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1 Introduction

Let X, X1, Xs, ... be a strictly stationary sequence of (dependent) random variables. We say
that X; is an extreme value if X; > u, where u = u,, is “close” to the right end point of the
distribution of the random variable X.

Extreme value theory has important applications to insurance and finance (when the k
th largest element X, » of the sample X}, ..., X, represents the k-th largest claim or the &-th
largest gain (loss) of a stock in a certain period of time), in flood prediction and prevention
in hydrology, and in network modelling, meteorology, etc. (see Embrechts et al. (1997) and
references therein). The basic information about extremes in the sample is collected in the

number M, ,, of exceedances above the level u among the random variables X|,..., X,:
Mn,u = Z 1{X.‘>u.} . (11)
i=1

The random variables X, and M, , are closely related, since the events {X,; < u} =
{M,, <k}

If one is interested in more information about the joint distribution of the large val-
ues X, k, then processes of exceedances must be introduced. A one-dimensional point process
N, , marks the indices where high level exceedances occur:

Nou(B) = LiifneB, Xi>u} (1.2)

i=1

for any Borel set B C [0,1]. A two—dimensional point process =, ; contains in addition the
information about the heights of exceedances:

Zn,f(A) = X 1isns-1(X0))eA)s (1.3)
=1

for any Borel set 4 C [0,1] x [0, 00}, where f is a strictly ciecreasing function from R, =
[0,00) to R, and interest is mainly concentrated on [0,1] x [0, f~'(u)).

The limiting behaviour of extremes under various asymptotic régimes has been well
studied, and the books by Leadbetter et al. (1983) and Embrechts et al. (1997) give good
accounts of the theory. Results particularly relevant to this paper are those of Hsing et
al. (1988), who showed that the only possible limit laws for N, , are compound Poisson
distributions, and of Novak (1998), who established necessary and sufficient conditions for
the weak convergence of =, ; to a compound Poisson point process.

In this paper, we move away from the idea of a limit, and instead consider finite sam-
ples: we investigate the distance between the distributions of the empirical processes of
exceedances N,, and =, from natural compound Poisson approximations, for any fixed
choices of n, u and f; the approximation of M, in this way was addressed in Novak (1998).
Even in the case where sequences indexed by n are considered, and u = u, and f = f, are
chosen to ensure non-trivial limiting behaviour, the distance between the empirical processes
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and their corresponding limit laws is still important, since a limit theorem is useless if the
distance from the limit is not “small”.

Novak (1998) evaluated the total variation distance between £(M,, ,) and an appropriate
compound Poisson distribution, where the total variation distance between the distributions
of random elements P and Q with common domain B is defined by

drv(P,Q) = %%I;|P(B) - Q(B)|.

However, the points of the process N, , are concentrated on a subset R of rational numbers in
[0,1], whereas the points of any distributional limit N, hit R with probability 0. This makes
the total variation distance unsuitable for measuring the accuracy of the approximation
N, = Ny, since it would always be the case that drv(L(Nn,.), L(Ns)) took the value 1.
Hence we need weaker metrics for measuring the distance between the distributions of point
processes.

Let T be an interval [0, a], and let G be the o-field generated by open sets in I'. Define
H= {Zci(st.() Py, tn € Fa n > I}a
=1

where ¢; € N and d,(-) is the Dirac measure at z: é,(B) = 1g(z). Then H is the space of
finite, non-negative integer valued counting measures on (I', G), and a realizaton of a point
process on [ is just an element £ of H: for @ = 1, N, , is an example. The interpretation is
that £ = 37, ¢;8:, consists of a configuration of a total of ¥ = Y, ¢; points, with ¢; points
located at ¢;, 1 < i < n; we denote the list of points of £ by £ = {{;, 1 < j < k}, where each
of the t; appears ¢; times in the list . More generally, one can take I to be a compact metric
space with a metric dp, and define H to be the family of all finite, non-negative integer
valued counting measures on (I',G). In Section 3, where we study the distribution of the
process =, s, I' is a rectangle.

Now let X and Y be random elements of H, and set Qy = £(X) and Qy, = L(Y).

We use the class of Wasserstein metrics to measure the distance between the probability
distributions Qy and Qy. These metrics are defined by setting

d"(Qx,Qy) = d"(Qx,Qyld) = ()é}}]t;,)]Ed(X'aY'), (1.4)

where d is any distance between elements in 7, and the infimurm ranges over all pairs (X', Y")
with values in H? and marginal distributions £(X’) = Q, and £(Y’) = Q. This leaves
great freedom of choice, since the distance d has still to be chosen; we restrict ourselves to
those of the form

di(&,n) ={ k' min T, dolfh, ), if E(T) =n(T) =k >0,
0, if ¢(I') =n(F) =0,

where £ = Y7, ¢16,.(-) and § = ¥ ¢/6,,(-) are elements of H, dp is a metric on I', and the
minimum is taken over all possible permutations T of (1,2,..., k). This distance minimises
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the average do-distance between pairs of points, with respect to the choice of matching.
Thus two configurations, one obtained from the other by a small shift in I', are at small d;
distance one from another, whereas, with respect to total variation distance, they would be
far apart. The metric d* on ‘H derived according to (1.4) from d = dy we refer to as d,.

There remains the choice of metric dy on I', which itself needs to be carefully considered.
It is most natural to use choices of dy which are based on Euclidean distance, but are also
scale invariant, in the sense that expressing the locations of all points in new units should
not change the distance of a configuration from a reference configuration; for reasons of
robustness, we also require that dyo(z,y) < 1. Scale invariance is achieved by implicitly taking
typical configurations from the approximating compound Poisson process as references, and
requiring that do be chosen so that this process has unit intensity. Thus, if I' is an interval
[0, a], we can take

do(wl,wg) = min{c|:r:1 e :L'gl, 1},

where ¢ is the intensity of the reference process with respect to Lebesgue measure (the
average intensity, if ¢ were not constant; but here we only consider stationary processes). In
Section 2, we prefer to achieve this by scaling the point process N, . to have unit intensity,
so that then ¢ = 1. For I" a rectangle in R?, we take

do((z1,91), (22, 32)) = min{(er |21 — 22| + e2lvn — w2l), 1},

where c,¢; is the {average) intensity of the reference process with respect to two dimensional
Lebesgue measure, and the ratio ¢;/¢; can be chosen to reflect the relative importance of
discrepancies in the z and y directions.

Although the Wasserstein metric d; is rather weaker than the total variation metric, a
small value of d2(Q;, Q,) still implies that the Q, and Q, distributions of many functionals
of the random measures are close to one another. One such functional is the total number of
points; another, more sophisticated functional is the empirical distribution function of the
inter-point distances. As a further example, suppose that the function g is bounded and
Lipschitz on I'. Then the functional

_[lal i &(r) =0,
h(£) —{ Jr 9(2)é(dz) JE(T), if &T) >0,

is dy~Lipschitz with constant max{2||g|},||¢’||}, so that, for random elements X, Y of H,
[EA(X) — EA(Y)| < max{2|gll, llg'll}2(£(X), L(Y)).

Bounded functions of the pair (2(X), X(I')) which are Lipschitz in the first coordinate can
also be considered. Thus the d; metric provides a useful measure of the rate of convergence;
as Is shown below, it is effective in the current situation, whereas total variation distance is
not.

Our approximating distributions we define as follows. For a fixed interval [0, a], we use
CP( My, v) to denote the distribution of the compound Poisson process

Z Z56Y3 (15)

5:Y,€{0,a]
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with intensity measure Ay and multiplicity distribution v. Here u denotes Lebesgue measure,
A is the intensity coefficient, {Z, Z;, Z5, ...} are independent random variables (independent
of the sequence {Y;}) with £(Z,} = v, and {Y,} are the points of a Poisson process on
R; with intensity measure Ay, The mean measure of CP{Ay,v) is then given by AulEZ.
Expression (1.5) can equivalently be written as ) ;_, Z,dy,, where the random variable 7 =
#{s: 0 <Y, < a} has the Poisson Po(a)) distribution. Such processes, with continuous
intensity measures, are the natural approximations for the stationary processes N, ,.

For =, s, we exchange Z, for a finite random measure in R4, which is used to approxi-
mate not only the number of exceedances at indices 7 such that i/n is near a point ¢ € [0, a],
but also the (extreme) values f~'(X;) taken there. We use the notation PC(Ay,v*) to de-
note the corresponding Poisson cluster process, having intensity measure Ay on [0, a] for the
occurrence of clusters, and probability measure (multiplicity distribution) v* over the family
of finite point measures in R, which describes the distribution of the clusters. The two
types of processes are linked, inasmuch as the measure v* induces the distribution v of the
number of points in a cluster:

v{i} :=v*{n: n{[0, 7 (v))} = 5}.

Hence the one-dimensional compound Poisson process CP (Mg, v) can be derived as a sum-
mary of the process PC(Ay, v*). The Poisson cluster process is a compound Poisson process
on [0, ] x Ry when the probability measure v* is concentrated on the set of point measures
which consist of a single atom, and is a Poisson process when these atoms are restricted to
having mass 1.

In the next two sections, we provide explicit bounds for the accuracy of compound
Poisson approximation to the point processes N,, and =, ;, in terms of the Wasserstein
metric ds.

2 Compound Poisson approximation to N, ,

The main result of the section, Theorem 2.1, bounds the d;-distance between the distribution
of N, ., and a compound Poisson process, whose mean measure is proportional to Lebesgue
measure u. This latter stipulation is natural, in view of stationarity. In order to formulate the
theorem, it is necessary to decide on the carrier space and on the metric dy. The standard
approach is to choose I' = [0,1] and do(z,y) = |z — y|, the Euclidean distance, but, as
discussed in the previous section, this is not scale invariant. Our choice is therefore to modify
the definition of N, ,, retaining the usual Euclidean scale, and defining

do(z,y) = min{|z — y|,1}, =,y €R. (2.1)
Thus, suppressing the indices n and u, we write
p=P(X > u),
and set . .
N(B) = 21 l{ipeB X, >u} = X; Lix,>u}6in( B) (2.2)
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for any Borel set B C I := [0, np].
In order to state the main theorem, and as a principal tool in the proof, we shall need

the classical Bernstein’s “blocks”: see also Hsing et al. (1988). Fix any r € Z, and divide
{1, ...,n} into blocks of length r by putting

B.())={(: = 1)r +1,...,(ir) An}.

Define
Ti= Y. Lx,>u 1<i< [nfr],
FEB.(i)
and let f’m-, 1 <1 < [n/r] be independent copies of 7,1, noting that the T;; are also identically
distributed for 1 < ¢ < [n/r]; the notation |z denotes the greatest integer m < z, [z] the
least integer m > «. Then let ;. denote the conditional distribution of T, given that T}, > 1,
and put

vela,b) = v {[a,0)}, ¢ =PT,>1), 8, =g /rp
Note that ¢. and 8, are functions of the level u, and that ¢, < rp A 1. If the limit

6= limé, ,
n=—00

exists for any sequences u, and r, such that np is bounded away from 0 and co and 1 € r,, €
n, then it is called the extremal index of the sequence {X;,i > 1} (O’Brien (1974), Leadbet-
ter ef al. (1983, Chapter 3.7), Novak (1996)). The compound Poisson process CP(6,u,v;)

on [0,np] is the approximation that we use for the distribution of N.

In the proof, the blocks are used essentially to show that the joint distribution of the 7.,
1 < < |nfr], is close to that of T;;, 1 < ¢ < [n/r], under suitable mixing conditions. We
consider two such. Let F,, ; be the o-algebra generated by the events {X; > u}, m <i <s.
Set

o) = max swp  [P(Bl4)- (B,

SMER ACF) m BEFmtin

a(l) = max sup |IP(A N B) — P(A)P(B)]|.

1SMEn A€F) m BEFmitn

Then set
e =drp+2nr~lpte+ ( 1.65 + e"’) q
VI=g¢ r’

where

e =&(l,r, M) = min{nr~o(l); Mnr~'a(l) + 207" P(T,, > M)} .
Note that IP(Ty > M) = ¢.v,[M, 00), and that
rUP(Tyy > M) <+ YET. /M = p/M. (2.3)
A better estimate is valid under additional assumptions. For instance, if ¢, = 3" ¢/%(2') < o0
and M > rp, then, using Utev’s (1989) result, we get 2
(T > M) < Culrp)(M —rp) 7%,
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where the constant C; depends only on ¢, and ¢.

We are now in a position to state our main theorem.
Theorem 2.1 For any choices of M > 1 and l, v such that 1 <[ <r < n, we have

dy (£ (N),CP(b,,11)) <&, (2.4)

where both processes are restricted to the interval [0,np).

In order to establish the theorem, we first prove the following lemma, which quantifies
the approximate independence of the block processes. Write

[n/r] In/r] N
D,—(n) = dTV £ Z 5,‘,-,,Tn' ,E Z 55"PT”"— :
i=1 i=1

Lemma 2.2 For any choices 1 <! <r <n and M > 1, we have
D,(n) < 2nr~tp +e(l,r, M). (2.5)

Proof of Lemma 2.2. First of all, let T,,(:} = Yien®p) Lx,>u)s where BY(i) := {(i — 1)r +

1,..,ir—1{} for 1 <i < |n/r], so that BY)(i) is obtained by deleting a sub-block of length !
at the right end of block B,(i), and B (|n/r| + 1) = B.(|n/r| + 1). Then, since

P ( Z 1{X,>u} 71‘- 0) < lP,

jeB(iNBY (1)

it follows that
Ln/r) Ln/r) n [n/r] fn/r| .
drv L] D 6T ) . L Z birplri E dirpLri 7 Z 8irpT3Y) | < - p. (2.6)
i=1

Let (T,,,T( ) be independent copies of (T.;, 7™} , which are also independent of X, ...,
Xn. Similarly to (2.6),

/ey Lt ]
drv (z (Z airpT,,-) L ( 3 JgrpT“))) < nrlip. (2.7)
i=1 1=

By Lindeberg’s (1922) method of compositions (cf. Novak (1998) and Eberlein (1984)), we
have

i=1

(2/7] [ In/r) 1 Ln/7)
Y 6TV € A Z STV € Al = 3 Aj(4), (2.8)
i=1



for any A C H, where
e t y B 1
Zé,r,,T() 3 T € Zé,,pT“ Z &I e A . (29)
1=J‘|']- i=1 1:__]

It remains to estimate the individual terms in (2.8), using the mixing coefficients ¢ and «.

The atoms of the measure E’ -1 5,,.,,T“ are at points in the set

I* = {rp,2rp,...,(|n/r] — 1)rp}.

Thus the corresponding space H = H, is countable, so that we may write H, = {h;,i > 1}.
Then

1A;(A)] < ZIP(Z«SWT‘” )

m>1 i=1

:rp )

x |IP (h + 8T + E §irp TP e A

i=j+1

o
P hn+ Y &l e A

i=j

< TP (zawp'r“’ )sa(l)=<p(l)-

m>1 =1

Substituting this estimate into (2.8), we get

Ln/r) l Lr/r] :
3 6T € A 3 6T e A

i=1 i=1

<nrlo(l). (2.10)

Alternatively, for any set C C Z,, define
t
{Z Sirpmrts 1 (Mg, Mgpyy. .., M) € C’t's"'l} ,

Hy = Hu(Z,), HY =H,(0,M-1]).

Then, for any M € N and A C HY,/,|, we have

\ Ln/r] < j=1 l l
P Zat,pT“Jr 3 TP € A} - 6, TH + Z ST €

i=j+1 i=1 i=j

-1 [ infr]
< ¥ ZIP(Z 5,,pT,ff)_h)x
h2EHJ+1 ln/r) =0 =341



({Z é,rpT(!) + mé;p + b2 € A} N {Tr(_? = m})

- P (Z 5:rpT(1) + mdjrp + hs € A) P (Tr(;) = m)‘
< Ma(),

and (2.8) implies that, for A C H},/.),

L 0 ¢ L 70)
P Z 6;,—pT E ‘StrpT

A standard argument now extends this to the bound

I )l
P Z 5T € A - E g €

SMnr_la(l)+P( max TUZM) ]P( max T,.(;)ZM)

1<i<|nfr]

< Mnr~'a(l) 4 2nr7 P(T)y > M), (2.12)

< Mnr~ta(l). (2.11)

valid for any A C H, = Hi |n/r|.- Combining these two bounds with (2.6) and (2.7), the
lemma follows. =

Proof of Theorem 2.1. The properties of d, yield
Lr/r]
d, N) L Z dirpTri <rp+q < 2rp, (2.13)

the points of N each being moved at most a distance rp, and the last short block B, ( Infr|+1)
being omitted. By Lemma 2.2,

Infr] |n/r) N
d2 (C ( E JirpTri) ,£ ( Z 6irpTri)) S 21’},1’“_1!"0 + E(l$ 'l", M) *
=1 i=1

Then, setting 7, = ¢, Zlﬂ/ r) 8irp, it follows that

ln/7] -
dz (.C (Z JirpTri) }CP(WY‘:V”‘))
i=1

L) 1.65
<d, | L Sirpl 2 ,Po(m,) ] < ( - + e"') - 2.14
2 ( (; ) {Tﬂ>o}) ( )) JI—a q ( )




where the last inequality is from Xia (1997). Now note that
d2 (CP(7,,1:), CP (8,1, 1)) < da (Po(m,), Po(8.1)),
and, from Brown and Xia (1995, Formula (2.8)),
&y (Po(,), Po(8ris)) < 7+ grlln/r] = nfr| < o+ 40 < 2. (2.15)

Combining (2.14)-(2.15) with Lemma 2.2, the theorem follows. m

In order to use Theorem 2.1 for limit asymptotics as n — co, it is traditional to suppose
that v = u, is chosen so that np, — t € (0,c0). A very weak mixing condition is then to
suppose that a,({,) — 0 for some sequence I, — oo such that I, = o(n). Choose M, in such
a way that M, — oo and that M, a,(l,) — 0, and then choose r, = o(n) so that [,/r, — 0
and that M,nr;'a,(l,) — 0. It then follows that the right hand side of (2.4) converges to 0.

Suppose now that the same mixing coefficients ¢ and « are valid for all u = u,,, and
that np, — t € (0,00). Then, taking the y-mixing estimate, one can choose { = I, so
that {/o(l) = t~'n and then r = r, so that r = |ny/e({,)/t]. This makes the bound in

Theorem 2.1 of order O(+/t¢(l,)). Soif p(I) < {7 for some 8 > 0, take [, = [(¢71n)"/ (14| to

get a bound of order O(n=#/20+)): for an m-dependent sequence X, similar considerations
give a rate of O(n~'/2). However, the same choices can also be used when np, = t, = oo, in
which case the carrier space [0,¢,] for the point process becomes ever larger. For instance,
if p(!) < 7% and t, = n" for some n > 0, then the bound is of order O(n~%/?), where
d=(8—n(l+28))/(1 + B3), and is useful if p < 3/(1 + 23).

Finally, in order to obtain a limit, it should also be the case that »., — v and 8,, =
Grn/Topa — 0. It is then easy to see that

drv(CP(0's,v), CP(0"s,v)) < drv(Po(6'u(T)), Po(8"4(T)))
< 10— 0"|u(T)y min {1,1//u(T) max(8/, ")}

and that
drv(CP(Au, V), CP(Ap, v")} < Au(T)drv (v, 0").

Then the simple estimate
do(CP (8,1, 1), CP(B,v)) < npbdry (vy,v) + 071%|0, — 8} /np (2.16)

for the distance between the processes over the whole interval [0, np] enables one to complete
a bound for the entire approximation.

3 Compound Poisson approximation to =, ¢

The point process =, ; is defined on the two-dimensional space [0,1] x [0,c0), and the
choice of dp should now reflect the typical two-dimensional distance between points. Here,
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for convenience, we keep the first coordinate as in (1.3}, and rescale the second, by choice
of f, so as to make the average number of points in a unit rectangle approximately 1; then
we take

do((21,31): (%2, 32)) = L A [l2a — 2| + [0 — 2l]. (3.1)
This suggests taking f so that

nP(X; > f(t)) <t, 0<t<K<n, (3.2)

where v = f(K) is the lower limit of X; values that are considered to be extreme. In
particular, if the X;’s have a continuous, strictly monotone distribution function F, take

f)=F1'1-t/n), 0<t<K. (3.3)

We then define the point process of interest on I' = [0, 1] x [0, K] by the measure
= = 2 LxeourS(/ms 1 (x0) (3.4)
=1

We need appropriate mixing conditions. Let F¥ be the sigma-field generated by the
events {mA/M < f~'(X;) < (m+ 1)K/M} for 0<m < M —1 and s < j <t Define

M) := max  sup  [P(B|A) - P(B)];
1SmSn gerM BEFM,, ,

oMi(l) 1= max sup |IP(AN B) — P(A)P(B)].
1SS A F M, BEF N,

Then set
£(l,7, M) := max{nr~'™(1), eMnr='a™M) + 2nr"'P(T,, > M)}, (3.5)
V: = ,C( Z 1{X_,>u}5f—‘(X_,) T,.-l 2 1) 5
JEB:(1)

Theorem 3.1 For any choices of M > 1 and I, r such that 1 <! < r < n, we have

ds (C (é) , PCnr~lq,p, V:)) (3.6)
1.65
vIi—g

<2n'r + MTUK) + 2nlrp 4+ E(L,r, M) + ( +e¥ + 2) g,

on the rectangle [0,1] x [0, K].

If the mixing coefficients decay fast enough then the right-hand side of (3.6) is of order
I Efi +rp+Eé(l,r,M) =< (-nl;[- +i4 %) K, where K may depend on n. This suggests

choosing r = v/nl and M = \/n/l. If ¢ decays exponentially fast then we can put { = Clnn
with a large enough constant C, and the right-hand side of (3.6) becomes O (K\/n‘1 ]nn) .
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For any fixed r, M € Z and 0 < m < M — 1, define

Tr,z’;M,m = Z 1{mK/M<f_l(XJ)S(m+l)K/M}1
JEB,(i)

i

Tr(,i);M,m = ) LimE/M<f~1(X,)<(m+1)K/M}- (3.7)
jeBY (i)

Let
5 > = i =~
((Tr,i;M,U: Trims - Trismm-1), (Tr M0 Tr(,z‘);M,ls 00C ’Tr(,i);M,M—l))

be independent copies of the pairs of vectors

!
((T"ti;M’D’ Trni;My]-’ ety T)",I‘;M,M—l) (TF‘ M0 T(t M1 TF'(l)M M- 1)) 1

independent also of X,...,X,. Denote

M-1
i = O Srijnym 1)k /MY DM m (1<i< n/r]+1), (3.8)

m=0

and make analogous definitions also of = n s Srisnr and = ” M et

M...
M = ¢ ( > Smnyk/mTriMm

m=0

T.: > 1) , (3.9)

and let g. = P(7}.; > 1) be as before.

We can now formulate the analogue of the basic Lemma 2.2, relating the “blocks” process
to the corresponding independent process.

Lemma 3.2 For any choices 1 <l <r<nand M > 1, we have

/) ln/r]
dTV (f. ( Z Er.z‘;M) 8 L ( Z E,.,,';M)) S 2nl’r'1p + 5(!, r, M) 5 (310)

i=1 i=1

Proof of Lemma 3.2. 1t follows as for (2.6) and (2.7) that

ln/r] (/7]
dry (ﬁ (Z Er,i;M) L (Z EE-!:)M)) < nlr'p, (3.11)

i=1
L/} o/l
dry Zu,.,M LY ED )] < nlrtp. (3.12)
=1

Using Lindeberg’s device, we observe that

/) ot
P> =, eBl-P[3 2%, eB

i=1 i=1

(n/r) i 0 ” i-1 0 (n/r) | 0
= Z P Spim + Z H( im € B) —IP Srim Z Srim € B
j:] =1 ¢

i=j+1 i=1 i=j

12



for B C H. So, arguing essentially as for (2.10), we deduce the bound

[n/r] In/r]
—( ~( n
drv (ﬁ ( > :5,3;M) L (Z ;i,z};M)) < ;SOEM](I)a
i=1

i=1

(3.13)

in terms of the coefficients ™. On the other hand, for a bound in terms of the coeffi-

cients o™ split

IP( =0, + Z &0 eB
=1

i=1

i=
) IP( —(1)M+ Z --~(1)M€ B)

i=j3+1

I ! .
T(J)M 0 Tr(,};M,l‘.' ces aTr(,j);M,M_l) which are

according to all the possible values of the vector (T,
M and argue as for (2.11),

consistent with Ti? < M — 1, of which there are fewer than e

obtaining
il il
Pl =0, eB|-P(3Y 20, eB oM7) (3.14)

< eMnr!

i=1

for the corresponding events B. This implies that, for any B C ‘H

) ol
PlY =yeB|-P(> 2, eB

—r M
~1aMI(1) 4 2nr g1 {[M, 00)}.

i=1

(3.15)

The proof is complete. m
Proof of Theorem 3.1. The theorem follows from Lemma 3.2 by much the same argument as

is used to derive Theorem 2.1. Setting 7% = g, Zln/ 1§ i, it follows that
ln/r]
Z ._.”M , PC(m I/[M])
n/r} 1.65
< d; Z 5% {Tri21} ,Po(r} | < (\/1_—%’}'6%) Grs (3.16)

where the last inequality is again from Xia (1997). The properties of d; yield

_ n/r]
d; (ﬁ(E),C (Z E,,,-;M)) <rmn '+ KM '+q,

i=1
! and the last short block

(3.17)

the points of = each being moved at most a distance rn=! + K M~
B.(|n/r]) being omitted, whereas, much as for (2.15),
! (3.18)

ds (PC(W:,U,[.M]),PC(nr_lq,p, u:)) <rn '+ KM~ +g,.
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Combining (3.16)~(3.18) with Lemma 3.2, the theorem follows. m

There are other kinds of ‘mixing’ which could be exploited. One condition is that, for

each m > 1, it is possible to construct a process (X( +),, ¢ > 1) which is independent of
Xi,...,Xm, has the same distribution as {X,,4;, ¢ > 1), and satisfies

P (sup BOIF e = PO > ) < 11400 (3.19)

i>1

for nondecreasing functions ¥, and t¥; such that lim; e 2731 (2) = limgeo WPa(k) = oo.
Here, we assume that (3.3) is in force. Such a condition is typically satisfied, for instance, by
the stochastic time reversal of the sequence of iterates of a uniformly expanding piecewise
smooth map of [0,1] — [0, 1]: see Barbour, Gerrard and Reinert (1999). The bound (3.19)
implies, using (3.3), that

nk
(1)

P(s;g?u-‘(xmﬁ)—f Xl > ) 1/ (k). (3.20)

Using the “blocks” argument, with the discretization

= =) ._
Sit= Y Lxswbrimix)i Seii= 2 Lxsu)Spims-iog)
.rer(x) ieB )

it is easy to see that, for any function g : H — R such that |¢(¢) — g(n)| < d1(£, 1), and for
any £, € H, we have

-1
o (S0 +20+6) ~ma (L0420 )
i=1

> 1 n nk " 2rk
T (k) ) ()’

where m = (j — 1)r — ! and

={1)
St Z 1{xf"*’>u}5(n/nf -1x{™))

ieBY )

In the upper bound, the first term arises when the event

6 = {aup 17! Gt = XS > k)

il
occurs, the second when the event
G N { ﬂ {1{Xjr>u} = I{X(:n)>u}}
i1eBY() ’
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occurs, and the last term comes when the remaining event occurs, which entails

Usrept iy LIF(X3r) — F(w)| < R/ (D)},

because F(X;) has the uniform distribution on [0,1}. This replaces (3.13) in the proof of
Lemma 3.2, leading to the following result.

Theorem 3.3 Suppose that (3.3) and (3.19) hold. Then, taking any choices of k > 1 and
[, 7 such that 1 <!l <r <n, we have

dr (L (Z), PCnr~' gt 7)) (3.21)

+(2+2) s +( O +e‘?f+2)q
T '([)1([) \/]. - gr "

< 2n7lr 4 2nilr1p +

n
T’lpg(k)
for the processes on [0,1] x [0, K].

4 Applications

Example 1. As a first application, take X, := X (j), j € Z, where the stationary Markovian
process X is Brownian motion reflected at zero, with drift —¢, ¢ > 0, and with infinitesimal
variance ¢2. This process arises as a typical heavy traffic limit in the analysis of queueing
models: see Harrison (1985). The stationary distribution F of X is given by

1 — F(z)=e"", where §:=2¢c/c". (4.1)
Recalling (3.3), we take
f(t) ;= =B tlog(t/n), 0<t< K :=n°, (4.2)

say, for any fixed 0 < a < 1/2, corresponding to taking © = 37!(1 — a)log n as the lower
limit of ‘extreme’ values among the X;’s, with an expected number of n® extreme values on
the interval 1 < 7 < n.

In order to analyse the processes N, , and =, ; of extremes, we use a mixing condition
of ¢p-type. This involves the future distribution of X condltlonal on any set A € Fim,
which is easier to handle for the related bounded Markov process X = X un( ) constructed
by reflecting also at the upper boundary 33~!logn. The processes X; and X have almost
identical distributions on 1 < j < n, as can be seen by the following couplmg construction.
Start X and X independently at time —I,, where I, := [9(s/c)?logn], and run them from
then on with the same innovations. This coupling is monotone until the time 7, at which
processes first meet, which occurs before the initially larger of the processes first hits zero;
thereafter, they remain coupled until X next exceeds 33 !logn. Now, for any m € Z and
T > 1, we have

P ( max_ X; > 387" log n) <T(1—F(387'logn)) ~ Tn™> (4.3)

m<j<m+T -1
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also, IP (minp<j<m+r-1 X; > 0| Xo = z) is increasing in «, and satisfies

: . — _ 2 —(cT—-x)?/2Ta?
P, in, X >01X0=2) SP(Na—el.Te") >0) < R

so that taking z = 38~ !logn and T = —m = [, gives
P(r, >0)<n2 (4.5)
It thus follows, from (4.5) and from (4.3) with m = —{, and T = n + 1 + [, that
drv (£((X)i=) £ (X)m)) < P{ULX # XY S e+ 2+ L)n <2072, (4.6)
i=1

whenever n is large enough that n > 2 4 {,. A similar coupling argument, now used with
two realizations of X starting at time m, one with the stationary distribution of X (Har-
rison (1985, p. 90)) and the other with any arbitrarily chosen distribution, then shows that

‘ij(ln) < n”2. (4.7)

This enables Theorems 2.1 and 3.1 to be simply applied to the X sequence.
It also follows from (4.3) and (4.5) that

drv(Ley L) < (r + 24 )03, (4.8)

where £, := L (Z_,Egr{l) Lix,>uyd5-1(x, )) and the hat is used to denote quantities derived

from the process X. This latter bound is useful for relating the approximations given in
Theorems 2.1 and 3.1 for the X-sequence to those for the original X-sequence, because

dev(Le, L) = g — &+ oy — &0}

g — &b+ llar(v; — 22) + (2 — 62711}

> o — &l + @l = 20 =l — & ll27 11}

= qdrv(v},07) > gdrv(vr, D7); (4.9)

furthermore, much as for (4.8), [p — p| < (2 + [)n~3. Hence it follows that, on [0, np}],

S nplor - ér] + ngrpdTV(Vr) I‘}r)
S nrnllfi'r_érl"'nlp_ﬁ' +nT-IdTV(£r‘1Er)
= O(n7*(1 +r"tlogn)), (4.10)

drv (CP(8,1,1,), CP (01, ;)

with a further error of at most n|p — p| to account for the difference between the intervals
[0,np] and [0, np); and, on [0, 1],

drv (PC(nr gty ), PC{nr'4,p, 0 r)) = O(n*(1 +r'logn)) (4.11)
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also.

So taking [ = [, and r = r,, = |(nlogn)'/?|, and noting that p = 1 — F(u) = n®~1, we
can apply Theorem 2.1 to the X -sequence, with an error which is of order O(n*~'/2\/logn),
and then convert the result to the approximation

dy (£ (N),CP(6,4,14)) = O (n""’”z\/log n) ,

on [0, np] for the X -sequence, since the additional error is of smaller order. In a similar way,

we obtain
dz (C (2) ,PC(n'r'lqrp,V:)) =0 (n""lﬁ\/log n) ,

on [0,1] x [0,n%] for the X—sequence, since M can be chosen to be arbitrarily large.

Example 2. Let the sequence (X;; 1 < j < n) be defined by the deterministic ‘tent map’
recursion X;_) = h.(X;) starting with X,, ~ U[0, 1], where, for some 0 < ¢ < 1,

=/ f 0<z<¢
hc(x)_{(li:c)/(l—c) if C'Siff-

This process has the same joint distributions as the Markov chain on [0, 1] with transition

probabilities
Yot = {C_Xj with probability ¢;
LT 1= (1=¢)X; with probability 1 —c,

which has stationary distribution F = U[0, 1] and satisfies (3.19) with

P1(e) = (1/ max{c,1 — c})i

and (M) = oo for M > 1 (Barbour et al. (1999)). In accordance with (3.3), define
f)=1—t/nfor 0 <t < n° for any fixed 0 < @ < 1/2. Take

r = |{nlogn}/?|, I = [(3/log[1/ max{c,1 — ¢}]) logn],

and observe that p = n®~! so np = cn® — oo; applying Theorem 3.3, it follows that

d> (C (é) ,PC(nr_lqrp,u:)) =0 (n"_llz\/logn) .

In both examples, the approximation improves with increasing n for all values of a <
1/2, so that the main problem that remains is to identify ¢, and the distribution ». This
is usually no easy matter. In the latter case, the simple form of the recursion shows that,
if X; > u, then the s consecutive preceding values X;/, 7 — s < 3’ < 7 — 1, have to satisfy
X < ¢, where s = |{(1 — a)/log(1/c)}logn] — 1, and this event requires s consecutive
choices of the first branch of £!, an event of probability at most ¢~2n*~! = O(p). Thus
the approximation is actually a Poisson process approximation, to an extra error of order
at most O((n/r)rp?) = O(n?*71), a relatively small adjustment. If, on the other hand, the
same techniques were used for the small extremes, the process approximating N, , would be
a compound Poisson process with 14,.{5} = (1—¢)c’™!, > 1, a geometric random variable, to
the same order of accuracy. In the former case, the distributions v, and v involve excursion
theory for Brownian motion with negative drift.
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