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GROUP EXTENSIONS OF GIBBS-MARKOV MAPS

JON AARONSON AND MANFRED DENKER

ABSTRACT. We show that aperiodic cocycles over an exact Gibbs-Markov map
define exact extensions. Equivalent conditions for exactness are found.

81 INTRODUCTION

Let (X, B,m,T,a) be an exact probability preserving Markov map as in [Al].
We can and do assume that X is a topological Markov shift:

X={zed: mz,NnT "x,1) >0V n>1}

endowed with the Polish topology inherited from the product topology on a.

Then T is locally invertible with respect to « in the sense that for each n >
1, a € ay”! the map 7" : @ — T™a is nonsingular and invertible. The inverse of
this map is denoted v, : T"a — a and given by v(z1,22,...) = (a,21,22,...).

The partition a enables definition of a Holder class of metrics {d, : 0 <r < 1}
on X:
For n > 1, define a, : X — aj~! by z € an(z) € af ™ .
For z,y € X define t(z,y) :=min{n > 1: an(x) # an(y)} (< 00).
For r € (0,1) define d, : X x X — R by d.(z,y) := r*&¥),

It is easily seen that the identity : (X, d,) — (X, d;) is Holder continuous ¥ r, s €
(0,1).

Accordingly, we define the Holder constants of a function h : X — M with values
in a metric space (M, p) by

p(h(z), h(y))
D, == .
x(R) U T i)

Let L.(M) :={h: X — M : sup,cq Drqo(h) < o0}. In case M = R we simply
write L, := L,.(M) instead.
Recall (see e.g. [A-D1]) that (X, B,m,T,a) has

the Gibbs propertyif3C > 1, 0 <r < lsuchthatVn >1, a € a}™', m(a) > 0:
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%;*% — 1| < Crt®Y) for m x m-a.e. (z,y) € T"a x T"a.

It is called a Gibbs-Markov map if it has in addition the property

Glllelg m(Ta) > 0.

Recall that any topologically mixing probability preserving Markov map with
the Gibbs property is exact (see for example [A-D-UJ).

Now let G be a LCA, second countable group, let || - {| be a Lipschitz norm
on G (ie. ¥ : G — S!is | - |-Lipschitz for every g € G), let ¢ : X — G
be measurable. Consider the skew product Ty : X X G — X x G defined by
Te(z,y) := (Tx,y+ ¢(x)) with respect to the (invariant) product measure m x mg.
We define ¢, = ¢p+poT +...+po T L

We’re interested in the exactness of T and prove

Theorem.

Let G be a LCA, second countable group, let (X,B,m,T) be an exact probability
preserving Gibbs-Markov map and let ¢ : X — G be uniformly Holder continuous
on states.

The following are equivalent:

1.) ¢ is aperiodic in the sense that yo ¢ = 5’;”1 has no non-trivial solutions in

z2€ St and g: X — S* Holder continuous.

2.) Ty is weakly mizing.

3.) Ty is exact.

4.) For some A € B, and x € A, the smallest closed subgroup generated by

dr(yn, zn) -0 }

teG: Elkn—moyn,anT—k“ m}a{
{ { ¢kn (yn) - ¢kn (Zn) —

is G.
5.) For everyx € X,

G={t6G= Bknemyn,zneT—kn{x},{dr(ymzn)ﬁo }

D, (yn) — Gk, (Zn) —t

Remarks: In case o is a finite Markov partition and m a Gibbs measure as in
[Bo], Guivarc’h ([G]) has obtained exactness of the group extension with respect to
Hélder-continuous cocycles. This applies to Z%-extensions of the geodesic flow on
compact surfaces of constant negative curvature (among others). Let ¢ : X — Z¢
(or R%) be aperiodic, locally Lipschitz and in the domain of attraction of a stable
distribution of order 0 < p < 2. Exactness follows from section 7 in [A-D1] in case
T is Gibbs-Markov. The assumptions on the cocycle and the dynamics in these
results are rather strong. Weaker sufficient conditions can be found in [A-D2]: Let
T be a Markov map with the Renyi property:

3C >1suchthat Vn>1, a€ag™t, m(a)>0:

E‘Z‘E:; < C for m x m-a.e. (z,y) € T"a x T"a. For these maps it suffices to

assume that the cocycle is locally constant (on cylinders in ()} for some N > 0).
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For locally invertible, exact endomorphisms T' with the Renyi property it suffices
to assume a spectral representation & la Nagaev ([N]) for the Frobenius-Perron
operator and at most exponentially increasing ¢ + ... + po T (k = 1,2,...).

The proof of the theorem is given in the subsequent sections. The only non-trivial
implications are 4.) = 3.) and 1.) = 5.). Our proofs certainly follows general
concepts, like [L-R-W] and [F] for the first implication and [S] for the second. In
particular the last section contains a ratic limit theorem of independent interest.

The Frobenius-Perron operator R : Li(m) — Li{(m) of a nonsingular transfor-
mation (X, 3, m, R) is defined by

/ Ili;f‘gdm=/ f-goTdm
b's b's
where f € Li(m) and g € Lo(m). For a Gibbs-Markov map T this operator has

the form N
Tf= Z 1a('va)'vzuf('“a):

aco

and for the group extension T

Tof(z,9) = T(f(-19 = $a()](2)-
Fix some r € (0,1) and let 3 denote the coarsest partition such that Ta C ¢(f).
We define the Banach space L of all L., functions f: X — R with

D, s =sup D, ,(f) < 0.
beps

We may assume that r is chosen so large that Dy = D, 4 < co. It is shown in
[A-D1] that T™ (n > 1) has a representation

Tf(@)= [ fam+0("Ifl1).
Proof of 4.) = 3.).

It is sufficient to show relative exactness (see [G], [A-D2], i.e. that

Jelo

for all ¥ € L;(m) and T’ € L,(G) satisfying [, ['dg = 0. Moreover, we may and will
reduce to those ¥ which are Lipschitz continuous and those I' which are Lipschitz

continuous and have compact support.
Let ¥ € Li(m) and " € L,(G). Then

Unn(¥oT) = [ [ 2340 & T)(w.0)| dgm(da)

< /X /G > |f3l¥ Tl g - 6(2)

T(z)==

= [ [ 7231 @ Tt 0 - 600 |J@m(do)dg
= [ [ |fz12 ©Titw, g - gta))| dgmiaa)
GJX

“Jeds

T3[¥ ® I)(z,9)| dgm(dz) — 0

pr{z, 2)dgm(dz)

T2 (¥ ® T)(z, g)’ dgm(dz) = Un(¥ @ T).
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Therefore
(1) U (el | C(Pal) >0,

and it is left to show that [ Idg=0= C(¥ & T) =0.
Definition: A sequence of signed measures {un n > 1} on G is called completely
mizing if for every I' € L1(G) with integral [, T'(g)dg = 0 we have

llien * T2y ) — O

We define the operators M, : Li(G) — L1(G) by M,F(g) = F(g +t). Let
¥ € Ly1(X) and let the measures {y, > : 7 > 1} on G be defined by

fne = Y, U(2)Pa(®, 2)84, ()
T ()=

We'll show that the measures {u, . : 7 > 1} are completely mixing in measure.
Note that ||,un,,:*FI|L1(G) < T"|‘I’|(:L‘) ||F||L1(G)- Therefore t — ”#n,z*MtF”Ll(G)
is Lipschitz continuous with Lipschitz constant T™|¥|(z}||FF — M. F||z,(c)-

Proposition 1: For every I’ € L1(G) the random sequence

[tn,. * Tl Ly @)
converges in Lyi(m} to C(¥ @T). In addition,

CTT) <|¥]l,(m)lITll Ly (6)-

Proof. Since TQF(:I:,Q) =T"F(-,9 — ¢n(-))(z), it suffices to show the theorem
for a subclass which generates a dense subspace in Li{X x G). Here we take the
class of all functions ¥ @ I"' where ¥ belongs to the space L and I' is an integrable
and Lipschitz continuous function on G.

It also follows from the above that

Mnt1,e * L(g)
— [ TG - Wimsraldh) = 5 Ui (5206~ bana (2)
G Trtl{z)=x
= Y plz,2)TF[¥ @T)(z,9 - ¢(2))
T(z)=x

whence as before,

ltn+1,e * Tllz, o)

/ CL‘ Z
G

T(z)—:c
T(z)=x
=T [ltin, * Tl 1, (9] (x)-

)| T3 ¥ @ T)(z,9 - ¢(=))|d

](z,g)| dg
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By induction it is easily seen that for n fixed and & > 1

| Hrthx *P”L](G) < Tk [”Juﬂ,' *FIILI(G)] (113)

Since the function
T — ||tin,z *P”Ll(G)

is of class L it follows that for &£ — oo
T* [ln,- * Dl Ly ey = fx litn,e * Tllz, (cym(dz) | C(¥ @T),

whence

(2) lim sap ||,un,m * P”LI(G) < C(‘I’ @ F)

n—0od

By (1) and (2}, given € > 0, we can choose ng so large that for n > ng

/ [| Hnx *P”L1(G) -C¥ @ F)] m(dzx) < €.
{&:]|gtn,=#L | 2, (c)—C(¥ET)>0}

Using (1) once again,

m{:c : “Ju*n,:v *FI|L1(G) < C(\I! @ F) - f}

1 | :
< _f [C(¥ @T) = l|ttn,s * L1, ()] m(dz)
€ N C(VET)—||pin = *T ||, (G) =€}
1
. (C(\I! @) - A | ptn *P”Ll(c:)m(dﬂ?))
1
oy f [C(® &T) = Itz *TllL, ()] m(dz)
€ J(2:0(¥@T) 4Tl 1, (0 <€}
1

< € /
€ J{@:||pn,=+Tll 2, (5) —C(FET) >0}

The proposition follows easily. The additional claim follows from
C(¥ AT) — |lttne *Tllz, ey < T @I Nzy6) — N2 Ly oy ITl Ly (6)-
In order to show the theorem it is left to prove the following
Lemma 2: If [, [, ¥(2)['(g)dgm(dz) =0, then
C(¥al)=0.

Proof. The proof of this statement follows from a series of facts:
Define the measures vnz = 3 1a(,)_ Pn(T, 2)6; on X.

[lttn,e * Tllz, 6y = C(¥ @ T)] m(dz) < e.

o
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Claim 1: Let k > 0 be fired. We first claim that for any subsequence {n; : | €
N} C N there exists a further subsequence {m; : j > 1} such that for a.e. z € X
and for every B € B

1
3 lim /

/;3 (1t oy * Mg, nT) (9)vk,2(dy)|dg = C(T @ T).

In order to see this claim, let n; be any subsequence and choose m; so that

(4) lttm; = *Tll, 6y | ttm; 4k, * Tl @y — C(¥ @T)

for x € Q2 where Q is a T-invariant set of full measure. On the one hand it follows
from this that for every B fixed

Vk,zl(B ) fc

1

5) < o5 L W *Tlluoeald) — (¥ @ T),
&

~/B umi;'y *M‘ﬁk(y)rykam(dy) dg

because the integrand is uniformly bounded and pointwise convergent by (4).
On the other hand, for x € (2,

C¥el)= 311,1}310 lttm; 45,2 * T2, (@)

= lim > oelm g [ @ T)(y, 9 — di(y))
7 G Tk (y)=z

dg

< lim Lﬂmj,y 2 Mtﬁk(y)r(g)l/k,z(dy)‘ + ‘/B Bmj,y * Md)k(y)r(g)yk,m(dy) dyg

j—oo Jg

<C(T®T)

by (5), hence for « €

1
li ™5 z = ¥ ar),
Jl,n;‘o Vk,a:(B)/G‘ /B# J'y*M¢k(y)FVk7 (dy)‘dg C( )

proving claim 1.
Claim 2: For any subsequence {n; : | € N} C N there erists a further subsequence
{m; : j > 1} such that for a.e. x € X every disjoint sets A, B € B

1
JHELQ G Vk,m(A)/A‘u 2y X Mey(y) (9)Vk,=(dy)
1
(6) + Vie,z( B) /Bumi’y * My, )T (9)vk,(dy)| dg = 2C(¥ @ T)
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Choose the subsequence and 2 as in (4). Then for z € 2 by (3)

J

1 ” 1
™ x ™y M T x d d
Ve o(A) fA'u s * My Trna(dy) + Vi« (B) fB“ s * Mo () Tvi o (dy)|dg

. uk,:(A)/;

1
+ vk (B) /61]3 Homjy * M¢k(y)r(g)’/k,x(d’y)‘dg
(7) —2C(¥®T)

dg

[4 s,y * My, )9k, (dy)

and, since AN B = @ (and w.lLo.g. assume that vy .(A4) < vy (B)),

Vi a,(A)
™ M, v o (d :
/Ap’ iH Y * (7% (‘U) Vki ( y) + Vk,m(B)

: / /
> by * My, () I(g)Vk 2 (dy
Vk,z(A) ( G |Jaus v* MouT(9)i2(dy)

(=)

(8) —2C(¥@Tl).

| s> Moy oo

1 f

/B fm;,y * Mg, (y)F(Q)Vk,m(dy)’ dg)

Claim 2 follows from (7) and (8).
Claim 3: Let A,B € a‘g_l be images of inverse branches v4 and vg of T*, where
k is still fizred. Let ¢ = d(A,B) and let I be Lipschitz continuous with compact
support K. Then for everyn > 1

L |Jun,v,q(a:) * quk(vA(:c))F — Hnwp(z) * M(,bk(vA(a:))P dg
< C1lill|zyey€ + DrCoDy| B(K, CoDyéle,
where | - | denotes Haar measure on G.
Let z € X, v = v4(x) and w = vg(x). By the Lipschitz property of ¢ by the

expanding property of T, we have for any inverse branch v, : AUB — a € (0:)3_1
of T™ that

n—1

|$n(va{v}) — &n(va(w))| < Dy Z AT (va(v)), T' (va(w)))
=0
< CoD¢d('l),’bU) __<_ C()D¢,E.
Since T" has compact support

IT(g) — T(g + dn(va(v)) = ¢n(va(w)))|| < DrCoDyel pik,con,e)(9)-

Similarly, there exists a constant C; (also depending on the Lipschitz constant of
) so that

Ipn(va Ua(v))lp('va('v)) - pn(w: Ve (W)} ¥ (va(w))| < Clpn(va va(v))d('v, w)'
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Therefore

L |tn,0a(2) * Mgy (0ae) () = Bnws(z) * Moy wan(9)] dg

).

= D Pa(w, va(w)) ¥ (va(w))T(g — d1(v) — da(va(w)))| dg

</,
P(g - ¢’k(v) = ¢n(va(v)))|dg

+ L ;pn('w, Vo (w)) ¥ (ve(w))

[P(g - ¢k(v) - ¢n(”a(”))) - P(g - ¢k(v) ¢n(va(w)))]| dg
< (CillTl|z,(e) + DrCoDy|B(K, CoDye)|} T 1||soe,

> Pa(v,va(2)) ¥ (va(v)T(g = $r(v) = $n(va(®)))

> [pa (v, va(v)) ¥ (va(v)) = Pa(w, va(w)) ¥ (va(w))]

where > extends over all a € ()}~ ! : T"a D> AU B.

Claim 4: There exists a set Q of measure 1 and a constant C > 0 with the following
property:

IfzeQ, k>1 and v,w € T~*({z}) then

(9) |QC(‘D al-Cc(Ta(l+ M¢k(v)_¢k(w))f‘)| < Cd{v,w).

By claims 1-3 there exists a subsequence {m; : § > 1} C N and a subset Q so
that (3), (6) and (9) hold for any z € 2, k > 1 and v, w € T~*({z}). Therefore

J

1
+ - Py * My, () D(9)vk,-(dy)| dg
Vk,g:({'w}) - Y ¢ (y) ( ) (

1 /
TS miy * M T(g)vy (d
Vea({o}) Sy Py T T W) (9)vk.=(dy)

= fG |t 0 % My (3T (9) + tian; o * My, ()T (9)] dg
p '/G |ty 0 % Mo (yT(9) — by 0 % Mg, (0)T(9)| dg
+ /G |t 0 % M, () T(9) + tm; 0 % My, ()T(9)| dg

< /(; I;U'mj,w s (I + M¢k(v)—q$k (w))F(g)l dg + Cd(va ’UJ),

where C = C1||T'l|, gy + DrCoDy|B(K,CoDy). The lower bound is shown in the
same way, proving claim 4.
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Claim 5: Let V € L and T € L1(G). Then

C(¥ & (T — M,I")) = 0.

First observe that the set of ¢+ € G satisfying the claim is a group. In fact, the
claim holds for the identity in G, and by proposition 1

C(¥ @ (I — Myys)T)
- nl.lfﬁ,lo L L ]G(I - Mt+s)F(g - h)”n,;n(dh)‘ dgm(d:c)

Slimf/
n—oo fx J&
+lim/f
et [

Hence it suffices to prove the claim for ¢ in a generating set Gg. Moreover, it suffices
to prove the claim for I Lipschitz continuous with compact support, since C(¥ @T")
is L1{G)-norm continuous.

By assumption, and by claim 4 there is a measurable set 2 € B of full measure,
a constant C' > 0 and a subset Go C G generating G such that for all x € Q and
v,w € T~%(z)

fG(I — M)T'(g - h)ﬂn,z(dh)’ dgm{dx)

/G (I - M)M,I(g - h)un,x(dh)] dg(dz)

) 2C(¥ & T) — C(T @ (I + My, (v) g ())T)| < Cd(v, w),

(10) Yt € Gy 3xn € ykp > 1,0n, w, € T4 (2,)
3 ¢, (Vn) — ¢k, (wn) — t & d(vn,, wn) — 0.

Since t — C(¥ @ M,I') is continuous, it follows from these properties that
20(Pal)=C@ eI+ M) (te€Gy).

Because of continuity, this equation holds for any I' € L;(G). Hence, replacing I’
by (I — M) and repeating this argument for each (I + M;)*(I — M,)T, k > 0, we
obtain

C(¥ @ (I — M)T) = 27FC(¥ @ (I + M) (I - M,)T)

for every k > 0 and t € Gyp.
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It suffices to show the claim for I' > 0. For even k

I+ M,

)k(I—Mt)F)

(I-l-Mt

C(¥ ® (

5/ |lIl|d.’m]
X G
=|I‘I’|L1(X)/ 27"
G
k/2

k k :
cotnn | (renie o B () 1)

=1

> ((E)-0)) Mg) Ho)ds

j=k/2+1

k
< 2=k+1 :
= ||WI|L1(X)||FIIL1(G) (1 + (klz))

Claim 6:

k
) - mor)| do

s () () m

i=1

['(g)dg

f I'(g)dg=0=C(¥ al)=0.
G

This fact is well known from standard arguments of ergodic transformations:
Indeed, as it is well known,

U= M)Li(G) = {f € L+(G) - f f(g)dg = 0}.

e

Proof of 1.) = 5.)

Ratio limit theorem for symmetric cocycles.

Suppose that ¢ : X — G is Hélder continuous, aperiodic and symmetric in the
sense that there exists a probabdility preserving transformation S : X — X such that
ST =T5 and ¢ 0 S = —¢, then there exists u, > 0 such that

Pr.(h@ f)(x,
T"( il y)_) haf Yhel, feClG), zeX, yed.
Un XxG

Proof. R
First let (as in[A-D1]) P,: L - L (v € G) be defined by

Pyh = Pr(vo¢-h).
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As shown in [A-D1], ¥ — Py is continuous (G - Hom(L,L)),and 3¢>0, 0 <
€ < 1 and continuous functions

A: Bg(0,¢) = Bc(0,1), g: Bs(0,¢) = L
continuous, such that A(0) =1, ¢(0) =1, [, g(v)dm =1,
|A(7)| €1 with equality iff vy =0,
Poh=Xh = |A| <|A(7)| (7€ Bg(0,¢)),

Poh=A)h <= heR-g(v) (v€ Bz(0,¢),

and _
g(=7) =g(7), Al=7) = A7)
Noting that S~ o P, 0 .S = P_.,, we see that

g(=71)=9(7) oS, A7) R

Next, for 0 < 7 < € set u,(n) = A(y)*dy. For n small enough (so that
B(0,n)

A > 0 on B(0,7)), un(n) > 0. Choose one such 1, > 0 and define u,, := u,(1np).
Note that p™ = o{u,) V p < 1 since 3 5 < np such that minj,j<, |A(¥)| =7 > p

whence

5 1l 5 T m(B(0,7)) - oo

p‘?’l - pn pn
Also, for 0 < n <7/,
un (1) = un (') £ O(p(m)")

where p(n) := sup,<|yj<c IA(7)| < 1. Thus
up(n) ~u, asn—o00VO0o<y<e,
Now fix h € L and f € LY(G) with f € C.(G), thenVz € X, y € G,
Pryh® N = [ FOVT@PIhE)E

- / ham FOANN"REF(Y)9(v)(2))dy + O(6")
oS B(0,10)

(by reality, for some 0 < < 1). Since f(7)R(F(¥)g(7)(z)) — 1 as v — 0, it follows
that

PTg(h ® f)(:c,y)rvun/){hdmfcfdmc.

By the method of Breiman ([Brei]),

Pry(h @ f)(z,y) ~ tn /X hdm fG fdmg YV h € L, § € CG).
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Corollary.
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Under the same assumptions, ¥V z,y € X, t € G, ¢ > 0, Ing such thatV n >
no 3 z € T7"{x} such that d(y,z) < e and ||t — ¢, (2)]| < €.

Proof.

Let a = [a1,...,an] = B(y,e), h=1,€ Land let f € C(G), f>0, [f>0]C
B(0,¢). Then

Pr-(h® f)(z,t
T"’( N )—> h@ fdm x mg
Un AxG

and 3J ng such that ¥V n > ng,

0< PT; (h, & f)(fL’, t) = Z pz,n(z)g(t - ¢n(z))

Trnz=zx, dly,z)<e¢

and in particular 3 3 2 € T~"{x} such that d(y, 2} < € and ||t — ¢.(2)| < €.

Exactness
Suppose
G, e >0,

lemma.
that ¢ : X — G s Holder continuous, aperiodic, thenV r € X, t €
Ing such that V.n > ng 3 y,z € T ™{x} such that d(y,2) < ¢ and

It + dnly) — dnl2}l| <e.

Proof.

Consider the mixing Gibbs-Markov map (X x X, B(X x X), T xT,mxm, a x a}
equipped with the cocycle ¢ : X x X — G defined by ¢(zx,z’) := ¢(z) — #(z').
The cocycle ¢ : X x X — G is also Holder continuous, aperiodic, but also

symmetric:

poS = —¢ where S(z,2’) := (2/,x) (evidently S(T x T) = (T x T)S).

Thus the conclusion of the corollary holds and this is the lemma.

[A1]
[A-D1]

[A-D2]
(B]

[Brei]
[F]

(G]
iL]
[L-R-W]
[N]

[S]
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