Report 99-048
Group Extensions
of Gibbs-Markov Maps
Jon Aaronson
Manfred Denker
ISSN 1389-2355

GROUP EXTENSIONS OF GIBBS-MARKOV MAPS

JON AARONSON AND MANFRED DENKER

ABSTRACT. We show that aperiodic cocycles over an exact Gibbs-Markov map define exact extensions. Equivalent conditions for exactness are found.

§1 Introduction

Let $(X, \mathcal{B}, m, T, \alpha)$ be an exact probability preserving Markov map as in [A1]. We can and do assume that X is a topological Markov shift:

$$X = \{ x \in \alpha^{\mathbb{N}} : \ m(x_n \cap T^{-n} x_{n+1}) > 0 \ \forall \ n \ge 1 \}$$

endowed with the Polish topology inherited from the product topology on $\alpha^{\mathbb{N}}$.

Then T is locally invertible with respect to α in the sense that for each $n \geq 1$, $a \in \alpha_0^{n-1}$ the map $T^n : a \to T^n a$ is nonsingular and invertible. The inverse of this map is denoted $v_a : T^n a \to a$ and given by $v_a(x_1, x_2, \ldots) = (a, x_1, x_2, \ldots)$.

The partition α enables definition of a Hölder class of metrics $\{d_r: 0 < r < 1\}$ on X:

For $n \geq 1$, define $a_n : X \to \alpha_0^{n-1}$ by $x \in a_n(x) \in \alpha_0^{n-1}$.

For $x, y \in X$ define $t(x, y) := \min \{ n \ge 1 : a_n(x) \ne a_n(y) \} (\le \infty)$.

For $r \in (0,1)$ define $d_r: X \times X \to \mathbb{R}$ by $d_r(x,y) := r^{t(x,y)}$.

It is easily seen that the identity : $(X, d_r) \to (X, d_s)$ is Hölder continuous $\forall r, s \in (0, 1)$.

Accordingly, we define the Hölder constants of a function $h: X \to M$ with values in a metric space (M, ρ) by

$$D_{r,X}(h) := \sup_{x,y \in X} \frac{\rho(h(x), h(y))}{r^{t(x,y)}}.$$

Let $L_r(M) := \{h : X \to M : \sup_{a \in \alpha} D_{r,a}(h) < \infty \}$. In case $M = \mathbb{R}$ we simply write $L_r := L_r(M)$ instead.

Recall (see e.g. [A-D1]) that $(X, \mathcal{B}, m, T, \alpha)$ has

the Gibbs property if $\exists C > 1$, 0 < r < 1 such that $\forall n \ge 1$, $a \in \alpha_0^{n-1}$, m(a) > 0:

¹⁹⁹¹ Mathematics Subject Classification. Primary: 28D05, 60B15; Secondary: 58F15, 58F19, 58F30.

Research supported by Eurandom and the Deutsche Forschungsgemeinschaft, Schwerpunkt Ergodentheorie, Analysis und effiziente Simulation dynamischer Systeme. ©1999

$$\left|\frac{v_a'(x)}{v_a'(y)} - 1\right| \leq Cr^{t(x,y)} \text{ for } m \times m\text{-a.e. } (x,y) \in T^n a \times T^n a.$$
 It is called a Gibbs-Markov map if it has in addition the property

$$\inf_{a \in \alpha} m(Ta) > 0.$$

Recall that any topologically mixing probability preserving Markov map with the Gibbs property is exact (see for example [A-D-U]).

Now let G be a LCA, second countable group, let $\|\cdot\|$ be a Lipschitz norm on G (i.e. $\gamma: G \to S^1$ is $\|\cdot\|$ -Lipschitz for every $g \in \widehat{G}$), let $\phi: X \to G$ be measurable. Consider the skew product $T_{\phi}: X \times G \to X \times G$ defined by $T_{\phi}(x,y) := (Tx, y + \phi(x))$ with respect to the (invariant) product measure $m \times m_G$. We define $\phi_n = \phi + \phi \circ T + \ldots + \phi \circ T^{n-1}$.

We're interested in the exactness of T_{ϕ} and prove

Theorem.

Let G be a LCA, second countable group, let (X, \mathcal{B}, m, T) be an exact probability preserving Gibbs-Markov map and let $\phi: X \to G$ be uniformly Hölder continuous on states.

The following are equivalent:

- 1.) ϕ is aperiodic in the sense that $\gamma \circ \phi = \frac{zgT}{g}$ has no non-trivial solutions in $z \in S^1$ and $g: X \to S^1$ Hölder continuous.
- 2.) T_{ϕ} is weakly mixing.
- 3.) T_{ϕ} is exact.
- 4.) For some $A \in \mathcal{B}_+$ and $x \in A$, the smallest closed subgroup generated by

$$\left\{ t \in G: \exists k_n \to \infty \ y_n, z_n \in T^{-k_n} \{x\}, \left\{ \begin{array}{l} d_r(y_n, z_n) \to 0 \\ \phi_{k_n}(y_n) - \phi_{k_n}(z_n) \to t \end{array} \right. \right\}$$

is G.

5.) For every $x \in X$,

$$G = \left\{ t \in G : \exists k_n \to \infty \ y_n, z_n \in T^{-k_n} \{x\}, \left\{ \begin{array}{l} d_r(y_n, z_n) \to 0 \\ \phi_{k_n}(y_n) - \phi_{k_n}(z_n) \to t \end{array} \right\}.$$

Remarks: In case α is a finite Markov partition and m a Gibbs measure as in [Bo], Guivarc'h ([G]) has obtained exactness of the group extension with respect to Hölder-continuous cocycles. This applies to \mathbb{Z}^d -extensions of the geodesic flow on compact surfaces of constant negative curvature (among others). Let $\phi: X \to \mathbb{Z}^d$ (or \mathbb{R}^d) be aperiodic, locally Lipschitz and in the domain of attraction of a stable distribution of order 0 . Exactness follows from section 7 in [A-D1] in case <math>T is Gibbs-Markov. The assumptions on the cocycle and the dynamics in these results are rather strong. Weaker sufficient conditions can be found in [A-D2]: Let T be a Markov map with the Renyi property:

 $\exists C > 1 \text{ such that } \forall n \geq 1, \ a \in \alpha_0^{n-1}, \ m(a) > 0$:

 $\frac{v_a'(x)}{v_a'(y)} \leq C$ for $m \times m$ -a.e. $(x,y) \in T^n a \times T^n a$. For these maps it suffices to assume that the cocycle is locally constant (on cylinders in $(\alpha)_0^N$ for some $N \geq 0$).

For locally invertible, exact endomorphisms T with the Renyi property it suffices to assume a spectral representation à la Nagaev ([N]) for the Frobenius-Perron operator and at most exponentially increasing $\phi + ... + \phi \circ T^{n_k}$ (k = 1, 2, ...).

The proof of the theorem is given in the subsequent sections. The only non-trivial implications are 4.) \implies 3.) and 1.) \implies 5.). Our proofs certainly follows general concepts, like [L-R-W] and [F] for the first implication and [S] for the second. In particular the last section contains a ratio limit theorem of independent interest.

The Frobenius-Perron operator $\widehat{R}: L_1(m) \to L_1(m)$ of a nonsingular transformation (X, \mathcal{B}, m, R) is defined by

$$\int_X \widehat{R} f \cdot g dm = \int_X f \cdot g \circ T dm$$

where $f \in L_1(m)$ and $g \in L_{\infty}(m)$. For a Gibbs-Markov map T this operator has the form

$$\widehat{T}f = \sum_{a \in \alpha} 1_a(v_a) v_a' f(v_a),$$

and for the group extension T_{ϕ}

$$\widehat{T}_{\phi}^{n} f(x, g) = \widehat{T}^{n} [f(\cdot, g - \phi_{n}(\cdot))](x).$$

Fix some $r \in (0,1)$ and let β denote the coarsest partition such that $T\alpha \subset \sigma(\beta)$. We define the Banach space L of all L_{∞} functions $f: X \to \mathbb{R}$ with

$$D_{r,f} = \sup_{b \in \beta} D_{r,b}(f) < \infty.$$

We may assume that r is chosen so large that $D_{\phi}=D_{r,\phi}<\infty$. It is shown in [A-D1] that \widehat{T}^n $(n\geq 1)$ has a representation

$$\widehat{T}f(x) = \int f dm + O(\rho^n ||f||_L).$$
Proof of 4.) \Longrightarrow 3.).

It is sufficient to show relative exactness (see [G], [A-D2], i.e. that

$$\int_X \int_G \left| \hat{T}_\phi^n [\Psi \otimes \Gamma](x,g) \right| dg m(dx) o 0$$

for all $\Psi \in L_1(m)$ and $\Gamma \in L_1(G)$ satisfying $\int_G \Gamma dg = 0$. Moreover, we may and will reduce to those Ψ which are Lipschitz continuous and those Γ which are Lipschitz continuous and have compact support.

Let $\Psi \in L_1(m)$ and $\Gamma \in L_1(G)$. Then

$$\begin{split} &U_{n+1}(\Psi \otimes \Gamma) := \int_{X} \int_{G} \left| \hat{T}_{\phi}^{n+1}(\Psi \otimes \Gamma)(x,g) \right| dgm(dx) \\ &\leq \int_{X} \int_{G} \sum_{T(z)=x} \left| \hat{T}_{\phi}^{n} [\Psi \otimes \Gamma](z,g-\phi(z)) \right| p_{n}(x,z) dgm(dx) \\ &= \int_{G} \int_{X} \hat{T}[\left| \hat{T}_{\phi}^{n} [\Psi \otimes \Gamma](\cdot,g-\phi(\cdot)) \right|](x) m(dx) dg \\ &= \int_{G} \int_{X} \left| \hat{T}_{\phi}^{n} [\Psi \otimes \Gamma](x,g-\phi(x)) \right| dgm(dx) \\ &= \int_{X} \int_{G} \left| \hat{T}_{\phi}^{n} [\Psi \otimes \Gamma](x,g) \right| dgm(dx) = U_{n}(\Psi \otimes \Gamma). \end{split}$$

Therefore

(1)
$$U_n(\Psi \otimes \Gamma) \downarrow C(\Psi \otimes \Gamma) \geq 0,$$

and it is left to show that $\int_G \Gamma dg = 0 \Longrightarrow C(\Psi \otimes \Gamma) = 0$.

Definition: A sequence of signed measures $\{\mu_n : n \geq 1\}$ on G is called *completely mixing* if for every $\Gamma \in L_1(G)$ with integral $\int_G \Gamma(g) dg = 0$ we have

$$\|\mu_n \star \Gamma\|_{L_1(G)} \to 0.$$

We define the operators $M_t: L_1(G) \to L_1(G)$ by $M_tF(g) = F(g+t)$. Let $\Psi \in L_1(X)$ and let the measures $\{\mu_{n,x}: n \geq 1\}$ on G be defined by

$$\mu_{n,x} = \sum_{T^n(z)=x} \Psi(z) p_n(x,z) \delta_{\phi_n(z)}.$$

We'll show that the measures $\{\mu_{n,x} : n \geq 1\}$ are completely mixing in measure.

Note that $\|\mu_{n,x} \star F\|_{L_1(G)} \leq \widehat{T}^n |\Psi|(x) \|F\|_{L_1(G)}$. Therefore $t \mapsto \|\mu_{n,x} \star M_t F\|_{L_1(G)}$ is Lipschitz continuous with Lipschitz constant $\widehat{T}^n |\Psi|(x) \|F - M_t F\|_{L_1(G)}$.

Proposition 1: For every $\Gamma \in L_1(G)$ the random sequence

$$\|\mu_{n,\cdot}\star\Gamma\|_{L_1(G)}$$

converges in $L_1(m)$ to $C(\Psi \otimes \Gamma)$. In addition,

$$C(\Psi \otimes \Gamma) \leq \|\Psi\|_{L_1(m)} \|\Gamma\|_{L_1(G)}.$$

Proof. Since $\hat{T}_{\phi}^n F(x,g) = \hat{T}^n F(\cdot,g-\phi_n(\cdot))(x)$, it suffices to show the theorem for a subclass which generates a dense subspace in $L_1(X\times G)$. Here we take the class of all functions $\Psi\otimes\Gamma$ where Ψ belongs to the space L and Γ is an integrable and Lipschitz continuous function on G.

It also follows from the above that

$$\mu_{n+1,x} \star \Gamma(g) = \int_{G} \Gamma(g-h)\mu_{n+1,x}(dh) = \sum_{T^{n+1}(z)=x} \Psi(z)p_{n+1}(x,z)\Gamma(g-\phi_{n+1}(z))$$
$$= \sum_{T(z)=x} p(x,z)\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](z,g-\phi(z))$$

whence as before,

$$\begin{aligned} &\|\mu_{n+1,x} \star \Gamma\|_{L_1(G)} \\ &\leq \int_G \sum_{T(z)=x} p(x,z) \left| \hat{T}_{\phi}^n [\Psi \otimes \Gamma](z,g-\phi(z)) \right| dg \\ &= \sum_{T(z)=x} p(z,x) \int_G \left| \hat{T}_{\phi}^n [\Psi \otimes \Gamma](z,g) \right| dg \\ &= \hat{T} \left[\|\mu_{n,\cdot} \star \Gamma\|_{L_1(G)} \right] (x). \end{aligned}$$

By induction it is easily seen that for n fixed and $k \geq 1$

$$\|\mu_{n+k,x} \star \Gamma\|_{L_1(G)} \le \hat{T}^k \left[\|\mu_{n,\cdot} \star \Gamma\|_{L_1(G)} \right] (x).$$

Since the function

$$x \to \|\mu_{n,x} \star \Gamma\|_{L_1(G)}$$

is of class L it follows that for $k \to \infty$

$$\hat{T}^{k}\left[\|\mu_{n,\cdot}\star\Gamma\|_{L_{1}(G)}\right]\to\int_{X}\|\mu_{n,x}\star\Gamma\|_{L_{1}(G)}m(dx)\downarrow C(\Psi\otimes\Gamma),$$

whence

(2)
$$\limsup_{n \to \infty} \|\mu_{n,x} \star \Gamma\|_{L_1(G)} \le C(\Psi \otimes \Gamma).$$

By (1) and (2), given $\epsilon > 0$, we can choose n_0 so large that for $n \geq n_0$

$$\int_{\{x:\|\mu_{n,x}\star\Gamma\|_{L_1(G)}-C(\Psi\otimes\Gamma)>0\}} \left[\|\mu_{n,x}\star\Gamma\|_{L_1(G)}-C(\Psi\otimes\Gamma)\right]m(dx) \leq \epsilon^2.$$

Using (1) once again,

$$m\{x: \|\mu_{n,x} \star \Gamma\|_{L_{1}(G)} \leq C(\Psi \otimes \Gamma) - \epsilon\}$$

$$\leq \frac{1}{\epsilon} \int_{\{x:C(\Psi \otimes \Gamma) - \|\mu_{n,x} \star \Gamma\|_{L_{1}(G)} \geq \epsilon\}} \left[C(\Psi \otimes \Gamma) - \|\mu_{n,x} \star \Gamma\|_{L_{1}(G)} \right] m(dx)$$

$$= \frac{1}{\epsilon} \left(C(\Psi \otimes \Gamma) - \int_{X} \|\mu_{n,x} \star \Gamma\|_{L_{1}(G)} m(dx) \right)$$

$$- \frac{1}{\epsilon} \int_{\{x:C(\Psi \otimes \Gamma) - \|\mu_{n,x} \star \Gamma\|_{L_{1}(G)} < \epsilon\}} \left[C(\Psi \otimes \Gamma) - \|\mu_{n,x} \star \Gamma\|_{L_{1}(G)} \right] m(dx)$$

$$\leq \frac{1}{\epsilon} \int_{\{x:\|\mu_{n,x} \star \Gamma\|_{L_{1}(G)} - C(\Psi \otimes \Gamma) > 0\}} \left[\|\mu_{n,x} \star \Gamma\|_{L_{1}(G)} - C(\Psi \otimes \Gamma) \right] m(dx) < \epsilon.$$

The proposition follows easily. The additional claim follows from

$$C(\Psi \otimes \Gamma) \leftarrow \|\mu_{n,x} \star \Gamma\|_{L_1(G)} \leq \widehat{T}^n |\Psi|(x) \|\Gamma\|_{L_1(G)} \to \|\Psi\|_{L_1(m)} \|\Gamma\|_{L_1(G)}.$$

In order to show the theorem it is left to prove the following

Lemma 2: If $\int_X \int_G \Psi(x) \Gamma(g) dg m(dx) = 0$, then

$$C(\Psi \otimes \Gamma) = 0.$$

Proof. The proof of this statement follows from a series of facts: Define the measures $\nu_{n,x} = \sum_{T^n(z)=x} p_n(x,z)\delta_z$ on X.

Claim 1: Let $k \geq 0$ be fixed. We first claim that for any subsequence $\{n_l : l \in \mathbb{N}\} \subset \mathbb{N}$ there exists a further subsequence $\{m_j : j \geq 1\}$ such that for a.e. $x \in X$ and for every $B \in \mathcal{B}$

(3)
$$\lim_{j \to \infty} \frac{1}{\nu_{k,x}(B)} \int_{G} \left| \int_{B} \left(\mu_{m_{j},y} \star M_{\phi_{k}(y)} \Gamma \right) (g) \nu_{k,x}(dy) \right| dg = C(\Psi \otimes \Gamma).$$

In order to see this claim, let n_l be any subsequence and choose m_i so that

for $x \in \Omega$ where Ω is a T-invariant set of full measure. On the one hand it follows from this that for every B fixed

(5)
$$\frac{1}{\nu_{k,x}(B)} \int_{G} \left| \int_{B} \mu_{m_{j},y} \star M_{\phi_{k}(y)} \Gamma \nu_{k,x}(dy) \right| dg$$

$$\leq \frac{1}{\nu_{k,x}(B)} \int_{B} \|\mu_{m_{j},y} \star \Gamma\|_{L_{1}(G)} \nu_{k,x}(dy) \to C(\Psi \otimes \Gamma),$$

because the integrand is uniformly bounded and pointwise convergent by (4). On the other hand, for $x \in \Omega$,

$$C(\Psi \otimes \Gamma) = \lim_{j \to \infty} \|\mu_{m_j + k, x} \star \Gamma\|_{L_1(G)}$$

$$= \lim_{j \to \infty} \int_G \left| \sum_{T^k(y) = x} p_k(x, y) \hat{T}_{\phi}^{m_j} [\Psi \otimes \Gamma](y, g - \phi_k(y)) \right| dg$$

$$\leq \lim_{j \to \infty} \int_G \left| \int_B \mu_{m_j, y} \star M_{\phi_k(y)} \Gamma(g) \nu_{k, x}(dy) \right| + \left| \int_{B^c} \mu_{m_j, y} \star M_{\phi_k(y)} \Gamma(g) \nu_{k, x}(dy) \right| dg$$

$$\leq C(\Psi \otimes \Gamma)$$

by (5), hence for $x \in \Omega$

$$\lim_{j \to \infty} \frac{1}{\nu_{k,x}(B)} \int_G \left| \int_B \mu_{m_j,y} \star M_{\phi_k(y)} \Gamma \nu_{k,x}(dy) \right| dg = C(\Psi \otimes \Gamma),$$

proving claim 1.

Claim 2: For any subsequence $\{n_l : l \in \mathbb{N}\} \subset \mathbb{N}$ there exists a further subsequence $\{m_j : j \geq 1\}$ such that for a.e. $x \in X$ every disjoint sets $A, B \in \mathcal{B}$

(6)
$$\lim_{j \to \infty} \int_{G} \left| \frac{1}{\nu_{k,x}(A)} \int_{A} \mu_{m_{j},y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k,x}(dy) \right| dg = 2C(\Psi \otimes \Gamma)$$

Choose the subsequence and Ω as in (4). Then for $x \in \Omega$ by (3)

$$\int_{G} \left| \frac{1}{\nu_{k,x}(A)} \int_{A} \mu_{m_{j},y} \star M_{\phi_{k}(y)} \Gamma \nu_{k,x}(dy) + \frac{1}{\nu_{k,x}(B)} \int_{B} \mu_{m_{j},y} \star M_{\phi_{k}(y)} \Gamma \nu_{k,x}(dy) \right| dg$$

$$\leq \frac{1}{\nu_{k,x}(A)} \int_{G} \left| \int_{A} \mu_{m_{j},y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k,x}(dy) \right| dg$$

$$+ \frac{1}{\nu_{k,x}(B)} \int_{G} \left| \int_{B} \mu_{m_{j},y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k,x}(dy) \right| dg$$

$$(7) \qquad \to 2C(\Psi \otimes \Gamma)$$

and, since $A \cap B = \emptyset$ (and w.l.o.g. assume that $\nu_{k,x}(A) \leq \nu_{k,x}(B)$),

$$\frac{1}{\nu_{k,x}(A)} \int_{G} \left| \int_{A} \mu_{m_{j},y} \star M_{\phi_{k}(y)} \Gamma \nu_{k,x}(dy) + \frac{\nu_{k,x}(A)}{\nu_{k,x}(B)} \int_{B} \mu_{m_{j},y} \star M_{\phi_{k}(y)} \Gamma \nu_{k,x}(dy) \right| dg$$

$$\geq \frac{1}{\nu_{k,x}(A)} \left(\int_{G} \left| \int_{A \cup B} \mu_{m_{j},y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k,x}(dy) \right| dg$$

$$- \left(1 - \frac{\nu_{k,x}(A)}{\nu_{k,x}(B)} \right) \int_{G} \left| \int_{B} \mu_{m_{j},y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k,x}(dy) \right| dg \right)$$

$$\Rightarrow 2C(\Psi \otimes \Gamma).$$
(8)

Claim 2 follows from (7) and (8).

Claim 3: Let $A, B \in \alpha_0^{k-1}$ be images of inverse branches v_A and v_B of T^k , where k is still fixed. Let $\epsilon = d(A, B)$ and let Γ be Lipschitz continuous with compact support K. Then for every $n \geq 1$

$$\int_{G} \left| \mu_{n,v_{A}(x)} \star M_{\phi_{k}(v_{A}(x))} \Gamma - \mu_{n,v_{B}(x)} \star M_{\phi_{k}(v_{A}(x))} \Gamma \right| dg$$

$$\leq C_{1} \|\Gamma\|_{L_{1}(G)} \epsilon + D_{\Gamma} C_{0} D_{\phi} |B(K, C_{0} D_{\phi} \epsilon)| \epsilon,$$

where $|\cdot|$ denotes Haar measure on G.

Let $x \in X$, $v = v_A(x)$ and $w = v_B(x)$. By the Lipschitz property of ϕ by the expanding property of T, we have for any inverse branch $v_a : A \cup B \to a \in (\alpha)_0^{n-1}$ of T^n that

$$|\phi_n(v_a(v)) - \phi_n(v_a(w))| \le D_{\phi} \sum_{l=0}^{n-1} d(T^l(v_a(v)), T^l(v_a(w)))$$

$$\le C_0 D_{\phi} d(v, w) \le C_0 D_{\phi} \epsilon.$$

Since Γ has compact support

$$\|\Gamma(g) - \Gamma(g + \phi_n(v_a(v)) - \phi_n(v_a(w)))\| \le D_\Gamma C_0 D_\phi \epsilon 1_{B(K, C_0 D_\phi \epsilon)}(g).$$

Similarly, there exists a constant C_1 (also depending on the Lipschitz constant of Ψ) so that

$$|p_n(v, v_a(v))\Psi(v_a(v)) - p_n(w, v_a(w))\Psi(v_a(w))| \le C_1 p_n(v, v_a(v)) d(v, w).$$

Therefore

$$\begin{split} &\int_{G} \left| \mu_{n,v_{A}(x)} \star M_{\phi_{k}(v_{A}(x))} \Gamma(g) - \mu_{n,v_{B}(x)} \star M_{\phi_{k}(v_{A}(x))} \Gamma(g) \right| dg \\ &= \int_{G} \left| \sum_{a} p_{n}(v, v_{a}(v)) \Psi(v_{a}(v)) \Gamma(g - \phi_{k}(v) - \phi_{n}(v_{a}(v))) \right| \\ &- \sum_{a} p_{n}(w, v_{a}(w)) \Psi(v_{a}(w)) \Gamma(g - \phi_{k}(v) - \phi_{n}(v_{a}(w))) \right| dg \\ &\leq \int_{G} \left| \sum_{a} \left[p_{n}(v, v_{a}(v)) \Psi(v_{a}(v)) - p_{n}(w, v_{a}(w)) \Psi(v_{a}(w)) \right] \right. \\ &\left. \Gamma(g - \phi_{k}(v) - \phi_{n}(v_{a}(v))) \right| dg \\ &+ \int_{G} \left| \sum_{a} p_{n}(w, v_{a}(w)) \Psi(v_{a}(w)) \right. \\ &\left. \left[\Gamma(g - \phi_{k}(v) - \phi_{n}(v_{a}(v))) - \Gamma(g - \phi_{k}(v) - \phi_{n}(v_{a}(w))) \right] \right| dg \\ &\leq \left. \left(C_{1} \|\Gamma\|_{L_{1}(G)} + D_{\Gamma}C_{0}D_{\phi}|B(K, C_{0}D_{\phi}\epsilon)| \right) \|\hat{T}^{n}1\|_{\infty}\epsilon, \end{split}$$

where \sum_a extends over all $a \in (\alpha)_0^{n-1} : T^n a \supset A \cup B$.

Claim 4: There exists a set Ω of measure 1 and a constant C > 0 with the following property:

If $x \in \Omega$, $k \ge 1$ and $v, w \in T^{-k}(\{x\})$ then

(9)
$$\left| 2C(\Psi \otimes \Gamma) - C(\Psi \otimes (I + M_{\phi_k(v) - \phi_k(w)})\Gamma) \right| < Cd(v, w).$$

By claims 1-3 there exists a subsequence $\{m_j : j \geq 1\} \subset \mathbb{N}$ and a subset Ω so that (3), (6) and (9) hold for any $x \in \Omega$, $k \geq 1$ and $v, w \in T^{-k}(\{x\})$. Therefore

$$\begin{split} &\int_{G} \left| \frac{1}{\nu_{k,x}(\{v\})} \int_{\{v\}} \mu_{m_{j},y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k,x}(dy) \right. \\ &+ \left. \frac{1}{\nu_{k,x}(\{w\})} \int_{\{w\}} \mu_{m_{j},y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k,x}(dy) \right| dg \\ &= \int_{G} \left| \mu_{m_{j},v} \star M_{\phi_{k}(v)} \Gamma(g) + \mu_{m_{j},w} \star M_{\phi_{k}(w)} \Gamma(g) \right| dg \\ &\leq \int_{G} \left| \mu_{m_{j},v} \star M_{\phi_{k}(v)} \Gamma(g) - \mu_{m_{j},w} \star M_{\phi_{k}(v)} \Gamma(g) \right| dg \\ &+ \int_{G} \left| \mu_{m_{j},w} \star M_{\phi_{k}(w)} \Gamma(g) + \mu_{m_{j},w} \star M_{\phi_{k}(v)} \Gamma(g) \right| dg \\ &\leq \int_{G} \left| \mu_{m_{j},w} \star M_{\phi_{k}(w)} \Gamma(g) + \mu_{m_{j},w} \star M_{\phi_{k}(v)} \Gamma(g) \right| dg \\ &\leq \int_{G} \left| \mu_{m_{j},w} \star (I + M_{\phi_{k}(v) - \phi_{k}(w)}) \Gamma(g) \right| dg + Cd(v,w), \end{split}$$

where $C = C_1 \|\Gamma\|_{L_1(G)} + D_{\Gamma} C_0 D_{\phi} |B(K, C_0 D_{\phi})$. The lower bound is shown in the same way, proving claim 4.

Claim 5: Let $\Psi \in L$ and $\Gamma \in L_1(G)$. Then

$$C(\Psi \otimes (\Gamma - M_t \Gamma)) = 0.$$

First observe that the set of $t \in G$ satisfying the claim is a group. In fact, the claim holds for the identity in G, and by proposition 1

$$\begin{split} &C(\Psi \otimes (I-M_{t+s})\Gamma) \\ &= \lim_{n \to \infty} \int_X \int_G \left| \int_G (I-M_{t+s})\Gamma(g-h)\mu_{n,x}(dh) \right| dgm(dx) \\ &\leq \lim_{n \to \infty} \int_X \int_G \left| \int_G (I-M_t)\Gamma(g-h)\mu_{n,x}(dh) \right| dgm(dx) \\ &+ \lim_{n \to \infty} \int_X \int_G \left| \int_G (I-M_t)M_s\Gamma(g-h)\mu_{n,x}(dh) \right| dgm(dx) \\ &= 0. \end{split}$$

Hence it suffices to prove the claim for t in a generating set G_0 . Moreover, it suffices to prove the claim for Γ Lipschitz continuous with compact support, since $C(\Psi \otimes \Gamma)$ is $L_1(G)$ -norm continuous.

By assumption, and by claim 4 there is a measurable set $\Omega \in \mathcal{B}$ of full measure, a constant C > 0 and a subset $G_0 \subset G$ generating G such that for all $x \in \Omega$ and $v, w \in T^{-k}(x)$

$$(9) = \left| 2C(\Psi \otimes \Gamma) - C(\Psi \otimes (I + M_{\phi_k(v) - \phi_k(w)})\Gamma) \right| < Cd(v, w),$$

(10)
$$\forall t \in G_0 \ \exists x_n \in \Omega, k_n \ge 1, v_n, w_n \in T^{-k_n}(x_n) \\ \ni \phi_{k_n}(v_n) - \phi_{k_n}(w_n) \to t \ \& \ d(v_n, w_n) \to 0.$$

Since $t \to C(\Psi \otimes M_t \Gamma)$ is continuous, it follows from these properties that

$$2C(\Psi \otimes \Gamma) = C(\Psi \otimes (I + M_t)\Gamma) \quad (t \in G_0).$$

Because of continuity, this equation holds for any $\Gamma \in L_1(G)$. Hence, replacing Γ by $(I - M_t)\Gamma$ and repeating this argument for each $(I + M_t)^k (I - M_t)\Gamma$, $k \geq 0$, we obtain

$$C(\Psi \otimes (I - M_t)\Gamma) = 2^{-k}C(\Psi \otimes (I + M_t)^k(I - M_t)\Gamma)$$

for every $k \geq 0$ and $t \in G_0$.

It suffices to show the claim for $\Gamma \geq 0$. For even k

$$C(\Psi \otimes \left(\frac{I+M_{t}}{2}\right)^{k} (I-M_{t})\Gamma)$$

$$\leq \int_{X} |\Psi| dm \int_{G} \left| \left(\frac{I+M_{t}}{2}\right)^{k} (I-M_{t})\Gamma(g) \right| dg$$

$$= \|\Psi\|_{L_{1}(X)} \int_{G} 2^{-k} \left| I-M_{t}^{k+1} + \sum_{j=1}^{k} \left(\binom{k}{j} - \binom{k}{j-1}\right) M_{t}^{j} \right| \Gamma(g) dg$$

$$\leq 2^{-k} \|\Psi\|_{L_{1}(X)} \int_{G} \left(I+M_{t}^{k+1} + \sum_{j=1}^{k/2} \left(\binom{k}{j} - \binom{k}{j-1}\right) M_{t}^{j}$$

$$+ \sum_{j=k/2+1}^{k} \left(\binom{k}{j-1} - \binom{k}{j}\right) M_{t}^{j} \right) \Gamma(g) dg$$

$$\leq 2^{-k+1} \|\Psi\|_{L_{1}(X)} \|\Gamma\|_{L_{1}(G)} \left(1+\binom{k}{k/2}\right).$$

Claim 6:

$$\int_G \Gamma(g) dg = 0 \Longrightarrow C(\Psi \otimes \Gamma) = 0.$$

This fact is well known from standard arguments of ergodic transformations: Indeed, as it is well known,

$$\overline{\bigcup_{t \in G} (I - M_t) L_1(G)} = \{ f \in L_1(G) : \int f(g) dg = 0 \}.$$

Proof of 1.)
$$\Longrightarrow$$
 5.)

Ratio limit theorem for symmetric cocycles.

Suppose that $\phi: X \to G$ is Hölder continuous, aperiodic and symmetric in the sense that there exists a probability preserving transformation $S: X \to X$ such that ST = TS and $\phi \circ S = -\phi$, then there exists $u_n > 0$ such that

$$\frac{P_{T^n_{\phi}}(h\otimes f)(x,y)}{u_n}\to \int_{X\times G}h\otimes f\ \forall\ h\in L,\ f\in C_c(G),\ x\in X,\ y\in G.$$

Proof.

First let (as in[A-D1]) $P_{\gamma}: L \to L \quad (\gamma \in \widehat{G})$ be defined by

$$P_{\gamma}h:=P_{T}(\gamma\circ\phi\cdot h).$$

As shown in [A-D1], $\gamma \mapsto P_{\gamma}$ is continuous $(\widehat{G} \to \operatorname{Hom}(L, L))$, and $\exists \ \epsilon > 0, \ 0 \le \theta < 1$ and continuous functions

$$\lambda: B_{\widehat{G}}(0,\epsilon) \to B_{\mathbb{C}}(0,1), \ g: B_{\widehat{G}}(0,\epsilon) \to L$$

continuous, such that $\lambda(0) = 1$, $g(0) \equiv 1$, $\int_X g(\gamma)dm \equiv 1$,

$$|\lambda(\gamma)| \leq 1$$
 with equality iff $\gamma = 0$,

$$P_{\gamma}h = \lambda h \implies |\lambda| \le |\lambda(\gamma)| \quad (\gamma \in B_{\widehat{G}}(0, \epsilon)),$$

$$P_{\gamma}h = \lambda(\gamma)h \iff h \in \mathbb{R} \cdot g(\gamma) \quad (\gamma \in B_{\widehat{G}}(0, \epsilon)),$$

and

$$g(-\gamma) = \overline{g}(\gamma), \ \lambda(-\gamma) = \overline{\lambda}(\gamma).$$

Noting that $S^{-1} \circ P_{\gamma} \circ S = P_{-\gamma}$, we see that

$$g(-\gamma) = g(\gamma) \circ S, \ \lambda(\gamma) \in \mathbb{R}.$$

Next, for $0 < \eta \le \epsilon$ set $u_n(\eta) := \int_{B(0,\eta)} \lambda(\gamma)^n d\gamma$. For η small enough (so that $\lambda > 0$ on $B(0,\eta)$), $u_n(\eta) > 0$. Choose one such $\eta_0 > 0$ and define $u_n := u_n(\eta_0)$. Note that $\rho^n = o(u_n) \ \forall \ \rho < 1$ since $\exists \ \eta < \eta_0$ such that $\min_{|\gamma| < \eta} |\lambda(\gamma)| = r > \rho$ whence

$$\frac{u_n}{\rho^n} \ge \frac{u_n(\eta)}{\rho^n} \ge \frac{r^n}{\rho^n} \cdot m(B(0,\eta)) \to \infty.$$

Also, for $0 < \eta < \eta'$,

$$u_n(\eta) = u_n(\eta') \pm O(\rho(\eta)^n)$$

where $\rho(\eta) := \sup_{\eta \le |\gamma| \le \epsilon} |\lambda(\gamma)| < 1$. Thus

$$u_n(\eta) \sim u_n \text{ as } n \to \infty \ \forall \ 0 < \eta \le \epsilon.$$

Now fix $h \in L$ and $f \in L^1(G)$ with $\hat{f} \in C_c(\widehat{G})$, then $\forall x \in X, y \in G$,

$$\begin{split} P_{T_{\phi}^{n}}(h\otimes f)(x,y) &= \int_{\widehat{G}} \widehat{f}(\gamma)\overline{\gamma}(y)P_{\gamma}^{n}h(x)d\gamma \\ &= \int_{X} hdm \int_{B(0,\eta_{0})} \widehat{f}(\gamma)\lambda(\gamma)^{n}\Re(\overline{\gamma}(y)g(\gamma)(x))d\gamma + O(\theta^{n}) \end{split}$$

(by reality, for some $0 < \theta < 1$). Since $\hat{f}(\gamma)\Re(\overline{\gamma}(y)g(\gamma)(x)) \to 1$ as $\gamma \to 0$, it follows that

$$P_{T_{\phi}^n}(h \otimes f)(x,y) \sim u_n \int_X h dm \int_G f dm_G.$$

By the method of Breiman ([Brei]),

$$P_{T_{\phi}^n}(h \otimes f)(x,y) \sim u_n \int_X h dm \int_G f dm_G \ \forall \ h \in L, f \in C_c(G).$$

Corollary.

Under the same assumptions, $\forall x, y \in X, t \in G, \epsilon > 0, \exists n_0 \text{ such that } \forall n \geq n_0 \exists z \in T^{-n}\{x\} \text{ such that } d(y, z) < \epsilon \text{ and } ||t - \phi_n(z)|| < \epsilon.$

Proof.

Let $a = [a_1, \ldots, a_N] = B(y, \epsilon), h = 1_a \in L$ and let $f \in C(G), f \ge 0, [f > 0] \subset B(0, \epsilon)$. Then

$$\frac{P_{T_{\phi}^{n}}(h\otimes f)(x,t)}{u_{n}}\to \int_{X\times\mathbb{G}}h\otimes fdm\times m_{G}$$

and $\exists n_0$ such that $\forall n \geq n_0$,

$$0 < P_{T_{\phi}^n}(h \otimes f)(x,t) = \sum_{T^n z = x, \ d(y,z) < \epsilon} p_{x,n}(z)g(t - \phi_n(z))$$

and in particular $\exists \ \exists \ z \in T^{-n}\{x\}$ such that $d(y,z) < \epsilon$ and $||t - \phi_n(z)|| < \epsilon$.

Exactness lemma.

Suppose that $\phi: X \to G$ is Hölder continuous, aperiodic, then $\forall x \in X$, $t \in G$, $\epsilon > 0$, $\exists n_0$ such that $\forall n \geq n_0 \exists y, z \in T^{-n}\{x\}$ such that $d(y, z) < \epsilon$ and $||t + \phi_n(y) - \phi_n(z)|| < \epsilon$.

Proof.

Consider the mixing Gibbs-Markov map $(X \times X, \mathcal{B}(X \times X), T \times T, m \times m, \alpha \times \alpha)$ equipped with the cocycle $\tilde{\phi}: X \times X \to G$ defined by $\tilde{\phi}(x, x') := \phi(x) - \phi(x')$.

The cocycle $\tilde{\phi}: X \times X \to G$ is also Hölder continuous, aperiodic, but also symmetric: $\tilde{\phi} \circ S = -\tilde{\phi}$ where S(x, x') := (x', x) (evidently $S(T \times T) = (T \times T)S$). Thus the conclusion of the corollary holds and this is the lemma.

References

[A1]	J. Aaronson, An introduction to infinite ergodic theory, Mathematical surveys and
	monographs 50, American Mathematical Society, Providence, R.I, U.S., 1997.

[A-D1] J. Aaronson, M. Denker, Local limit theorems for Gibbs-Markov maps, Preprint (1996).

[A-D2] _____, On exact group extensions.

[B] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms., Lecture Notes in Math. 470, Springer Verlag, Berlin, Heidelberg, New York, 1975.

[Brei] L. Breiman, Probability, Addison-Wesley, Reading, Mass. US, 1968.

[F] S.R. Foguel, On iterates of convolutions, Proc. Amer. Math. Soc. 47 (1975), 368-370.

[G] Y. Guivarc'h, Propriétés ergodiques, en mesure infinie, de certains systèmes dynamiques fibrés, Ergod. Th. and Dynam. Sys. 9 (1989), 433-453.

[L] M. Lin, Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19 (1971), 231-242.

[L-R-W] M. Lin, B.-Z. Rubshtein, R. Wittmann, Limit theorems for random walks with dynamical random transitions, Probab. Theory Relat. Fields 100 (1994), 285-300.

[N] S.V. Nagaev, Some limit theorems for stationary Markov chains, Theor. Probab. Appl. 2 (1957), 378-406.

[S] C. Stone, Ratio limit theorems for random walks on groups, Trans. Amer. Math. Soc. 125 (1966), 86-100.