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� Introduction

Stein	s Method 
��� provides a way of 
nding approximations to the distribution� � say� of a random

variable� which at the same time gives estimates of the approximation error involved� The strenghts

of the method are that it can be applied in many circumstances in which dependence plays a part� In

essence the method is based on a de
ning equation� or equivalently an operator� of the distribution

� and a related Stein equation� Up to now is was not clear which equation to take� One could

think at a lot of equations� We show how for a broad class of distributions� there is one equation

who has a special role� We give a systematic treatment� including the Stein equation� its solution

and smoothness conditions�

A key tool in Stein	s theory is the generator method developed by Barbour 
��� Barbour

suggested employing for the operator of the Stein equation� the generator of a Markov process� In

this generator method� one thus looks for a de
ning equation for �� which is related to the generator

of a Markov process� For a given distribution there may be various Markov processes who 
t in

Barbour	s method� However� up to now� it was still not clear which Markov process to take to

obtain good results� We show how for a broad class of distributions there is a special Markov

process� a birth and death process or a di�usion� which takes a leading role in the analysis�

Furthermore� a key role is played by the classical orthogonal polynomials� P� Diaconis and S�

Zabell already mentioned this connection 
���� It turns out that the de
ning operator is based on a

hypergeometric di�erence or di�erential equation� which lies at the heart of the classical orthogonal

polynomials� Furthermore� the spectral representation of the transition probabilities of the Markov

process involved will be in terms of orthogonal polynomials closely related to the distribution to be

approximated� This systematic treatment together with the introduction of orthogonal polynomials

in the analysis seems to be new� Furthermore some earlier uncovered examples like the Beta� the

Student	s t� and the Hypergeometric distribution are now worked out�
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� Prelimaries

��� Birth and Death Processes and Di�usions

A birth and death process fXt� t � �g is a Markov process on the state space S � f�� �� �� � � �g with

stationary transition probabilities� i�e� Pij�t� � Pr�Xt�s � jjXs � i�� i� j � S� is not depending on

s� and with in
nitesimal generator A given by

Af�i� � �if�i� ��� ��i � �i�f�i� � �if�i� ��� i � S� ���

for all bounded real�valued functions f � B�S� and where we take �i� �i � � for i not on the

boundary of S� On the boundary of S we must have �i� �i � �� We will always work with

S � N � f�� �� �� � � �g� in which case we set �� � �� or take S � f�� �� � � � � Ng with N a positive

integer� and in which case �� � �N � �� Furthermore we do not allow the existence of an

absorbing state� i�e� a boundary state with birth parameter and death parameter equal to zero�

The parameters �i and �i are called� respectively� the birth and death rates� It can be shown that

the limits limt�� Pij�t� � pj� j � S� exist and are independent of the initial state i� It turns out

that the pj are given by pj � �j�
P

k�S �k� j � S� where �j � ���� � � � �j�������� � � � �j�� j � Snf�g�

and �� � �� In order that the sequence fpjg de
nes a distribution we must have
P

k �k 	 � and

then clearly
P

k pk � �� We say that fpjg is the limiting stationary distribution� If
P

k �k � �

then all pj are zero and we do not have a limiting stationary distribution�

In the analysis of birth and death processes� a prominent role is played by a sequence of

polynomials fQn�x�� n � Sg� called birth�death polynomials� They are determined uniquely by

the recurrence relation

�xQn�x� � �nQn���x�� ��n � �n�Qn�x� � �nQn���x�� n � S�

together with Q���x� � � and Q��x� � �� Karlin and McGregor 
��� 
��� proved that the transition
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function P can be represented as

Pij�t� � �j

Z �

�
e�xtQi�x�Qj�x�d
�x�� i� j � S� t � �� ���

where 
 is a positive Borel measure with total mass � and with support on the non�negative real

axis� 
 is called the spectral measure of P � Taking t � � in ��� one easily sees that the polynomials

fQn�x�� n � Sg are orthogonal with respect to 
� In the examples we will encounter a variety of

birth and death processes� Other examples can be found in the litterature� see for example 
����


��� and 
����

Another class of Markov processes will appear also in the analysis� Di�usions with state space

S � �a� b�� �� � a 	 b � ��� We refer to 
�� for a general introduction� Suppose A is the

generator of the di�usion� In 
�� a clear proof is given of the fact that A is of the form�

Af�x� � ��x�f ��x� �
�

�
���x�f ���x��

where ��x� is called the drift coe�cient and ���x� � � the di�usion coe�cient� We will highlight

the spectral representation for some of di�usion processes in the examples �see also 
�����

��� Stein�s Method

����� Normal Approximation and Poisson Approximation

In ����� Stein 
��� published a method to prove Normal approximation� It is based on the fact

that a random variable Z has a Standard Normal distribution N��� �� if and only if for all di�eren�

tiable functions f such that Ejf ��X�j 	�� where X has a Standard Normal distribution N��� ���

E
f ��Z�� Zf�Z�� � ��

Hence� it seems reasonable that if E
f ��W � �Wf�W �� is small for a large class of functions

f � then the distribution of W is close to the Standard Normal distribution� Suppose we wish to

estimate the di�erence between the expectation of a smooth function h with respect to the random

variable W and E
h�Z��� where Z has a Standard Normal distribution� Stein 
��� showed that for

�



any smooth� real�valued bounded function h there is a function f � fh solving the now called Stein

equation for the Standard Normal

f ��x�� xf�x� � h�x��E
h�Z��� ���

with Z a Standard Normal random variable� The unique bounded solution of the above equation

is given by

fh�x� � exp�x����

Z x

��
�h�y� �E
h�Z��� exp��y����dy�

Then we estimate

E
f �h�W ��Wfh�W �� ���

and hence E
h�W ���E
h�Z��� The next step is to show that the quantity ��� is small� In order to

do this we will use the structure of W � For instance� it might be that W is a sum of independent

random variables� In addition we will use some smoothness conditions on fh� Stein showed the

following inequalities

jjfhjj �
r
�

�
jjh �E
h�Z��jj� ���

jjf �hjj � sup�h� � inf�h��

jjf ��h jj � �jjh�jj� ���

where jj 	 jj denotes the supremum norm�

In this way we can bound the distance of W from the Normal� in terms of a test function h�

the immediate bound of the distance is one of the key advantages of Stein	s method compared to

moment generating functions or characteristic functions�

Chen 
�� applied Stein	s idea in the context of Poisson approximation� The Stein equation for

the Poisson distribution P��� is now a di�erence equation�

�f�x�� xf�x� �� � h�x��E
h�Z��� ���
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where h is a bounded real�valued function de
ned on the set of the non�negative integers and Z has a

Poisson distribution P���� The choice of the left hand side of equation ��� is based on the fact that a

random variableW on the set of the non�negative integers has a Poisson distribution with parameter

� if and only if for all bounded real�valued functions f on the integers E
�f�W ��Wf�W ���� � ��

The solution of the Stein equation ��� for the Poisson distribution P��� is given by�

fh�x� � x���x��
xX

k��

�h�k� �E
h�Z���
�k

k�
� x � ��

This solution is the unique� except at x 	 �� bounded solution� the value fh�x� for negative x does

not enter into consideration and is conventionally taken to be zero� In 
�� one 
nds the following

estimates of the smoothness for fh by an analytic argument�

jjfhjj � jjhjjmin��� ������ and jj�fhjj � jjhjjmin��� �����

where �f�x� � f�x� ��� f�x��

����� General Approach

For an arbitrary distribution �� the general procedure is� Find a good characterization of the desired

distribution � in terms of an equation� that is of the type

Z is a r�v� with distribution � if and only if E
Af�Z�� � ��

for all smooth functions f � where A is an operator associated with the distribution �� �Thus in

the standard normal case Af�x� � f ��x� � xf�x�� x � R�� We will call such an operator a Stein

operator� Next assume Z to have distribution �� and consider the Stein equation

h�x��E
h�Z�� � Af�x�� ���

For every smooth h� 
nd a corresponding solution fh of this equation� For any random variable W �

E
h�W ���E
h�Z�� � E
Afh�W ��� Hence� to estimate the proximity of W and Z� it is su�cient to

estimate E
Afh�W �� for all possible solutions of ����
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However� in this procedure it is not completely clear which characterizing equation for the

distribution to choose �one could think of a whole set of possible equations�� The aim is to be able

to solve ��� for a su�ciently large class of functions h� to obtain convergence in a known topology�

����� Barbour�s Generator Method

A key tool in Stein	s theory is the generator method developed by Barbour 
��� Replacing f by f �

in the Stein equation for the Standard Normal ��� gives f ���x� � xf ��x� � h�x� � E
h�Z��� If we

set A�f�x� � f ���x� � xf ��x�� this equation can be rewritten as A�f � h�x� � E
h�Z��� The key

advantage is that A� is also the generator of a Markov process� the Ornstein�Uhlenbeck process�

with Standard Normal stationary distribution�

If we replace f by �f � f�x� ��� f�x� in the Stein equation for the Poisson distribution ����

we get �f�x���� ��� x�f�x� � xf�x� �� � h�x��E
h�Z��� If we set A�f�x� � �f�x���� ���

x�f�x� � xf�x� ��� this equation can be rewritten as A�f�x� � h�x��E
h�Z��� Again we see that

A� is a generator of a Markov process� an immigration�death process� with stationary distribution

the Poisson distribution� Indeed from ��� we see that A� is the generator of a birth and death

process with constant birth �or immigration� rate �i � � and linear death rate �i � i�

This also works for a broad class of other distributions �� Barbour suggested employing for

an operator the generator of a Markov process� So for a random variable Z with distribution ��

we are looking for an operator A� such that E
Af�Z�� � � and for a Markov process fXt� t � �g

with generator A and with unique stationary distribution �� We will call such an operator A a

Stein�Markov operator for �� The associated equation will be called the Stein�Markov equation

Af�x� � h�x� �E
h�Z��� ���

This method will be in the following called the generator method�

However� for a given distribution �� there may be various operators A and Markov processes

with � as stationary distributions� We will provide a general procedure to obtain for a large class
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of distributions one such process�

In this framework� for a bounded function h� the solution to the Stein�Markov equation ��� may

be given by fh�x� � � R�� �Tth�x��E
h�Z���dt where Z has distribution �� Xt is a Markov process

with generator A and stationary distribution � and Tth�x� � E
h�Xt�jX� � x��

����� Stein Operators and Stein�Markov Operators

We summarize some Stein�Markov operators A and Stein operators A for some well�known distri�

butions in the next tables� where we set q � � � p� For more details see 
��� 
��� 
��� 
��� 
���� 
���

and references cited therein�

Table �� Stein operators

Name Notation Af�x�

Normal N��� �� f ���x�� xf ��x�

Poisson P��� �f�x� ��� �x� ��f�x� � xf�x� ��

Gamma G�a� �� xf ���x� � �a� �� x�f ��x�

Pascal Pa��� �� ��x� ��f�x� ��� ���x� �� � x�f�x� � xf�x� ��

Binomial Bin�N� p� p�N � x�f�x� ��� �p�N � x� � qx�f�x� � qxf�x� ��

Table �� Stein�Markov operators

Name Notation Af�x�

Normal N��� �� f ��x�� xf�x�

Poisson P��� �f�x� ��� xf�x�

Gamma G�a� �� xf ��x� � �a� �� x�f�x�

Pascal Pa��� �� ��x� ��f�x�� xf�x� ��

Binomial Bin�N� p� p�N � x�f�x�� qxf�x� ��
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Note that the Stein�Markov and the Stein operators are of the form

Af�x� � s�x�f ���x� � 
�x�f ��x� and Af�x� � s�x�f ��x� � 
�x�f�x�

in the continuous case and of the form

Af�x� � s�x��rf�x� � 
�x��f�x�

� �s�x� � 
�x��f�x� ��� ��s�x� � 
�x��f�x� � s�x�f�x� ��

Af�x� � s�x�rf�x� � 
�x�f�x� � �s�x� � 
�x��f�x�� s�x�f�x� ��

in the discrete case� where the s�x� and 
�x� are polynomials of degree at most two and one

respectively and rf�x� � f�x�� f�x� ��� Furthermore the above distributions satisfy equations

with the same ingredients s�x� and 
�x�� In the continuous case the density �or weight� function

��x� of the distribution � satis
es the di�erential equation �s�x���x��� � 
�x���x� and in the discrete

case the probabilities Pr�Z � x� � px satisfy the di�erence equation ��s�x�px� � 
�x�px�

This brings us to the Pearson class of continuous distributions and Ord	s family of discrete

distributions

� Stein�s Method for Pearson�s and Ord�s Family

In ���� K� Pearson introduced his famous family of frequency curves� The elements of this family

arise by considering the possible solutions to the di�erential equation

���x� �
�x� a����x�

b� � b�x� b�x�
�
q�x���x�

p�x�
� ����

There are in essence 
ve basic solutions� depending on whether the polynomial p�x� in the de�

nominator is constant� linear or quadratic and� in the latter case� on whether the discriminant�

D � b�� � �b�b�� of p�x� is positive� negative or zero� It is easy to show that the Pearson family

is closed under translation and scale change� Thus the study of the family can be reduced to

di�erential equations that result after an a�ne transformation of the independent variable�
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�� If deg�p�x�� � �� then ��x� can be reduced after change of variable to a Standard Normal

density�

�� If deg�p�x�� � �� then the resulting solution may be seen to be the family of Gamma distri�

butions�

�� If deg�p�x�� � � and D � �� then the density is of the form ��x� � Cx�� exp����x�� where

C is the appropriate normalizing constant�

�� If deg�p�x�� � � and D 	 �� then the density ��x� can be brought into the form ��x� �

C�� � x���� exp��arctan�x��� where again C is the appropriate normalizing constant� in

particular� the t�distributions are a rescaled subfamily of this class�

�� If deg�p�x�� � � and D � �� the density ��x� can be brought into the form ��x� � Cx������

x����� where C is the appropriate normalizing constant� the Beta densities clearly belong to

this class�

In what follows we will suppose that in the continuous case we have a distribution � on an

interval �a� b�� with a and b possible in
nite� with a second moment� a distribution function F �x�

and a density function ��x�� but we will 
nd it more convenient to work with an equivalent form

of the di�erential equation ����� We assume that our density function ��x� satis
es�

�s�x���x��� � 
�x���x�� ����

for some polynomials s�x� of degree at most two and 
�x� of exact degree one� The equivalence

between ���� and ���� can easily be seen by setting p�x� � s�x� and q�x� � 
�x�� s��x��

Furthermore we will make the following assumptions on s�x��

s�x� � �� a 	 x 	 b and s�a�� s�b� � � if a� b is 
nite� ����

Note that because ��x� � � and
R b
a ��y�dy � �� we have that 
�x� is not a constant and is a

decreasing linear function� Indeed� suppose it was non�constant and increasing and denote the only
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zero of 
�x� by l� then we would have for x 	 l�

Z x

a
��y�dy �

Z x

a


�y�


�x�
��y�dy �

R x
a �s�y���y��

�dy


�x�
�
s�x���x�


�x�
	 ��

which is impossible� For a similar reason� 
�x� can not be constant�

The only zero of 
�x�� l say� is just E
Z�� where Z has distribution �� This can be seen by

calculating�

E

�Z�� �

Z b

a

�y���y�dy �

Z b

a
�s�y���y���dy � s�y���y�jba � ��

Ord	s family comprises all the discrete distributions that satisfy

�px
px

�
px�� � px

px
�

a� � a�x

b� � b�x� b�x�
�
q�x�

p�x�
� ����

where px � Pr�Z � x� and x takes values in S � fa� a � �� � � � � b � �� bg� with a� b possible in
nite

and where we set for convenience px � � for x �� S�

So we suppose that we have a discrete distribution � on S with a 
nite second moment� but

also here we prefer to work with an equivalent form of the di�erence equation ����� We assume

that our probabilities px satisfy�

��s�x�px� � 
�x�px� ����

for some polynomials s�x� of degree at most two and 
�x� of exact degree one� The equivalence

between ���� and ���� can easily be seen by using ��s�x�px� � s�x����px�px�s�x�� and setting

p�x� � s�x� �� and q�x� � 
�x� ��s�x�� In this way we can also rewrite the di�erence equation

���� as

px��
px

�
s�x� � 
�x�

s�x� ��
� ����

Furthermore we will make the following assumptions on s�x��

s�a� � � if a is 
nite� s�x� � �� a 	 x � b� ����

Note again� that because px � � and
Pb

i�a pi � �� that 
�x� is not a constant and is a decreasing

linear function� and that the only zero of 
�x�� l say� is just the mean of the distribution �� For a

complete description of Ord	s family� we refer to 
����
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We start with a characterization of a distribution � with density ��x� satisfying ����� We set

C� equal to the set of all real bounded piecewise continuous functions on the interval �a� b� and set

C� equal to the set of all real continuous and piecewise continuously di�erentiable functions f on

the interval �a� b�� for which the function g�z� � js�z�f ��z�j � j
�z�f�z�j is bounded� We have the

following theorem�

Theorem � Suppose we have a random variable X on �a� b� with density function ���x� and �nite

second moment and that ��x� satis�es ����� Then ���x� � ��x� if and only if for all functions

f � C�	 E
s�X�f ��X� � 
�X�f�X�� � ��

Proof� First assume X has density function ��x�� Then

E
s�X�f ��X� � 
�X�f�X�� �

Z b

a
f ��x��s�x���x��dx �

Z b

a
f�x�
�x���x�dx

� f�x�s�x���x�jba �
Z b

a
f�x��s�x���x���dx�

Z b

a
f�x�
�x���x�dx

� �
Z b

a
f�x�
�x���x�dx �

Z b

a
f�x�
�x���x�dx � �

Conversely� suppose we have a random variable X on �a� b� with density function ���x� and 
nite

second moment such that for all functions f � C�� E
s�X�f ��X� � 
�X�f�X�� � �� Then

� � E
s�X�f ��X� � 
�X�f�X�� �

Z b

a
�s�x�f ��x� � 
�x�f�x�����x�dx

� f�x����x�s�x�jba �
Z b

a
�s�x����x���f�x�dx�

Z b

a

�x�f�x����x�dx

� �
Z b

a
�s�x����x���f�x�dx�

Z b

a

�x�f�x����x�dx�

But this means that for all functions f � C��
R b
a �s�x����x��

�f�x�dx �
R b
a �
�x����x��f�x�dx� So ���x�

satis
es the di�erential equation �s�x����x��� � 
�x���x�� which uniquely de
nes the density ��x��

In conclusion we have ���x� � ��x�� 


In the discrete case� we have a similar characterization of a distribution � with probabilities px

satisfying ���� and ����� We set C� equal to the set of all real�valued functions f on the integers

such that f is zero outside S and the function g�x� � js�x�rf�x�j � j
�x�f�x�j is bounded and
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where rf�x� � f�x�� f�x� ��� We have the following theorem� we omit the prove of it because

it is completly along the same lines as the proof of the continuous version�

Theorem � Suppose we have a discrete random variable X on the set S with probabilities Pr�X �

x� � �px and �nite second moment and that px satis�es ��
�� Then �px � px if and only if for all

functions f � C�	E
s�X�rf�X� � 
�X�f�X�� � ��

In Stein	s method we wish to estimate the di�erence between the expectation of a function

h � C� with respect to a continuous random variable W and E
h�Z��� where Z has distribution ��

To do this� we solve 
rst the so�called Stein equation for the distribution ��

s�x�f ��x� � 
�x�f�x� � h�x��E
h�Z��� ����

The solution of this Stein equation is given in the next proposition�

Proposition � The Stein equation ���� for the distribution � and a function h � C� has as solution

fh�x� �
�

s�x���x�

Z x

a
�h�y��E
h�Z�����y�dy ����

�
��

s�x���x�

Z b

x
�h�y� �E
h�Z�����y�dy� ����

when a 	 x 	 b and fh � � elsewhere� This fh belongs to C��

Proof� First note that

f �h�x� �
��s�x���x���

�s�x���x���

Z x

a
�h�y� �E
h�Z�����y�dy �

h�x� �E
h�Z��

s�x�

�
�
�x���x�
�s�x���x���

Z x

a
�h�y��E
h�Z�����y�dy �

h�x��E
h�Z��

s�x�

�
�
�x�

�s�x�����x�

Z x

a
�h�y��E
h�Z�����y�dy �

h�x��E
h�Z��

s�x�
�

Next we just substitute the proposed solution ���� into the left hand side of the Stein equation�

This gives

s�x�f �h�x� � 
�x�fh�x� �
�
�x�
s�x���x�

Z x

a
�h�y� �E
h�Z�����y�dy � h�x� �E
h�Z��

�

�x�

s�x���x�

Z x

a
�h�y� �E
h�Z�����y�dy

� h�x��E
h�Z���

��



The second expression for fh follows from the fact

Z x

a
�h�y� �E
h�Z�����y�dy �

Z b

x
�h�y��E
h�Z�����y�dy � ��

To prove that for h � C�� we have fh � C�� we need only show that g�x� � js�x�f �h�x�j �

j
�x�fh�x�j� a 	 x 	 b� is bounded� We have for x 	 l�

g�x� � js�x�f �h�x�j� j
�x�fh�x�j

�
���� 
�x�

s�x���x�

Z x

a
�h�y��E
h�Z�����y�dy � h�x��E
h�Z��

����
�

���� 
�x�

s�x���x�

Z x

a
�h�y��E
h�Z�����y�dy

����
�

���� jjh�x� �E
h�Z��jj
s�x���x�

Z x

a

�y���y�dy

����� jjh�x� �E
h�Z��jj

�

���� jjh�y��E
h�Z��jj
s�x���x�

Z x

a

�y���y�dy

����
� �jjh�x� �E
h�Z��jj�

where jjf�x�jj � supa�x�b jf�x�j� A similar result for x � l follows from ����� This proves our

proposition� 


In the discrete case� we wish to estimate the di�erence between the expectation of a bounded

function h with respect to a random variable W and E
h�Z��� where Z has distribution �� To do

this� we solve 
rst the so�called Stein equation for the discrete distribution ��

s�x�rf�x� � 
�x�f�x� � h�x��E
h�Z��� ����

This Stein equation is solved in the next proposition� The proof is completely of the same structure

as in the continuous case�

Proposition � The Stein equation ��
� for the distribution � and a bounded function h has as

solution

fh�x� �
�

s�x� ��px��

xX
i�a

�h�i� �E
h�Z���pi �
��

s�x� ��px��

bX
i�x��

�h�i� �E
h�Z���pi� ����

when a � x 	 b and fh � � elsewhere� Furthermore	 this fh belongs to C��

��



Again suppose 
rst we are in the continuous setting� The next step is to estimate

E
s�W �f �h�W � � 
�W �fh�W �� ����

and hence E
h�W �� � E
h�Z��� To show the quantity in ���� is small� it is necessary to use the

structure of W � In addition we might require certain smoothness conditions on fh which would

translate into smoothness conditions on h by the following lemma�

Set as before l � E
Z� and remember that l is the only zero of 
 � We will need the following

positive constant

M �
�

��l�s�l�
max�F �l�� � � F �l���

Lemma � Suppose h � C� and let fh be the solution ���� of the Stein equation given by ����� Then

jjfh�x�jj �M jjh�x� �E
h�Z��jj�

Proof� Note that 
�x� is positive and decreasing in �a� l� and negative and decreasing in �l� b�� So

we have for x 	 l�

F �x� �

Z x

a
��y�dy �

Z x

a


�y�


�x�
��y�dy �

�


�x�

Z x

a
�s�y���y���dy �

s�x���x�


�x�
�

Similarly� for x � l� we have

�� F �x� �

Z b

x
��y�dy � �s�x���x�


�x�
� ����

Now� for x � l�

jfh�x�j �
���� �

s�x���x�

Z x

a
�h�y��E
h�Z�����y�dy

���� � jjh�x��E
h�Z��jj
R x
a ��y�dy

s�x���x�
� ����

Similarly for x � l�

jfh�x�j �
����� ��

s�x���x�

Z b

x
�h�y��E
h�Z�����y�dy

����� � jjh�x��E
h�Z��jj
R b
x ��y�dy

s�x���x�
� ����

Next we prove that the expressions
R x
a ��y�dy��s�x���x�� and

R b
x ��y�dy��s�x���x��� of ���� and

���� attain there maximum at x � l� To show this we calculate

�R x
a ��y�dy

s�x���x�

��
�

�
�x�
��x��s�x���

Z x

a
��y�dy �

�

s�x�

��



and �R b
x ��y�dy

s�x���x�

��
�

�
�x�
��x��s�x���

Z b

x
��y�dy � �

s�x�
�

Next we use ��� and ���� to obtain�

�R x
a ��y�dy

s�x���x�

��
� � for x � l and

�R b
x ��y�dy

s�x���x�

��
� � for x � l�

In conclusion we have jjfh�x�jj �M jjh�E
h�Z��jj� 


In the discrete setting� we wish to estimate

E
s�W �rfh�W � � 
�W �fh�W �� ����

and hence E
h�W ���E
h�Z��� We again might require certain smoothness conditions on fh which

would translate into smoothness conditions on h by the following lemma� Let 
�x� � cx� d� c 	 �

and l � �d�c be the only zero of 
 � Now we need the following positive constant

M �
�

pblc��s�blc� ��
max

�
� blcX

i�a

pi�
bX

i�blc��

pi

	
A �

Lemma � Suppose h is a bounded function and let fh be the solution of the Stein equation given

by ��
�� Then jjfh�x�jj �M jjh�x� �E
h�Z��jj� where jjf�x�jj � supa�x�b jf�x�j�

The proof is complete analoguous to the continuous case�

Another inequality for distributions in Pearson	s class is given in the next lemma�

Lemma � Suppose h � C� and let fh be the solution ���� of the Stein equation given by ����� Then

jjf �h�x�jj � �jj��s�x�jj � jjh�x� �E
h�Z��jj�

Proof� Because

f �h�x� �
�
�x�

�s�x�����x�

Z x

a
�h�y� �E
h�Z�����y�dy �

h�x��E
h�Z��

s�x�

�

�x�

�s�x�����x�

Z b

x
�h�y��E
h�Z�����y�dy �

h�x��E
h�Z��

s�x�
�

we have for x � l�

jf �h�x�j � jjh�x��E
h�Z��jj
�


�x�F �x�

�s�x�����x�
�

�

s�x�

�
� jjh�x� �E
h�Z��jj

�
�

s�x�

�
�

��



where we used for the last inequality ����

Similarly� for x � l we have

jf �h�x�j � jjh�x� �E
h�Z��jj
��
�x���� F �x��

�s�x�����x�
�

�

s�x�

�
� jjh�x� �E
h�Z��jj

�
�

s�x�

�
�

This ends the proof� 


A slightly di�erent version for Ord	s class is given in the next lemma�

Lemma � Suppose h is a bounded function and let fh be the solution of the Stein equation given

by ��
�� Then

jjrfh�x�jj � max

�
�

j
�a�j � sup
a�x�b

���s�x��

�
jjh�x� �E
h�Z��jj�

Proof� For x � a and x � b� we have

jrfh�a�j �

�����h�a� �E
h�Z���pa
s�a� ��pa��

���� �
����h�a� �E
h�Z��


�a�

���� � jjh�x��E
h�Z��jj
j
�a�j

jrfh�b�j � jfh�b� ��j �
����h�b��E
h�Z��

s�b�

���� � sup
a�x�b

���s�x��jjh�x� �E
h�Z��jj�

For a 	 x 	 b� the proof is completely similar as in the continuous case� 


� Orthogonal Polynomials and Barbour�s Markov Process

After having considered the close relation between the de
ning di�erence and di�erential equations

of the distributions involved and their Stein��Markov� operators� we bring into the analysis some

related orthogonal polynomials 
�� 
���� The key link in the continuous case will be the di�erential

equation of hypergeometric type which is satis
ed by the classical orthogonal polynomials of a

continuous variable� s�x�y�� � 
�x�y� � �y � �� where s�x� and 
�x� are polynomials of at most

second and 
rst degree� respectively� and � is a constant�

In the discrete case� the link will be the di�erence equation of hypergeometric type which is

satis
ed by the classical orthogonal polynomials of a discrete variable� s�x��ry�x�� 
�x��y�x��

��



�y�x� � �� where s�x� and 
�x� are again polynomials of at most second and 
rst degree� respec�

tively� and � is a constant�

Let Qn�x� be the orthogonal polynomials of degree n with respect to the distribution �� then

the Qn�x� satisfy such an equation of hypergeometric type for some speci
c constants �n �� �� But

this means that we have

AQn�x� � ��nQn�x�� ����

In this way we can formally solve the Stein�Markov equation

Af � h�x��E
h�Z��� ����

with the aid of orthogonal polynomials� Let F �x� � Pr�Z � x� the involved distribution function

and dn �
R
S Qn�x�

�d��x� �� �� with S the support of �� Suppose h�x��E
h�Z�� �
P�

n�� anQn�x��

where we can determine the an by

an �

Z
S
Qn�x��h�x� �E
h�Z���dF �x��d�n � n � ��

Note that a� � Q��x�
R
S�h�x� �E
h�Z���dF �x� � �� But then for a given h the solution of ���� is

given by

fh�x� �
�X
n��

�an
�n

Qn�x��

Indeed� we have

Afh�x� � A
�X
n��

�an
�n

Qn�x� �
�X
n��

�an
�n

AQn�x� �
�X
n��

anQn�x� � h�x� �E
h�Z���

Another place where the orthogonal polynomials appear is in Barbour	s operator method� Recall

that we are considering some distribution �� continuous or discrete� together with a Stein�Markov

operator A of a Markov process� Xt say�

In the discrete case the operator A has the form

Af�x� � s�x��rf�x� � 
�x��f�x�

� �s�x� � 
�x��f�x� ��� ��s�x� � 
�x��f�x� � s�x�f�x� ���

��



which is the operator of a birth and death process with birth and death rates �n � s�n� �


�n� and �n � s�n�� respectively� if �n� �n � ��

The orthogonal polynomials Qn�x� of � satisfy

AQn�x� � �s�x� � 
�x��Qn�x� ��� ��s�x� � 
�x��Qn�x� � s�x�Qn�x� ��

� ��nQn�x�� ����

Suppose we have a duality relation of the form Qn�x� � �Qx��n� and that �Qx is a polynomial

of degree x� Then ���� can be written as

��n �Qx��n� � �s�x� � 
�x�� �Qx����n�� ��s�x� � 
�x�� �Qx��n� � s�x� �Qx����n��

Interchanging the role of x and n we clearly see that this results in a three term recurrence equation

��x �Qn��x� � �s�n� � 
�n�� �Qn����x�� ��s�n� � 
�n�� �Qn��x� � s�n� �Qn����x��

By Favard	s Theorem the �Qn must be orthogonal polynomials with respect to some distribution

�� say� Furthermore� note that these polynomials are the birth�death polynomials of the birth and

death process Xt� According to the Karlin and McGregor spectral representation ��� we have

Pij�t� � Pr�Xt � jjX� � i� � �j

Z �

�
e��yt �Qi��y� �Qj��y�d �F �y��

where �� � � and �j � ����� � � � �j��������� � � � �j�� j � �� and �F �x� is the distribution function

of ���

The stationary distribution is given by ri � �i�
P�

k�� �k� Note that this distribution is com�

pletely de
ned by the fraction of successive probabilities

ri��
ri

�
�i
�i��

�
��i� � 
�i�

��i� ��
�

Comparing this with ���� we see that the stationary distribution is indeed our starting distribution

�� In the examples� we will work out this procedure for some well�known discrete distributions�

��



In the continuous case the operator A has the form Af�x� � s�x�f ���x� � 
�x�f ��x� which

is the operator of a di�usion with drift coe�cient ��x� � 
�x� and di�usion coe�cient ���x� �

�s�x� � �� Recall that the polynomials� yn�x�� which are orthogonal with respect to � satisfy

Ayn�x� � ��nyn�x�� n � �� As in the discrete case the orthogonal polynomials involved are

eigenfunctions and appear in the spectral representation as shown in the examples section�

� Examples

�� The Standard Normal distribution N��� �� and the Ornstein�Uhlenbeck process� The Normal

distribution N�m���� with mean m � R and variance �� � �� has a density function ��x�m���� �

exp���x � m����������
p
����� x � R� Clearly we have ���x�m�������x�m���� � �m � x��x �

q�x��p�x�� and thus s�x� � p�x� � �� and 
�x� � q�x� � s��x� � m� x� So the Stein equation for

the N�m���� distribution is given by ��f ��x� � �m� x�f�x� � h�x��E
h�Z��� The Stein operator

is given by Af�x� � ��f ��x� � �m � x�f�x� and M �
p
�������� So for the Standard Normal

distribution N��� ��� Lemma � recovers the 
rst bound in ���� This case was the starting point of

Stein	s theory 
���� Suppose we have ��x� � 
�x� � �x and ���x� � �s�x� � �� then we have

AHn�x�
p
�� � �nHn�x�

p
��� where the operator A is given by Af � f ���x� � xf ��x�� This is the

generator of the the Ornstein Uhlenbeck Process� The spectral representation for the transition

density is given by 
���

p�t�x� y� �
e�y

���

p
��

�X
n��

e�ntHn�x�
p
��Hn�y�

p
��

�

�nn�
�

where Hn�x� is the Hermite polynomial of degree n 
���� The Hermite polynomials Hn�x�
p
�� are

orthogonal with respect to the Standard Normal distribution we started with�

�� The Gamma distribution G�r� ���� and the Laguerre di�usion� The Gamma distribution

G�r� ����� with r� � � �� has a density function ��x� r� �� � �re��xxr�����r�� x � �� Clearly

we have ���x� r� �����x� r� �� � �r � � � �x��x � q�x��p�x�� and thus s�x� � p�x� � x and


�x� � q�x� � s��x� � r � �x� So the Stein equation for the G�r� ���� distribution is given by

��



xf ��x� � �r� �x�f�x� � h�x��E
h�Z��� and Af � xf ���x� � �r� �x�f ��x�� which is the generator

of the so�called Laguerre di�usion and has a spectrale representation given by

p�t�x� y� �
�ryr��e��y

��r�

�X
n��

e�n�tL�r���
n ��x�L�r���

n ��y�
��n� ��

��n� r�
�

with Ln the Laguerre polynomial of degree n 
���� It is no co�incidence that also here� the orthogonal

polynomials involved are orthogonal with respect to the Gamma distribution we started with�

�� The Beta distribution B��� ��� �� � � �� and the Jacobi di�usion� The Beta distribution B��� ��

on ��� ��� with parameters �� � � �� has a density function ��x��� �� � x����� � x�����B��� ���

� 	 x 	 �� Clearly we have

���x��� ��

��x��� ��
�

���� � � ��x� �� �

��� x�x
�
q�x�

p�x�
�

and thus s�x� � p�x� � �� � x�x and 
�x� � q�x� � s��x� � ���� ��x� �� So the Stein equation

for the B��� �� distribution is given by

x��� x�f ��x� � ��� ��� ��x�f�x� � h�x��E
h�Z���

This Stein equation seems to be new� Suppose we have ��x� � 
�x� � �
��� � �� � ��x� and

���x� � �� � x�x� where � 	 x 	 � and �� � � �� Then we encounter the generator of the Jacobi

di�usion� Af � �
��� � x�xf ���x� � �

� �� � �� � ��x�f ��x�� In this case the spectral expansion is in

terms of the Jacobi polynomials Pn�x� � P
���������
n �x� 
����

p�t�x� y� �
y������ y����

B��� ��

�X
n��

e�n�n�������t��Pn��x� ��Pn��y � ���n ����

where

�n �
B��� ����n � �� � � ��n���n� �� � � ��

��n� ����n� ��
�

and B��� �� is the Beta function�

�� The Student	s t�distribution tn with n � f�� �� � � �g degrees of freedom has a density function

��x�n� �
���n� �����p
n���n���

�
� �

x�

n

���n�����
� x � R�

��



Clearly we have

���x�n�

��x�n�
�
��n� ��x�n

� � x��n
�
q�x�

p�x�
�

and thus clearly s�x� � p�x� � � � �x��n� and 
�x� � q�x� � s��x� � ���n � ���n�x� This means

that the Stein equation for the tn distribution is given by

�
� �

x�

n

�
f ��x�� n� �

n
xf�x� � h�x� �E
h�Z���

This Stein equation seems to be new� Note that Lemma � gives us a useful bound on f �h� namely

jjf �hjj � �jjh�E
h�Z��jj�

�� The Poisson distribution P���� � � �� is given by the probabilities px � e���x�x�� x �

f�� �� �� � � �g� An easy calculation gives s�x� � x and 
�x� � ��x� So the Stein operator for the Pois�

son distribution P��� is given by Af�x� � xrf�x�� ���x�f�x� � �f�x��xf�x� ��� which is the

same as in ���� This case was studied by 
�� and many others 
��� 
��� 
��� 
��� The Poisson distribution

P���� � � �� has a Stein�Markov operator� A� given by Af�x� � �f�x�����x���f�x��xf�x����

This is the operator of a birth and death process on f�� �� � � � �g with birth and death rates �n � �

and �n � n� n � � respectively� This birth and death process is the immigration�death process with

a constant immigration rate � and unit per capita death rate 
��� The birth�death polynomials�

Qn�x�� for this process are recursively de
ned by the relations

�xQn�x� � �Qn���x�� ��� n�Qn�x� � nQn���x�� ����

together with Q��x� � � and Q���x� � �� The polynomials which are orthogonal with respect to

the Poisson distribution P��� are the Charlier polynomials Cn�x���� which satisfy the following

equation of hypergeometric type

�nCn�x��� � �Cn�x� ����� ��� n�Cn�x��� � nCn�x� ����

and are self�dual� i�e� Cn�x��� � Cx�n���� Using this duality relation we obtain the three term

recurrence relation of the Charlier polynomials

�nCx�n��� � �Cx���n���� ��� n�Cx�n��� � nCx���n����

��



But this is after interchanging the role of x and n exactly of the same form as ����� so we conclude

that Qn�x� � Cn�x���� In this way� using Karlin and McGregor	s spectral representation ���� we

can express the transition probabilities of our process Xt as

Pij�t� � Pr�Xt � jjX� � i� �
�j

j�

�X
x��

e�xtCi�x���Cj�x���e
���

x

x�
�

�� The Binomial distribution Bin�N� p� on f�� �� �� � � � � Ng with parameter � 	 p 	 � is given

by the probabilities px �

N
x

�
pxqN�x� x � f�� �� �� � � � � Ng� where q � � � p� Here s�x� � qx

and 
�x� � pN � x� So the Stein operator for the Bin�N� p� distribution is given by Af�x� �

qxrf�x� � �pN � x�f�x� � p�N � x�f�x� � qxf�x � ��� The Binomial distribution Bin�N� p��

� 	 p 	 �� has a Stein�Markov operator� A� given by

Af�x� � p�N � x�f�x� ��� �p�N � x� � qx�f�x� � qxf�x� ���

where q � � � p� This is the operator of a birth and death process on f�� �� � � � � � Ng with birth

and death rates �n � p�N � n� and �n � qn� � � n � N respectively� also called the Ehrenfest

Model 
���� In this case the birth�death polynomials� Qn�x�� are recursively de
ned by

�xQn�x� � p�N � n�Qn���x�� �p�N � n� � qn�Qn�x� � qnQn���x�� ����

together with Q��x� � � and Q���x� � ��

The polynomials which are orthogonal with respect to the Binomial distribution Bin�N� p� are

the Krawtchouk polynomials Kn�x�N� p�� n � �� �� � � � � N � They satisfy the following equation of

hypergeometric type

�nKn�x�N� p� � p�N � n�Kn�x� ��N� p� � �p�N � n� � qn�Kn�x�N� p� � qnKn�x� ��N� p�

and are self�dual� i�e� Kn�x�N� p� � Kx�n�N� p�� This duality relation leads to the three term

recurrence relation of the Krawtchouk polynomials

�nKx�n� �� �� � p�N � n�Kx���n�N� p�� �p�N � n� � qn�Kx�n�N� p� � qnKx���n�N� p��

��



After interchanging the role of x and n� we conclude that Qn�x� � Kn�x�N� p�� In this way� using

Karlin and McGregor	s spectral representation ���� we can express the transition probabilities of

our process Xt as

Pij�t� �

�
N

j

�
pjq�j

NX
x��

e�xtKi�x�N� p�Kj�x�N� p�

�
N

x

�
pxqN�x�

�� The Pascal distribution Pa��� �� with parameters � � � and � 	 � 	 � is given by px �


x�	��
x

�
�	��� ��x� x � f�� �� �� � � �g�

So s�x� � x and 
�x� � ��� ��� � �x� The Stein operator for the Pa��� �� distribution is thus

given by Af�x� � xrf�x� � ��� � ��� � �x�f�x� � �� � ���� � x�f�x� � xf�x � ��� The Pascal

distribution Pa��� �� has a Stein�Markov operator� A� given by

Af�x� � ��x� ��f�x� ��� ���x� �� � x�f�x� � xf�x� ���

which is the operator of the above described linear birth and death process on f�� �� � � � �g with birth

and death rates �n � ��n� �� and �n � n� n � � respectively 
���� The birth�death polynomials

involved are de
ned by

�xQn�x� � ��n� ��Qn���x�� ���n� �� � n�Qn�x� � nQn���x�� ����

together with Q��x� � � and Q���x� � ��

The Meixner polynomials Mn�x� �� ��� n � �� �� � � �� are orthogonal with respect to the Pascal

distribution Pa��� ��� they satisfy the following equation of hypergeometric type

�nMn�x� �� �� � ��n� ��Mn�x� �� �� �� � ���n� �� � n�Mn�x� �� �� � nMn�x� �� �� ��

and are self�dual� i�e� Mn�x� �� �� � Mx�n� �� ��� Using this duality relation we obtain the three

term recurrence relation of the Meixner polynomials

�nMx�n� �� �� � ��n� ��Mx���n� �� ��� ���n� �� � n�Mx�n� �� �� � nMx���n� �� ���

��



Interchanging the role of x and n� we conclude that Qn�x� � Mn�x� �� ��� With the spectral

representation ���� we express the transition probabilities of Xt as

Pij�t� �
�j���j
j�

�X
x��

e�xtMi�x� �� ��Mj�x� �� ���� � ��	�x���x�x��

�� The Hypergeometric distribution Hyp��� ��N�� with parameters � � N � � � N and N a non�

negative integer� is given by px �

�
x

�
 �
N�x

�
�

���

N

�
� x � f�� �� �� � � � � Ng� An easy calculation gives

s�x� � x�� � N � x� and 
�x� � �N � �� � ��x� So the Stein operator for the Hyp��� ��N�

distribution is given by

Af�x� � x�� �N � x�rf�x� � ��N � ��� ��x�f�x�

� �N � x��� � x�f�x�� x�� �N � x�f�x� ���

This Stein equation seems to be new� The Hypergeometric distribution Hyp��� ��N�� has a Stein�

Markov operator� A� given by

Af�x� � ��� x�f�x� ��� ��N � x���� x� � x�� �N � x��f�x� � x�� �N � x�f�x� ���

This is the operator of a birth and death process on f�� �� � � � � � Ng with quadratic birth and death

rates

�n � �N � n���� n� and �n � n�� �N � n�� � � n � N

respectively� whih was studied in 
���� The birth�death polynomials involved are recursively de
ned

by the relations

�xQn�x� � �N � n���� n�Qn���x�

���N � n���� n� � n�� �N � n��Qn�x� � n�� �N � n�Qn���x�� ����

together with Q��x� � � and Q���x� � �� The Hahn polynomials Qn�x��� � ���� � �� N� 
���

are orthogonal with respect to Hypergeometric distribution and satisfy the following equation of

��



hypergeometric type

n�n� �� � � ��Qn�x���� ���� � �� N� �

�N � x���� x�Qn�x� ����� �� � � �� N�

���N � x��� � x� � x�x� � �N��Qn�x���� ���� � �� N�

�x�x� � �N�Qn�x� ����� ���� � �� N��

Furthermore� we have the duality relation

Qn�x���� ���� � �� N� � Rx��n���� ���� � �� N��

where the Rx are the Dual Hahn polynomials 
��� and �n � n������ ��� In what follows we will

often write for notational convenience Rx��n� instead of Rx��n���� ���� � �� N��

Using this duality relation we obtain the three term recurrence relation of the Dual Hahn

polynomials�

�nRx��n� � �N � x��� � x�Rx����n�

���N � x���� x� � x�x� � �N��Rx��n� � x�x� � �N�Rx����n��

But this is after interchanging the role of x and n of the same form as ����� so we conclude that

Qn�x� � Rn��x���� ���� � �� N�� Finally� using Karlin and McGregor	s spectral representation

���� we can express the transition probabilities of our process Xt as

Pij�t� �


�
j

�
 �
N�j

�

�
N

� NX
x��

e�xtRi��x�Rj��x�
�N ����N�x����x��x� �� � � ��


N����
N

�
����x�x������x�x� �� � � ��N��

�
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