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Let X and Y be two (possibly dependent) random variables taking values in
{0,1,...,m — 1}, where m > 2 is some fixed integer. In this note we study
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Abstract

For two (possibly stochastically dependent) random variables X
and Y taking values in {0,... ,m — 1} we study the distribution of
the random residue /'’ = XY mod m. In the case of independent
and uniformly distributed X and Y we provide an exact solution in
terms of generating functions that are computed via p-adic analysis.
We show also that in the uniform case it is stochastically smaller than
(and very close to) the uniform distribution. For general dependent
X and Y we prove an inequality for the distance sup,¢[g 1) | Fu(z}—=l-

Introduction

the distribution of the random residue of the product

We consider first the case when X and Y are independent and uniformly
distributed, ie. P(X =4, Y =j) =m2fori,j € {0,..., m—1}. In
Section 2 it is shown that the problem for general m can be reduced to that
for m = p", where p is some prime number and n € N, and that in this case

U= XY modm.

it is sufficient to determine the cardinalities

Ny(I,n} = #{(z,y) € (Z/p"Z) x (Z/p"Z) | zy = p"'}.



We prove that for every prime number p the generating function H,(T, Z) =
3° Np(l,n)T™Z* of the double sequence Ny(l,n) is given by
n.l

-pTPQ-p'2)-p*(1 -p'T)T(1 - 2)
(1-2)(1-p12)(1 - pT)*(1 - p°T)

In the case p = 2 we derive a neat explicit formula for the distribution
function of U. It is given by

HP(T: Z) =

(1.1)

n-1
PU<k)=(k+1)2™" + 277> (1-4) (1.2)
i=0
for k =0,...,2", where 8,...,0,_1 € {0,1} are the binary digits of &,
defined by k =6 + 26, + 462 +---+ =18, 4.

It follows from (1.2) that the random 'fractional residue’ 2 *U is stochastically
smaller than a uniform random variable on [0,1), i.e. P(U/2" < u) > u for
all u € [0,1] and that the maximal deviation is given by

sup (P(27™"U < u) — u) = (n+ 2)2-+1) (1.3)
O0<u<l

so that the distribution of 2="U tends to the uniform distribution on [0, 1]
at an exponential rate (given by (1.3)), as n — oco. In fact, these stochastic
dominance and convergence remain valid for arbitrary m.

The rest of the paper is devoted to an extension of this asymptotic equidistribution
result to general m and dependent, non-uniform random variables X and Y.

We will show that

1/2
sup |P(U/m <u) —u| < C("%E™) (1.4)
0<u<1 m

if the distribution of ¥ and the conditional distribution of X given ¥ do not
deviate too much from uniformity and if the latter distribution satisfies a
certain Lipschitz condition. Specifically, we assume that

P(Y = k) S Cg)/m
p(lk) =P(X =j|Y =k) < Ci/m
|‘P(j1[k) _

p(52|k)

1\ < Coljr — Jo|/m



for some constants Cy, C;, Cz. Then (1.4) holds for a certain constant C which
depends only on Cy, C) and Cs. From (1.4) we can conclude that U/m is for
a large class of joint distributions of X and Y ’almost’ uniformly distributed
on [0,1} in the sense of weak convergence.

Deterministic sequences of integers whose residues are uniformly distributed
are treated in Narkiewicz [10] and Kuipers and Niederreiter [8]. They play
an important role in random number generation (Ripley [12]). In the realm
of stochastic sequences already Dvoretzky and Wolfowitz [5] studied weak
convergence of residues for sums of independent, Z-valued random variables;
more recent papers on related questions are Brown [3], Barbour and Griibel
[1], and Griibel [6]. The distribution of the fractional part of continuous
random variables, in particular its closeness or convergence to the uniform
distribution on [0, 1), has been studied by many authors (e.g. Schatte [13],
Stadje [14, 15], Qi and Wilms [11]).

2 The uniform case

We start by deriving the exact probability distribution of U in the case
m=2" n €N Forz e R, let frac(z) be the fractional part of z.

Proposition 1 We have

n—1

PU<k)=(k+1)27"+27 3 (1), (2.1)
i=0
for every k € {0,1,...,2" — 1}, where &y,... ,0p1 € {0,... ,n— 1} are the
binary digits of k, 1.e. k =8y + 26, + 48, + -+ +2"71§,_;.

Proof. Obviously,

271
P(U = k) = Z g—2n Card{j c In | fra.c(z'jZ‘“) — k2_n’}. (2'2)

i=0

Let

4 _{lieh]i2™isodd}, if m<n

™1 {0}, 17 e
It is easily seen that

rm-l o if me{0,...,n—1
Ca'rdA"‘={1 if m=f1,. }

3



Consider i € Ay, and k € A; forsomem,l € {0,... ,n—1}, say i = (2p+1)2™
and k = (2¢ + 1)2'. Then for any j € I,,,

frac(ij2—™) = k2" (2.3)
is equivalent to
(2p+1)j — (2¢ + 1)2=™ = N2"~™ for some integer N. (2.4)

For | < m the lefthand side of (2.4) is not integer, so there is no solution j
of (2.3). Now let I > m. Since 2p + 1 and 2" are relatively prime, a simple
result on residues implies that the numbers (2p + 1)j — (2¢ + 1)2*"™ run
through a complete set of residues mod 2" if j runs through (the complete
set of residues) 0,1,...,2" — 1. But N2"™ gives different residues mod 2
for N =0,...,2™ -1, while for larger values of N one only gets replications
of these residues. Thus, the number of solutions j of (2.3) is 2™ if I > m.
The same result also holds for m € A,, i.e. m = 0.

From (2.2) it now follows that if k € A; for some [ < n we obtain

n-1
PU=k2") = Y223 card{j € I | int(ij27") = k27"} + 2 "ds
m;—-ﬂ i€Am
= ) 27" card(Am)2"
ml=0
= Z g-ngn-m—1
m=0
= (I+1)2~0+D,
(2.5)
while if £ € A,
n-1
P(U=0)=>_ 27 card(4n)2" +27"
m=0
= (n+2)27{n+1), (2.6)

In particular, k — P(U = k) is constant on A; for every [. Therefore, the
probability P(U € (2™a, 2™a+2™"1]) is the same for every a € {0,... 2" ™—



1}. It follows that

PU<k) = PU=0)+P0<U < 2%

n—1 n—1 n—1
+ZP (261;21. <UL Z 5i2i)
=1

i=l i=i-1
n—1

PU=0)+Y PO<U<&2).
=0

2.7)

To compute the righthand side of (2.7), note that the number of integers
i € A, satisfying 0 < i < 2 isequal to 2™ form =0,...,[—1 and equal
to 1 for m = [. Hence, by (2.5),

{
PO<U<?) = Y PUEA.N{0,...,2'}
m=0
1 (2.8)
— Z(l + 1)2—(n+1)21—m—1 + (l + 1)2——(n+1)

m=0
— 2—(n+1) (2I+1 _ 1)
Inserting (2.8) and (2.6) in (2.7) now yields (2.1).
Proposition 2 1) For arbitrary m U is stochastically smaller than a uniform

random variable on [0,1];

2) For arbitrary m

sup (P(U < u) —u) = O(m™'*), (2.9)
0<u<l
for any e > 0;
and
3) For m = 2",
sup (P(U < u) —u) = (n+2)2"(+D, (2.10)
0<u<l

Proof. We start with 1). It is clear that

#{0 < j <m:ijmodm < k} = ged(z, m) (l;g—cﬁj + 1) . (211)
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This implies
P(U<k)= chd i,m) ( G, )J + 1) > k/m (2.12)

for all 0 < k < m, and hence proves 1).

Further, estimating (2.12) in an obvious way from above, we obtain
PUSK < 72305 ged(i,m) (gt +1)

k/m+ L5 e St ged(i, m)

Efm+ 52 m #{0 <i<m:ged(i,m)=1} (2.13)

I’J’ b

k/m + _f El]m
k/m+ d(m)/m,

AA A A

where d(m) denotes the number of divisors of m. It is known that d(m) =
O(m*) for all € > 0, which implies 2).

To prove 3) define for 0 < u < 1 the integer k(u) by k(u)2™ < u < (k(u) +
1)27" and let &, ... , 6,1 be its binary digits. By (2.1) we can write

P(U < u) — u= (k(u)2™" +2°" — u) + 2-(n+) nz_l(l —&),  (2.14)

which is nonnegative by the definition of k{u). Further it is clear from (2.14)
that supg.,<;(P(U < u) — u) is approached as u | 0, yielding (2.10).

Now we derive the exact formulae for P(U = k) in the case of general m € N.

Let X and Y be independent and uniform on the set {0,... ,m — 1}, which
we identify with Z/mZ. Then P(U = a) is equal to m~2 times the number
of solutions (z,y) € (Z/mZ) x (Z/mZ) of the equation

zy = amodm.

Let m = []p}* be the prime factorization of m (p; primes, n; € N). For
a € Z/mZ we define a(i) € Z/pZ as the (unique) solution of

a(i) = amodpl”.

Then as Z/mZ = |[(Z/p{*Z) (the Chinese remainder theorem}), we have the
following decomposition.



Lemma 1 The number of pairs (z,y) € (Z/mZ) x (Z/mZ) satisfying
zy = amodm (2.15)
is equal to the product of the numbers of solutions (z,y) € (Z/pZ) x
(Z/p}*Z) of
zy = a(i) mod . (2.16)

By the Lemma, we only have to determine the number of solutions of (2.15)
for m of the form m = p".

Fix a prime number p and a natural number n. Observe first that the number
of solutions (z,y) € (Z/p"Z) x (Zp™Z) of zy = amodp™ depends on a only
through the p-adic norm of a, that is, through the exponent of the maximal
power of p that divides a. Indeed, if there exists an invertible b in Z/p™Z
satisfying

ab = p" mod p*

then
#{(z,y) € (Z/p"Z) x (Z/p"Z) | Ty = amodp"}
=#{(z,y) | zyb = p" ' mod p"}
=#{(z,2) € (Z/pZ) x (Z/PZ) | z=2 = pn-t mod p"}
=N (I, n).

To compute Ny(l, n), we use the following well-known formula from the theory
of p-adic integration (Christol [4, Sect. 7.2.2, p. 466]). Let f(zy,...,%,) be
a polynomial with coefficients in Z,, the ring of p-adic integers, and let |- |,
denote the p-adic norm. Then for any real s > 0,

[ G mlutde) - ulds) =9 - 0 - QT @17
(Zp)™

where p is the Haar measure on Z, and Q(T') is a Poincaré series:

QT) =D T*#{(x1,... ,3.) € (Z/p"2)" | f(z1,... ,2;) = Omodp*}.
k=0

Theorem 1 The generating functions

Goi(T) =D Ny(,n)T™, Hy(T, 2) = > > Ny(l,n)T" 2"
n=>0 n=0 =0



are given by
(1—pTY —p?(1-p™ )T

P
CoulT) = =~ g = 2T

(2.18)

Q-pT)2(1-p'2)-p*(1 —p'T)(1 - 2)T

AT 2) = A= p12)(1 - 7)1 = 1)

(2.19)

Proof. We use formula (2.17) for r = 2 and f(z,y) = fi(z,y) = p'zy. For
the lefthand side of (2.17) we obtain

[ 18wl s = [ 5l s udolntay)

(Zp)? (Zp)?
2
=t | [ el utao) | -
Zp
By (2.17),

1 _1-p!
—p s 1—pls

[ 1ol utdz) =5 - 6 - 1);
Z,
(Note that here Q(T) = 1/(1 — T), since #{z € Zp"/Z | z = 0modp*} =1
for all »). Furthermore,
sy =p" *modp® if p'ry = O0modp”.

Thus, the coefficients on the righthand side of (2.17) are just the N,(l,n). It
follows that

P — (@ —1) gN,,(l,n)(pd-s)ﬂ =p™ (1_—10_1)2'

1-— p—l—s
Setting T = p~2~*, so that p~* = p?T we get
1 1 1-p71\?
77~ (7)) = (27) (220

and (2.18) follows from (2.20) by a short calculation. Similarly, multiplying
(2.20) by Z' and summing over ! yields (2.19).
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For example, if p = 2 the numbers N,(0,n) of solutions (z,y) of (z,y) =0
mod 2" is (n + 2)2"~1, as

o w_ (1-27)-T
Gao(T) = ;Np(o’”)rf = (- 2T)(1-47)
1-T

= -ap AT

3 The inequality for dependent random variables

We will now prove (1.4). For this we need some basic theory of continued
fractions (see e.g. Hardy and Wright [7], Billingsley [2]) and a probability
estimate due to Lévy [9]).

Any z € [0,1] has a continued fraction expansion z = [a1(z), az(z),...]
providing a sequence of fractions usually denoted by

pﬂ(m)/QH(m) = [al(m)a R aﬂ(x)]'
For two positive numbers py < py let

B(pg, ;1) ={z € [0,1] | po < gx(z) < py for some k € N}.

20

1+2lo -pt
Pl_PO( g2 P0) — Py

Lemma 2 A(B(py, ;1)) > 1 -

Proof. Let @ be the set of all finite sequences ¢ = (q1,.-.,qk), kK €N, of
denonrﬂnators of possible continued fraction expansions satisfying g, < gy. We
set (g) = pr/gx, where py is the kth numerator corresponding to qy,... , gk,
and

I(7) = {z €[0,1] | (a1(2), .., qu(x)) = 7}

-

J(@) =I(@)n{z € [0,1] | grs1(z) = p1 or == z(q)}

J(0)={z €[0,1] | a:(z) = pr}.

The sets J (Tf), d€Q, and J (0) are pairwise disjoint intervals and

B(po, p1) = [0, 1IN (J(0) U | 7(3)).

7€Q



Thus,

M0, 1\B(po, 1)) = MI(0) + D A(J(q))

7¢Q

ko
= AJO)+Y 3 M@,
k=1 ?EQ
Iq1=k

(3.1)

where || denotes the length of the sequence ¢ and ko is the maximum length
of sequences in @. Since

Po > G 2 2(k_1)/2 for every (qla 0G0 er) € Q:
it follows that

ko < 14 2log, po. (3.2)

Now let U be a random variable that is uniformly distributed on [0, 1]. Then
if ¢ € Q,|q| =k, it follows that

AJ(q) = P(Q’k+1(UL2 o, U € I(q)) .
P(U € I(q))P(g1(U) > pi| U € I(3))
< P(UeI(‘q’))P(akH(Ub”‘;T"“|Ue1(‘q’)) (3.3)

P erin(22)’

IA

For the first inequality in (3.3) we have used the recursion gx41 = @r@g41+qk—1
which for ¢ € Q, |¢| = k, implies that axy; > (o1 — po)/po. The second
inequality follows from a result of Lévy [9, p. 296].

To estimate A(J(0)), note that ¢ (z) > po implies that z < pi(z)/q(z) =
1/p;. Thus, by (3.1), (3.2) and (3.3).

MO, 1B, 1)) < pi* + k=2 37 P(U € I(3))
76€Q

< pit+ (1 + 2log, po)

2p0
PL— o

The Lemma, is proved.
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Lemma 3 Let X be uniformly distributed on {0,1,... ,m —1}. Then

1 _
P(X/m ¢ B(po,p1)) < 2P0(1+210g2po)( +p—°) + ot +m L

lL—pp ™
(3.4)
Proof. For every half-open or open interval I in [0, 1] we have
|P(X/m e I)— M) <m™ (3.5)

As J(0) and J(q) are half-open intervals, (3.1) and (3.4) yield

P(X/m ¢ B(po,p)) < MJ(0)+ > MJ(2)
i (3.6)
+m (1 + card Q).

It remains to find an upper bound for card Q. Let Q be the set of sequences
in  having maximal length, i.e., the set of those (g:(z),...,q(z)) € @ for
which gg41(x) > po. Since

B 1 LI
a(qe + ae-1) ~ 208 T 205

for (g1,...,q) € Q, we clearly have cardQ < 2p%. Inequality (3.4) now
follows from (3.6), Lemma 2 and

card @ < kocard @ < (L + log, po) (26).

MI(qr, .-, qx))

Lemma 4 Let
p(j,k)=P(X =3, Y =k), j,ke{0,...,m—1}

be the joint distribution of X and Y. Assume that there are constants C,
and Cs such that

p(jlk)=P(X =j|Y =k) < C/m (3.7)
p(irlk) _ i m
p(j2|k) 1 £Coh le/ (3-8)

for all j,k, 51,52 € {0,... ,m—1}. Then

B 3Cy . k
|P(U/m<u|Y_k)—u[s?ﬂg{f(qn( ))

m
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for allk € {0,... ,m — 1}, where

3
LT
m

flg) =~ eN.

q

Proof. Let p/g be an arbitrary fraction from the continued fraction expansion
of k/m. Let

Ji={(t-1)q,(G-1)g+1,...,ig-1}
Ji(w) = {j € J; | frac (jk/m) < u},

where frac(z) denotes the fractional part of z > 0. Then

[m/q]
PU/m<u)|Y=k) = Y > P(X=j|Y=k)

i=1 jeJi(u}
+ 3 Px=j|vy=k (39

k€Jpm /g1
k<m
= I+1I

Clearly, (3.7) yields
I1 < Cyg/m. (3.10)

Regarding the sum 7, we can write

[m/q]

I = Y Y plilk)

i=1 jedi{u) (3.11)

[m/q]
Z A; card J;(u) Z ilK),
i=1

a; card J;
¢ jed;

IA

where A; = n_leaJ.xp(j |k) and a; = I%iJI] p(j|k). (From (3.8) we can conclude
Jed Jcdi
that

A,-/a,- 5 14 (ng/m) (3.12)
Obviously, card J; = g. We need an upper bound for card J;(u). Note that

k p -2



For arbitrary j € J;(u) write j = (i — 1)g + h, where h € J;; we obtain

frac(jk/m) = frac ((i - l)q% + %?)

= frac ((z - l)q% + frac(%))

frac (%) = frac (h,(i - 2) + @) = frac (a+ @)
m m g q q
where |a| < ¢71. Recall that p and g are relatively prime. Thus, as h runs

through Jy, frac(%) runs through the set of all values !+, I € Ji. Let
Bi = (i — L)gk/m.

Let j;(u) be the number of values frac(g; + (I/q)) in [0, ) for which I € J;.
Clearly, we have ji(u) € {[qu], [qu] + 1}. Since |a| < ¢!, it now follows
easily that

and

|7:(u) — card J;(u)| < 2,

so that
lqu — card Ji(u)] < 3. (3.13)
By (3.12) and (3.13),
Apcard () ()| Cg)qutd ,  Cig 3, 3G g4,
a; card J; m q UL AL

Inserting (3.14) and (3.10) in (3.9) we find that

C 3 3G, C
P(U/m<u)su+?2q+a+—2+—lq

m m
3,
—u+—m—+f(Q).

Minimizing with respect to all possible denominators g = ¢,(k/m) we arrive
at

PU/m<u)—u < %Jrigflf (qﬂ(%))

The analogous lower bound P(U/m < u) > u — (3Cy/m) — f(g) is derived
along the same lines.
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Theorem 2 Assume that the joint distribution of X and Y satisfies conditions
(3.7) and (3.8) and that

PY=k)<Cy/m, k=0,... , m—1. (3.15)

for same constant Cy. Then there is a constant C depending only on Cy, Cy, Co
such that

1/2
sup |P(U/m<u)—u| < C(logm) . (3.16)
0<u<1 m
Proof. By the formula of total probability and Lemma 4, we obtain

m—1

P{U/m<u) = > P =k)PU/m<ulY =k)

k=0
m—1
< u+3Cm '+ Z P(Y = k) min [1,;51;111f (Q’n (%))]
= u+3Com '+ E (min [I’Ir?zi?f (qn(%))]) .
(3.17)

Note that the right side of (3.17) is equal to fol(l — G(xz))dz, where

6@ =+ (min 1 (m(1,)) <=).

Let C3 = C; + C,. The function f(t) = 3t~ + Cam™'t, ¢ > 0, is strictly

convex, has the unique minimum ¢, = (3m/C3)"/? and 7, = f(ts) = 2¢5".

Thus the equati on f(t) = = has no solution for © < z, and exactly two
solutions #1(z) < t2(z) for £ > zo. If > x,, a short calculation yields

z 6C.

F(6/z) = f(mz/2Cs) = 5+ —

<z
2 mzx ’

and consequently ;(z) < 6/z < mz/2C3 < t2(z). These observations show
that

G(z) P(t1(2) < gu(Y/m) < ta(z) for some n € N}
P(6/z < g.(Y/m) < mz/2C; for some n € N} (3.18)

P(Y/m € B(6/z, mz/2Cj3).

v

;From (3.15) and Lemma 3 it now follows that

1-G(z) <H@E)+m™Y z€(0,]]

14



where the function H is defined by

H(z) = 2G5 +2C, ((6/m)2m‘1 + - 12C;

———— } (1+2logt .
2 ) U+ 210t (6/9)), &>

Thus, for any y € (o, 1] we have the following estimate:

Bminls, f(aa(V/m)) = [ =G s <y+ [ H@ do (319

On (zy, 00) the function H(z) is positive and strictly decreasing from infinity
at zero. Further,

12
H(z)>2 (ﬁ + Gy

mz?  mz?

) (1+2log,(6/z)) > 12 ﬁ%, z € (z9,1] (3.20)

as Cp > 1 and C; > 1. Let z; be the solution of H(z) =1 in (zp,00). For
sufficiently large m we have z; < 1 and then, by (3.20),

) > max[12(Cs/m) /2, (576/m)"/?).
Hence if z; < £ <1, H(z) can be bounded as follows:

2C% 36 12C;
Hz)< —+2
() T Co (mx2 + mz2(1 — (12C3/ma?

205 2C 144
< —= —_— E—
+— (36 e 03) (1 + log,(36m/576))

2C;  2Cy
m.'L‘. + -@(36 + 1403) (log2m ) 3)

))) (1 + logy(36/22))

<

For any y € [z;,1] we now find that

2C, " 2Co(36 + 14C3)(logy m — 3)
my my '

y+[1H(:c) dr <y+ (3.21)

Over y € (0, 00) the right-hand side of (3.21) is minimized for
Yo = [2Cs + 2Cy(36 + 14C3) (logy m — 3))V2m~1/2,

the corresponding minimum being equal to 2yp. A short calculation shows
that H(ye) — (9 + 3C3)/(9 +4C3) < 1, as m — oco. Thus, yp > x; for
sufficiently large m. Hence we may insert the value y, in (3.21) for all but
finitely many m. To summarize, it is now proved that

P(U/m <u) Su+Cyf lorgnm

15




for some constant C' depending only on Cy, €}, and C,. Similarly it can be
shown that P(U/m < u) > u — C((logm)/m)'/Z.
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