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Abstract

One of the major aims of one-dimensional extreme-value theory is to estimate quantiles outside
the sample or at the boundary of the sample. The underlying idea of any method to do this is
to estimate a quantile well inside the sample but near the boundary and then to shift it somehow
to the right place. The choice of this "anchor quantile” plays a major role in the accuracy of the
method. We present a bootstrap method to achieve the optimal choice of sample fraction in the
estimation of either high quantile or endpoint estimation which extends earlier results by [11] Hall
and Weissman (1997) in the case of high quantile estimation. An alternative way of attacking
problems like this one is given in a paper by [8] Drees and Kaufmann (1998).

1 Introduction

In problems of coastal safety, one wants to estimate the 10,000 years return level based on one hundred
years of observations ([12] de Haan (1990)). In finance one seeks a ”value-at-risk” which is basically
also a quantile outside the range of available observations ([15] Jansen and de Vries 1991, [3] Danielsson
and de Vries 1997).

The situation is the following: we have a sample X,, X3,...,X,, from some unknown distribution
function F' and want to estimate the quantile corresponding to a probability close to 1 i.e. we want
Zp with 1 — F(zp) = p and p < ¢/n. This inequality means that, if we want to apply asymptotic
theory and if in the limiting process we want to maintain this essential feature, we are forced to
assume that in fact p depends on n,p = p, and nlﬂgo pr = 0. Then there are still several possibilities:

npn, —+ ¢ € (0,00) or np, = 0 (n — o0o). In both cases purely non-parametric methods do not work.
Only if np, — oo non-parametric methods are successful ([9] Einmahl, 1990). The use of models
for the tail suggested by extreme value theory stems from the fact that there is no sensible way of
extrapolating from an intermediate quantile to one outside the sample unless one uses one of the
Generalized Pareto Distributions (GPD)

H(z):=1-(1 +~z)~Y/7  for those z for which 1 + vz > 0, (1.1)

(v € R) for modelling the tail of F. The tail condition for F is:

Jim t{l _F ((1 ~Fy=(3) +ma(t))} —1-H () (1)

*Research partially supported by FCT/PRAXIS XXI/FEDER



for all z for which 0 < H,(z) < 1 where a(t) is a suitable positive function. This means for the
quantile function that for z > 0

tim —F) (g)-(1-F)"(F) _2" -1
t—oo a(t) ~ .

For our problem this means

k n (=)’ -1
- F)* ~ (1 - FY (= 2y PPl
(1= F)(pn) = (1 = ) () + () 22—,
i.e. an extreme quantile is linked to an intermediate quantile (which can be estimated via the empirical
distribution function) by using the GPD approximation. The extreme quantile estimator based on
this relation is

. n (nﬁ yia(k) —1
Tpn (k) = Xy kn + &(E) n'?ﬂ.(k)

where X, < Xo5 <--+ < Xy are the order statistics and &(rn/k) and 4, (k) suitable estimators for
a(n/k} and v ([18] Weissman 1978, [17] Smith 1984, [2] Boos 1984, [16] Joe 1987 and many others).
A boundary case is v < 0 and p = 0. Then the same expression (with p, — 0) can be used as an
estimator of the right endpoint of the probability distribution, in the same GPD set-up.

The choice of k (or rather n — k, the index of the order statistics from where on the GPD ap-
proximation is believed to be valid) is crucial for the accuracy of the procedure. The optimal value
depends on the underlying distribution and is a result of balancing variance and bias components.
In this paper we present a bootstrap procedure to obtain this optimal value adaptively. The method
is an extension of what we used for obtaining the optimal number of order statistics in estimating -y
([4] Danielsson, de Haan, Peng and de Vries 1997 and [6] Draisma, de Haan, Peng and Pereira 1998).
The paper [11] Hall and Weissman (1997) presents a (similar but different) bootstrap method for
solving the same optimality problem, not for the guantile but for the exceeding probability of a high
lIevel which is similar. Unlike that paper, we do not assume any of the parameters known. Also our
conditions on p, are much more relaxed. The quantile problem is more common in applications than
the inverse problem of exceedance probabilities of a high level.

We restrict ourselves to the range v > —%. This range is most important in applications and in
this range it is most efficient to choose a sequence k& = k(n) in (1.3) that goes to infinity with n. Also,
since we consider tail properties, we have to limit ourselves to sequence k(n) = o(n),n — co. Hence
we are dealing with intermediate sequences k(n) (i.e., the corresponding order statistics Xn_, are
intermediate):

(1.3)

k(n) = o0, k(n}/n =0 (n = 00). (1.4)
The main idea is the following. We seck

ko(n) := arg irklf as. E(&p, (k) — zp, ) (1.5)

where as. E means the asymptotic expectation (according to the limit distribution) and k ranges
from, say, logn to n/(logn) (this expresses the restriction to intermediate sequences and includes
the optimal one). Since we are looking for an adaptive method for optimization and since z,, and the
averaging probability measure in (1.5) are unknown, we replace them with sample analogues. So we
consider

E, (ﬁpn (k) - %pn (k))z 1(|-"3'pn(k)—ipn (k)|<k? }s 6>0 (1.6)



where 2, (k) is as before, E, denotes averaging with respect to the empirical distribution function
and
. n ()T -
Epn(k) = Xp—kn+ ( )m— (1.7)
T (K)
with @(n/k) and 7, (k) alternative estimators.

The reason why we put the indicator function 1¢y in (1.6) is to ensure the convergence of the mean
square error. For details see [6] Draisma, de Haan, Peng and Pereira (1998). Since § is an arbitrary
positive number, we ignore the indicator function in (1.6}, in our simulation study.

The quantity (1.6) depends on the sample only and can be approximated using a bootstrap pro-
cedure where the bootstrap sample size has to be chosen of lower order than n in order to avoid
unwanted extra randomness. Solving the optimization problem for (1.6) makes sense since the value
k] minimizing (1.6) is asymptotically related to the value kg from (1.5) and in fact with the help of a
second bootstrap we can get kg from kf.

The procedure for quantile and endpoint estimation is explained in section 2 which also contains
the main results. The most general setting is accounted in section 2.1. We also consider two special
cases separately. In quantile estimation, if one restricts to the case v positive, the asymptotic results
may be simplified and become more efficient. This is analysed in section 2.2. All these results use the
moment estimator ([5] Dekkers, Einmahl and de Haan, 1989) or simplified versions of it to estimate .
In section 2.3 we use instead a shift-scale invariant estimator of <y in endpoint estimation. In section
3 we present some simulation results and an application. Finally in section 4 are the proofs of the
results of section 2.

2 Main results

2.1 Results for high quantile and endpoint estimation

We start by explaining the method in detail. Then we shall state the precise conditions and present
the formal results.
We shall use explicit estimators for a(};) and  which are as follows. Define for j =1,2,3

k 1
Mr?) = & 2(103 KXn-in —log Xn_ n) ; (2.1)
i=0
) 1 M(l) 2
) = MO +1- 50 - Dy 22)
. M(l)M(z)
k) = YMPR+1-20- ) (23)
L]
AT A
8(;) = XnraM{?/p1(n(k)) (29)
2N a
a(3) = XneaM®/p1(Ga(k)) (2.5)

where 9;,(k) and @(}) are the estimators in (1.3) and ¥,(k) and a(}) the alternative estimators in
(1.7), and p1{y) = (1 = 7-)"!. We denote min(vy,0) by 7_ and max(y,0) by v,.
Step 1 Select randomly and independently n; times (n) << n) a member from the set {X 1, X2,...,Xn}
Indicate the result by X7, X3,... X3 . Form the order statistics X7, < X3, <---< X} . and
compute the quantities (1.3) and (1.7) from (2.1-2.5) on the basis of these order statistics.

We denote the resulting quantities by 45, (k), ¥y, (k), 6*(n1/k) and & (n1/k), £} (k), %, (k) for
k=1,2,...,n — 1. Form

@ % = (& (k) -, (k)



on the basis of these bootstrap estimators.
Step 2 Repeat step 1 r times independently. This results in a sequence q:;.,k,s’ k=12...,n—1
and s =1,2,...,r. Calculate

1 T
*
;'_ E qﬂ'l N
s=1

r
Step 3 Minimize %Z‘-’;l,k,s with respect to k& but reject values which are very small or very near to
s=1
n;. Denote the value of k where the minimum is obtained by kg{n1).

Step 4 Repeat step 1 up to 3 independently with the number n; replaced by ng = (n;)?/n. So ny is
smaller then n;. This results in kj(ns2).
Step 5 Calculate
(k3 (n1))® h(3E (), 95 (K}, B, (K5))
ki(nz)  h(3a (k) An (ks B, (K3))

with 47 (k) and 4;; (k) any consistent estimators of v, and v_,

) log k3(n4)
/ * e D
Pn,y (kﬂ) ) log n + 2 lOg ka (nl)

ko(n) :

a consistent estimator of ¢ and the functions h and % from Propositions 4.12 and 4.13 below respec-
tively.

This ko(n), which is obtained adaptively, is asymptotically as good as the optimal number of order
gtatistics in (1.5).

Now in order to be able to present our main result we have to state the conditions.

Suppose that the underlying distribution function F' is in the domain of attraction of an extreme
value distribution (or equivalently that the observations above a large threshold have an asymptotic
GPD distribution). We formulate this condition analytically in terms of the quantile-type function
U: (ﬁ)‘—:

Ultz) - Ut} =z7"-1

100 a(t) ¥ (2.6)

for all positive z, where a(t) is a suitable positive function. We shall need a second order refinement
of this relation which reads as follows: there is a function A(f) — 0 with constant sign near infinity
such that for allz > 0

- U!ta;!';U!t! . r17-.1 B 1 [x’H'P -1 z7- 1] (2.7)
par ) Af2) el ov+e K |

with p < 0. For the final result we shall have to require p < 0, a(t) ~ ¢1t” and A(t) ~ T2t?(t = 00)
and in this case (2.7) is equivalent to

t7 -1

U)=cp+c1 +eat™P 4 o(t"?) with ¢, >0, c#0 (t = o0). (2.8)

‘_
Theorem 2.1. Suppose U := (ﬁ) satisfies (2.8). If p <0, v > —=1/2, v# 0, v # p, npp = ¢

(finite, > 0) and logp, = o (nﬁ?) (n = oo) where ¢’ is defined in Lemma 4.1 below. Then for
ko(n) as in (1.5)
ko(n) _

novoo ko(n)

1



in probability, where
_ (k3(m1))* R(37 (K), 45 (K), £, (K5))

ko(n) = =% = AL (2.9)
ky(nz)  R(5a (k), 3 (k) B, (K3))
with 47} (k), 5, (k) any consistent estimators of v+ and ~_,
R log kg(n1)
; *y 0
A, (k) = —2logn; + 2log k3 (n) (2.10)

and the functions h and h from Propositions 4.12 and 4.183 below respectively.

Hence the asymptotic second moment of the estimator £,, (k) is asymptotically the same whether
it is based on kg(n) upper order statistics or on kg(n) upper order statistics.

Remark 2.2, Since p is not known, one could alternatively require log p, = o(n®) for all € > 0.
Theorem 2.3. Under the conditions of Theorem 2.1, the value ko(n) of k minimizing the asymptotic
second moment of &p, (k) — zp, satisfies
—ap
ko(n) ~ h(v4, 7=, 0") R (n— o0). (2.11)

Remark 2.4. Since the order of magnitude is the same as in the case of minimizing the mean square
error of the moment estimator 4, (k) (only the constant differs), we could use the bootstrap procedure
for one of them in order to get the optimal value for the other.

Next we turn our attention to the estimation of the right endpoint zg of the probability distribution
when v < 0. Define (cf. [5] Dekkers, Einmahl and de Haan, 1989)

a(%)
to(k) = Xn_pn — —& 2.12
where
T 1 (1"11(11))2 1
k) = 1= 501 = gy (2.13)
We seck
ko(n) : a.rgixj:f as. BE(&(k) — z0). (2.14)

In order to construct an adaptive estimator for kg(n) we consider an alternative estimator for xg,
namely

. a(®
To(k) := Xp—gn ~ %_(;3) (2.15)
n
where
(1) 2 £(2)
~— — 1 2 _ n Mn =1
Tn (k) =1 5(1 M,S,3) ) 0 (2.16)

Now for Zp(k) we apply the same bootstrap procedure as described before for Z,,(k), but with
the constants h(¥; (k), ¥, (k), 8}, (k3)) and h(§7 (k), 4 (k), A}, (k) replaced by g(%, (k), 8}, (kj)) and
(%, (k), #p, (k§)) respectively.



Theorem 2.5. Suppose U = (Ly)* satisfies (2.8). If p < 0,-1/2 < v < 0 and v # p, then for
ko(n) as in (2.14)

. ko(n) _
A Tl = !

in probability, where

() oG (). A, ()
ko) = s tma) 303 (R), A ()

with 4, (k) any consistent estimate of v_,

(2.17)

log k3(n1)
—2log ny +log kj(ni)

Py (KG) =

and the functions g and g from Propositions 4.14 and 4.15 below respectively.

Hence the asymptotic second moment of the estimator £p(k) is asymptotically the same whether
it is based on kg(n) upper order statistics or on kg(n) upper order statistics.

Theorem 2.8. Under the conditions of Theorem 2.5, the value ko(n) of k minimizing the asymptotic
second moment of $o(k) — zo satisfies

Fo(n) ~ g(rr /) N7 (n = o0). (2.18)

2.2 Results for quantile, positive

Suppose we know, or agsume, v > 0 and want to estimate a high quantile. Confined to this situation, in
this section we present the required asymptotic results to apply the bootstrap procedure as described
in the last section. To estimate the quantile we use

k 4 (k)
&3 (k) == Xn—kn (E) where 4 (k) := MLV . (2.19)
n
Let
¥ (k) (2)
5;,("‘7) = Xn—kn (%) where f“y;f (k) := M; (2.20)
n

be a first option to the alternative quantile estimator and

at
a4 k Tn (%) o ’(12)
Tp,, (k) := Xa—kn (HI;:) where 7, (k) := m . (2.21)

be a second option to the alternative quantile estimator.

Theorem 2.7. Suppose the second order condition (2.8) holds for v > 0 and p < 0. Assume v # p,
npy, — ¢ (finite, > 0) and logp, = o(nf) fore >0, asn — oco. Then

—2p!
ko(n) ~ vy, pt) niT%  as n— 00 , (2.22)

where ko{n) := argming as. E (:E;,"n (k) — :t:pﬂ)2 and the function | from Proposition 4.16 below.



Theorem 2.8. Suppose the second order condition (2.8) holds for v > 0 and p < 0. Assume v # p,
npn — ¢ {finite, > 0) and logp, = o(nf) fore >0, as n = co. Then

—_ — —20¢
ko(n) ~ (4, p/) 7% a5 n oo, (2.23)

_ . 2 -
where ko(n) := argmin, as. E (:i:;"n(k) - ':ﬂ(k)) and the function I from Proposition 4.17 below.

Theorem 2.9. Suppose the second order condition (2.8) holds for v > 0 and p < 0. Assume v # p,
npy, — ¢ (finite, > 0) and logp, = o(n) fore >0, as n = co0. Then

ko(n) ~ (s, p) nf?{;_' as n—r oo, (2.24)

= . 2 -
where ko(n) := argming as. E (:’&;',‘n (k) — :?::ﬂ (k)) and the function | from Proposition 4.18 below.

Remark 2.10. As discussed in section 3 it is advantageous to have a small ratio of the function
multiplying n=2¢/(1=20) in_ for example, (2.23) to the function multiplying n~2/(1-2¢) in (2.22).
Note that in quantile estimation for positive v we got the same function (cf. (2.23) and (2.24))
whether using Zj,, (k) or Z,,(k) as alternative estimator. However the asymptotic mean square error
in Theorem 2.9 is four times the asymptotic mean square error in Theorem 2.8 {cf. proof of these
Theorems).

2.3 Results for endpoint with a shift-scale invariant estimator of v

Here the endpoint estimator itself, as motivated earlier remains the same i.e., we still use as in (2.12)

gh(k) = Xp_pq — ——. 2.25
3"0( ) n—k,n (k) ( )

The main difference lies in the quantities MY (2.1) that change to the following

k-1
N 1 o
N = Ez:(x,,_i,,,,— neknls 7=1,23. (2.26)
=0

Since « is negative we shall use

1. (VD)

B k) = 1-50- o)™ (2.27)

to estimate the extreme value index. Note that (2.27) is shift and scale invariant whilst the extreme
value index estimators used in the previous sections are just scale invariant. In what concerns the
estimation of a(}) it changes to

a’(%) = NO/p(37 (k) . (2.28)

In what regards the alternative estimators necessary for the bootstrap procedure just apply the same
scheme as in section 2.1 for the endpoint. Substitute in (2.16) M,S’), j=1,2,3 by N,(;’), j=1,2,3,

!

respectively, to get 7}',:’ (k). Substitute in (2.28) 4, (k) by 'Lyn’(k) to get ﬁ'(%), to finally obtain i{,(k).
We now state the main result. Note the resemblance with Theorem 2.6.



Theorem 2.11. Suppose the second order condition (2.8) holds. If p < 0 and —1/2 < v < 0, then
the value ko(n) of k minimizing the asymptotic second moment of £4(k) — zo satisfies

ko(n) ~ glr-,p) nTH  (n = o). (2.29)

Therefore, Theorem 2.5 still applies with the functions g and § from Propositions {.14 and 4.15 below
respectively, but in the case of g take always

2y =62 +4¥ +p—5y p+6rip+ 2y PP
YA = v- = p)2(r- + 0)2(1 — 27— — p)?

and in g and g replace ¢ by 2 (cf. (2.7)-(2.8)).

3 Applications to simulated and real data

3.1 Simulation results

The simulations are based on the following three types of distribution functions.

3.1.1 Generalized Extreme Value distribution (in accordance with theory let v # 0,—1)
Let G,(z) = exp{—(1 + v£)"Y7}, 1 + vz > 0. The function U(t} = F* (1 — 1/¢) is given by

Ut) = ((—log(1—1/t))~"—=1)/7, t > 1, where lim;_,, U(t) = U{e0) = —1/vify < 0and U(oo) =
if ¥ > 0. Expanding the function U (2}, if v # 1,

v _
U(t)=t—7—1—%t'7'1+o(t"'_l) as t— oo, (3.1)
andif y=1,
¢! -1
U(t)———+(t—1)——+o( ) as t—> o0, (3.2)

and so (2.8) holds with (p,co,c1,c2) equal to (=1,0,1,-1/2) i 4 # 1 and
(-2,-1/2,1,-1/12) if y = L.

In case of a sample with negative data it has to be translated in order to get just positive data, so
that the estimators may be applied (remember the condition U(o0) > 0). Since U(o0) = ¢ —¢1 /7, for
v < 0, the effect of a translation, say adding a positive constant @ to the data, changes ¢g to ¢ +a. If
¥ > 0 the translation has no effect on the asymptotic behaviour of U(t). Hence the functions required
in the first and second order conditions in terms of U(t) (see (2.7)) may be taken as a(t) = ¢;t7 = ¢7
and A(t) = p{y + p)eat?fer = (y— 1)t /2if v # 1 and ¢t72/6 if v = 1, as ¢ — oo. The function
required in the second order condition for logU(t) (cf. Lemma 4.1) may be taken as (£ — co)

(AR) =L t! 7 < -1
Tt = s 7 ,—l<y<0
A= 7-§F~SH =177 ,0<y<1 (3.3)
’IA‘tﬁé)t’_“l%t_l v ¥=1
N e T T »7>1 .

Note that limg oo (U(t) — a(t)/'y) “1/y+aify<0, -1/7if0<y<1,-3/2ify=1and -0 if
v> 1.



3.1.2 Reversed Burr distribution (in accordance with theory let 7 # 1)

A random variable (r.v.} Y is said to have Burr distribution function (d.f.) with parameters 3, A and

Tif Fr(y) =1-8M(B+y)*, y>0,8,\7>0. Let X = —Y~!. Then X is said to have a Reversed

Burr distribution, say RBg ) ,, with d.f given by Fx(z) = 1~ B*/(B+ (—z) ")}, = < 0 = =,

B, A, > 0. This d.f. is being used in financial applications. In order to properly use simulated data

from this model it must then be shifted by a positive constant, say a, so that zp = a. Therefore

U(t) =a— B YTt/ —1)=17 ¢t > 1, and limy—eo U(t) = U(c0) = a. Expanding this function we get
ﬁ—l/'r /AT _q ﬁ—l/‘r

_ a1/ _ =1/A7=1/A
v a=p + A1 =1/ T t

+o (t lf”"—lf") as t = 0o, (3.4)

and so (2.8) holds with (v, p,co,c1,¢2) equal to (—1/Ar, =1/}, @ — Y7, B=Y7 [Ar, —p~1T /1),
The functions required in the first and second order conditions in terms of U(t) may be taken as
a(t) = A=Y t"12 /x7 and A(t) = (1 + 7)t"1/*/)r, as t = co. The function required in the second
order condition in terms of log U(t) may be taken as ({ = o)

~ L3741/ <1
At) = -f_;— ’ 3.5
o=-{ &L TS 9

3.1.3 Cauchy distribution.

Let X with df. Fx(z) = (arctanz + n/2)}/7, z € R Then U(t) = tan{n/2 — n/t), t > 1 and
limy 00 U(t) = U(oo) = o0. Expanding this function we get

U(t)=1/1r+11r(t-—1)-gt L+o(t™!) as t—= o0, (3.6)

and so (2.8) holds with (v, p, ¢, c1, c2) equal to (1,-2,1/m,1/7, —n/3). The functions required in the
first and second order conditions in terms of U(t) may be taken as a(t) = t/7, A(t) = 27%t~2/3, as
t — o0, and the function required in the second order condition in terms of log U/ (¢} may be taken as
A(t) = 4n2t~2/3, as t — 0o. Note that limy_,e0(U(2) — a(t)/7) = 0 (if v is positive it holds whenever
O<y<-—-pandey—cfy=0).

3.1.4 Simulation results

Two collections of simulation results are presented. The first, based on samples of moderate size and
on endpoint estimation, intends to discuss briefly with an example the choice of some parameters
required when using the bootstrap, namely n; - the size of the first bootstrap resample - and r - the
number of bootstrap resamples. The second concerns endpoint and high quantiles estimations from
samples of larger size and from several d.f.s with various first and second order parameters v and p.
Thus we start by discussing the influence of varying n) with n fixed. Table 1 summarizes the
results on endpoint estimation of 100 simulations with independent samples of size n = 2000 from
G _ 25 for each n; = 500(250)1750, where the final bootstrap estimates of ky and zr are presented.
For instance there is no clear trend along n; in terms of the means of £y but instead a fluctuation
around its true value. Also the estimated mean square error (mse, in the table is the square root of
it) do not reveal any tendency for increasing or decreasing with n;. Nonetheless when n; (or ng) is
small the minimum of the estimated mse is often unclear and shows a tendency to be attained near
n (respectively ng). Also due to a slight bias on this kind of estimators it is found advisable not to
take too small values of n; (respectively ng). On the other hand as n; (respectively ns) increases the
results become more unstable in the sense that the number of abortions increases with n; (respectively



ni ng ko Zg (o = 4) Abort.

(Interv. to look for k1) | (Interv. to look for k;) | mean st. dev. | mean rootmse | Simul.
500 (10,400) 125 (10,100) 50.5  32.1 1.06 2.22 7
750 (10,600) 281 (10,220) 58.6 42.5 3.75 1.01 9
1000 (10,880) 500 (10,400) 60.7 46.5 3.82 87 10
1250 (10,1000} 781 (10,620) 53.1 36.0 4.03 3.07 12
1500 (10,1200} 1125 (10,900} 55.3 41.9 3.81 69 24
1750 (10,1400) 1531 (10,1220) 54.1 31.6 4.00 2.00 17

Table 1: Simulation results, bootstrap endpoint estimation with 100 independent samples of size 2000
from G_ 95 and r = 300.

ng). Hence our advise is to take approximately n, = n/2 (which corresponds to ¢ to be approximately
equal to log2/logn in n; = 0(n!~¢); cf. [6] Draisma, de Haan, Peng and Pereira, 1998).

In table 1 by each n; is the range within which k;, ¢ = 1,2, minimizing the estimated mse was
obtained. Due to the asymptotic properties of k; with respect to n; it makes no sense to look for k;
within a range of very small values (in applications we cut it at 10} and of very large values. In fact
when k; is near n; the estimated mse frequently shows a sudden downturn to zero. Therefore it is
advisable to have a look at the estimated mse to avoid nonsense minima.

In what concerns the number of bootstrap resamples, in practice for each n; the consecutive
solutions of k; along the bootstrap resamples start stabilizing so that 300 replications (denoted by
r = 300) seem fairly enough in all cases.

To end this first analysis, as it might be seen in table 1, not every simulations work well. The
reasons for aborting are the following: k; is less or equal to ko; the consistent estimate of -y is greater
than zero; due to bad estimates of k; and/or kp or of the consistent estimate of v, fco is 0 or 1; the
bootstrap estimate of «y is positive.

In table 2 are summarized some results from both endpoint and high quantiles estimation. Each
simulation result is based on 30 independent samples of size 10000 from the three d.f.s presented
earlier. In all cases ny = 5000 and r = 360. Below each bootstrap estimated mean of p/, v and g or
&19-5 i8 the correspondent true value.

In what concerns the endpoint estimates they are close to the true value on average with very
reasonable mse. Comparing with the classical estimation taking simply ky = /n (see figure 1) the
reduction in variance is clear and in the positive asymmetry of the sample of the estimates when
using the bootstrap procedure. We note however that we have just presented results for distributions
verifying p < v < 0 and in the algorithm right before the calculation of ko after calculating the
consistent estimates of v and p/ we make the following choice: if the ratio of 7 over p is not greater
than one then we assume p < v < 0 and just use for estimating p’ the consistent estimate of -y (since
in this case p/ = ). In that way we avoid the bad estimation of the second order parameter. Indeed
the usual models verify p < v < 0.

In what concerns quantile estimation the results are rather irregular. In fact recall that we had
to deal with a wider range of theoretical conditions than on endpoint estimation. The conditions are
Y<p,p<y<0,0<y<—p&limg oo{U(t)—al(t)/7) £0,0 < v < —p & lim; o (U(t) —a(t}/v) =0
or ¥ > —p which affect the estimation of the bias functions involved in the algorithm.

Regarding to all the simulation results one sees that the estimates of p/ are in general not good.
Moreover theoretically |o//v| < 1 must hold if ¥ < 0 or ¥ > 0 & limg_,e0 (U ()} —a(t) /) # 0. Therefore
in order to deal with it and to make simulations valuable the following procedure was adopted. After
getting the consistent estimates of -y and p/, say 4 and pr: (i) if 4 < 0 check whether $//4 < 1. (i-a)
If not then assume p < v < 0 and use only 4 that is, assume pf = 7 and take the same estimate
to both. (i) If 4 > 0 and if lim; oo (U(2) — a{t)/y) # 0 (we assume this known in the simulations)
proceed as under (2). (%) If lim o (U () — a(t)/y) = 0 then there is no possible improvement for
the estimates of p/ and then 5/ is used for the estimation of the bias. In simulations almost always
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ko o ¥ &o
ENDPOINT | mean st.dev. | mean st.dev. mean st.dev. | mean rootmse st.dev./
(true) (true) {true) mean
GEV_ 25 112.0 76.8 -2.69 .64 -3 10 3.88 .39 10
(1) (-:25) (9)
RBg4.4,2 73.2 97.0 -1.93 1.29 -.36 45 -.09 .20 -1.22
(-.25) {-.125) {0)
ko or ¥ 510—5
QUANTILE mean st.dev. [ mean st.dev. mean st.dev. mean rootmse  st.dev./
(true) (true) (true) mean
GEV_ a5 6367.2 2341.1 -7.41 2.12 -.65 .30 2.64 1.34 .28
(-1) (--25) (3.78)
RBaa2 2395.3 18206 | -1.47 43 -.64 31 -.26 a7 -.38
(-25) (-.125) (-12)
GEVg 2397.9 999.6 | -24.27 18.3 .50 02 648, 113. 17
(-1) (.5) (63L.)
GEV* 7488.0 13720 | -20.64 14.4 .46 03 565. 147. .23
(-1) (.5) (631.)
Cauchy(?) | 6181.7 3284 | -9.30 1.15 .50 01 1401. 30432, k3|
(-2} (€3] ( 31831.)
GEVy 5 2976.5 1417.3 -5.27 2.69 1.53 A2 31 x10% .18 x 108 A7
(-1} (1.5) (.21 x 108)

(1) These do not include the severe outlier shown on Cauchy boxplot, fig. 2.

Table 2: Summary of bootstrap simulation results with n = 10000, » = 300 and 30 simulations of
each; see table 3 for more details.

ENDPOQINT [ ni (Inter. to look for k1) n2 {Interv. to look for k2) a Abort. Simul.

GEV_ 25 5000 (10,4000) 2500 (10,2000) 1 1
RBy4 42 5000 (10,4000) 2500 (10,2000) 2359 4
QUANTILE | n; (Interv. to look for k;) no (Interv. to look for k2) [ Abort. Simul.

GEV_ 25 5000 (10,4000) 2500 (10,2000) 1 16
RBaa,2 5000 (10,4000) 2500 (10,2000) 513 3
GEVy 5000 (10,4750) 2500 (10,2375) 2 1
GEVg* 5000 (10,4750) 2500 (10,2375) 2 0
Cauchy 5000 (10,4900) 2500 (10,2475) 5573 3
GEVis 5000 (10,4999) 2500 (10,2499) 1 17

Table 3: Simulation parameters, shift (a) and number of abortions.

GEV_ 35 and RBy4 2 verify (i) and (i-a), GEVs verifies (i), Cauchy verifies (34} and GEV) 5 is on
the same pratical situation as in (#).

However in applications it is not clear how to get lim¢_,oo (U (t) —a(t) /7). Indeed that decision may
be avoided but then 57 must be always considered as in (%ii) (see Remark 4.19). The GEV5* results
exemplify this situation.

We will now comment on the quantile simulation results resumed on table 2 and figure 2. We
exemplify with z;g-s which corresponds to p = 107% = 1/(nlogn) for n = 10000.

Starting with GEV_ g5 and RB4 42 one may see large means and standard deviations of fs:o and
also large simulated mse of quantile bootstrap estimates. In fact in figure 2 we see that the classical
procedure (kg = /n) performs better than the bootstrap one. Comparing quantile and endpoint
estimation, the different outcomes may be explained by mainly the following two reasons. On one hand,
the quantile estimator has smaller bias than endpoint estimator and so one must expect beforehand a
good behaviour of classical results. Also it corresponds to larger ky minimizing asymptotic mse which
may be a contribution to instability on the results when it comes to calculate kg since it involves
ki, + = 1,2 that must also be expected larger and with larger variance (see figure 3). This effect is
strengthened by the fact that the function h (cf. Theorem 2.1) is also much larger in the quantile

11



Boxplot Empirical d.f.
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Figure 1: Comparison of bootstrap endpoint estimates with classical ones (kg = /n).

case. Hence a main problem here is in the ’asymptotic ratio’ (Variance(of first estimator)xBias(of
alternative estimator)?)/ (Variance(of alternative estimator)xBias(of first estimator)?) (let us denote
it simply by Var;Bias2) /(VaryBias?)).

In what concerns GEVy, GEVs* and GEV) s the resulis are quite good, similar to those obtained
on endpoint. This is remarkable given that in GEVs* and GEV) 5 when estimating the bias p/ was
used. Even though the results are better for GEVs than for GEVs*. In what concerns Cauchy d.f.
the results are definitely not good. But notice that it happens regardless wether one uses bootstrap
or one simply takes ky = v/n. One explanation may be the huge shift of 5573 applied to the data. We
have adopted here for each distribution function a common shift for any data set in order to have any
occasional shift influence under control.

Simulation results regarding quantile estimation, positive gamma, are omitted since they follow a
similar trend.

3.1.5 Application

Given the previous discussion is was found enough to give an application on endpoint estimation. The
data consists of the total life span (in days) of the people who died as residents in the Netherlands,
which were born between the years 1877 - 1881 (included) and were still alive on January 1, 1971.
Evidence has been given to support the statment that the underlying distribution of the population
under study has a finite endpoint and the extreme value index is between -1/2 and 0; for a brief
discussion we reffer to [1] Aarssen and de Haan (1994), where the same sample is analyzed after
suitable preparation for statistical analysis. The sample size is 10391. Results are also displayed for
women and men separately with sample sizes of 6260 and 4131, respectively.

In table 4 are results on bootstrap endpoint estimation. Below each bootstrap resample size, n
and ng, in round brackets, is the range taken in looking for the optimal &, and kg, respectively. In

12
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Figure 2: Comparison of bootstrap quantile estimates with classical ones (ky = /n).

what concerns the number of bootstrap resamples, following the arguments discussed previously it
was found convenient to consider larger values: we took 3000 resamples for men+women data, 1500
for women data and 500 for men data.

Note that large values of k; g related to n; and kg related to ng were obtained, compared to the
simulated data on endpoint estimation presented earlier. Results are shown for several options of n;.
Note that the consistent estimate of -y in each bootstrap intermediate result is always the same within
each sample of size n, since it is calculated simply by taking & = \/n. The bootstrap estimates of
endpoint for life span data are quite stable. Only for the men data a positive bootstrap estimate of
v was obtained which is inconsistent with the existence of endpoint. It is believed that it is due to
having a small sample size, regarding the kind of data.
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Figure 4: h/% and g/7 functions (i.e. ((Var;Bias?)/ (VaryBias?))/(1-21), p < v < 0.

4 Proofs

The proof of Theorem 2.3 will be given first and of Theorem 2.1 afterwards. The same reversal happens
with the proofs of Theorems 2.6 and 2.5.

We start with a number of auxiliary results. The first one has been taken from [6] Draisma, de
Haan, Peng and Pereira (1998).

Lemma 4.1. Assume U(oo) > 0 and there ezxist functions a(t) > 0 and A(t) = 0 such that

U(tx)-U{t _zr-1
alt ¥

o)

— Hy ()

where

1z -1 Y -1
H., (z - — <0).
ole) = S T2 (p<0)
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size of the bootstrap intermediate results bootstrap final results
bootstrap resamples | k10 (k1,0/n1) | k2o (k20/n2) | 4 Fo(ko/m) | & | % | )
men+wormen sample

n = 10391
n; = 4000;nz = 153% 2536 (.63) 1195 (.78) -.2940 335 (.03) -8.60 { -.1625 | 114.8 years
(10,3200) ; {10,1231)
n1 = 5000; n2 = 2405 3130 (.62) 1679 (.70) -.2940 363 (.03) -8.59 | -.1643 | 114.7 years
(10,4000); (10,1924)
n) = 6000;n2 = 3464 3762 (.62) 2415 {.70) -.2940 363 (.03) -8.76 | -.1643 | 114.7 years
(10,4500) ; (10,2700)
n) = T000;ne = 4715 4382 (.63) 2950 (.62) -.2940 405 (.04) -8.95 | -.1452 | 115.9 years
(10,5600) ; (10,3772)

women sample
n = 6260

ny = 3000; np = 1437 2119 (.71) 1149 (.80) -.2753 226 (.04) | -11.01 | -.1510 | 115.5 years
{10,2400) ; (10,1149)
ny = 4000; na = 2555 2826 (.71) 1818 (.71) -.2753 254 (.04) | -11.44 | -.1382 | 1L16.4 years
{10,3200) ; (10,2044)

men sample

n = 4131
n1 = 2000; nz = 968 1554(.78) 760(.78) -.0419 7(-) | -14.56 | .07T7C -
(10,1600) ; (10,774)
n; = 3000;ne = 2178 2332(.78) 1685(.77) -.0419 7(-) | -15.39 | 0770 =
(10,2400) ; (10,1742)
ny = 4000;ny = 3873 3000(.75) 2905(.75) -.0419 7(-) | -13.92 | .0770 =
(10,3200) ; {10,3098)

Table 4: Results of bootstrap in endpoint estimation of life span of men and women.

Suppose that v # p. Then

aft
-
Hmﬁ%_)::

tooo At SR
where
(0 ify<p
s > -e
. 771—,, 0 <vy<—pand limp_,(U(t) —a(t)/7y) =0
+c0 ifp<y<0
+o0 if 0 <7< —pand limy_ oo (U(t) — a(t)/v) #0
e ify=—p.
Furthermore
log Utz)—logU(t) _ z7—-1
a{t)/U(t) -
- H
where
A(t) ifc=0
A(t) = 7.,.—34% if c = too
pAY (Y +p)  ife=7/(v+p),
A(t) € RV,
- if (0 <7y < —p and lim;,oo(U(2) — a(t)/v) #0)
o = ¥ fp<r<0
P if (0 <y < —p ond lim,0(U(t) — a(t)/y) =0)

ory < pory>—p
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Remark 4.2. Hence p' =0 if y=0.
Lemma 4.3. Suppose for some function a(t) > 0 and function A(t) not changing sign, tl_lplglo A(t) =0,

Ult)-U@®) _ z7-1

1 [z -1 z7-1
li a(t) T [ _ ] = H
P A(t) pl v+p v 10(®)
for allz >0, with p < 0. Then
U(tx)-U(t
lim o 71— 1 __—1
o0 A(t) p+r-

The same holds with p = 0 and v < 0.
Moreover, for v <0,
Uloo)-U{t) | 1
t—00 A(t) Y-{7- +p)
Proof. From (7] Drees’ inequality (1998) it follows that

Ultn)-U() _ z7-1

s —v+p+e a(t) Y -
Jim upe a0 Hyp(z)| =0.

for negative p and each positive e. The first result follows by considering the cases v > 0, ¥ = 0 and
v < 0 separately.

As to the second result, relation (2.11) and Remark 2(i) from [14] de Haan and Stadtmiiller {1996)
imply: lime00(U(2) — a(t)/7) = U{oo) and

U(oc) ~U(t) +alt)/y -1

lim = .
t—o0 a(t)A(t) /v Y+p
The result follows. 0

Remark 4.4. If {U(tz)/U(t) -z} a(t) = z7(z? —1)/p, withy > 0 and p < 0,{ = o0, for allz > 0,
then

Jim {&™"U (t2)/U(t) - 1}/a(t) = ~1/p.

T—00

Take random variables ¥3,Ya,... i.i.d. with distribution function 1 — 1/y, y > 1. Then U(Y}),
U(Yz), ... are i.i.d. F.

Lemma 4.5. Write

MPUI (Y pn)

M; = - I
I aj(Yn—-k,n) I
for 4 =1,2,3 with
) Rty .
Mr(uj) = % Z{Iog U(Yn-in) — logU(Ya-in}},
i=0
1/h:=1—7_

Yl :=(1—~-}1-2y-}/2
1/l3:={1—7-}1—2y_)(1 —37-)/6.
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Then under the conditions of Lemma 4.1, for k = k(n) — oo end k(n)/n -+ 0 (n = o)

M, = \/1_ +d1A(T) + o f) + op(A(7))

M; = f + dzA( )+ op(\/—) + Op(A( )
Py

M; = 7k + d3A( )+ o0, ‘/_) + op(A( ))

where (Py, P, P3) is normally distributed with mean vector zero and covariance malriz

r 2 __
EPf = hfr_l'r {12?511)
2l

EP} = goytioy P40 ),
EP? = 36(19—1057— +14672)
) = TP =27- P57 (1= (157 T 87)

B(PiPy) = rmyraye =)
E(D\Ps) = o piians o)
E(PyPs) = ey (i—ar Py =i (50

and

il )

dy = 2(3—20 —4y_)
(1= )(1-27-)(1-¢ —7-){1-p'—27-)
dy = 6(18v2 —22 +15p"r +30'%—80'+6)

(1-7-) (=27} 1-87-) (1—p == ) (1-p =27 (1—p"=37-}"
Proof. By Lemma 4.1

k-1
(G 108U (Yai) = 108U (Voi)} U¥atn) /oY t.)

i=o

1 { Yazin \7- _ 1
S (mi) S ALY SR (3=22) + ontdcp)

i=o0 z—o Y, k

k—
4 %Z(Y”" —1)/v- +A(k)k Z:H (%) + op(A(D))
=0 i=0

P,
vk

with Y, 11,Y5,... Lid. with distribution function 1 — 1/y, ¥ > 1, and P; the normal limit random
variable of

=EY™ -1)/r-+ +A( VEH,_(Y) +0p(A(% ))+Op(\/—)

k
1
VE[Z D (V" =)/ — B ~ 1)1}
i=1
Similarly for M,(;’ ), J = 2,3; note that by Lemma 4.1

(10g Uf(:(f))/?fl(?)g U(t))j B (ﬂv a l)j +3A(t) (ﬂ;“ I)H Hy_ p(2) + o(A(1)),
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hence
MOH{U (Yo ka)/a(Ynrn)¥

d  ASISS B L o 12y -1
= —Z{ } ;);’0{ — } Hy_p (Y + 05(A(}))

D Y- P; 0 1
— E{ - +3A( )E{( . 7_4,:(Y)}+7%+OP(A(E))+OP(7E).

Lemma 4.6. Under the given conditions

A (k) = MY = vy + 4. My + gy ph A(S)

a3

T () = (M [2)'/2 =y, + TEMy + g3, (1a/2) 2 A(T)

with
0 ify<p
_ v/p if (im0 U(2) — alt) /y4 =0
07,p=tl_ikrgow%ﬁ= and0<y< —p)ory>—p
(#) ~1 if (limy 0 U () — a(t) /74 # 0 and 0 < v < —p)
orp<y<0ory=—p
Proof.

MY = a(Yp_p o}/ U (Yo g ol + M1}

G(Yn k n)

— U(Yn k, n.) 7+ A(Yn—k n)

A(Yn-tn) A(D) A(:){ll + M}y {h + M}

- n ~.T
: q’r,pllA(E) + 74+ + 7+ M+ Op(A(k))'

a’( n— k,n) {12/2 +M2/2}1/2

(2) jon1/2
{Mn /2} U(Yn_ ,ﬂ

{Yn—p.n) -
 Tain) ~ "+ A(Ynka) 5 i,
A(Yn k,n) }i(%) A( ){(1 /2) 4 (l /2)1/2}

(/)7 + § )+ A + on( )

= gt/ 2P A) + 71+ 1Mo+ 0 (AR + 0o 7).
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Lemma 4.7. Under the given conditions

4 2

E-Ml + 12M2
1

= 7-+;0 — 703 (1 = 2y M{—4My + (1 — 27_)Ma}.

(1) 2 Y
Yo (k) = 1—3{1——M" My }

A_ 1 _
Yalk) = 1—{1— (MO /MP} " =y~

5
3 ®
3!2 3 312
NI Y SR Y M.
LT T TN R

= b+ (1- ”—)igl — ) {—6M); —3(1 — 2v_ )Mo + (1 — 2y_)}(1 — 3v_) M3}

Remark 4.8. Hence for v >0

5 (8) = —2Ms + Mo+ o 72) + ol A(})

ae 1 1 1 1 = N

(k) = —=M; — = — M + o —= .

¥, (k) 2M1 4M2+ T 3+o(\/E)+O(A(k))
Proof (of Lemma 4.7). For the expansion of 4, (k) see [5] Dekkers, Einmahl and de Haan (1989), proof
of Corollary 3.2. Next we consider 7,, (k) :

MOMP  1-3y. _ (h+M)(a+Ms) bl

M3 C8(1-0) I3+ M; I

_ L his

= M, + l—Mg 12 —~M3; + terms of lower order.
3

Write 7 := MV MP /M and A == (1 - 3v_)/{3(1 — v.)}.

- 2 1 2.1 2 X-n
Tnlk) = 7= =l se =t s T =3 N7
Hence, disregarding terms of lower order,
. 2
Tolk) =7- = F(A-m)/(1- A)2
l hi
- 2 3 1°2
-3 = [0 + oty - B2ag
12 1 12
- — My — — M.
2 [z?zaMl YL LE 3]

Lemma 4.9. Let b(n/k) = U(Yp_pn)- Under the given conditions

bR -UR) _ B
@ RO f)+op(A( 3)

with B a standard normal random variable, independent of P, Py and P;.
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Proof. We use the second order conditions for U.
U(Yn—k,n) - U(%) -

a(%)
= M + A(%)Hv,p(zyn—k,n) + o(A(%))
= (gYn—k,u -1+ Op(gyn—k,n —-1)+ A(%)op(l) +of A(%))
= % + Op(\/%) +op(A(D))

Remark 4.10. No bias term comes into play.

Lemma 4.11. Under the given conditions

&(%) . I+ 4, 2 B n
a(2) -1 = iy M — EMz +7\/—E+OP(A(E))
1 B
= (=)@ =41 )My = 51— 7)1 = 20 M+ e+ 0plAQ)
and
&(%) . 23 + 31y 3 3l B n
a(2) -1 = T M, EMz = EI—gMa +7ﬁ + Op(A(E))
SRR (B AT R SR S P
1 B
— (1= 1) = 27)(1 = 37-)Ms 7 +0p(A(D))-
Proof.
P _ Xn-eaMi (1 — 45 (k)
a(}) a(})
_ (= )MPU(Y kn) 0(Yaokn) L= a (k)
o(Vomt) a(f) 1y

Now by the second order conditions for U
altz
lim —éml_ﬁ 2 2 -1
tooo At} P
locally uniformly for £ > 0, hence

a(Yn—k,n)_ —
o)

k

¥ n  k Ey. . 1}
= (;Yn—k,n) -1+ A(E)(;Yn—k,n)v(nnk—’n)

+o(A(Z)

= (Y tn = 1) + (Yo — 1) + A(D)o(1) + o(A()
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1=+ o) + op(A).

Consequently
= WMy S o+ ac - BET (1)
= 14+ {(1—v)M +7%+%M 2:;Mz+o,,(\/_)+o,,(AL( ))- (4.2)
Similarly for
AP XnownMO (1= 77 (k)
a® o)
— QM) o) Al - T,
Hence
Zifi L= (=Mt v M+ oMy — M+ o) + op(AGR))

Proposition 4.12. Under the conditions of Theorem 2.1, as n - 00,

142 =T E2a
1=2
(C—G%;—L_g_z.,) 7 0T fory<0),

=y
= h‘(T-I-:’Y—a l") nlfz%"

where ko(n) := argming as. B(iyp, (k) — ,,)?, &2 from A(t) ~ &t (t = o) and

c — 7_2 e 2 1
3 = galr)= i+l
1
! I — !2 -
¢4 = fc4(’¥+ Pl = T;?l : )"‘ 2 s %
c} ('r++2121 ?)d k) if gyp=—1

o e =P -3y + 42

cs = cs(y-):=

Y21 =2y )(1 = 3y-)(L — 4r-)

(1-v-)%0'? : —0
A= =2y +7 (27— —F ) if vy =
s = cslv-,0) :={ Y (A=r-=p' P2 r-+0 P (1=-27-—p")

(372 —1- 273 420 —2y-p' —2 ¢ —p'%)2 . _ 1
Y (1= -2 (-27-—p' )2 if Gy = .

Proof. Write a, := k/(np,). As in [13] de Haan and Rootzén (1993, p.7) we write

'Yn(k)_ n
Bpulk) =5 = Hna(R) 46— V()

B a;{“(k) -1 af-1Y\a(}) -1 [a(®) n
B ( WE )a(") = ol %)‘1)“(;9
S -U@) U(,—,;)»U(%)__a;r,_l n
a(}) k a(%) v
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We have asymptotic expansions for 4,(k), &(rn/k), b(n/k) and also for the last term (the bias term)
but not for (a"'“( ) —1}/4n (k). So we want to simplify the expression (as in [13] de Haan and Rootzén,
1993). Since we are dealing with the asympiotic second moment it makes sense to first consider the
limit behaviour in distribution rather than in Lo.

First suppose y > 0. Note that a(})ad ~ ¢;ps”. Hence

i (k) — ~fn
épn(k) —Tp, ~ Clp;'r [{(1 a"Y)( (k) l) + Gg E 1} a(k-)

¥ A (k) a(})
1-aa” a(F) . B - U®)
G e ey
L [VE-U® _a-s
" a(}) 0
N T A S () 1 -1
o’ [We)‘fﬂ’ ey V5 A ’]

plus terms of lower order by the Lemmas above for any intermediate sequence k(n) and n — oo.
Consider this expression for the sequence &(n) = [n~2¢/(1-2¢)]. Then by the expressions of Lemmas
4.6 and 4.7 we have 4, (k) —v = o((k(n))~1/2) (see also [6] Draisma, de Haan, Peng and Pereira, 1998).

Hence, since log p, = o(1/&(n)), (n(k) —7) log an converges to zero for the sequence k(n), and in fact
the entire expression in square brackets tends to zero. This must then also be the case for the as yet
unknown optimal sequence. Hence we may replace (a*¥) ™7 — 1) /4, (k) by (log an)(Gn (k) — 7)/4n (k)
in the minimization procedure. We get

G - ~ op=r| 1 _1 n(k) — v a(%) 1
Tp, (k) — zp, cpn’ [’?n(k) p + (log a")—ﬁrn(k) + = (a( y 1) +'7(p+'y_) ( )

plus terms of lower order. Since (log ayn)(3n(k) — 7)/¥n(k) dominates all the other terms we find
(n ~ 00)

inf as. E(p, (k) — 2p,)* ~ (%) inf as. E(log an)2(4n(k) — 7). (4.3)
Next suppose ¥ < 0. Note that
) _om 11 ar®—a) ap)
m?n(k)_mpn - G(E) [(ag_l)("}’n—(k)_;)-i- 7ﬂ(k) a(%)
al-17a3) N\, Wp-U®E 1
= (a(%) 1)+ B -y G ’]
1 ar® a1 fa®) B(2) - U(D) 1 n
=3 )['7 R AR bR R ST K6

plus terms of lower order, for any intermediate sequence k(n).
Now

n (k) " n (k)

ay an log a;, /‘ Ltl max(%n (k),7)

. S apds < (log an)ag®™ ™™ 40
'7:1(’5)_'7 Fnlk) — ~ " ( g o)l
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{n — o0). Hence the second term (aZ”(k) — an)/An(k) is of smaller order than the first term 1/ —
1/4n{k). We find (n — oo)

inf as. B(%p, (k) — zp, )~

F 2
~ i a0y | Ak} =y _ 1 (6(F) My -U®R 1 n
e {a (k)[ 7 ( a(§) 1) M 'Y(P+’Y—)A(k)} }

- 2
~ i 21 [Falk) =7 L (&(F) bR -U(E) _ Ly zm
3 ”'E{“ (k’[ 5 (- 'r(p+'r-)A(k)] }

by Lemma 4.1.
Next we consider as. E(&,, (k}— zp,)? for 7 > 0: by Lemmas 4.6 and 4.7, disregarding terms that
are 0(7-) or o(A(%)),

as. E(Yu(k) — 1)? = B{(74 — 2)M, + %M2 + q,,,ﬁ(:)}2

= Bllv - 2)(%‘ +d AR + 5

EP 1 EP?
— 2&41 =2

f+d2A( ))+q»,,pA( )2
EP1P2

0 =D 4 (g — 2 + 5y + 0, 2R

Es(’ﬁ) ’J’C4(’T+ap) 2P
S Y TR R,

Hence
2

Tyas. Bt () ~ 5 ~ g anp” { 2t catra, AP |

~ 57 (g ”2{‘?1%2’_3) L+ al e |

- T o {c‘olg?ﬁn a el N )w}

So we are looking for
: 1
arg Irsnp,,,?"’ -2 {(log u)zcs—p:;— n + c4¢2(log u)zu'z"'} .
Write s := (logu)?/u. Then u ~ s~ (log s)?(u — 00) and we are dealing with

7 2=l '
arg minp;*1~% {—csp:l 5 + c48257 (log 5)X1=% )} :

This can be minimized by equating the derivative to zero. The result is

2pf—1 !
c3 Pn 20 ~1 o1-20) , 1 -~ 2p 20 -1 2(1-2p")—1
= =3 log s +——s5 log s
F0 By (log s) 7 (log )
~ % ~Y(log s)X1~2),
That is,
1
1 8 _ C462(—2p') 1-2p #
v {log 8)2 ( c3 Lt
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Note that the right hand side tends to zero since np, — 0(n — o0). Now, replacing u by k/(np,), we
get

k (cm( 2p'))l 57 =L

p n =27 —2p
nPn c3

1
ko(n) (0462(—2p’)) nl-20",

Note that kg(r) does not depend on py,.

Finally we consider as. E(£,, (k) — zp,)? for v < 0: by the preceding Lemmas, disregarding terms
which are 0(7-) or o(A( )},

or

:"?’Pn(k) = Ip, =

’)’n(k) y 1 a(f) b( )-U(% ) ly<p) 1
(){ -2 q,(a(%) 1) a(}) ~r(p+'r—)A(k)}

N S VL. 2
a’( )[ '72 A(k) 211M1+7213M2

~a+g)m- 2521%}‘%*% T A

-4 1 4 2 20
) (721112 Ty sz) iy ( T 12) S

@1 Liy<p} ) irn
+ A(=).
v vp+-) &

211 }:Z,’P2
42 v

712 Tk

(-t _L__ 2 2h\ EPP,
Pl v yl2) \¥ 7!2 k
) .

|
|
-2
KPS
f—
[ -]
|
2|~
!
..z
!\3
\_/
..l..

+

I
+ { (_i _1_ ) ; 211) + (q'r,pll + Lr<p) )}2ﬁ2(f)
yhiz 4 vl 212 ¥ vle+1-) k

cs (’Y )29’

== k +Cﬁ(’}’.—.,,0)A2( )_ Cﬁ('}' ,P)(

Hence

o NP
as. E(Zp, (k) — xpn) = 2( )2'7 + cota(T )2"‘} 1 27{k1+27 +Cﬁgk27+2p'}

By assumption 1 + 2y > 0. Write ¢ := k{127, We want to minimize
" ; 29 42y
tes +écﬁn2"t 142y |
Equating the derivative to zero yields

kl- 25 _t—%zt -1 C5  _op 1+ 2y

“Bos’ 20 -27
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ie. {(n — o0)

1+2y e \T=% i
faln) (—29'—2'7 c?z«:e) e

Proof of Theorem 2.1. Immediate consequence of Proposition 4.12. (m]

Proposition 4.13. Under the conditions of Theorem 2.8, as n — oo,

1 20"

T | 2,
Fo(n) ~ (i) ™ 0™ fora>0

1 ?
142y & \1-27 =22
(—1—_2}_27 ;-:f%;) " nT=27  fory <0

—25'
: h(7+!'7—:p') anz%"

where ko(n) := argming as. E(2p, (k) — Zp, (k))?,

X n ()T ;
T (k) 1= Xp_gn + 8(7) B2 , & from A(t) ~ &tf (t = o0) and
k (k)
_ _ 1 2
c3 = e3(v4):= Z(l +7%)
_ _ .-_|_ _ "2
& = Gly,p):= (o 1 (’;"'_ p:;'gp)
_ _ (1 —7-)%(1 — 6y_ + 3572 — 78v2 + 72¢1)
& = (-} =
4y2(1 =2y )(1 — 3y} — 4y-}(1 — 57-)(1 — 67-)

G = Eﬁ(’r—, ') =

1—r_ 2 42 .

TR 4 =0,

= 2412y~ =2272 41273 +50' ~22y_ p' +2142 g/ —6p" 2 +12v_p' 2 +2p'?
272 1=y )(1—v-—p Y1 27— -0 Y(1-37--p)
2= 14y- +3472 ~3473 +1274 ~60/+30_ /4672 /42072 0160 <18y 41292 0220342y | S —
2972 (L—7= )i —7= = N1-2y- =9/ )(1-37- —p')y/(L=1=)(1-27-) e ]

-+

Proof. For v > 0, neglecting terms which are o(\—}E) or o(}i(%)), and by similar arguments as in the
proof of Proposition 4.12, the dominant term in the expansion of £y, (k) — Zy, (k) turns out to be

Epy (k) — T, (k) ~ c1p3 ™7™ (10 8n) (Fn (k) — T (k)

Y 3 1 1
~cipy 7y Hogan [(7+ = §)M1 + 1(3 — 4 )My — EM3]

~ e og on | = T+ ) + 252 (B adh) - LB ad )]
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Hence

as. E(&p, (k) — Zp, (k))? = (log an)clp, *'7 2

3.,EP? 3- EP? 1 ,EP}
[(,Y+_§)2 k]. +( '7+)2 2 +( )2 3

3 1 3 EPP, 1 EP,P,
500+ = 5)B — 1) EPLPy - g+ — —)TI — 573714

3 1 1 1% .,n
+ {(’Y+ - §)d1 + 1(3 —74+)d2 — ﬁd3} Az(k)]
oy log a,, )2
- C%Pn”’T 2 [03(7+)( gkn)

<o T
+ 1) g an 2225
Minimizing this over k as in the proof of Proposition 4.12 yields (n — o)
1
- < T—297 20’
o~ ()™ o7

aa-27)) "

Next suppose ¥ < 0. Then, neglecting terms which are o{ \/-) or o(A( ), as in the proof of Proposition
4.12,

®
o) 1)}
4

‘TPn (k) - :‘%Pn (k) =

) (k) = Fp k) 1[8N\ 1
= a(- ){ 2 (a(g) 1)+7(

=1k

= il M
a(k) &z {Q’r,pll ( I q'm( = A( )+ ( G —+ =5 21213 1
2 3 3l 1 4 3la 20 3 3l
+(@*'—211:3)“2-—2:1:3%}+;{( o) (G + ;) M- )
n. (1 4 3y 1 4 3y
= - —_ | —— 4 == - —_— — M
o(p) _{72 ( R 2zfza) Ty ( L 21113)} )

1 /2 3 1 /2 3
+{? (zg + 21113) 3 (T2+ %)}MQ
_i 312 13[2 Gv,p ( _ I2 1/2 AL
+( TN 7212)M3+~, h=GITAR)
n ~ T
G(E) (91M1 + g2 M3 + g3 M3 +90A(k))
n P N Py < T P P ) - T
= o2 L n 22 4 g AR ds A i
a(k)(gl(\/;;+dl‘4(k))+g2 (\/E+d2 (k)) + g3 (\/E+ 3 (k))+go (k))
n

P P ~. T
a(g) (91\/—% + 92\/—2’; + 93\/—% + (g1d1 + g2d2 + g3ds +go)A(k-)) 5

Hence
as. B&p, (k) = 35,)* = *(7)
EP? E'P2 EP? EP P EP P
(92 k1+g2T+g§ k3+2gyz 122 4 9g1g3— 2

k %
P s TL
+2g293 ’: % 1 (g1d1 + gada + gads + 90)2A2(E))

(@) (w1 + a1 NP = A (2 +ed).
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As in the proof of Proposition 4.12 we find (n — oo)

142y @ ﬁ’ _P_,.-“2 i
T PR T 1-2p
=20 — 2y &30

ko{n) ~ (

Proof of Theorem 2.1. Cf. [6] Draisma, de Haan, Peng and Pereira (1998).

Proposition 4.14. Under the conditions of Theorem 2.6, as n — oo,

1
1+2y- o \&% 2 =
kO(n) (—2[-7’—‘2'7— éCS) ni-e g('Y—,P)ﬂ ?

where ko(n) := argming as. E(&o(k) — z0)?, & from A(t) ~ &7 (1 — oo) and

(L —7y_)2(1 —3y_ +442%)
YL = 29-)(1 = 3y )(1 — 4y)
(27— =672 +472 +0' 570 +672 ' +27- p'?)?
cg := cg(7-,p) {

cri=cr(y-) =

APt P2y 9w =0,
(1—37_ +272 +7_p')? . =_1
X ) =) if gyp=—1.

Proof. By the preceding Lemmas, apart from terms 0(71;) and o( A(})),

n 1

o(k) =20 = B(3) = () -5 ~ U(e)
TP (1) B () e
= a(p) -% * %{ I zle + 122M2} vi_ {(Il * li)Ml
~gM e A

4 1 12+411) ( 2 21 ) {r,(p} i ]
= o - = Mi+ | —=+—5 ) Mo+
o )[( 2‘112 7- hiz P\EE T E) T 0+ A%
1 Is + 4l P
{5 )[( Yhly - bl )(\/E+d1A( ))

(o) (G +A0) ¥ i)
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Hence
as. B(#o(k) — z0)® =

R (_ 4 _llg+4ll)2EP12+( 2 2% )2EP22
k ’731112 Y- 1112 k ’}’El% '}'_I% k

4 1 I+ 4 2 20, \ EP R,
of - % _ 2
M ( Yihls - Ll ) ('ril% +’Y—1§) E

4 1 12+411) ( 2 ) L{y<p} }2 "
- -— di+ =+ == |da+——"—"< A
o am) 28 5 8) % o) AW
G er(y=) a2ty _ 2oy JOT 2T oy
- 2 { I rate BB} = d@n- (T +ag(p¥ ).
Minimizing with respect to & as in Proposition 4.12 yields

1
142y e \T% =2
aln) (—211’ -2 %Cs) e

Proof of Theorem 2.6. Immediate consequence of Proposition 4.14.

Proposition 4.15. Under the conditions of Theorem 2.5, as n — o0,

1
142y, & \Wo =2 T
ko(n) (-2#—27_ 62263) nI=w = g(y-,p) ni-%

where ko(n) := argming as. E(Zo(k) — Zo(k))?, & from A(t) ~ &t” (t = o0) and
(1 —v_)%(1 — 6y_ + 3592 — 7872 + 729%)

G = w0 = e e =3I = #1)( — 570 = 67
5 = alyd) = ((v- — 1)p')?
s sl7-:0'}: 4y (1 = = p)2(1 ~ 2y_ — p/)2(1 = 3y_ = p")2’
Proof.

o _ap _ 3R
Zo(k) — zo(k) = Xn_kn ) {Xn_k’ﬂ %;(k)}

_on 1 ra® 1 fa®) _Y_{ 1 _ 1
"“(k)[ ¥a (k) (a(%) 1)*%;(;;) (a(’%) 1) ('?E(k) %;(k))]'
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So, disregarding terms of 0(71=) or o(ﬁ(%)), from the preceding Lemmas

2o(k) — Zo(k) = )
- [ (3 -1 (_E;j 1) +-,-}3-w;(k)—%;(k))]
= %)[ (12;-[2411 P - 2;21M2+'¥u \‘;3—)
%(2132:13%%*2?3”"2 3§3M‘°’+ ‘3} ) iz( l:ilel*zZ?Mz)
;13‘(21352 S 21113M2+2?32M3)]
(%) [(_ l’?jjl; + 221?]';131:'.2 - 73?112 2’}22%13) M

+

:3/"\ 3

20 3 2 3 3l 3l

—_+ ———— | M- - - M.
B oyt 212*2731113) 2*( -G 2731113) 3]
=: ( Y91 M1 + g2 My + g3 M3)

n P P T
= a(-— —-l-dA——)-}' (—+dA—)+ +dsA }
(k){gl(ﬁ AR) + o (T4 RAD) + (T + daA()
Hence
as. B(#o(k) — Zo(k))? =
— 02(%) [ {g E.Pl +92EP2 +93EP3 +29192EP1P2
+2919sEP Ps + 29293 EP, Ps} + (91ds + gada + g3d3)2A%( Tn)]

@@ { T s a2 ) = 2 {5+ |

Minimizing with respect to k as before yields (n — o0)

1
Eo(n)~( 1+2v. & )r-z—prnl_%,_

27 - 27 G
0
Proof of Theorem 2.5. Cf. [6] Draisma, de Haan, Peng and Pereira (1998). a
Proposition 4.16. Under the conditions of Theorem 2.7, as n — oo,
—of 1 — 2 1/(1_29’) YY) —20¢
ko(n) ~ (%) n= = Uy, pl) ni= (4.9)
2

where ko(n) := argminy as. B (2], (k) — Zp,)? and & from A(t) ~ &tF (t = 00).

Proof. Set an, = k/(np,) and note that a, — oo a3 n = co. From Lemma 4.3
1 1, /n n
{1-24(0) +o(4(3)} t» 0z 2 .

29

Ultz) = U(t) + a(t)©—




Also from [6] Draisma, de Haan, Peng and Pereira (1998} (or from ¢, , in Lemma 4.6)

at)/UR) -1+ _ U@ _
e T e e = A(t)+o(A(t)) (4.5)

Hence, still using the asymptotic expansion of a(Y,,—x »}/a(n/k) in the proof of Lemma 4.11,

&5, (k) = Tp, = U(Ya—pn)aff ® —U (pi)
n

a( n—~kn) (Y- n) oAtk % an+— n n
- oG T - S - - ) e ()]
)

k

I+l ()
- AE) +e (A - EE A o (e (R)]]
= a (:’) )+ {a’?‘n (k),yj—(l +0, (1)) + ‘/BE %fi (%) + %—pA (:)

(@) + (4G ()}

Therefore following the same arguments as in Proposition 4.12 for positive -y, noticing that

w-l° (4 (t)) if 0<v<—p&limoU(t) —a()/7y#0 or y==—p
"o (/1 (t)) otherwise ,

and using a(t) ~ ¢; 7 = a(n/k)ast ~c1pn T, a8 t = 0o, we get for the optimal sequence ko(n)

T+
7, (ko(n)) = 2y ~ =2 —log an (3 (ko(m)) — 74)

that is,

-+ ) 2
infas. E (83, (k) - Zp,)% ~ (%) inf as. E[(Ioga,.)2 ('?,'{'(k)—'y_[_)z] .

Therefore from Lemma 4.6

2
'Y+ s 2" 4
B0 ~7) ~ F+ oA () (4.6)
and the result follows. The rest of the proof is similar to the proof of Proposition 4.12 O
Proof of Theorem 2.7. Immediate consequence of Proposition 4.16. O

Proposition 4.17. Under the conditions of Theorem 2.8, as n — oo,

VI .
EO(n) ~ (%) nl_—zé% = ('T+,pl) anzé% (47)
- 2

where kp(n) := argming as. E (:E;'n(k) -z, (k)) and & from A(t) ~ &tF (t = 00).
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Proof. Following similar arguments as before, for the optimal sequence ko(n) we have

+ a+ clp; i ~t 2+
E7n (ko) = &5, (Ro(r)) ~ 22— log an, (% (ko(m) 77 (kon) )
where from Lemma 4.6, neglecting terms which are o(ﬁ) or o(ﬁ(%)),

FE(E) — 57 (k) = ’Y+P 1+ @ T+ ~(n)

so that

E (% (k) - 57 (8) " ~ 7++—”""+——,zr~’(”) 55 o oo,

4k = 41— pr)t
The result follows.
Proof of Theorem 2.8. Immediate consequence of Proposition 4.17.

Proposition 4.18. Under the conditions of Theorem 2.9, as n — oo,

= _— 4\ 1257 — 2t

2 i !
where ko(n) := argmin; as. E ( i (k) ~ T, (k)) and &y from A(t) ~ &t (t = 00).

Proof. By Lemma 4.5 and (4.5), neglecting terms which are o(ﬁ) or o(A(%)),

5 k) = M2 _la(Yopn) Ma+1p — +’Y_+&_’Y+Pl +
n oM  2U(Vaen) M+l T 2VE VE O (1- p,)2
Hence
2 2y, P P ~fn
“+k—“+k=h—7—+—2—--- T+ A
Y (K) = Y (K) vk 2 Vk (l—pf)2 (k)

Therefore following the same arguments as before

R —T+ it
& (ko(n)) — &5, (ko(n)) ~ ZE2—log ay, (7 (ko(n)) — % (ho(n)))

and since
2

N 2+ 2 '7'2
E(’Y:(k)—’yﬂ(k)) Nf+m)—4x42( ) as n— 00
the result follows.

Proof of Theorem 2.9. Immediate consequence of Proposition 4.18.

(4.8)

(4.9)

O

O

Remark 4.19. Compared to the quantile results when not resiricting vy, in Theorems 2.7 2.8 and 2.9
a slightly different scheme was adopted, not separating results when ((0 < v < —~p and limy_,oo (U (2) —
a(t)/v) # 0) or (v = —p)) or not. Note that in applications it is not evident to know about
lim¢y oo (U(t) — a(t)/y). In the proofs the main difference relies on having token gy, = 7y/p! in
(4.5) and in the expansions of the vy estimators (4.6), (4.8) and (4) instead of gy, as in Lemma 4.6,

which 1s not but a unified way of writing g, , when 7y is positive.
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Proof of Theorem 2.11. Since we are dealing with N,(,j), j =1,2,3, using the second order condition
(2.8) we have

(%f@) - (w’; = l)j +5 A ("’"’; - I)H H,_,(z) + o(A(t)).

Therefore
2]
n

& (Yoogn) 7

M;

for § = 1,2,3 with M; and /; as in Lemma 4.5, just replacing o’ by p and A by A. The rest of the
proof is the same as before. o
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