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Abstract. We consider a sequential interval packing process similar to the Rényi’s
‘car parking problem’ but with a generator of random intervals which allows for arbitrar-
ily small lengths. Embedding the process in continuous time we view it as a self-similar
interval splitting process. We determine the asymptotical behaviour of the quantities like
the number of intervals packed to some instant and obtain convergence results in the
context of the more general splitting model.

1. Introduction. Sequential interval packing problems extending the celebrated
Rényi’s ‘car-parking problem’ [14] have a wide range of applications which include models
of liquid structure in physics, absorption models in chemistry and construction of error-
correcting codes in information theory, to mention a few. Many references to the early
literature are found in the survey [13]. Recently, new interest to this class of problems arose
in connection with modeling of communication networks (cf. [3], [4],[5]). We continue
this line of research by extending the analysis of the counting problem initiated in [5].

Let I, I, ... be independent copies of a random interval I C [0,1]. The sequential
packing process is defined as follows. The first interval [, is always packed, that is fixed at
its position. The interval I is packed if it does not overlap I,. Similarly, each subsequent
I;, 3 > 2, is packed if it does not overlap any of the intervals packed so far.

The process comes eventually to an absorbing state, if the size of I cannot be arbitrarily
small, as in the Rényi’s problem, and much of the literature on the subject is devoted to
characterization of the terminal state. In sharp contrast to this, the process can proceed
unlimitedly if I fits in any fixed gap with positive probability, in which case it is natural to
ask about the number of packed intervals after n packing attempts. Coffman, Mallows and
Poonen [5] raised this question under the assumption that I has the uniform ditribution
(that is to say, I is the span between two points drawn uniformly at random from [0, 1]).
They proved that for large n

(1) the expected number of packed intervals ~ en(Y17-3)/4
and gave an exact formula for the constant ¢ = 1.84.... In the same paper they asked

about the asymptotic behaviour of the variance of the number of packed intervals and
about the distribution of the sample size needed to pack a given number of intervals.



A generalization of the uniform distribution for random intervals is the family of
distributions given by

(2) PIC [z1-yl)=(1-2z-9)% (zy) €4,

where @ > 1 and A = {(z,y) : £ 2 0,y > 0,2 +y < 1}. For @ = 2,3,..., I can be
seen as the span of a random points chosen from the uniform ditribution on the unit
interval. In the present paper we find asymptotics for all moments of the number of
packed intervals and related quantities for distributions (2). We adopt here the approach
which was mentioned in [5] but not exploited in that paper: embed the packing process
in continuous time and convert it, via Poissonization, into a version of the generalized
Brennan-Durrett’s interval splitting process [1]. The key benefit of this device is that it
brings exact independence into the problem where otherwise only a kind of asymptotic
independence is present. Tecnnically, the analysis is considerably simplified because each
quantity like the mean number of packed intervals satisfies a single integral-differential
equation rather than a system of difference-integral equations for each n. We show that the
basic quantities are functions of hypergeometric type with power-like growth at infinity.

The generalized interval-splitting process considered here differs radically from the
original Brennan-Durret’s model [1],[2] in that the sum of the pieces which undergo further
subdivision is less than the whole. A distinguished feature appearing in the new model
is that the number of parts normalized by its mean has a nontrivial weak limit which we
identify with a fixed point of the ‘smoothing transformation’ [6].

The packing/splitting model can be viewed as a continuous time version of a recursive
construction of random fractals, as studied in [9]. From this viewpoint, the exponent in
(1) should be interpreted as 8*/a where 8* = (+/17 — 3)/2 is the Hausdorff dimension of
the random Cantor set obtained by cutting out all packed intervals, while & = 2 is the
rate parameter of the waiting time between splits.

2. Self-similar packing process. Suppose that random intervals I, I, ... arrive
by a unit rate Poisson stream which is independent of the I;’s. Let the I;’s be indepen-
dent replicas of a random interval I with probability law (2). We are interested in the
configuration of packed intervals after the time £ is elapsed.

Tractability of distributions (2) stems from their scale invariance properties. Firstly,
the probability that I fits in a fixed gap [z, 1 —y] depends solely on the size of the gap and
not on its location. Secondly, for the affine order-preserving transformation ¢, which
maps [z,1 — y| onto [0, 1], the conditional distribution of @, ,(7) given that I C [z,1 —y]
coincides with the unconditional distribution of I. The invariance taken together with
the total independence property of the extended Poisson process on [0,00) X A yield a
self-similarity of the packing process, which is best understood via the evolution of gaps
between packed intervals. The packing process within each gap is a scaled stochastic copy
of the whole process, with scaling factors depending only on the size of the gap.

It is convenient to enumerate the gaps by finite dyadic sequences, denoting a generic
sequence by . Writing I = [X,1 — Y] we identify a random interval with a point
(X,Y) € A, and let (X,,Y.)’s be independent copies of (X,Y).



Initially there is only one gap [0, 1] of size Sy = 1. After a mean one exponential time
an interval is packed and two new gaps of sizes Spp = XSy and Sy = Y5 are created.
Now, those incoming intervals which do not fit in any of the two gaps cannot alter the
configuration of packed intervals, while the substreams of intervals fitting in the gaps are
Poisson and independent. The process iterates: after a gap of size S, is created it waits
a random mean S, ¢ exponential time and then splits into three pieces of sizes

S*O = X*S*, (1 - Xu - Y;)S* and S*l == KRS*)

where the first and the third pieces are the newly created gaps and the second piece is
the packed interval. Given the gap size, the waiting time for a gap to split is independent
of the past of the process, splitting proportions and the evolution of the other co-exising

gaps.

3. Generalized interval splitting model. Essential in the above representation of
the packing process is only the description of the random splitting mechanism.

More generally, we consider the Markovian splitting of [0, 1] with a rate parameter o
governing the exponential waiting times and a probability distribution F’ on A determining
the random proportions X,1— X —Y and Y. We will still speak of ‘packed intervals’ and
‘gaps’ to make clear difference between divisible and indivisible pieces, although for the
general F' the splitting process cannot be induced by a Poisson stream of i.i.d. intervals.

We are interested in the functionals which depend only on gap sizes and are insensible
to the arrangement of gaps within [0, 1], thus we do not loose generality by assuming that
X and Y are exchangeable. In particular, X and Y have the same distribution which we
denote G. We will assume throughout the paper that G is absolutely continuous.

We will view the moments of X as particular values of the function

o) = [ =*dG(z)

defined in the fundamental half-plane, to the right from the convergence abscissa o,
—o0 € 0 £ 0, where the integral converges absolutely. If ¢ > —oco and the integral
converges for 8 = ¢ then the fundamental half-plane includes the vertical line Res = ¢
and is therefore closed. Otherwise the fundamental half-plane is open. In any case, g is
analytical in the interior of the fundamental half-plane.

Remark. In loose terms, o is responsible for the ‘flatness’ of G near 0. For example,
for G(z) = z*L(z),a > 0 and L slowly varying we have ¢ = —a and the fundamental
half-plane is open. On the other hand, for G(z) = —~(logz)~! we have ¢ = 0 and the
fundamental half-plane is closed. The function g is rational with poles at z, when G is a
linear combination of terms z* with coefficients being polynomials in log z.

The asymptotic analysis to follow involves the roots of the equation
(3) 29(s) = 1.
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Because g is strictly decreasing on the intersection of the real axis and the fundamental
half plane, and because g(0) = 1 and g(1) < 1/2, there is a unique solution 8* €]0, 1]
which we call the main root. The main root is the only real solution to the right from &
and it is simple because

(4) g(8*) = /01 2#" logz dG(z) < 0.

The Brennan-Durrett’s interval splitting model appears as a special case when X +Y =
1 with probability one, and a gap of size S, breaks effectively into two pieces of sizes X, 5,
and Y.S,. A characteristic feature of this case is that §* = 1.

3. Basic recursion. We fix now the ingredients o and F' and proceed with the
generalized interval splitting model.

For 8 in the fundamental half-plane define L(¢, 3) as the sum of the Gth powers of
the sizes of all gaps present at instant ¢. Thus L(¢,0) is the number of gaps and L(¢,1)
is the total gap length. Denote by T the waiting time for the first split. Because future
splitting of any of the two gaps appearing at T" reproduces the whole process we have

1, for t<T
(5) Lt,8) £ { XBLo(X%(t — T)) + YPL,(Yo(t — T)), fgr t>T

where Ly and L, have the same probability law as L, T' is mean one exponential, (X,Y)
follow the splitting law F', and Lo, L, T, (X,Y) are mutually independent.

By our choice of 3 the expectation £(¢, §) = EL(t, 8) is finite and averaging in (5) we
derive an integral equation

(6) (,6) = +2 [ & [ 4t~ )%, a’d(z)ds
? 0 0 ] 3
where the symmetry between X and Y reflects in the factor 2. Differentiating in ¢ we get
1
(7 £tB) = —UtB)+2 [ ta"tB)a"dG(a)
(8) £0,8) = 1.

Repeated differentiation shows that £(¢, 3) is infinitely smooth.

Theorem 1 The initial value problem (7), (8) has a unique C* solution. The solution
s given by the power series

0o (_t k k-1

©) {AIEDY _l:[o(l — 2g(aj + ),

k=0 k'|

which converges absolutely for all t.



Proof. The convergence claim follows by noting that the product in (9) varies slowly
with k (see Lemma 3 below), thus the series defines an entire function. Substituting into
(7) we see that (9) is indeed a solution. The uniqueness is justified by the contraction
principle, see [8] for details.D

The uniqueness implies that the derivatives satisfy

%8, B) = £8(0, B)L(L, kB + ).

It follows that for real B the £(¢, 8)’s are strictly monotone in ¢, except for £(¢, 5*) = 1.
Call B singular if oK + f is a solution to (3) for some nonnegative integer K. For
such a B3, {(t, ) is a polynomial of degree K and we have for t — oo

K—1

(10) o, 8) = (K1) ( II(1~2g(ej + ﬁ))) tX + 0@ ).

=0

In particular, the series terminates if (3* — 5}/« is a nonnegative integer; in which
case the nonzero coefficients of the series are positive. For other real values of 3 the series
starts alternating from some term and the situation is more complicated. If c(3)t#"—8)/e
is plugged into (7) the leading terms cancel, leading to the guess that this is the correct
asymptotics, although this heuristics itself gives no hint on the value of the coefficient.
Deriving the asymptotics requires a more sophisticated treatment which we give in the
next section.

5. Asymptotics of the expectations. Assume first that § is not singular. Write

k=1

vk, 8) = T1 (1 — 29(ej + B))

j=0

for the coefficient of the series at (—£)*/k!. Our plan is to extend 7 to a function of the
complex variable s and to derive a Mellin-Barnes integral representation for the series.
This techniques is classical and can be found in many books (see, e.g. [10]).

Obviously, ¢ has a ridge at the real axis:

(11) lg(s)| < g(Re s)

and therefore goes to zero as Res — oo.
Mimicking the proof of the Riemann-Lebesgue theorem (see [15], p.11) we obtain a
more delicate property.

Lemma 2 For G absolutely continuous, g(s) tends to 0 as s varies in any closed sub-
half-plane of the fundamental half-plane so that |Im s| — co. The convergence is uniform
in Res.

A consequence of the lemma is that (3) has finitely many roots in any closed sub-
half-plane of the fundamental half-plane. By (11) all roots lie to the left from §*. Also,



there are no further roots on the line Re s = 3* because otherwise G would have a purely
atomic component.
For # in the fundamental half-plane, set

‘Pﬂ={(3——ﬂ)/a—j:8>0’,29(3)=1,j=011!"'}

and for s such that Res > (o — f)/a, s ¢ P consider the product

rr 1 —2g(aj+ )
12 = .
(12) V(s ) jl;Iol—2g(aj+ﬁ+as)
Passing to logarithms we see that the product converges, hence (s, §) is a meromorhic
function with poles in Pg. The rightmost pole is (8* — §)/« and it is simple.

The identity (s+ 8/0)
_ s+ 6/, 0
") = B/a,0)

shows that all the 4’s are essentially versions of a single function.

It is easily seen from the definition (12) that the function -y satisfies a functional
equation analogous to the well-known equation for the gamma function:

(13) V(s +1,8) = (1—-2g(as+ B))v(s, B)-

But the behavour of v at infinity is very different from the asymptotics of the gamma
function.

Lemma 3 The function (s, 8) is bounded in any closed sub-half-plane of the fun-
damental half-plane, outside a sufficiently large circle enclosing Pg. Besides that, as
|s] = o0

I7(s, B)| > const e~

for arbitrary € > 0.
Proof. Let N be a positive integer larger than (3* — Re 8)/a. For Res > N we have
[29(as + 8 + aj)| < 2g9(aRes+ Re B + aj) < 2g(aN + Re S + aj),

and this is less than 1, hence |v(s, 8)| < v(N, 8). To bound the function for s on the left
from N use (13) and Lemma 2.

To estimate <y in the vertical direction we decompose 7y into two products with indices
j < Jand j > J Away from the poles, the absolute value of the first product is bounded
from below by Lemma 2. For J sufficiently large we bound from below the logarithm of
the absolute value of the second product by a singular integral

1 — (31
/ AL 46 a)

1—z2

multiplied by —2. Taking J still larger and resolving the singularity by the L’'Hospitale
rule we see that the integral grows slower than ¢|s|. D
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Following the well-known arguments (see [10], pp. 300-301) we obtain an integral
representation of the power series

100

L / T(=s)v(s, B)  ds.

271

£, B) =
—3i0Q
where the integration contour goes along the imaginary axis and is indented so that the
integers 0,1,2,... (which are the poles of I'(—s)) lie one side and the poles Pg on the
other side from the contour. Such a contour exists because Pj contains no nonnegative
integers. The integral converges absolutely for all complex ¢ in the sector |Argt| < 7/2
as it follows from the asymptotics of the gamma function and the first part of Lemma, 3.
The equality follows from the residue theorem by taking & large segment of the imaginary
axis and closing it by a rectangular contour lying on the right.
Pulling the rectangular contour to the left across the poles of v gives an asymptotic
expansion for large ¢

(t,8) = 3 T(—sq) t# Resy (-, ).

8a€Pp
Evaluating the leading term yields the conjectured result.
Theorem 4 For all 3 in the fundamental half-plane, and t — oo
(14) £t, B) = (B}t -Al= 4 O (t(ﬁ'—ﬁ)/a—min(l,f?/a)) ,

where 0 is the width of the strip left from B* which is free from the roots of (3) and lies
within the fundamental half-plane, and

B8\ 1-29(8) 13 1~ 2g9(aj+f)
c(ﬁ)_r( o ) 2ag ﬁ* H1_29a3+ﬁ*)'

(15)

Note that there is no restriction on 3 in the formulation of the theorem. For 3 singular
a possible pole of the gamma, function is always annihilated by a zero factor in (15), so
that the formula becomes (10).

We emphasize that the most important value, # = 0 is always covered by the theorem,
including the boundary case o = (.

Remark. The series £(t, ) generalize certain generalized hypergeometric functions
of the type ,F;,. These are indeed generalized hypergeometric functions in the case when
g is extendible to a rational function on the whole plane, with p being the degree of the
denominator. In the latter case the infinite products can be evaluated in terms of the
gamma function or we can adopt the classical hypergeometric asymptotics. We refer [11]
for a transparent exposition of the hypergeometrical asymptotics and integral representa-
tions).



6. Higher moments and the limiting distribution of the number of gaps. In
this section we use the notation

£,(t) = EL*(¢,0)

for the kth moment of the number of gaps (thus £(¢,0) = £,(¢)). Setting 8 = 0 and
averaging the kth powers on both sides of (5) we derive

(16) 40) = —b)+2 620G (@) + het)
60 = 1,
where the inhomogeneous term involves the joint distribution of (X,Y):
k=1 k
() = 3 (%) [ 666e-s)0F @),

j=1

We use the notation
Foup) = Aw*y“dF(w, y)

for joint moments of (X,Y).
Theorem 5 Fork>1 andt — oo
fk(t) ~ thkﬁ'/a,

where ¢; = ¢(0) is as in (15) and, recursively,

k-1 - % ™
(17) Cr = _chck_j (k) f(Jlﬁ_’g;(kng ) , k=23,...

j=1

Proof. The proof is by induction on k and exploits efficiently the observation that
t#"/= satisfies the integral equation

—ety+2 [ ' ¢(28)dG(z) = 0.

Theorem 4 states that the asymptotics holds for £ = 1. Suppose the statement is valid
for j < k, then the inhomogeneous term satisfies

k-1 k .
(18) hi(t) ~ (E CjCh—j (3) fas*, (k- j)ﬁ*)) th8/e,
J=1
and let b denote the coefficient in this formula. Introduce a comparison function
u(t) = (e + 6)tH /2 4 atP' /e 4 2,

8



where § and a are some positive constants. We claim that for a sufficiently large £;(t) <
u(t) for all £ > 0. Suppose not, then for any fixed a from u(0) > £;(0) follows that there
is a minimal 7 where {; becomes larger than u. Observe that 7 — 00 as a — 00. By the
definition of T we have u(7) = & (7) and u(t) > £(t) for t < 7, thus using (16) and (18)
we get for a = o0

4) = ~6)+2 [ ' 0 (r2)dGC(z) + hal7)

< —u(r)+2 /,,1 u(rz%)dG(z) + hy(T)

= —(cx + )T — arB /(1 — 29(8%)) + 2(ck + )T 1 g(kB*) + 2 + hy(2)
~ T (—(cx + 8)(1 - 29(k5")) +b)
= —rHlag(1 - 2g(kB*)) = —o0,
because 1 — 2¢g(k3*) > 0 for k£ > 1. But this is a contradiction because v'(7) > 0

and ¢ cannot become larger than u with negative derivative (or simply because £ (t) is
increasing). ;jFrom u(f) > £ (t) by selecting § arbitrarily small we obtain for ¢ — oo

£(t)

lim sup oy < Cg.

To get the lower bound we take another comparison function
'U(t) = (Ck - 6)tk'6*/a - at’g'/"'

and show that £ (¢) > v(t) provided a is sufficiently large. Indeed, assuming the contrary
and considering the first intersection point 7 we have again 7 — co as a — co. Arguing
as in the proof of the upper bound we have

£,(T) > const 757"/,

On the other hand,

v'(7) < const 7" /a1

which is definitely smaller than the derivative of £ for 7 sufficiently large: a contradiction.
Letting § — 0 we see that

.. G(2)

lim inf e > ck.
Putting the two sides together proves the induction step, whence the result. O

We are now in a position to show that the normalized number of gaps has a weak
limit.

Theorem 6 There erists a weak limit

L(t: 0) $ Z,

#(t,0) 1~ 00,



where the random variable Z > 0 is a unique solution of the distributional equation
(19) ZE2XFZ,+YF 7,

with EZ = 1. Here, Zy and Z, have the same distribution as Z, (X,Y) has distribution
F and Zy, Z,,(X,Y) are independent.

Proof. Equation (19) defines Z as a fixed point of the Durrett-Liggett’s ‘smoothing
transformation’. Because the derivative (4) is strictly negative Theorem (5.1) from [6]
implies the existence and uniqueness of the solution, while finiteness of all moments of Z
is a consequence of Theorem (5.3) from that paper. Setting 2z = EZ* we have z; = 1 and
manipulating with (19) we conclude that the z;’s satisfy the recursion (17), therefore 2z, =
ck/ck. It is not hard to check that z, < k!(1 — 2¢(28*))~*, and applying the Carleman’s
condition we see that the distribution of Z is uniquely determined by the moments 2.
Finally, by Theorem 4 we have

gk(t) Ci _
GRS

and the weak convergence follows from the convergence of moments.O

Remarks. Similar arguments show the weak convergence L(t,8)/¢(t,8) 2 Z for
any real # between the convergence abscissa ¢ and 8*. In the critical case, L({,3*) is a
martingale and converges with probability one to the total mass of the Hausdorff measure
of the Cantor set mentioned in the Introduction, see [9] for details.

In the case X + Y = 1 studied by Brennan and Durrett we have 8* = 1, ¢ = ct,
zx = 1, thus Var L(t,0) = o(t**"/2) and the limit of L(t,0)/£(t,0) is the degenerate vari-
able Z = 1. Brennan and Durrett [1] derived a better estimate for the variance and
concluded that the convergence to 1 holds with probability one.

7. Limiting empirical law for gap lengths. We have seen that the mean total gap
size is of the order ¥ ~1)/2 while the mean number of gaps grows like #%/%. This suggests
that the size of a typical gap must be of the order ¢~1/¢. We will justify the guess in the
form of a limiting empirical distribution for the normalized gap sizes.

Following the suggestion define for z > 0

_ expected number of gaps with lengths < zi~

1/c
expected total number of gaps '

Hi(z)

Clearly, H; is a distribution function with the moments

00 Ao
/0 P H,(z) = G P) E(i,(z;)ﬂ)

Multiplying the right-hand side by t%"/* and letting ¢ — oo we derive from Theorem 4
that these integrals converge, whence H; has a limit.

10



Theorem 7 There erists a distribution function H such that for x > 0
H(z) = Jim Hy(z).

The limit is uniquely characterized by the formula

o0 T 8-g"
(20) [fat(z) = r(( :E)) - (é 3

which holds for all # in the fundamental half-plane.
For # = ko, k=0,1,..., the infinite product (12) telescopes and we get

- r (k - ﬁ) k-1 1
ke a
z*dH(z) = ——=% || - — .
/o (@) r(=£) ,-1;111-29(a3)

These moments grow slower than £!2%, thus the Carleman’s criterion guarantees that they
determine H inambigiously.

The limiting distribution is absolutely continuous for z > 0 and its density can be
recovered as the inverse Mellin integral
1 v+z'ool-1 (g_—_g:) g1

21riu—ioo r (:f—*) 7 (i,O)
where v is an arbitrary positive constant. Stirling formula for the gamma function and the
second part of Lemma 3 imply that the integral converges absolutely for z > 0, therefore
H indeed has a density.

Remark. The function H(z) behaves near zero like G(z) and is of the order of z~°.

If g admits a meromorphic continuation to the left from ¢, an asymptotic expansion of
H is determined from the spacing of poles of g (see [7], Theorem 7.8). Explicitly,

1 3 1-29(aj+s)
'y(’ 0)_,-13(:) 1-2¢(ej) °

a?

H'(z)= ds,

which shows that singularities in (20) come with those of 1 — 2g(s).

8. Packed intervals and gaps. The reader might have been surprised to learn
things about gaps while the title of the paper suggests that the packed intervals must be
our primary topic. To remedy the situation we shall reduce the ‘interval counting’ to the
‘gap counting’.

The number of packed intervals is equal to the number of gaps minus one. The total
area covered by the packed intervals is one minus the total area covered by the gaps.
Taking the squared sums breaks the direct connection, but there is still a simple relation
between the expectations. Surprisingly enough, this applies to almost all 3.

Let M (¢, B) be the sum of the Sth powers of the lengths of packed intervals present at
instant ¢, m(t, B) = EM(t, 3). Clearly,

M(t,0) = L(t,0)— 1, M(t,1)=1-L(¢,1).

11



Theorem 8 If 3 is not a root of (3) and Re 8 > o then
m(t, B) = a(B)(£(2, 8) — 1)

where
Jall —z — y)ﬁdF(ﬂ?, y)
—-1+2¢(6)

Proof. An argument similar to that which lead us to (7) shows that m(t, ) is a
solution to

a(f) =

m'(t,8) = —-m(,0) +2_/01 m(ta:“):cﬁdG(a:)+fA(1 —z —y)PdF(z,y)
m(0,8) = 0.

Substitution m(¢, 3) = a(8)(£(t, 5) — 1) converts this equation into (6) and the statement
follows by uniqueness of the solutions. O

9. Packing time. What is the limiting distribution of the time needed to pack
a large number N of intervals, i.e. how long should we wait until N splits occur? This
question was posed in the last section of [5]. We can prove here that a limiting distribution
distribution does exist.

Let Ty be the time of the Nth split. Thus 7} is mean one exponential, but already
the law of T> must involve the joint distribution of splitting proportions.

Since each split adds one gap and one interval we have

P(Ty < t) = P(L(t,0) > N +1).
Inverting this relation and applying Theorem 6 yield
Theorem 9 There exists a weak limit, as N = oo

Ty
(N/c(0))*”"

Remark. In the Brennan-Durrett’s case the limit is degenerate and the convergence
holds with probability one.

LY L

9. Packing problem with distributions (2). We return to the original problem
and consider the packing problem with o > 1 and

dF(z,y) = ala—1)(1 — z — y)* dzdy.

As a splitting model, this problem has a special feature that o enters both the waiting
time distribution and the splitting distribution. The marginal distribution of a splitting
proportion is

dG(z) = a(l — z)* 'dz

12



and the integral
(a+1I(s+1)

Ta+s+1)
has the convergence abscissa at ¢ = —1. The function g is meromorphic on the whole
plane, with finitely or infinitely many poles at negative integers. The main root is a single

positive solution to
(21) 1-2aB(8*+1,a)=0

An easy computation yields the joint moments

[(a+ DT+ )0 +1)
Do+ A+ p+1)

g(s)=aB(s+1,a) = L

fOw )=
Remark. Upon a change of variable the integral term in the equation (7) becomes

1
T —

where we recognize an integral of Erdelyi-Kober type appearing in the fractional calculus
[12]. The solutions are generalized hypergeometric functions of type o F, fora =2,3,....
For noninteger values of o the £(¢, 8)'s are entire functions which seem to have not been
considered before.

We specialize now to the case & = 2,3,.... Then (21) becomes a polynomial equation
B+1)(B+2)...(8+a)—2a!=0
which has a roots 8*, B, ..., B,, of which 8* is the rightmost one. Since g is rational we

can write 1 — 2g(s) as a ratio of two polynomials which we decompose into a product of
monomials. The resulting series in the usual hypergeometric form is

_ & (et EE) (). (+ )
OO LG (e ).

Theorem 4 applies and evaluating the infinite product in terms of the gamma function
(as in [16]) we get

o

_ T (52) T (42)
(22) c(ﬁ)_r{;‘:zl_‘('ﬂi) = F(w),

P =1 a

a result which could be read-off from the classical asymptotics (see [11], [10]).
The limiting empirical distribution of gap sizes has density

H'(z) = 1 G () 70—?=1P(%:,) 279" ds.

2mi Iz, T (1) _J, Me.T (&)

13
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The integral represents a Meijer's G—function of type G5~ , (see [11], p. 32) and con-
verges abolutely in the sector |Argz| < #/(2a). The density H'(z),z > 0, has an expo-
nential decay at infinity and a positive value at z = 0.

The variance of the number of gaps satisfies

Var L(t,0} ~ (cp — 2)2#" /@
where ¢; = ¢(0) is given by (22) and

[(a+ 1)I(B* + 1T(B* +1)
(@ +26*+1) - 2T(a+ 1)T(28* + 1)’

— 02
(23) c2 = 2¢f T

Example. We get an additional insight into the problem studied in [5]. In this case
a = 2 and the main root is 8* = (v/17 — 3)/2. The second root B2 = (—v/17 — 3)/2 lies
to the left from the convergence abscissa at o = —1.

The (smooth version of) density H' has a positive value at z = 0. Coffman, Mallows
and Poonen demonstrated an integral representation for H' different from that given here
and expressed the density via a Whittaker function. (It should be noted that the z~1/2
factor in their equation (4.2) gets absorbed by a singularity of the Whittaker function,
thus confirming the behavior of H' at zero.)

The coefficient ¢(0) appeared as formula (3.7) in [5], which is in full accord with ours
(22) (note: their cx’s correspond to the ¢(3)’s in our notation and our ¢;’s have different
meaning). Now we can do the next step and apply Theorem 6 and (23) to compute the
asymptotics of the variance:

Var L(,0) ~ (¢ — cf)t(\/ﬁ-rs)/z,

where the numeric values are c; & 3.849820 and c; — 2 & 0.464725.
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