wi,... ,wy} at the distance d (that is min;j|w; — w}| = d). We want to estimate the
difference

'f'k-H(W],- - 1wk1wll:"' !w;) - Tk('lﬂ],.- - ,?.Uk)'f'j('w;,. - ,?.U:) (341)

We can assume that all A(w;), h(w}) are at most ad in absolute value for a constant a > 0
{unspecified for a while). Indeed, otherwise, by Proposition 1.7.1, all terms in 3.4.1 are
bounded by exp —something x d and there is nothing to prove. For our further estimates

we will need
dafv/1—4e? < ba. (3.4.2)

Clearly, for a small enough, this is satisfied.
Introduce the cones K; = {(z,h) : h > [apn — 3ad] + ba|z — =(w;)|},i = 1,... ,k and

similarly K7} for wj. The set K; contains all sets S + w having w; on its boundary and
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such that h{w)} > —ad. Indeed, if w = (z,h) is such a point, then one has A(w;) — h >
aa + balz — z{w;)|. Using h(w;} < ad,h > —ad one derives ba |z — z(w;)| < 2ad — aa,
whence h > —ad > [aa — 3ad] + balz — z(w;)]|.

Denote the intersections of cones K, K with the halfspace {h < ad} as U;, U} correspond-
ingly. Let £ = £NU; is the intersection of the point process { with U;. Analogously, define
& = &£NUj. Consider the random values [;{(£) and I;(£) defined as following: I;(¢) = 1, if
there exists a set & + w C K; supported by w;, and 0 otherwise. The value fJ’- (€} is defined
analogously. Clearly, I;(§) < I{w;, ), [;(§) < I(w},£).

We will use the shorthand I,{’ and {, 1" for [, J(w;, ), [1; I(w}, &) and [T, L(€),I1; L;(€)
correspondingly. Once again, I < I, I' < I'.

Let £ be the event that there are no points of £ in any of the sets K;, K ; with k-coordinate
larger than ad; by £ we denote the complement to £.

3.4.1 Lemma. The probability of € is exponentially small with d:
PE < Aexp(—Clad)),

for some positive A,C independent of {wn,... ,wp}, {w],... ,wf}.
Proof. The integral of p over K; is of order

h+ 3ad - aA)ndh,

A Cgh
/ad B exp( B)( N

and the total probability is majorized by the sum of these integrals over all 4, 7, whence the
claim follows. O

We denote by [ the indicator function of £. Set
D=I-[LD=I-ITI.

The random values D, D' are, apparently, {0,1}-valued, and the expectations of both of
them are exponentially small with d. Indeed, I(w;, &) # Ig[]; I;(€) if either Ir = 0, or
when for one of i-s one has I(w;, &) # I;(£), which implies that w; is £-supporting for a set
S +w with h{w) < —ad. Both events have probabilities which are exponentially small with
d uniformly in w;: the former by Lemma 3.4.1, and the latter by Proposition 3.3.1 {where
we use |h{w)| < ad).

The key observation now is that, conditioned on £, the random values IzI and IzI" are
independent. Indeed, the event that w; is £-supporting, with a supporting set within K; and
with no points of £ in K; above {h = ad} depends only on the intersection of £ with the set U;,
and the same is valid for wis. For a satisfying (3.4.2), the sets U; and U},i=1,... ,k;j =
L,...,l donot intersect. Indeed, otherwise one would have point w = (z, A} € U;UUj, which
would imply ba |z — z(wi)| € h — h(wi);balz — z(w))| < h — h(w)); k < ad; h{w;), A(w}) <
~ad and |o(w;) — z(w})|* + [h(w:) — h(w})|* < &%, an incompatible system of inequalities
for our choice of a. The restrictions of Poisson point process to non-intersecting parts of W
are independent and the independence in question follows.

Hence, one has 3 ; ; _
]E(IgI X IgI') — lE(IgI) X lE(IgI’) x P(£). (34.3)
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Now,
Frar (W, ..o we,wl,. .. w) = E[(Ie] + D) (IeI' + D')] (3.4.4);

and
Frlwr,. .. s we)F(wl,. .. ,w) = E(Ie] + DYE(IeI + D). (3.4.5)

Expanding (3.4.4) and (3.4.5), subtracting and taking into account (3.4.3), we get the ex-
pression

E(ID')+ E(DI'y + E(DD') — EIEI'(1 — EI;) - EfED' — EDE[' — EDED'  (3.4.6)

for the difference Fr4q — FiFy.

Notice, that for {0, 1}-valued random elements A, B,C,... one has, by Cauchy inequality,
E(AB) < (EAEB)'/?2 | E{ABC) < (EAEB EC)'/® and so on. Recalling that f < I,/ < I’
and therefore D = DI, D' = D'I’, we deduce that (3.4.6} is estimated in absolute value by
the sum of the absolute values of the summands,

(EIEI'ED")/*4(EIEI'ED')'/® + (EIEI'EDED’)Y/* + EIEI' (1 — El¢)+
+EI(EI'ED')Y/?4+(EDEI)/?El' + (EDEI)'/?(ED'EI')!/2,

The difference (3.4.1) is equal to (3.4.6) multiplied by [T, p(w:) [, p(w}). By Remark 3.2.2,
the terms I°J[; p(w;) and (I')*]]; p(w;) are bounded for any a > 0. Hence, the differ-
ence (3.4.1) is a linear combination with bounded coefficients of terms D, (D')* and 1-
Els (e = 1/3 or 1/4), which uniformly exponentially decrease with d. The Proposition 1.7.2
is proved. 0

4. CONCLUDING REMARKS

4.0. In this section some ramifications and unsettled questions are discussed.

4.1. Generalized Delaunay triangulations and Voronoi tessellations. The process
of S-supporting points defines implicitly a more rich structure, manifest in the convex hulls,
for example. Specifically, one can associate to (almost every realization of) the point process
£s the structure of simplicial complex, joining & supporting points by a simplex if and only if
there exists a common set they support. If § is convex, then the resulting simplicial complex
can be realized geometrically as a triangulation (with vertices in the points of £5,v) of the
hyperplane V.

If the intensity measure of £ is concentrated on V, and the set S is just the cone {h > |z|},
then we get the standard Poisson Delaunay triangulations.

For the processes associated with the convex hulls of Poisson samples, we get just the
simplicial faces of resulting polyhedral surface.

Dually, one can define the generalizations of the Voronoi tessellations: for each vertex w of
&s consider the V-projection of the set formed by the apexes of sets supported by w (the
boundaries of cells of the tessellations by such sets presumably describe the concentration
of matter in the Burgers turbulence approach to the large-scale structure of the Universe).
The central limit theorems of section 1 for the process of supporting points (that is of
0-simplices of the Delaunay triangulations) can be extended without much difficulty to
simplices of all dimensions, so that, for example, an analogue of the Theorem 1.8.2 holds:
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the number of simplices of any dimension k of the generalized Delaunay triangulation within
a large body AA (quasitransversal to V) is asymptotically normal with expectation and
variance growing as A". For the expectations and the convex hulls of large samples from
convex bodies, a similar result — the growth order of the expectation of the number of faces
in all dimensions is the same — was proved in [Bi).

4.2. Constants. The results of this paper all deal only with the orders of the asymptotics.
The question of constants is quite tricky and I do not know a general approach. There
are some special cases in which the exact densities r and r, can be calculated (as certain
multidimensional integrals) which will be discussed in a separate publication.

4.3. Vector extremal points in generic polyhedra. The results on the asymptotics of
the number of vector extremal points discussed above dealt only with the case of indepen-
dent coordinates and Pareto cone C, in line with tradition (the expectation was calculated
in many papers in a variety of contexts). I would like to emphasize here that, their dissem-
ination notwithstanding, the logarithmic asymptotics of growths for the expectation (and
the variance} of the number of Pareto extremal points are far from universal or even generic.
Consider the following situation, where the genericity can be treated more or less precisely.
Assume that the points of the sample are uniformly distributed in a convex polyhedron P.
The independent coordinates case corresponds to parallelepipeds with facets parallel to the
coordinate axes.

It turns out that exactly this latter property is responsible for the logarithmic growth.
More precisely, if any linear subspace parallel to a facet of P is transversal to the coordinate
subspaces, then both expectation and variance grow as m*N | where k is the maximal
dimension of a facet of P belonging to the C-convex hull of P. The logarithmic terms
appear when this transversality condition fails.

Figure 3. Facets near
which extremal points

concentrate are marked. P

The figure 3 illustrate this claim. On the left picture, the facets of P lying on the boundary
of its C-convex hull are two 1-dimensional edges {facing north-east). Hence the number of
Pareto extremal points grows as m!/2. On the right picture, only the north-easternmost
vertex of P lies on the boundary of its C-convex hull. In this case, the number of Pareto
extremal points has bounded mean and variance (actually, converges in distribution). In
the intermediate case (middle picture), the independent coordinate case, the logarithmic
growth edges in.

One can argue that in natural families (for example, in the family {Pg}gE GL (W)) of poly-
hedra, the condition of transversality formulated above is not satisfied on a (singular) hy-
persurface and is therefore not generic.

To finish, under the transversality condition, if the mean grows unboundedly with m, the
central limit theorem can be proved.

I will not give here any details, as these result use different methods than those employed
in the present work, referring to [Bv].
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