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ON EXACT GROUP EXTENSIONS

JON AARONSON AND MANFRED DENKER

ABSTRACT. We give conditions for the exactness of R%-extensions.

§0 INTRODUCTION

A nonsingular transformation (X, B,m,T) of a standard probability space is
called a fibred system if there is a generating measurable partition a such that
T : a — Ta is invertible, nonsingular for @ € ¢, and a Markov map (or Markov
fibred system) if in addition, Ta € 6(a) mod m Va € a.

Write « = {a; : s € S} and endow SN with its canonical (Polish) product
topology. Let

Y = {s = (s1,82,...) € SN: m(ﬂ T %a,,)>0 Vn>1},
k=1

then ¥ is a closed, shift invariant subset of SN, and there is a measurable map
¢ : £ — X defined by {#(s1, 52,...)} = ey T~ *Va,,.

The closed support of the probability m’ = mo ¢~! is ¥, and ¢ is a conjugacy
of (X, B,m,T) with (2, B(X), m/, shift). Thus we may, and sometimes do, assume
that X = X, T is the shift, and o = {[s] : s € 5}.

For n > 1, there are m-nonsingular inverse branches of T' denoted
Vg : T"a — a and with Radon Nikodym derivatives denoted

' dm o v,
a

B dm

Let (X, B, m, R) be a nonsingular transformation of a standard probability space.
The Frobenius-Perron operators Pps = Pgn , : L1(m) — L'(m) are defined by

/ PRnf-gdm=f f-go R"dm
X X
and for the locally invertible (X, B, m, T, o) (as above) have the form

Prof = Z I7egvh - fou,.

n~—1
agag,
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2 JON AARONSON AND MANFRED DENKER

A locally invertible map (X, B, m, T, a) has:

the Renyi propertyif 3 C > 1suchthatVn>1, a€ a{)"l, m(a) > 0:
%é% £ C for m x m-a.e. (z,y) € T"a x T"a.

It is well known (a proof is recalled in [A-D-U]) that any topologically mixing
probability preserving Markov map with the Renyi property is exact in the sense
that (,,»; T "B ={0,X} modm.

Examples include:
¢ topological Markov shifts equipped with Gibbs measures ([Bo|,[Bo-Ru}) and
o uniformly expanding, piecewise onto C? interval maps T : [0, 1] — [0, 1] satisfying
Adler’s condition sup, ¢ 1] ';,’;;‘;)l < oo ([Ad]);

or, more generally,
¢ Gibbs-Markov maps as in [A-D1].

Now let ¢ : X — R? be measurable and consider the skew product Ty : Xx RY —
X xR? defined by Ty(z,y) := (Tx,y+ ¢(x)) with respect to the (invariant) product
measure m X Mg+ where mgs denotes Lebesgue measure.

We say that ¢ is aperiodic if Y(¢) = zhh o T has no nontrivial solution in vy €
R?, z € St and h: X — S" measurable. It is not hard to show that if T, is ergodic,
and T is weakly mixing, then T, is weakly mixing iff ¢ is aperiodic.

We're interested in the exactness of 1.

We establish two (partial) results in this direction.

Theorem 1.

Suppose that (X,B,m,T,a) is a probability preserving Markov map with the
Renyi property. Let N > 1 and ¢ : X — R® be aév"l-measumble (i.e. &(x) =
d(al "1 (z)) where z € ad z) € aév_l).

If Ty is topologically mizing, then Ty is ezact.

For the other result, we assume that (X,B,m,T,a) is an exact probability
preserving locally invertible map with the property that for some Banach space
(L, || - )|z) of functions with || - Jl2 < || - ||z, such that Pr: L — L and IM >0, # €
(0,1) such that

|Ppn f — ]X fdmllL < MO™\f||L VY f € L.

This property can be obtained as a consequence of the quasi compactness of Doeblin-
Fortet operators, see [D-F], [IT-M]).

Given ¢ : X — R? measurable, we define the characteristic function operators
Pi(f) = Pr(e*® f) (teR?).

We assume also that P, : L — L (¢t € R®) and that ¢ — P; is continuous
(R* — Hom (L, L).

It is shown in [Nag] (see also theorem 4.1 of [A-D1]) that

(7) there are constants ¢ > 0, K > 0 and @ € (0,1); and continuous functions
A: B(0,¢) — Bc(0,1), ¢g: B(0,¢) — L such that

|PPh— A(t)g(t) [y hdm|lL < K6™||R|l. V|t|<e, n>1, h€ L;
and
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(#) in case ¢ is aperiodic, then V0 < < M < 00, 3 K > 0, 0 < p < 1 such that
IP2hlL < K" YheL, n>1, §< |l < M.

Examples include:

o (see [A-D1)), (X,B,m,T,a) a Gibbs-Markov maps and ¢ : X — R uniformly
Holder continuous on partition sets. Here L is a space of Holder continuous func-
tions f: X — C.

e (see [Rou], [Ry]), X = [0,1], m Lebesgue measure, « a partition of X mod m
into open intervals, and T : @ — Ta an invertible, m-nonsingular homeomorphism
for each a € a with inf |7’| > 1 and =% of bounded variation on X; and ¢ : X — R¢
either: of bounded variation on X; or constant on each a € a.

Set pp =0+ doT +..+¢poTm L,

Theorem 2.
Suppose that

(o) VA>13nk—>oosuchthat¢ﬂ—rOa.e.ask—>oo
ATk

and that ¢ is aperiodic;
then Ty is exact.

Remarks.

1) Theorem 2 generalises the corresponding theorem on page 443 in [G].

2) The condition (o) is satisfied if m-dist (¢) is in the domain of attraction of a
stable law.

3) The condition (o) is not satisfied iff 3 A > 1 and € > 0 such that m([|¢.| >
A™]) > € ¥ n > 1 and there are independent processes like this.
§1 FROBENIUS-PERRON OPERATORS, EXACTNESS AND RELATIVE EXACTNESS

Let (X, B, m, R) be a nonsingular transformation of a standard probability space.
The tail o-algebra of (X,B,m,R) is T(R) := ()o; R~"B and the nonsingular
transformation R is called ezact if = {0, X} mod m.

Theorem 1.1 [D-L].
1Prs flly = IE(AIT(R)llL asn — 00 ¥ f € L (m).

In particular (see [L]), R is exact iff ||[Ppa f|l1 = OV f € L'(m), [, fdm =0.

Proof.
First note that | Prf| < Pr|f| whence ||Pg= f{|1 | and 3 lim, . || Pr~ f||1. Next,
Vn>13g, € L™(B) with [, (Pg~f)gndm = ||Pp~ f|1, whence

1Pan £ = / fgn o R™dm.
X

By weak % compactness, 3 n; — oo and g € L*(B) such that g,, o R** — g weak
* in L°°(B).
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It follows that g € L®(7(R)), liglle < 1 and lim,—o ||Prfll1 = [y fgdm.
Thus

Jim |Pre sl < sup{ [ fhdm: he L=(T(R), lIblos < 1} = IECIT(R)]:

To show the converse inequality, note that 3 ¢ € L*(7T(R)), |lgllc = 1 such
that

IEGIT(R) = f E(f|T(R))gdm = / fodm
X X
whence Vn > 1, 3 g, € L*=(B),g = g, o R* and

EGIT(R) = L fgdm = ]X fgn o Rhdm = fX (Pan f)gndm < | Pan f1.
O

Let (X,B,m,R) and (Y,C,u,S) be nonsingular transformations of standard
probability spaces. A factor map is a function 7 : X — Y satisfying #~1C C
B, roT=Som, mow~! = .

The fibre expectation of the factor map 7 : X — Y is an operator

f— E(f|r), Ll(Xa B,m) — LI(Y:C%.U')

defined by [, E(f|7)gdu = [y fgo ndm.
The factor map 7 : X — Y is called relatively exact if

feLY(B), E(fltry=0ae. = |Pg-fl1—0.
The corollary below appears in [G]. For the convenience of the reader, we supply
a {possibly different) proof.

Proposition 1.2. Suppose that m# : X — Y is relatively exact, then T(R) =
7 17(S) mod m.
Proof.

Evidently, 7~17(S) C T(R). We show that #=!17(S) D T(R).

By relative exactness and theorem 1.1, if f € LY(B) and E(f|r) = 0 a.e., then
fx fedm =0V g € L=(T(R)).

Thus if f € L2(B) © L*(x~1C), then E(f|7) = 0 a.e. and so

/X fgdm =0V g€ L°(T(R)), = f L LAT(R)).

Thus L?(B) & L*(n~1C) ¢ L*(B) & L*(T(R)) whence L%(T(R)) C L*(x~'C) and
T(R)C 7~ 1C mod m.
To see that in fact 7(R) C #~17(S) mod m, fix N > 1, then
T(R)=(JR™B= () R"B
n>1 n>N+1
=R NT(Ryc R"-¥r i =r"15"Nc.
Taking the intersection over NV shows the claim. O

Corollary 1.3 ([G], proposition 1).
If S is exact and 7 : X — Y is relatively exact, then T is exact.
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§2 PROOF OF THEOREM 1

For a nonsingular transformation (X, B, m, R}, define the tail relation of R:
T(R):={(z,y)eX xX: In>0, R"z = Ry}

Evidently T(R) is an equivalence relation and if (X, B, m) is standard, then
T(R) € B(X x X).

If R is locally invertible, then T(R) has countable equivalence classes and is
nonsingular in the sense that m(T(R)(4)) = 0V A € B, m(A) = 0 where
T(R)A)={yeX: F3z€ A(x,y) € T(R)}.

A set A € B(X) is invariant under the equivalence relation ¥ € B(X x X) if
T(A) = A and the equivalence relation ¥ is called ergodic if T-invariant sets have
either zero, or full measure.

The collection of invariant sets under T(R) is the tail o-algebra 7(R) (whence
the name ”tail relation”).

In order to prove theorem 1, it suffices to show that T(7},) is ergodic.

The tail relation of Ty is given by

TUTy)
={((z,8),(5,t) € (X xG)?2: 3n>0, Tz =T y, s—t=dn(y) — dn(x)}
= {((z,9), (1,1)) € (X x G)*: (z,y) € UT), d(z,y) =5t}

where ¢ : T(T) — R? is defined by ¢(z,y) := Yoo o(d(TTy) — $(TTx)).

We prove that T(T}) is ergodic by the method of Schmidt (explained in [S]), by
showing that V t € R?, U a neighbourhood of t and A € B m(A) >0,3BeBBC
A and 7 : B — B nonsingular such that (z, 7(z)) € T(T) and ¢(z,7(z)) e UV z €
B.

This boils down to showing that

VAeB, goeR*n>0,3BecB, BCA n>1
and 7 : B — 7B C A nonsingular such that
(1) T"or=T" and ||¢pp o T — ¢y, — gol| < n on B.

The proof of (f) will be written as a sequence of minor claims, 0,91, ... .
90 We first claim that there is no loss in generality in assuming that N = 1 (i.e.
that ¢ : X — R? is a-measurable). This is because (X, 8, m,T, af)v 1} is also a
probability preserving Markov map with the Renyi property and inducing the same
(shift) topology on X as (X,B,m,T,a).
1[1 Y 5,1 € S, dk = Ks,t > 1 and a = Qg = [al,...an], b= bs,t = [b],...bn] €
af~l, ay = by = s a, = b = t such that ||¢.(b) — du(a) — go|| < .

This follows from topological mixing of Ty.

By the Renyi property, 3 M > 1 such that

M~ 'm(u)m(v) < m(unT " v) < Mm(u)m(v) Yu € og~t, v € af™, [v1] C Tlux).
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Given u = {uy,...,un) € ag'l withu, =t,define r =7, : uNT "a - unT™"b
by
T(ULy e o vy Uny @1y e - Quy ) 2= T(Ug, ooy U,y by, . D, Y1)

92 r =7, :uNT""a —unNT~"b is invertible nonsingular and d:i“% = Mi‘*;”T(-(%.
PRrRoOF

j dmOTdm=m(uﬂT'“"bﬂc)
uNT~"anNc dm

a

93 PrROOF OF {
Fix 0 < ¢ < M~ Y min {m{a, ), m(bs.)}, then

m{uN T "as,), munNT "bs) > em(u) ¥V ue€ af™, [s] C Tlua]
Let 6 > 0 be so small that § < %ﬂ—)f:(;cs).
In>1andu € af ! such that m(Anu) > (1~ §)m(u) and [s] C T[u)-
Consider 7, : uNT"a — uNT"b as in 2. Evidently T"** o7 = T"** and

|ntx ©T = Sniw — goll <mOon unNT "a.
To complete the proof we claim that 3 B € By B C ANunNT "a such that

B C A.
To see this, note that

m{uNT "an A) > munT "a) —m(u\ A) > (e — §)m(u),
whence using §2,

m(b)

m(b){(e — 8)
M4m(a)

m(r(uNT"an 4)) > M*m(a)

m(uNnT "an A) > m{u).

Since 7(uNT~"aN A) C u, the condition on § > 0 ensures that m{r(u N T "a N
A}N A) > 0 whence m(B) > 0 where B := 1! (T(’U’. NT"anN A)N A) CA 0O

83 PROOF OF THEOREM 2

We prove theorem 2 via corollary 1.3. To do this, we must consider T as a
nonsingular transformation with respect to some probability P ~ m X mpa.

Let p : R — R, be continuous with JgeP(¥)dy = 1 and define a probability
P on X x R? by dP(z,y) := p(y)dm(z)dy; then (X x RY, B(X x R}, P,Ty) is a
nonsingular transformation with Frobenius-Perron operators given by
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Pry pH(z,) = 2o Pry(f 10 p)(a,1)

where PTg = PTg,mmed-

Consider the map 7 : X x RY — X defined by n(z,y) = z. This is a factor map
as it satisfies 77! B(X) C B(X xR?), 1o Ty =Tom, Por ! =m.

The fibre expectation of 7 is given by

E(fin)@) = [ f@u)pl)dy (f € LAX x BE B(X x RY), P).

By corollary 1.3 and exactness of T, it suffices to show that = is relatively exact.
To do this, we show that

5 Sz, y)(y)dy=0ae =

[ APrpenitp= [ (Pry(7-1@p)d0m x mae) -0
X xRe X xR4
as n — o0; equivalently (taking F(zx,y) := f(z, v)p(w)),

(%) / Fz,y)dy =0 ae. = | Pre Fld(m x mge) — 0
R4 XxRe °
as 1n — o0,

To prove (x), we first claim that
91 for A > 1, h € L}(m) and f € L(R?),

nyd
1Prze (h® f)lls < CAFNPros (R ® )2+ 0(1)

as k — oo where C = Z%m(B(O, 1)) and f—:f — 0 a.e..
PRrROOF As can be checked,

Pry(h@ f)(z,y) = Pra(A(-)f(y — ¢n(:))x) (R € L'(m), f e L'(RY)).
Denoting E(H) := [, Hdm for H € L*(m), we have

(2) I1Prre (b £l :/ﬁd |E(Pr (h(.)f(y—cbn,,(.))))ldys[lmnk +/I|>2m.

By the Cauchy-Schwartz inequality,

(3) f < V/mga(B(0, 2X0))|| Pros (h ® f)ll2 = CA™E || Ppo (h © £l
lyl<2ame ¢ ’

whereas
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/ < ] IE(PT” (h(')f(y_¢’nk('))1[|¢nk(.))1SAnk])|dy

|y[>2A™k fy|>2A"k

+ / IJZ":';‘(JPT"Ic (h()f(y - ¢nk('))1[|¢nk(.);>)."k]))|dy =I+1I
lyl>2Am%

Here as k — oo

(4) II < |IfI:E(R g, (1>rme)) — O

Pn

= — 0 a.e.; and

since
I< / E(RIF Y = $u)lion, (1<rme)dy
ly|>2am%

= E(|h|1[|¢nk|sxnk} f |F(y — ¢nk)|dy)
lyl>2Amk

(3) < E(|A]) |f(y}ldy — 0,
ly|>Ame
Substituting (3),(4) and (5) into (2) proves §1. 0O
To complete the proof of (x), let F' € L(m x mgq) satisfy [z, F(x,y)dy = 0 for
m-a.e. * € X and fix e > 0. We show that

(%¢) lim sup | Pr= Fld(m x mge) < €.
n—oo Jxxre ¢

Standard approximation techniques show that Ve >0, I N €N, hy,...,hy €
L, g1,.-.,9n € L}(R?) such that f,,gx(y)dy=0 (1 <k < N)and

N

: €

||F_ 2 :hk ® gk”Ll(mmek) < 5
k=1

Next, it follows from theorems 1.6.3 and 1.6.4 in [Rud] that
FfinfvE L' N L? such that

e [fix # 0] is compact and bounded away from 0 (1 < k < N);
and

° ”fk—ngLl(de) < Wlh:m (].SkS_N), whence

N N N

€

1> he® fe= > b ®9kI|L1(mmed) <Y lrklizromy - e = gell ey < %
k=1 k=1 k=1

N
|F— ;hk @ fk”LI(meRd) <¢€
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where h € L and f € L' n L? is such that [f # 0] is compact and bounded away
from 0.

We claim )
92 If h € L and f € L' n L? is such that [f # 0] is compact and bounded away
from 0, then 3 0 < p < 1 such that

(6) | Pry(h & )l = O(s™) a5 n— co.

PrOOF
Let [f # 0] € B(0, M)\ B(0,8). By (ii) (above), 3 K >0, 0 < p < 1 such that

PIh@) < Ko Vo eX, n21, 6 <yl <M,

whence using the fact that the Fourier transform of y — Pp, (h @ f)(z,y) is v —

~

f(7)P7h(z) and Plancherel’s formula, we have

1Prpbe 0 = [ ([ 1Prp(he o0y )ama)
= [ ([ yieoripsaa) ey Jam(a)
X R
= [ PPy < k2% [ 1fnPay
R R
proving 2. 0O

To finish the proof of theorem 2, we claim
43 if (6) holds for h € L and f € L' N L?, then

(7) |Pry (h® Dl — 0.
PROOF )

Fix A > 1 such that Az p < 1. Suppose that i—;‘f — 0 a.e.. Using (6), we have
by {1,

. d

n npd
|1 Pree (@ fll1 < CA+I|PT;k (A ® Pl + 0(1) = OAF p™) +o(1) — 0
as k — oo; establishing (7) since |[Prp(h® f)[1 . O

This completes the proof of theorem 2.

References
[A] J. Aaronson, An introduction to infinite ergodic theory, Mathematical surveys and
monographs 50, American Mathematical Society, Providence, R.1, U.5., 1997.
[A-D1] J. Aaronson, M. Denker, Local limit theorems for Gibbs-Markov maps, Preprint
(1996).
[A-D-U] J. Aaronson, M. Denker, M. Urbaiski, Ergodic theory for Markov fibred systems

and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548.



10

[Ad]
[Bo]
[Bo-Ru]

[D-1]

[D-F]
[G]
[IT-M]
L)
[Mor]
[Nag]

[Rud]
[Rou]

[Ry]

(5]

JON AARONSON AND MANFRED DENKER

R. Adler, F-expansions revisited, Recent advances in topological dynamics, Lecture
Notes in Math., vol. 318, Springer, Berlin, Heidelberg, New York, 1973, pp. 1-5.

R. Bowen, Symbolic dynaemics for hyperbolic flows, Amer. J. Math. 95 (1973), 429-
460.

R. Bowen, D. Ruelle, The ergodic theory of ariom A flows, Inventiones math. 29
(1975), 181-202.

Y. Derriennic, Y, M. Lin, Sur le comportement asymptotique des puissances de
convolution d'une probabilité, Ann. Inst. H. Poincari Probab. Statist. 20 {1984),
127-132.

W. Doeblin, R. Fortet, Sur des chaines a liaison complétes, Bull. Soc. Math. de
France 65 (1937), 132-148.

Y. Guivarc’h, Propriétés ergodigues, en mesure infinie, de certains systémes dy-
namigues fibrés, Ergod. Th. and Dynam. Sys. 9 (1989), 433-453.

Ionescu-Tulcea, G. Marinescu, Théorie ergodique pour des classes d’opérations non
complét-ement continues, Ann. Math. 47 (1950}, 140-147.

M. Lin, Mizing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Ge-
biete 19 (1971), 231-242.

T. Morita, Local limit theorems and density of periodic points for Lasota- Yorke
transformations, J. Math.Soc. Japan 46 (309-343).

5.V. Nagaev, Some limit theorems for stationary Markov chains, Theor. Probab.
Appl. 2 (1957), 378-406.

W. Rudin, Fourier analysis on groups, Wiley-Interscience, New York, 1962.

J. Rousseau-Egele, Un theorem de la limite locale pour une classe de transformations
monotones et dilatantes par morceaur, Ann. Probab. 11 (1983}, 722-788.

M. Rychlik, Bounded variation and inveriant mecsures, Stud. Math. 76 (1983),
69-80.

K. Schmidt, Cocycles of Ergodic Transformation Groups, Lect. Notes in Math. Vol.
1, Mac Millan Co. of India, 1977.

AARONSON: SCHOOL OF MATHEMATICAL SCIENCES, TEL Aviv UNIVERSITY, 69978 TEL Aviv,

ISRAEL.

E-mail address: aaro@math.tauw.ac.il

DENKER: INSTITUT FUR MATHEMATISCHE STOCHASTIK, UNIVERSITAT GOTTINGEN, LOTZE-
STR. 13, 37083 GOTTINGEN, GERMANY
E-mail address: denker@math.uni-goettingen .de



	047 report deel 1
	047 report deel 2.pdf

