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Abstract

We propose a new method for simulating a Gaussian process, whose spectrum diverges at one
frequency in [0, ] (not necessarily at zero). The method utilizes a generalization of the discrete
wavelet transform, the discrete wavelet packet transform (DWPT), and only requires explicit
knowledge of the spectral density function of the process — not its autocovariance sequence. An
orthonormal basis is selected such that the spectrum of the wavelet coefficients is as shallow
as possible, thus producing approximately uncorrelated wavelet coeflicients. We compare this
method to a popular time-domain technique based on the Levinson-Durbin recursions. Simula-
tions show that the DWPT-based method performs comparably to the time-domain technique
for a variety of sample sizes and processes — at significantly reduced computational time. The
degree of approximation and reduction in computer time may be adjusted through selection of
the orthonormal basis.

Some key words: Autocovariance, Discrete wavelet packet transform; Gegenbauer process; Or-
thonormal basis; Seasonal persistent process; Time series.



1 Introduction

The use of fractional ARIMAs as models for time series exhibiting long-range dependence is now
quite widespread. Such time series are characterized by an autocovariance sequence {s,} which

diverges; i.e., > 2o, s; = 0o. Let {X;} be a stochastic process whose dth order backward difference
(1 — B)dXt = €t (1)

is a stationary process, where —% <d< % and B is the backward difference operator. This process
is stationary and invertible. If {¢;} is a Gaussian white noise process with variance o2, then {X;}
is the simplest case of a fractional ARIMA process, a fractional ARIMA(0,d,0), which we refer to

as a fractional difference process. The spectral density function (SDF) of {X;} is
— 29 —2d 1 1
Sx(f) = oZ|2sin(nf)| for —§<f<§,

so that Sx(f) — oo as f — 0 and, thus, the SDF diverges at zero frequency. Further introductions
to fractional difference and related processes can be found in, e.g., Granger and Joyeux (1980) and
Hosking (1981).

Both time- and frequency domain techniques have been established for the simulation of such
long memory processes (see Percival (1992) and references therein), the partitioning of the time-
frequency plane by the discrete wavelet transform (DWT) makes it a natural alternative to the
discrete Fourier transform. This has been investigated by, e.g., Wornell (1993), Masry (1993) and
McCoy and Walden (1996). The wavelet coefficients of a long memory process are approximately
uncorrelated. Hence, simulation may be performed by simply generating Gaussian random variables
with zero mean and variance proportional to the integrated spectrum over octave bands. Applying
the inverse DWT produces a realization of the long memory process.

The time-domain technique is readily adaptable to processes whose spectral energy is not domi-

nated in the lower frequencies (e.g., an MA(1) process with # — —1), as long as the autocovariance



sequence is known. Percival (1992) extended the frequency-domain technique to non-stationary
power law processes, but these still require the spectrum to be dominated by low-frequency energy.
The DWT simply cannot adapt and we must use the discrete wavelet packet transform (DWPT),
which creates a redundant set of wavelet coefficients at each level of the transform (Wickerhauser
1994, Ch. 7). To determine an appropriate orthonormal basis, we propose a method based on
achieving the most shallow spectrum for each level of the DWPT, thus producing the least corre-
lated wavelet coefficients for a much wider class of stochastic processes. Thus, simulation may be
performed through a method similar to that of long-memory processes. The technique proposed
by McCoy and Walden (1996) may be considered a special case of this method.

In Section 2 we introduce the seasonal persistent process as an example of a time series with
unbounded spectra. Because such processes do not possess a closed-form expression for their
autocovariance function, we investigate the convergence of an asymptotic approximation. The
DWPT is briefly defined in Section 3 and the basis selection technique is illustrated. Simulation
results are presented in Section 4 where the DWPT method is compared to a time-domain technique
(utilizing the Levinson-Durbin recursions). Conclusions are presented and recommendations given

at the end.

2 Seasonal Persistent Processes

A simple generalization of the model given in (1) was mentioned, in passing, by Hosking (1981) and
allows the singularity in the spectrum to be located at any frequency 0 < f < % Such a process has
been referred to as a Gegenbauer process (Gray et al. 1989) and also a seasonal persistent process
(SPP) (Andél 1986). We prefer the latter term because it more accurately and concisely describes
the content of the time series. That is, a sinusoid of particular frequency is associated with the

singularity present in the spectral density function (SDF) thus causing a persistent oscillation in



the process. Gray et al. (1989) fit a seasonal long-memory model to the Wolfer sunspot data, where
short-range dependence was allowed through fitting ARMA components. Recent attention has also
appeared in the economics literature, where Ooms (1995) fit seasonal long-memory models to the
U.S. gross national product and a time series of Danish shipping records. Arteche and Robinson
(1999) discuss various models for seasonal long memory and propose a semi-parametric estimation
procedure.

Let {Y;} be a stochastic process such that
(1-26B+B*)°Y, = ¢ (2)

is a stationary process, then {Y;} is an SPP. Gray et al. (1989) showed that {Y;} is stationary and
invertible for [¢| =1 and —; < § < J or [¢| <1 and —3 < § < 3.

Clearly, the definition of an SPP also includes a fractional difference process. When ¢ = 1 we
have that {Y;} is a fractional difference process given by (1) with fractional difference parameter
d = 26. If {¢} is a Gaussian white noise process, then {Y;} is also called a Gegenbauer process

since (2) may be written as

Y=Y Ok, (3)
k=0

where C’,gi; is a Gegenbauer polynomial (Rainville 1960, Ch. 17). The SDF of {Y;} is given by

Sy(f) = oH2lcos(2nf) — 9} ¥, for — S <f<3, @

so that Sy (f) becomes unbounded at frequency fo = (cos™' ¢)/(27), sometimes called the Gegen-
bauer frequency.

The autocovariance sequence of an SPP may be expressed via

1/2
Y, = / Sy (f) cos(2mf7) df- (5)

—1/2



An explicit solution is known only for special cases (Andél 1986). Gray et al. (1994) showed that

the autocorrelation sequence of an SPP is given by

pr ~ 72 Leos(2nfor) as T — 0. (6)

Two sequences are related via a, ~ 5, as 7 — oo if lim, o {a,/B;} = ¢ where c is a finite nonzero
constant. The result in (6) was given in Hosking (1982) without proof.

In the time-domain method of simulation, an approximation to the integral would greatly reduce
the computational burden. Figure 1 displays the asymptotic approximation (6) for various SPPs
defined in Figures 8-11 from Andél (1986). Note, there is an error in the caption of Figure 11 in
Andél (1986), the frequency is given as w = 27 fy = 0.1, but ¢ is incorrectly stated as 0.955 whereas
it should be 0.995. The numeric integration of (5) was performed via a FORTRAN routine from
Ford (1991). When the fractional difference parameter § is large, the asymptotic approximation
matches the autocorrelation sequence from numeric integration well — only slightly over-estimating
it. This apparent over-estimation is quite pronounced when ¢ is relatively small, and persists for a

large number of lags. We will utilize this approximation for lags of 100 or greater.

3 A Discrete Wavelet Packet Transform Method

3.1 The Discrete Wavelet Packet Transform

The orthonormal discrete wavelet transform (DWT) is known to approximately decorrelate long
memory processes (Tewfik and Kim 1992; Wornell 1996). It does this through band-pass filtering
the process in such a way that the spectrum in each pass band is approximately constant. Using
this property, McCoy and Walden (1996) outlined a procedure for simulating a fractional difference
process using the DWT where only the overall variance and the band-pass variances of the process
are required. Explicit knowledge of the covariance structure is not necessary in order to simulate.

The DWT has a very specific band-pass structure which partitions the spectrum of a long



memory process finer and finer as f — 0 — where the spectrum is unbounded. This is done through
a succession of filtering and downsampling operations; see, e.g., Percival and Walden (1999, Ch. 4)
for an introduction to the DWT. In order to exploit the approximate decorrelation property for SPPs
we need to generalize the partitioning scheme of the DWT. This is easily obtained by performing
the discrete wavelet packet transform (DWPT) on the process; see, e.g., Wickerhauser (1994, Ch. 7)
and Percival and Walden (1999, Ch. 6). Instead of one particular filtering sequence, the DWPT
executes all possible filtering combinations to obtain a wavelet packet tree, denoted by 7. An
orthonormal basis B C 7 is obtained when a collection of DWPT coefficients is chosen, whose ideal
band-pass frequencies are disjoint and cover [0, %]

Let hg,...,hr—1 be the unit scale wavelet (high-pass) filter coefficients from a Daubechies
compactly supported wavelet family (Daubechies 1992) of even length L. In the future, we will
denote the Daubechies family of extremal phase compactly supported wavelets with D(L) and the
Daubechies family of least asymmetric compactly supported wavelets with LA(L). The scaling

(low-pass) coefficients may be computed via the quadrature mirror relationship
o= hy 1, 1=0,...,L—1.

Now define

I if n mod 4 = 0 or 3;
wE= hy, ifnmod4=1or2,

to be the appropriate filter at a given node of the wavelet packet tree.

Let X be a length IV vector of observations and W, denote the vector of wavelet coeflicients

associated with the frequency interval A;, = (2]%, (;i)] Let W, denote the tth element of

the length N; = N/27 vector W ,,. Given the vector of DWPT coefficients W, 1|z, we compute



W via
L—-1

Wj,n,t = § un,le—l,LgJ,Qt—i—l—lmod Nj_1» t=0,1,... 7Nj -1,
=0

where L; = (27 — 1)(L — 1) + 1 is the length of a level j wavelet filter. To start the recursion
set Wy o = X. This is only one possible formulation of the DWPT, we may also directly filter
the observations by generating unique filter coefficients at each level or apply a series of matrix
operations; see Percival and Walden (1999, Ch. 6) for more details on this and other formulations.
As with the DWT, the DWPT is most efficiently computed using a pyramid algorithm. The

algorithm has O(N log N) operations, like the fast Fourier transform.

3.2 Selecting the Basis

Let T = {(j,n) | 7 = 0,...,J;n = 0,...,2) — 1} be the collection of all doublets (j,n) which
form the indices of the nodes of a wavelet packet tree. Let B be a collection of doublets (j,n)
which correspond with an orthonormal basis. Although several methods exist to chose a particular
collection of nodes (see Chen et al. (1999) for an overview), a simple one is as follows. After the
initial high- and low-pass filtering operation, simply apply a successive high- and low-pass filtering
operation to the portion of the spectrum which contains the Gegenbauer frequency. The idea
behind this is that we want to obtain band-pass spectra which are as flat as possible, hence finer
partitioning of the frequency axis is necessary where the spectrum is steepest. Figure 2b shows
this ideal basis in terms of the time-scale plane down to level J = 6 for an SPP with SDF shown

in Figure 2a; i.e.,
B={(1,1),(2,1),(3,0),(4,3),(5,4),(6,10),(6,11)}.

When synthesizing fractional difference processes, as in McCoy and Walden (1996), the basis

associated with the DWTT is sufficient for producing approximately uncorrelated wavelet coefficients



at each scale. One inherent property of any wavelet filter is zero mean, which corresponds to its
squared gain function having value 0 at frequency 0 (in fact, the Daubechies families of wavelet filters
considered here have L/2 vanishing moments). This property is key to producing approximately
uncorrelated wavelet coefficients for so-called long memory processes and is distinctly lacking when
the asymptote is allowed to vary throughout frequencies fy € [0, %] The immediate consequence
is that the ideal basis in Figure 2b will not be sufficient to guarantee approximately uncorrelated
wavelet coefficients for an arbitrary wavelet filter.

Using the SPP described in Figure 2a, the SDF of Wy 1 is given for three different Daubechies
wavelet filters of length L € {2,4,8} in Figure 3. Even though the ideal pass-band is i <|fl £ %,
and fo = ﬁ, the poor approximation to an ideal band-pass filter is apparent for the Haar and D(4)
wavelet filters. They are insufficient for producing approximately uncorrelated wavelet coefficients
for this particular process. The LA(8) wavelet filter allows only a very small spike of energy from
the singularity in the spectrum of the SPP.

One way to overcome the poor approximation of the wavelet filters to that of ideal band-pass
filters would be to select a basis where the squared gain function (modulus squared of the DFT)
of the wavelet filter associated with W ,, is sufficiently small at the Gegenbauer frequency. Let us

define U; ,,(fo) = |U; n(fo)|?, where Uj,(f) is the DFT of
L—1
Ujnl = Z unkajfl,L%J,l,ijlk, l= 0, cee ,Lj - 1,
k=0
with u10; = g1 and uy,1; = hy (Percival and Walden 1999, Ch. 6). The partition of the time-
scale plane would therefore depend upon the choice of wavelet filter, overall depth of the partition
being inversely proportional to the length of the wavelet filter. Hence, the basis selection procedure

involves selecting the combination of wavelet bases which achieve U; ,(fo) < €, for some € > 0, at

the minimum level j.



Figure 4 gives the ‘best’ basis, according to the criterion ¢} ,,(fo) < 0.01, for various Daubechies
wavelet filters L € {2,4,8,16} applied to the SPP shown in Figure 2a. As to be expected, the
shorter wavelet filters L € {2,4} are poor approximations to an ideal band-pass filter and produce
an orthonormal basis which is nothing like the ideal basis shown in Figure 2b. The Daubechies
wavelet filter with L = 8 produces a basis that follows the general shape of the ideal one, but suffers
around the Gegenbauer frequency. The longest wavelet filter, and therefore best approximation to

an ideal band-pass filter, generates a basis function similar to the ideal basis.

3.3 Simulation via the DWPT

The bandpass variance Bj,, for an SPP, with SDF given in (4), in the frequency interval —57r <

fl < gt is
27 _ _ 27 —
Bin=2 [T oH2lcos(enf) o) P af 204702 [T foostanf) < o Mg (0
27 +1 27 +1

As in McCoy and Walden (1996), we replace the true SDF at each frequency band with a constant
Sjn = Sjn(f), for all f, such that the band-pass variances are equal. This step assumes the SDF
is slowly varying across the frequency interval A; ,, (c.f. Section 3.2). Integrating the constant SDF

over \j, gives

n+1

/ P S df = 80270

27 +1

Equating this to the band-pass variance gives
ZSj’n27j71 = Bj’n - Sj’n = 2ij7n. (8)

The variance of Wj,, ; is therefore given by S;,, because of the band-pass nature of the transform.
Let us consider simulating a length N = 27 SPP with known parameters ¢ and §. The DWPT-

based simulation procedure can be implemented as follows:



1. We must determine the appropriate orthonormal transform B from the wavelet packet tree.
This is done by computing, for levels j = 1,...,J — 1, the squared gain function of the
desired wavelet filter which satisfies U} ,,(fo) < ¢ to be included in B (we used ¢ = 0.01). This
corresponds with the idea of partitioning the frequencies where the spectrum is steepest. At
the final level J, all remaining nodes for uncovered frequency intervals must be included in

order to complete the orthonormal basis.

2. We need to calculate the band-pass variances Bj,, (j,n) € B. They are defined in (7) and
obtained via numeric integration. We use (8) to obtain S;,. Each DWPT coefficient W;,, ,
(j,n) € B,t =1,...,2777 is a independent Gaussian random variable with zero mean and

variance Sjp.

3. Once the DWPT coefficients have been generated we may organize them and apply the inverse

DWPT defined by B to obtain the simulated SPP Y7, ..., Yy.

The numeric integration for j = 1,... ,J —1 required in [2] is easily computed using the routine
QAWO from QUADPACK (Piessons et al. 1983), since the SDF is bounded on the interval. At the
final level of the DWPT, the SDF of W, such that fo € As,, will not be bounded. The numeric

integration may still be performed by splitting the integral at the Gegenbauer frequency.

4 Simulation Results

Gray et al. (1989) used (3) to simulate an SPP by truncating the infinite sum to 290,000 terms.
We abandon this approach for two reasons, it is very computer intensive and it depends on the
convergence of the process. Woodward et al. (1998) instead used a time domain approach that
utilizes the Levinson-Durbin recursions; see, e.g., Hosking (1984) and Percival (1992). The auto-

covariance sequence is required for this procedure and was calculated via numeric integration. We



call this the Hosking method.

Figure 5 shows the results of a small simulation study (500 realizations) demonstrating the
ability of the Hosking method to generate SPPs with parameters given in Figure 1. As to be
expected, the Hosking method produces realizations with excellent second-order properties. The
sample ACVS, averaged over the 500 simulations, follows the true ACVS very well for all four
processes. The 5% and 95% points are provided to indicate variability of the sample ACVS.

The DWPT-based method outlined in Section 3.3 was performed to simulate SPPs with pa-
rameters identical to those in Figure 5. The basis used was By = {(7,n)|n = 0,... ,63} and the
wavelet filter was the minimum-bandwidth discrete-time wavelet with 16 nonzero coefficients. We
refer to this class of wavelet filters as MB(L); see Morris and Peravali (1999) for details on this
family of wavelets. The minimum-bandwidth discrete-time wavelets exhibit better frequency reso-
lution than Daubechies families of wavelets at comparable lengths. Looking at Figure 6, the mean
ACYVS follows the true ACVS almost as well as the Hosking method and with reduced variability
as deomonstrated by the 5% and 95% points. The DWPT method encounters difficulty with the
final SPP, 6 = 0.3 and ¢ = 0.995, at all but the smallest sample size.

Although graphically comparing the two methods is illuminating, a quantitative comparison
between the true ACVS and the averaged sample ACVS is provided by the one-sided least squares

difference (Percival 1992)
M
LSD(M) = |3, — s-|*,
7=0

where {§;} is the averaged ACVS and {s;} is the true ACVS. We prefer to use only lags up to
M = 100 versus all possible lags. Table 1 provides LSD(100) from a more extensive simulation

study comparing the Hosking and DWPT methods under a variety of conditions. The basis used

for the DWPT method was By = {(7,n) |n =0,... ,63} for all wavelet filters. The Hosking method

10



improves dramatically as the sample size increases for all four processes, remember only the first
100 lags were used to compute LSD(100). The DWPT method, when utilizing the MB(8), D(16)
and LA(16) wavelet filters, performs similarly to one another and slightly less accurate than the
Hosking method. This is because the squared gain functions are identical for the D(16) and LA(16)
wavelets and very close to the MB(8) wavelet. When using the MB(16) wavelet filter, the DWPT
method performs better than the other wavelet filters and comparably to the Hosking method. No
noticeable improvement was gained by using the MB(24) wavelet filter.

Table 2 provides LSD(100) from another simulation study, where the basis used for the DWPT
method was computed using the criterion U;,(fo) < 0.01. The first two SPPs, with § = 0.3
and ¢ = 0.866, have the same basis since fy = 11—2; see Figure 4. The SPP, with 6 = 0.3 and
¢ = —0.6, has the asymptote around fy = 0.352 and looks like a reflected version of Figure 4.
The SPP, with 6 = 0.3 and ¢ = 0.995 has its asymptote around fy = 0.016, quite close to zero.
Hence, its basis looks very close to the DWT basis used for long memory processes, with differences
appearing at the larger scales and lower frequencies only. The average squared differences between
the true ACVS and sample ACVS are very similar to those obtained using the basis B as given in
Table 1. Hence, the method proposed in Section 3.2 is generating an adaptive orthonormal basis
that produces approximately uncorrelated wavelet coefficients. This is a much more parsimonious
basis than simply using all nodes from a particular level of the transform.

Computational efficiency of an algorithm is an important issue in simulation methodology. The
DWPT has O(N log N) computational complexity, while the Levinson-Durbin recursions require
O(N?) operations. Both methods were implemented in S-Plus with the intensive computations
being written in C. Using the function unix.time (), Figure 7 compares the computational time
needed to simulate SPPs for a variety of sample sizes on an SGI workstation. It appears the

DWPT-based method requires a minimum of a half-second in order to compute one realization of
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small to moderate length. After N > 20 = 1024, the computation time increases at a relatively
slow rate and agrees with a similar technique for simulating long-range dependent network traffic
(Ribeiro et al. 1999). The Hosking method is quite fast for small sample sizes, is comparable around
N =512, then greatly exceeds the DWPT method for larger sample sizes. In fact, S-Plus failed to
successfully execute when N > 2!2 — subsequent simulation times are given by extrapolation. In
order to compute the Hosking method for large sample sizes, efficient storage and computation of

the partial autocorrelations (N x N matrix) would be required.

5 Discussion

A new method has been proposed in order to simulate Gaussian stationary processes, whose SDF
is unbounded at a specific frequency 0 < f < %, through the discrete wavelet packet transform.
While not an ‘exact’ method, as compared with the procedure given by Hosking (1984), it performs
comparably in Monte Carlo simulations. Given the relative efficiency of the DWPT, it is faster
to compute than the Hosking method and is ‘adaptive’ in the sense that a variety of orthonormal
bases may be selected — giving the user a choice between precision and computational speed.

An obvious extension of this method would be to allow multiple singularities in the SDF of the
process. Some examples of such models are the k-factor GARMA process (Woodward et al. 1998)
and ARUMA process (Giraitis and Leipus 1995). The only modification in the proposed method
would be to select an orthonormal basis B which takes into account these multiple singularities.
This involves evaluating the squared gain function of the wavelet filter and selecting those basis
functions which satisfy a user-defined threshold for all frequencies with associated singularities.

The DWPT method for simulating SPPs gives a new perspective on determining the “appro-
priate” basis for the transform. When using the DWPT to analyze (decompose) time series one

may select the basis by, e.g., the best basis algorithm (Coifman and Wickerhauser 1992) or match-
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ing pursuit (Mallat and Zhang 1993). In this article we were interested in the synthesis of time
series using a different type of basis — one that minimizes the correlation structure of the DWPT
coeflicients. In the analysis of SPPs, we have a best basis by knowing the Gegenbauer frequency.
If we were given a series with an unknown Gegenbauer frequency, we could apply the DWPT
and then test the DWPT coefficients using a standard test for white noise (e.g., the cumulative
periodogram test). A basis would then be selected which produces DWPT coefficients with least

residual correlation at the lowest level possible.
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DWPT

Model N Hosking MB(8) D(16) LA(16) MB(16) MB(24)
§=04 128 46.44 5526  54.36 5457  56.80  54.81
fo=1, ¢ = 0.866 256  8.83  12.84  10.72  12.98 8.54 8.50
512 1.55 7.25 7.31 7.86 4.79 5.48
1024 0.18 7.48 7.19 7.32 4.55 5.38
2048  0.08 7.39 6.28 6.97 4.67 5.15
§=0.2 128 0.0817 0.0872 0.0889 0.0863  0.1002  0.0917
1

fo= 15, ¢ = 0.866 256 0.0148 0.0184 0.0223  0.0136 0.0132 0.0147
512 0.0013 0.0121  0.0140 0.0120 0.0063 0.0083
1024 0.0003  0.0114 0.0103  0.0131 0.0084  0.0067
2048 0.0002  0.0130  0.0113  0.0109  0.0058 0.0075
6=0.3 128 0.144 0.262 0.241 0.206 0.154 0.177
fo=10.352, ¢ = —0.6 256 0.115 0.351 0.371 0.320 0.204 0.198
512 0.053 0.304 0.256 0.263 0.137 0.149
1024 0.007 0.306 0.277 0.245 0.115 0.124
2048 0.001 0.284 0.255 0.253 0.126 0.118
6=0.3 128 0.542 0.591 0.631 1.043 0.875 0.615
fo=10.016, ¢ = 0.995 256 0.151 3.010 2.738 3.120 3.313 3.183
512 0.064 1.686 2.062 1.689 2.367 1.998
1024 0.056 1.895 2.043 1.544 1.721 1.711
2048 0.027 1.884 1.970 1.679 1.768 1.747

Table 1: Average squared difference between the mean sample ACVS (1000 simulations) and the
true ACVS for lags 0,...,100. The Daubechies family of extremal phase compactly supported
wavelets is denoted by D(L), the Daubechies family of least asymmetric compactly supported
wavelets by LA(L), and the minimum-bandwidth discrete-time wavelets by MB(L) — where L is
the number of nonzero coefficients. The basis used for the DWPT method is B; = {(7,n)|n =
0,...,63} for all wavelet filters.
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DWPT

Model N Hosking MB(8) D(16) LA(16) MB(16) MB(24)
5=04 128 4644  53.66 5456 5549  59.75  53.30
fo=-,$=0866 256 88 1197  10.05  10.58 8.95  10.12
512 1.55 8.86 6.44 8.55 4.36 5.20
1024 0.18 7.76 6.78 7.74 4.45 471
2048 0.08 7.80 7.36 7.17 4.46 5.23
5=0 128 0.0817 0.1559 0.1203 0.1258  0.1304  0.1340

2
fo= 11—2, ¢ = 0.866 256 0.0148  0.0715  0.0605  0.0549 0.0751 0.0685
512 0.0013  0.0682  0.0551  0.0560 0.0571 0.0677
1024 0.0003  0.0662  0.0547  0.0524  0.0620 0.0667
2048 0.0002  0.0670  0.0559  0.0536 0.0628 0.0669
6=0.3 128 0.144 0.264 0.205 0.237 0.166 0.154
fo=10.352, ¢ = —0.6 256 0.115 0.363 0.391 0.360 0.252 0.139
512 0.053 0.329 0.300 0.277 0.158 0.154
1024 0.007 0.297 0.292 0.248 0.125 0.117
2048 0.001 0.304 0.249 0.253 0.137 0.128
6=0.3 128 0.542 0.942 0.831 0.627 0.725 1.083
fo=10.016, ¢ = 0.995 256 0.151 2.917 3.296 2.406 3.530 3.606
512 0.064 1.988 2.303 1.855 2.170 2.226
1024 0.056 1.812 1.893 1.719 1.900 1.868
2048 0.027 1.870 1.788 1.806 1.687 1.759

Table 2: Average squared difference between the mean sample ACVS (1000 simulations) and the
true ACVS for lags 0,... ,100. The DWPT method uses an adaptive orthonormal basis. It depends
on the Gegenbauer frequency and length of the wavelet filter, for the first SPP see Figure 4 for the
basis functions By, L € {8,16}.
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Figure 1: Autocorrelation sequences {p;} for particular SPPs computed via numeric integration
(solid line) and asymptotic approximation (dotted line). From top to bottom the parameters
which define the processes are (§ = 0.4, fo = %,qﬁ = 0.866), (6 = 0.2,fy = 11—2,¢ = 0.866),
(6 = 0.3, fo = 0.352,¢ = —0.6) and (6 = 0.3, fo = 0.016,¢ = 0.995). These correspond to the
processes displayed in Figures 8-11 from Andél (1986).
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Figure 2: Basis selection for an SPP. On the left, the SDF for the SPP (fy = &,6 = 0.4) and,
on the right, its ideal basis (J = 7) consisting of — from left to right — W3’0, W574, W7’20, W7721,
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Figure 3: Spectrum of Wy ; for the SPP (fy = %, 6 = 0.4) using the Daubechies families of wavelet

filters of lengths L € {2,4,8}. The spectrum is plotted on a linear scale.
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Figure 4: ‘Best’ orthonormal basis By, for the SPP (fo = &5, § = 0.4) based on the Daubechies
family of wavelet filters with length L € {2,4,8,16}.
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Figure 5: Sample autocovariance sequences (ACVS) for the Hosking method averaged over 500
simulations. Four SPPs (N = 512) are displayed with parameters — from top to bottom - (§ =
04, fo = %,qﬁ = 0.866), (6 = 0.2, fy = %,qﬁ = 0.866), (6 = 0.3,fp = 0.352,¢ = —0.6) and
(6 = 0.3, fo = 0.016,¢ = 0.995). The true ACVS is given by the dashed line and the average
sample ACVS is given by the solid line. Also shown are the 5% and 95% points (dotted lines).
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Figure 6: Sample autocovariance sequence (ACVS) for the DWPT method averaged over 500
simulations using the MB(16) wavelet filter and B; = {(7,n)|n =0, ... ,63} basis. The four SPPs
are identical to those in Figure 5. The true ACVS is given by the dashed line and the average
sample ACVS is given by the solid line. Also shown are the 5% and 95% points (dotted lines).
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Figure 7: Computation time (in seconds) for the DWPT and Hosking methods to simulate one
realization of an SPP. All calculations for the DWPT were implemented in S-Plus. For the Hosking
method, sample sizes N = 27, ... , 22 were computed in S-Plus, while larger sample sizes could not
be evaluated. Subsequent computation times for the Hosking method were extrapolated from the
previous values.
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