Report 99-047
On Exact Group Extensions
Jon Aaronson
Manfred Denker
ISSN 1389-2355

ON EXACT GROUP EXTENSIONS

JON AARONSON AND MANFRED DENKER

Abstract. We give conditions for the exactness of \mathbb{R}^d -extensions.

§0 Introduction

A nonsingular transformation (X, \mathcal{B}, m, T) of a standard probability space is called a *fibred system* if there is a generating measurable partition α such that $T: a \to Ta$ is invertible, nonsingular for $a \in \alpha$, and a *Markov map* (or Markov fibred system) if in addition, $Ta \in \sigma(\alpha) \mod m \ \forall \ a \in \alpha$.

Write $\alpha = \{a_s : s \in S\}$ and endow $S^{\mathbb{N}}$ with its canonical (Polish) product topology. Let

$$\Sigma = \{ s = (s_1, s_2, \dots) \in S^{\mathbb{N}} : \ m(\bigcap_{k=1}^n T^{-k} a_{s_k}) > 0 \ \forall \ n \ge 1 \},$$

then Σ is a closed, shift invariant subset of $S^{\mathbb{N}}$, and there is a measurable map $\phi: \Sigma \to X$ defined by $\{\phi(s_1, s_2, \dots)\} := \bigcap_{k=1}^{\infty} T^{-(k-1)} a_{s_k}$.

The closed support of the probability $m' = m \circ \phi^{-1}$ is Σ , and ϕ is a conjugacy of (X, \mathcal{B}, m, T) with $(\Sigma, \mathcal{B}(\Sigma), m', \text{shift})$. Thus we may, and sometimes do, assume that $X = \Sigma$, T is the shift, and $\alpha = \{[s] : s \in S\}$.

For $n \geq 1$, there are *m*-nonsingular inverse branches of T denoted $v_a: T^n a \to a$ and with Radon Nikodym derivatives denoted

$$v_a' := \frac{dm \circ v_a}{dm}.$$

Let (X, \mathcal{B}, m, R) be a nonsingular transformation of a standard probability space. The *Frobenius-Perron* operators $P_{R^n} = P_{R^n,m} : L^1(m) \to L^1(m)$ are defined by

$$\int_X P_{R^n} f \cdot g dm = \int_X f \cdot g \circ R^n dm$$

and for the locally invertible $(X, \mathcal{B}, m, T, \alpha)$ (as above) have the form

$$P_{T^n}f = \sum_{a \in \alpha_0^{n-1}} 1_{T^n a} v_a' \cdot f \circ v_a.$$

¹⁹⁹¹ Mathematics Subject Classification. Primary: 28D05, 60B15; Secondary: 58F15, 58F19, 58F30.

[©]July 1999, revision 4/10/99

A locally invertible map $(X, \mathcal{B}, m, T, \alpha)$ has:

the Renyi property if $\exists C > 1$ such that $\forall n \geq 1, a \in \alpha_0^{n-1}, m(a) > 0$:

$$\left| \frac{v_a'(x)}{v_a'(y)} \right| \le C \text{ for } m \times m\text{-a.e. } (x,y) \in T^n a \times T^n a.$$

It is well known (a proof is recalled in [A-D-U]) that any topologically mixing probability preserving Markov map with the Renyi property is *exact* in the sense that $\bigcap_{n>1} T^{-n}\mathcal{B} = \{\emptyset, X\} \mod m$.

Examples include:

- topological Markov shifts equipped with Gibbs measures ([Bo],[Bo-Ru]) and
- uniformly expanding, piecewise onto C^2 interval maps $T:[0,1] \to [0,1]$ satisfying Adler's condition $\sup_{x \in [0,1]} \frac{|T''(x)|}{T'(x)^2} < \infty$ ([Ad]);

or, more generally,

• Gibbs-Markov maps as in [A-D1].

Now let $\phi: X \to \mathbb{R}^d$ be measurable and consider the skew product $T_{\phi}: X \times \mathbb{R}^d \to X \times \mathbb{R}^d$ defined by $T_{\phi}(x, y) := (Tx, y + \phi(x))$ with respect to the (invariant) product measure $m \times m_{\mathbb{R}^d}$ where $m_{\mathbb{R}^d}$ denotes Lebesgue measure.

We say that ϕ is aperiodic if $\gamma(\phi) = z\overline{h}h \circ T$ has no nontrivial solution in $\gamma \in \mathbb{R}^d$, $z \in S^1$ and $h: X \to S^1$ measurable. It is not hard to show that if T_{ϕ} is ergodic, and T is weakly mixing, then T_{ϕ} is weakly mixing iff ϕ is aperiodic.

We're interested in the exactness of T_{ϕ} .

We establish two (partial) results in this direction.

Theorem 1.

Suppose that $(X, \mathcal{B}, m, T, \alpha)$ is a probability preserving Markov map with the Renyi property. Let $N \geq 1$ and $\phi: X \to \mathbb{R}^d$ be α_0^{N-1} -measurable (i.e. $\phi(x) = \phi(\alpha_0^{N-1}(x))$) where $x \in \alpha_0^{N-1}(x) \in \alpha_0^{N-1}$).

If T_{ϕ} is topologically mixing, then T_{ϕ} is exact.

For the other result, we assume that $(X, \mathcal{B}, m, T, \alpha)$ is an exact probability preserving locally invertible map with the property that for some Banach space $(L, \|\cdot\|_L)$ of functions with $\|\cdot\|_2 \leq \|\cdot\|_L$, such that $P_T: L \to L$ and $\exists M > 0, \ \theta \in (0,1)$ such that

$$||P_{T^n}f - \int_X f dm||_L \le M\theta^n ||f||_L \ \forall \ f \in L.$$

This property can be obtained as a consequence of the quasi compactness of Doeblin-Fortet operators, see [D-F], [IT-M]).

Given $\phi: X \to \mathbb{R}^d$ measurable, we define the characteristic function operators $P_t(f) = P_T(e^{i\langle t, \phi \rangle} f)$ $(t \in \mathbb{R}^d)$.

We assume also that $P_t: L \to L$ $(t \in \mathbb{R}^d)$ and that $t \mapsto P_t$ is continuous $(\mathbb{R}^d \to \operatorname{Hom}(L, L))$.

It is shown in [Nag] (see also theorem 4.1 of [A-D1]) that

(i) there are constants $\epsilon>0,\ K>0$ and $\theta\in(0,1)$; and continuous functions $\lambda:B(0,\epsilon)\to B_{\mathbb{C}}(0,1),\ g:B(0,\epsilon)\to L$ such that

$$||P_t^n h - \lambda(t)^n g(t) \int_X h dm||_L \le K \theta^n ||h||_L \quad \forall |t| < \epsilon, \ n \ge 1, \ h \in L;$$
 and

(ii) in case ϕ is aperiodic, then $\forall 0 < \delta < M < \infty$, $\exists K > 0$, $0 < \rho < 1$ such that

$$||P_{\gamma}^{n}h||_{L} \le K\rho^{n} \quad \forall h \in L, n \ge 1, \delta \le |\gamma| \le M.$$

Examples include:

- (see [A-D1]), $(X, \mathcal{B}, m, T, \alpha)$ a Gibbs-Markov maps and $\phi: X \to \mathbb{R}^d$ uniformly Hölder continuous on partition sets. Here L is a space of Hölder continuous functions $f: X \to \mathbb{C}$.
- (see [Rou], [Ry]), X = [0,1], m Lebesgue measure, α a partition of $X \mod m$ into open intervals, and $T: a \to Ta$ an invertible, m-nonsingular homeomorphism for each $a \in \alpha$ with inf |T'| > 1 and $\frac{1}{T'}$ of bounded variation on X; and $\phi: X \to \mathbb{R}^d$ either: of bounded variation on X; or constant on each $a \in \alpha$.

Set
$$\phi_n = \phi + \phi \circ T + \dots + \phi \circ T^{n-1}$$
.

Theorem 2.

Suppose that

$$(\diamond) \qquad \forall \ \lambda > 1 \ \exists \ n_k \to \infty \ such \ that \ \frac{\phi_{n_k}}{\lambda^{n_k}} \to 0 \ a.e. \ as \ k \to \infty$$

and that ϕ is aperiodic;

then T_{ϕ} is exact.

Remarks.

- 1) Theorem 2 generalises the corresponding theorem on page 443 in [G].
- 2) The condition (\diamond) is satisfied if m-dist (ϕ) is in the domain of attraction of a stable law.
- 3) The condition (\diamond) is not satisfied iff $\exists \ \lambda > 1$ and $\epsilon > 0$ such that $m([|\phi_n| > \lambda^n]) \ge \epsilon \ \forall \ n \ge 1$ and there are independent processes like this.
 - §1 Frobenius-Perron operators, exactness and relative exactness

Let (X, \mathcal{B}, m, R) be a nonsingular transformation of a standard probability space. The *tail* σ -algebra of (X, \mathcal{B}, m, R) is $\mathcal{T}(R) := \bigcap_{n=1}^{\infty} R^{-n}\mathcal{B}$ and the nonsingular transformation R is called exact if $= \{\emptyset, X\} \mod m$.

Theorem 1.1 [D-L].

$$||P_{R^n}f||_1 \to ||E(f|\mathcal{T}(R))||_1 \text{ as } n \to \infty \ \forall \ f \in L^1(m).$$

In particular (see [L]), R is exact iff $||P_{R^n}f||_1 \to 0 \ \forall \ f \in L^1(m), \ \int_X f dm = 0$. Proof.

First note that $|P_T f| \leq P_T |f|$ whence $||P_{R^n} f||_1 \downarrow$ and $\exists \lim_{n \to \infty} ||P_{R^n} f||_1$. Next, $\forall n \geq 1 \exists g_n \in L^{\infty}(\mathcal{B})$ with $\int_X (P_{R^n} f) g_n dm = ||P_{R^n} f||_1$, whence

$$||P_{R^n}f||_1 = \int_X fg_n \circ R^n dm.$$

By weak * compactness, $\exists n_k \to \infty$ and $g \in L^{\infty}(\mathcal{B})$ such that $g_{n_k} \circ R^{n_k} \rightharpoonup g$ weak * in $L^{\infty}(\mathcal{B})$.

It follows that $g \in L^{\infty}(\mathcal{T}(R))$, $||g||_{\infty} \leq 1$ and $\lim_{n\to\infty} ||P_{R^n}f||_1 = \int_X fgdm$. Thus

$$\lim_{n \to \infty} \|P_{R^n} f\|_1 \le \sup \left\{ \int_X f h dm : h \in L^{\infty}(\mathcal{T}(R)), \|h\|_{\infty} \le 1 \right\} = \|E(f|\mathcal{T}(R))\|_1.$$

To show the converse inequality, note that $\exists g \in L^{\infty}(\mathcal{T}(R)), ||g||_{\infty} = 1$ such that

$$||E(f|\mathcal{T}(R))||_1 = \int_X E(f|\mathcal{T}(R))gdm = \int_X fgdm$$

whence $\forall n \geq 1, \exists g_n \in L^{\infty}(\mathcal{B}), g = g_n \circ R^n$ and

$$||E(f|\mathcal{T}(R))||_1 = \int_X fgdm = \int_X fg_n \circ R^n dm = \int_X (P_{R^n} f)g_n dm \le ||P_{R^n} f||_1.$$

Let (X, \mathcal{B}, m, R) and (Y, \mathcal{C}, μ, S) be nonsingular transformations of standard probability spaces. A factor map is a function $\pi: X \to Y$ satisfying $\pi^{-1}\mathcal{C} \subset$ $\mathcal{B}, \ \pi \circ T = S \circ \pi, \ m \circ \pi^{-1} = \mu.$

The fibre expectation of the factor map $\pi: X \to Y$ is an operator

$$f \mapsto E(f|\pi), \ L^1(X,\mathcal{B},m) \to L^1(Y,\mathcal{C},\mu)$$

defined by $\int_Y E(f|\pi)gd\mu = \int_X fg \circ \pi dm$. The factor map $\pi: X \to Y$ is called *relatively exact* if

$$f \in L^1(\mathcal{B}), \ E(f|\pi) = 0 \text{ a.e.} \implies \|P_{R^n} f\|_1 \to 0.$$

The corollary below appears in [G]. For the convenience of the reader, we supply a (possibly different) proof.

Proposition 1.2. Suppose that $\pi: X \to Y$ is relatively exact, then $\mathcal{T}(R) =$ $\pi^{-1}\mathcal{T}(S) \mod m$.

Proof.

Evidently, $\pi^{-1}\mathcal{T}(S) \subseteq \mathcal{T}(R)$. We show that $\pi^{-1}\mathcal{T}(S) \supseteq \mathcal{T}(R)$.

By relative exactness and theorem 1.1, if $f \in L^1(\mathcal{B})$ and $E(f|\pi) = 0$ a.e., then $\int_X fgdm = 0 \,\,\forall \,\, g \in L^{\infty}(\mathcal{T}(R)).$

Thus if $f \in L^2(\mathcal{B}) \oplus L^2(\pi^{-1}\mathcal{C})$, then $E(f|\pi) = 0$ a.e. and so

$$\int_X fgdm = 0 \,\,\forall \,\, g \in L^\infty(\mathcal{T}(R)), \,\, \Longrightarrow \,\, f \perp L^2(\mathcal{T}(R)).$$

Thus $L^2(\mathcal{B}) \oplus L^2(\pi^{-1}\mathcal{C}) \subset L^2(\mathcal{B}) \oplus L^2(\mathcal{T}(R))$ whence $L^2(\mathcal{T}(R)) \subset L^2(\pi^{-1}\mathcal{C})$ and $\mathcal{T}(R) \subset \pi^{-1}\mathcal{C} \mod m$.

To see that in fact $\mathcal{T}(R) \subseteq \pi^{-1}\mathcal{T}(S) \mod m$, fix $N \geq 1$, then

$$\mathcal{T}(R) = \bigcap_{n \ge 1} R^{-n} \mathcal{B} = \bigcap_{n \ge N+1} R^{-n} \mathcal{B}$$
$$= R^{-N} \mathcal{T}(R) \subset R^{-N} \pi^{-1} \mathcal{C} = \pi^{-1} S^{-N} \mathcal{C}.$$

Taking the intersection over N shows the claim.

Corollary 1.3 ([G], proposition 1).

If S is exact and $\pi: X \to Y$ is relatively exact, then T is exact.

§2 Proof of theorem 1

For a nonsingular transformation (X, \mathcal{B}, m, R) , define the *tail relation* of R:

$$\mathfrak{T}(R) := \{(x, y) \in X \times X : \exists n \ge 0, R^n x = R^n y\}.$$

Evidently $\mathfrak{T}(R)$ is an equivalence relation and if (X, \mathcal{B}, m) is standard, then $\mathfrak{T}(R) \in \mathcal{B}(X \times X)$.

If R is locally invertible, then $\mathfrak{T}(R)$ has countable equivalence classes and is nonsingular in the sense that $m(\mathfrak{T}(R)(A)) = 0 \, \forall \, A \in \mathcal{B}, \, m(A) = 0$ where $\mathfrak{T}(R)(A) := \{ y \in X : \, \exists \, x \in A \, (x,y) \in \mathfrak{T}(R) \}.$

A set $A \in \mathcal{B}(X)$ is *invariant* under the equivalence relation $\mathfrak{T} \in \mathcal{B}(X \times X)$ if $\mathfrak{T}(A) = A$ and the equivalence relation \mathfrak{T} is called *ergodic* if \mathfrak{T} -invariant sets have either zero, or full measure.

The collection of invariant sets under $\mathfrak{T}(R)$ is the tail σ -algebra $\mathcal{T}(R)$ (whence the name "tail relation").

In order to prove theorem 1, it suffices to show that $\mathfrak{T}(T_{\phi})$ is ergodic.

The tail relation of T_{ϕ} is given by

$$\mathfrak{T}(T_{\phi})$$

$$= \{ ((x,s),(y,t)) \in (X \times G)^2 : \exists n \ge 0, T^n x = T^n y, s - t = \phi_n(y) - \phi_n(x) \}$$

$$= \{ ((x,s),(y,t)) \in (X \times G)^2 : (x,y) \in \mathfrak{T}(T), \ \tilde{\phi}(x,y) = s - t \}$$

where $\tilde{\phi}: \mathfrak{T}(T) \to \mathbb{R}^d$ is defined by $\tilde{\phi}(x,y) := \sum_{n=0}^{\infty} (\phi(T^n y) - \phi(T^n x))$.

We prove that $\mathfrak{T}(T_{\phi})$ is ergodic by the method of Schmidt (explained in [S]), by showing that $\forall t \in \mathbb{R}^d$, U a neighbourhood of t and $A \in \mathcal{B}$ m(A) > 0, $\exists B \in \mathcal{B}$ $B \subset A$ and $\tau : B \to B$ nonsingular such that $(x, \tau(x)) \in \mathfrak{T}(T)$ and $\tilde{\phi}(x, \tau(x)) \in U \ \forall \ x \in B$.

This boils down to showing that

$$\forall A \in \mathcal{B}_+ \ g_0 \in \mathbb{R}^d \ \eta > 0, \ \exists \ B \in \mathcal{B}_+ \ B \subset A, \ n \ge 1$$

$$\text{and } \tau : B \to \tau B \subset A \text{ nonsingular such that}$$

$$(\ddagger) \qquad \qquad T^n \circ \tau \equiv T^n \text{ and } \|\phi_n \circ \tau - \phi_n - g_0\| < \eta \text{ on } B.$$

The proof of (\ddagger) will be written as a sequence of minor claims, $\P0, \P1, \ldots$

¶0 We first claim that there is no loss in generality in assuming that N=1 (i.e. that $\phi: X \to \mathbb{R}^d$ is α -measurable). This is because $(X, \mathcal{B}, m, T, \alpha_0^{N-1})$ is also a probability preserving Markov map with the Renyi property and inducing the same (shift) topology on X as $(X, \mathcal{B}, m, T, \alpha)$.

¶1
$$\forall s, t \in S, \exists \kappa = \kappa_{s,t} \ge 1 \text{ and } a = a_{s,t} = [a_1, \dots a_{\kappa}], b = b_{s,t} = [b_1, \dots b_{\kappa}] \in \alpha_0^{\kappa-1}, a_1 = b_1 = s \ a_{\kappa} = b_{\kappa} = t \text{ such that } \|\phi_{\kappa}(b) - \phi_{\kappa}(a) - g_0\| < \eta.$$

This follows from topological mixing of T_{ϕ} .

By the Renyi property, $\exists M > 1$ such that

$$M^{-1}m(u)m(v) \le m(u \cap T^{-k}v) \le Mm(u)m(v) \ \forall \ u \in \alpha_0^{k-1}, \ v \in \alpha_0^{\ell-1}, \ [v_1] \subset T[u_k].$$

Given $u = [u_1, \ldots, u_n] \in \alpha_0^{n-1}$ with $u_n = t$, define $\tau = \tau_u : u \cap T^{-n}a \to u \cap T^{-n}b$ by

$$\tau(u_1,\ldots,u_n,a_1,\ldots a_\kappa,y):=\tau(u_1,\ldots,u_n,b_1,\ldots b_\kappa,y).$$

 $\P2 \ \tau = \tau_u : u \cap T^{-n}a \to u \cap T^{-n}b$ is invertible nonsingular and $\frac{dmo\tau}{dm} = M^{\pm 4}\frac{m(b)}{m(a)}$. PROOF

$$\begin{split} \int_{u\cap T^{-n}a\cap c}\frac{dm\circ\tau}{d\,m}dm&=m(u\cap T^{-n}b\cap c)\\ &=M^{\pm2}\frac{m(b)}{m(a)}m(u)m(b)m(c)\\ &=M^{\pm4}\frac{m(b)}{m(a)}m(u\cap T^{-n}a\cap c). \end{split}$$

¶3 Proof of ‡

Fix $0 < \epsilon < M^{-1} \min \{ m(a_{s,t}), m(b_{s,t}) \}$, then

$$m(u \cap T^{-n}a_{s,t}), \ m(u \cap T^{-n}b_{s,t}) \ge \epsilon m(u) \ \forall \ u \in \alpha_0^{n-1}, \ [s] \subset T[u_n].$$

Let $\delta > 0$ be so small that $\delta < \frac{m(b)(\epsilon - \delta)}{M^4 m(a)}$.

 $\exists n \geq 1 \text{ and } u \in \alpha_0^{n-1} \text{ such that } m(A \cap u) \geq (1-\delta)m(u) \text{ and } [s] \subset T[u_n].$ Consider $\tau_u : u \cap T^{-n}a \to u \cap T^{-n}b$ as in $\P 2$. Evidently $T^{n+\kappa} \circ \tau \equiv T^{n+\kappa}$ and $\|\phi_{n+\kappa} \circ \tau - \phi_{n+\kappa} - g_0\| < \eta \text{ on } u \cap T^{-n}a.$

To complete the proof we claim that $\exists B \in \mathcal{B}_+ \ B \subset A \cap u \cap T^{-n}a$ such that $\tau B \subset A$.

To see this, note that

$$m(u \cap T^{-n}a \cap A) \ge m(u \cap T^{-n}a) - m(u \setminus A) \ge (\epsilon - \delta)m(u),$$

whence using $\P 2$,

$$m(\tau(u \cap T^{-n}a \cap A)) \ge \frac{m(b)}{M^4m(a)}m(u \cap T^{-n}a \cap A) \ge \frac{m(b)(\epsilon - \delta)}{M^4m(a)}m(u).$$

Since $\tau(u \cap T^{-n}a \cap A) \subset u$, the condition on $\delta > 0$ ensures that $m(\tau(u \cap T^{-n}a \cap A) \cap A) > 0$ whence m(B) > 0 where $B := \tau^{-1} \left(\tau(u \cap T^{-n}a \cap A) \cap A \right) \subset A$. \square

§3 Proof of theorem 2

We prove theorem 2 via corollary 1.3. To do this, we must consider T_{ϕ} as a nonsingular transformation with respect to some probability $P \sim m \times m_{\mathbb{R}^d}$.

Let $p: \mathbb{R}^d \to \mathbb{R}_+$ be continuous with $\int_{\mathbb{R}^d} p(y)dy = 1$ and define a probability P on $X \times \mathbb{R}^d$ by dP(x,y) := p(y)dm(x)dy; then $(X \times \mathbb{R}^d, \mathcal{B}(X \times \mathbb{R}^d), P, T_{\phi})$ is a nonsingular transformation with Frobenius-Perron operators given by

$$P_{T_{\phi}^{n},P}f(x,y) = \frac{1}{p(y)}P_{T_{\phi}^{n}}(f \cdot 1 \otimes p)(x,y)$$

where $P_{T_{\phi}^n} := P_{T_{\phi}^n, m \times m_{\mathbf{R}^d}}$.

Consider the map $\pi: X \times \mathbb{R}^d \to X$ defined by $\pi(x, y) = x$. This is a factor map as it satisfies $\pi^{-1}\mathcal{B}(X) \subset \mathcal{B}(X \times \mathbb{R}^d), \ \pi \circ T_{\phi} = T \circ \pi, \ P \circ \pi^{-1} = m$.

The fibre expectation of π is given by

$$E(f|\pi)(x) = \int_{\mathbb{R}^d} f(x,y)p(y)dy \quad (f \in L^1(X \times \mathbb{R}^d, \mathcal{B}(X \times \mathbb{R}^d), P)).$$

By corollary 1.3 and exactness of T, it suffices to show that π is relatively exact. To do this, we show that

$$\int_{\mathbb{R}^d} f(x,y)p(y)dy = 0 \text{ a.e. } \Longrightarrow$$

$$\int_{X \times \mathbb{R}^d} |P_{T_{\phi}^n,P}f|dP = \int_{X \times \mathbb{R}^d} |P_{T_{\phi}^n}(f \cdot 1 \otimes p)|d(m \times m_{\mathbb{R}^d}) \to 0$$

as $n \to \infty$; equivalently (taking F(x, y) := f(x, y)p(y)),

$$(\star) \qquad \int_{\mathbb{R}^d} F(x,y) dy = 0 \text{ a.e. } \Longrightarrow \int_{X \times \mathbb{R}^d} |P_{T_\phi^n} F| d(m \times m_{\mathbb{R}^d}) \to 0$$

as $n \to \infty$.

To prove (\star) , we first claim that ¶1 for $\lambda > 1$, $h \in L^1(m)$ and $f \in L^1(\mathbb{R}^d)$,

$$||P_{T_{\phi}^{n_k}}(h \otimes f)||_1 \le C\lambda^{\frac{n_k d}{2}} ||P_{T_{\phi}^{n_k}}(h \otimes f)||_2 + o(1)$$

as $k \to \infty$ where $C = 2^{\frac{d}{2}} m(B(0,1))$ and $\frac{\phi_{n_k}}{\lambda^{n_k}} \to 0$ a.e.. Proof As can be checked,

$$P_{T_{+}^{n}}(h \otimes f)(x,y) = P_{T^{n}}(h(\cdot)f(y - \phi_{n}(\cdot)))(x) \quad (h \in L^{1}(m), \ f \in L^{1}(\mathbb{R}^{d})).$$

Denoting $E(H) := \int_X H dm$ for $H \in L^1(m)$, we have

$$(2) ||P_{T_{\phi}^{n_k}}(h \otimes f)||_1 = \int_{\mathbb{R}^d} |E(P_{T_{n_k}}(h(\cdot)f(y - \phi_{n_k}(\cdot))))| dy \le \int_{|y| \le 2\lambda^{n_k}} + \int_{|y| > 2\lambda^{n_k}}.$$

By the Cauchy-Schwartz inequality,

(3)
$$\int_{|y| \le 2\lambda^{n_k}} \le \sqrt{m_{\mathbb{R}^d}(B(0, 2\lambda^{n_k}))} \|P_{T_{\phi}^{n_k}}(h \otimes f)\|_2 = C\lambda^{\frac{n_k d}{2}} \|P_{T_{\phi}^{n_k}}(h \otimes f)\|_2$$

whereas

$$\begin{split} & \int_{|y|>2\lambda^{n_k}} \leq \int_{|y|>2\lambda^{n_k}} |E(P_{T^{n_k}}(h(\cdot)f(y-\phi_{n_k}(\cdot))1_{[|\phi_{n_k}(\cdot))|\leq \lambda^{n_k}]})|dy \\ & + \int_{|y|>2\lambda^{n_k}} |E(P_{T^{n_k}}(h(\cdot)f(y-\phi_{n_k}(\cdot))1_{[|\phi_{n_k}(\cdot)|>\lambda^{n_k}]}))|dy = I + II. \end{split}$$

Here as $k \to \infty$:

(4)
$$II \leq ||f||_1 E(|h|1_{[|\phi_{n_k}(\cdot)| > \lambda^{n_k}]}) \to 0$$

since $\frac{\phi_{n_k}}{\lambda^{n_k}} \to 0$ a.e.; and

$$I \leq \int_{|y| > 2\lambda^{n_k}} E(|h||f(y - \phi_{n_k})|1_{[|\phi_{n_k}(\cdot)| \leq \lambda^{n_k}]})dy$$

$$= E\left(|h|1_{[|\phi_{n_k}| \leq \lambda^{n_k}]} \int_{|y| > 2\lambda^{n_k}} |f(y - \phi_{n_k})|dy\right)$$

$$\leq E(|h|) \int_{|y| > \lambda^{n_k}} |f(y)|dy \to 0,$$
(5)

Substituting (3),(4) and (5) into (2) proves $\P1$. \square

To complete the proof of (\star) , let $F \in L^1(m \times m_{\mathbb{R}^d})$ satisfy $\int_{\mathbb{R}^d} F(x,y) dy = 0$ for m-a.e. $x \in X$ and fix $\epsilon > 0$. We show that

$$\limsup_{n\to\infty} \int_{X\times\mathbb{R}^d} |P_{T_\phi^n} F| d(m\times m_{\mathbb{R}^d}) < \epsilon.$$

Standard approximation techniques show that $\forall \epsilon > 0, \exists N \in \mathbb{N}, h_1, \ldots, h_N \in L, g_1, \ldots, g_N \in L^1(\mathbb{R}^d)$ such that $\int_{\mathbb{R}^d} g_k(y) dy = 0 \ (1 \le k \le N)$ and

$$\left\|F - \sum_{k=1}^{N} h_k \otimes g_k\right\|_{L^1(m \times m_{\mathbb{R}^k})} < \frac{\epsilon}{2}.$$

Next, it follows from theorems 1.6.3 and 1.6.4 in [Rud] that $\exists f_1, \ldots, f_N \in L^1 \cap L^2$ such that

- $[\hat{f}_k \neq 0]$ is compact and bounded away from $0 \ (1 \leq k \leq N)$;
- $||f_k g_k||_{L^1(m_{\mathbb{R}^d})} < \frac{\epsilon}{2N||h_k||_{L^1(m)}}$ $(1 \le k \le N)$, whence

$$\left\| \sum_{k=1}^{N} h_k \otimes f_k - \sum_{k=1}^{N} h_k \otimes g_k \right\|_{L^1(m \times m_{\mathbb{R}^d})} \le \sum_{k=1}^{N} \|h_k\|_{L^1(m)} \cdot \|f_k - g_k\|_{L^1(\mathbb{R}^d)} < \frac{\epsilon}{2},$$

$$\left\|F - \sum_{k=1}^{N} h_k \otimes f_k\right\|_{L^1(m \times m_{\mathbb{R}^d})} < \epsilon$$

where $h \in L$ and $f \in L^1 \cap L^2$ is such that $[\hat{f} \neq 0]$ is compact and bounded away from 0.

We claim

¶2 If $h \in L$ and $f \in L^1 \cap L^2$ is such that $[\hat{f} \neq 0]$ is compact and bounded away from 0, then $\exists \ 0 < \rho < 1$ such that

(6)
$$||P_{T_{\phi}^n}(h \otimes f)||_2 = O(\rho^n) \text{ as } n \to \infty.$$

PROOF

Let $[\hat{f} \neq 0] \subset B(0, M) \setminus B(0, \delta)$. By (ii) (above), $\exists K > 0, 0 < \rho < 1$ such that $|P_{\sim}^n h(x)| < K\rho^n \ \forall x \in X, n > 1, \delta < |\gamma| < M$,

whence using the fact that the Fourier transform of $y\mapsto P^n_{T_\phi}(h\otimes f)(x,y)$ is $\gamma\mapsto \hat{f}(\gamma)P^n_\gamma h(x)$ and Plancherel's formula, we have

$$\begin{split} \|P_{T_{\phi}^{n}}(h \otimes f)\|_{2}^{2} &= \int_{X} \left(\int_{\mathbb{R}^{d}} |P_{T_{\phi}^{n}}(h \otimes f)(x,y)|^{2} dy \right) dm(x) \\ &= \int_{X} \left(\int_{\mathbb{R}^{d}} |\hat{f}(\gamma)|^{2} |P_{\gamma}^{n}h(x)|^{2} d\gamma \right) dm(x) \\ &= \int_{\mathbb{R}^{d}} |\hat{f}(\gamma)|^{2} \|P_{\gamma}^{n}h\|_{2}^{2} d\gamma \leq K^{2} \rho^{2n} \int_{\mathbb{R}^{d}} |\hat{f}(\gamma)|^{2} d\gamma \end{split}$$

proving $\P 2$. \square

To finish the proof of theorem 2, we claim

¶3 if (6) holds for $h \in L$ and $f \in L^1 \cap L^2$, then

$$||P_{T_{\phi}^n}(h\otimes f)||_1\to 0.$$

PROOF

Fix $\lambda > 1$ such that $\lambda^{\frac{d}{2}} \rho < 1$. Suppose that $\frac{\phi_{n_k}}{\lambda^{n_k}} \to 0$ a.e.. Using (6), we have by $\P 1$,

$$||P_{T_{\phi}^{n_k}}(h \otimes f)||_1 \le C\lambda^{\frac{n_k d}{2}} ||P_{T_{\phi}^{n_k}}(h \otimes f)||_2 + o(1) = O(\lambda^{\frac{n_k d}{2}} \rho^{n_k}) + o(1) \to 0$$

as $k \to \infty$; establishing (7) since $||P_{T_{\phi}^n}(h \otimes f)||_1 \downarrow$. \square

This completes the proof of theorem 2.

References

- [A] J. Aaronson, An introduction to infinite ergodic theory, Mathematical surveys and monographs 50, American Mathematical Society, Providence, R.I, U.S., 1997.
- [A-D1] J. Aaronson, M. Denker, Local limit theorems for Gibbs-Markov maps, Preprint (1996).
- [A-D-U] J. Aaronson, M. Denker, M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548.

- [Ad] R. Adler, F-expansions revisited, Recent advances in topological dynamics, Lecture Notes in Math., vol. 318, Springer, Berlin, Heidelberg, New York, 1973, pp. 1-5.
- [Bo] R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429-460.
- [Bo-Ru] R. Bowen, D. Ruelle, The ergodic theory of axiom A flows, Inventiones math. 29 (1975), 181-202.
- [D-L] Y. Derriennic, Y, M. Lin, Sur le comportement asymptotique des puissances de convolution d'une probabilité, Ann. Inst. H. Poincari Probab. Statist. 20 (1984), 127-132.
- [D-F] W. Doeblin, R. Fortet, Sur des chaines a liaison complètes, Bull. Soc. Math. de France 65 (1937), 132-148.
- [G] Y. Guivarc'h, Propriétés ergodiques, en mesure infinie, de certains systèmes dynamiques fibrés, Ergod. Th. and Dynam. Sys. 9 (1989), 433-453.
- [IT-M] Ionescu-Tulcea, G. Marinescu, Théorie ergodique pour des classes d'opérations non complèt-ement continues, Ann. Math. 47 (1950), 140-147.
- [L] M. Lin, Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19 (1971), 231-242.
- [Mor] T. Morita, Local limit theorems and density of periodic points for Lasota-Yorke transformations, J. Math.Soc. Japan 46 (309-343).
- [Nag] S.V. Nagaev, Some limit theorems for stationary Markov chains, Theor. Probab. Appl. 2 (1957), 378-406.
- [Rud] W. Rudin, Fourier analysis on groups, Wiley-Interscience, New York, 1962.
- [Rou] J. Rousseau-Egele, Un theorem de la limite locale pour une classe de transformations monotones et dilatantes par morceaux, Ann. Probab. 11 (1983), 722-788.
- [Ry] M. Rychlik, Bounded variation and invariant measures, Stud. Math. 76 (1983), 69-80.
- [S] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lect. Notes in Math. Vol. 1, Mac Millan Co. of India, 1977.

AARONSON: SCHOOL OF MATHEMATICAL SCIENCES, TEL AVIV UNIVERSITY, 69978 TEL AVIV, ISRAEL.

E-mail address: aaro@math.tau.ac.il

Denker: Institut für Mathematische Stochastik, Universität Göttingen, Lotzestr. 13, 37083 Göttingen, Germany

E-mail address: denker@math.uni-goettingen .de