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Abstract

We consider the problem of dynamic admission control in a Markovian loss queueing
system with two classes of customers with different service rates and revenues. We
establish the existence of optimal acceptance thresholds for both customer classes. We
also show that under certain conditions there exists a preferred class. These results are
valid under a Markov arrival process.

1 Introduction

Dynamic admission control strategies are of increasing importance as revenue management
tools in service and manufacturing systems. In telecommunications and in particular in
telephone service and support applications, such strategies are commonly used in order to
increase flexibility in the allocation of resources among different customer types.

In a queueing context, a static admission rule specifies a priori whether each customer
class is admitted for service, based on the revenue that customers of this class generate and
their expected service requirements. This specification is made independently of the system
state and is equivalent to determining whether one customer class is preferred over the
other. On the other hand, a dynamic admission policy offers increased flexibility because
it makes the decision of admitting an arriving customer contingent on the current level of
congestion upon arrival, in addition to the customer’s class. A dynamic admission policy is
equivalent to a resource idling rule. Indeed, when a customer is not admitted for service, it
is effectively decided to keep one or more servers idle in anticipation of future admission of
more profitable customers who would otherwise be lost.

In this paper we consider the problem of dynamic admission control in a two class loss
Markovian queueing system with different service rates for the two customer classes. We
prove that an optimal admission policy can be generally described as follows. An arriving
customer is admitted to the system if and only if the number of available servers exceeds a
certain threshold, which depends on the number of customers of both classes already being
served. In addition we develop a set of sufficient conditions which ensure that a customer
class is “preferred”, in the sense that its customers are always admitted if there are free
servers, regardless of the system congestion level. Finally, we show via a counterexample
that even when a preferred class exists, it is not necessarily characterized by the popular
cp rule in the stochastic scheduling literature.

The model we study is a loss system with ¢ identical parallel servers, no waiting room
and two classes of customers. Class-i customers arrive according to a Poisson process with



rate A; and demand an exponential service time with mean 1/u;. If a class-i customer is
admitted, a reward of r; > 0 is gained after his (her) service is finished. Our objective is to
find dynamic admission policies that maximize the total expected discounted revenue over
a finite or infinite horizon as well as the long-run average revenue.

A special case of the model described above, with uy = po and ry > 7o, is studied in
Miller (1971), where the optimal policy is shown to accept class-1 customers whenever there
is an idle server and to admit class-2 customers if and only if the total number of customers
in the system is below a certain threshold. Thus, the optimal policy in Miller’s work is a
threshold type policy with a preferred class. Lippman & Ross (1971) analyze the optimal
admission rule for a system with one server and no waiting room which receives offers
from customers according to a joint service time and reward probability distribution (this
model is usually referred to as the streetwalker’s dilemma). Whenever the service times are
exponential and rewards are fixed, this is also a special case of our model with ¢ = 1. In
both of these studies, there exists a preferred class which is determined by the ru rule, the
equivalent of the cu rule in these systems. Recall that the cu rule gives priority to the class
with the highest average cost rate, c;u;, where ¢; is the holding cost and p; is the service
rate of class-i customers, so this class is preferred over the others. With the objective of
maximizing revenue, this rule translates to the ru rule, since the quantity equivalent to ¢;u;
is the average profit rate of class-¢ customers, r;u;. The results of these two studies suggest
that in our model, too, the ru rule may determine the preferred class. However, this is not
the case in general, as we see with a counterexample in Section 5. It should be noted that
the term “preferred” is used here to denote a class whose customers are always admitted to
the system when there is at least one free server, so that there can be no preferred class at
all or there can be more than one preferred class. This terminclogy reflects the preferential
treatment that a class may enjoy in the sense that it is never rejected unless the system is
full. It is therefore a global state independent property. With a different service rate and
reward for each class, it is not clear whether a preferred class exists and, if it does, how to
determine it. One additional difficulty stems from the fact that availability of jobs is also
of concern since we have a loss system. Thus, the arrival rates also affect the determination
of preferred class(es).

We can see that each class has its own advantage and disadvantage for being a preferred
class. The strength of class-1 customers is the steady returns they bring to the system
because of the longer service times: Consider a firm which has two kinds of jobs, one of
which brings $1,000 profit each month for 12 months and the other with a profit of $1,200
per month for only 3 months. The possibility that the firm will have no job after 3 months
works in favor of the longer duration job. We show that under certain conditions, a preferred
class exists, and under a stronger set of conditions, the preferred class is determined by the
T rule.

We prove the existence of an optimal admission policy that is characterized by accep-
tance thresholds for both classes. Specifically, for class-2 customers, there exist thresholds
such that the optimal policy accepts class-2 customers only if the number of class-1 cus-
tomers in the system is less than a specified threshold, and rejects otherwise. The thresholds
depend on the number of class-2 customers already in the system. The admission policy
for class-1 customers can be described similarly. We also show monotonicity of thresholds
under very restrictive conditions.



We finally establish that the above results are still valid under a Markov arrival process
(MAP), which is shown to approximate any independent arrival process arbitrarily closely
in Asmussen & Koole (1993).

There has been an increasing interest in multiclass loss networks due to the growth of
telecommunications systems. Admission control is a main focus of research on loss networks
(see Chapter 4 of Ross (1995) for a comprehensive review). The work in this area is usually
directed towards analyzing certain classes of policies (e.g., coordinate convex policies, trunk
reservation policies), although there are studies that address the issue of the optimal policy
directly such as Miller (1971) and Lippman & Ross (1971). More recently, Ku & Jordan
(1997) consider two stations in tandem, each with no waiting room and parallel servers.
Carrizosa, Conde & Munoz-Marquez (1998) present an optimal static control policy for
acceptance/rejection of k classes in an M/G/c/c queue. In all these studies, there exists
a preferred class which is determined by a variation of the cu rule. The cu rule has been
shown to be optimal in various queueing systems, see e.g., Baras, Dorsey & Makowski
(1985), Buyukkoc, Varaiya & Walrand (1985), Varaiya, Walrand & Buyukkoc (1985).

This paper is organized as follows: In the next section, we develop a Markov Decision
Process (MDP) model for the system described above. In Section 3 we prove the existence of
an optimal threshold policy. In Section 4 we present sets of sufficient conditions for each class
to be preferred. Section 5 discusses the issues regarding to preferred classes, and includes
a counterexample to the ru rule. In Section 6 we show that under certain conditions the
optimal acceptance thresholds have intuitive monotonicity properties. Section 7 discusses
extensions.

2 Markov Decision Model of the System

2.1 Discrete time model of the system

The original process of the systemn described above evolves in continuous time. All the
interarrival times as well as the service times are exponential. Furthermore, we interpret
discounting as exponential failures, i.e., the system closes down in an exponentially dis-
tributed time with rate 3 (for the equivalence of the process with discounting and the
process without discounting but with an exponential deadline, see e.g., Walrand (1988)).
Thus, the state of the system can be described by = = (z1,x2), where z; is the number of
class-i customers in the system. If the system is in state x, an arrival of class j will occur
with a rate of \;, a class-i customer will depart from the system with a rate of z;u; and
the system will close down with no further return with rate 8. We can build a discrete
time equivalent of this system by using uniformization: First, we assume, without loss of
generality, 1 < po; note that the case p; = po was covered by Miller (1971). Then, the
maximum possible rate out of any state, say A4, is A} + Ag + cus + 8. Now, if the sys-
tem is in state z, a potential transition will occur with rate A, and the actual transition
will be a class-j arrival with probability A;/A, a class-¢ service completion with probability
zipifA, a “fictitious” service completion, which does not change the state of the system,
with probability (cu2 — z111 — z2p2)/A, and finally the system will close down with prob-
ability 5/A. We observe the state of the system at each instant of a potential transition,
8o in every exponentially distributed time with rate A, and the above probabilities give
the actual transition of the system. Thus, the discrete times correspond to the number



of remaining potential transitions. Now, we can use normalization as well, so that we can
assume, using the appropriate time scale, A = 1. Then the system will be observed in
exponentially distributed intervals with mean 1, and, as described before, there will be an
arrival with probability A; + A2 and a potential service completion with probability cps.

The assumption gy < po implies that class-1 customers are “slow” customers. We use
this assumption quite often to couple the service times of class-1 and class-2 customers. If
we want to couple service times of a certain class-1 customer, say d;, and a class-2 customer,
say dg, we let £ be a uniformly distributed random variable in (0,1), and we generate the
service times of d; and ds using the same £, so customer dp leaves earlier than customer d
leaves with probability 1. In terms of discrete time, this translates to the following: Both
customers leave the system with probability g1, and a class-2 customer departs from the
system with probability g5 — 11 leaving the coupled class-1 customer in the system. Thus,
coupling never allows a coupled class-1 customer to leave the system while the coupled
class-2 customer is still there.

We define the state of the system in the discrete time MDP including the last event
occurred: If there is a potential service completion, we denote the system state by z =
(z1,22), where z; is the number of class-i customers. If there is a class-j arrival, then the
state is (z; §) = (21, 22; j) so that there are x; class-i customers in the system and a class-j
customer has just arrived. Distinguishing the last event occurred in the state of the system
is quite artificial, but it reflects the consequences of actions more clearly, as we see from the
optimality equations given in the next subsection. Note that we always have z; + 20 < ¢
and the actions are defined only for the states corresponding to an arrival.

2.2 Markov decision model for finite horizon

Let un(x) (vn(x; 7)) be the maximal expected 8-discounted reward for the system starting
in state  {(x;j)) when n observation points remain in the horizon. Let S be the set on
which uy’s are defined, i.e., § = {z : z1 + 2 < c}. We define a,(z;j) as the optimal action
in state (z;j) when there are n more transitions. a,(z;j)} is set to 1 if it is optimal to
accept the arriving customer of class 7 and to 0 otherwise. Now we present the optimality
equations. Setting e; as the vector which has a 1 at the jth coordinate, and 0 elsewhere,
we have the following for z; + 3 < ¢

va(@) = max{un(e+e;)un(e)} for j=1,2 1)
Un+1(T) TypT + Topare + Mvn(x; 1) + Aavn(2; 2) +

Ty p1un (2 — €1) + Tapoun(x — e2) +

(cp2 — zp1 — zop2)un(z),

and for 21 +x2 = ¢, an(z; 1) = ap(z;2) = 0 and so
vp(z; 1) = vp(z; 2) = up(zx),

where up(—1,22) = un(0,z2) and up(z1, —1) = wa(x1,0). If the last event occurred is
a class-j arrival, which happens with probability A;, (s)he is either accepted so that the
system moves to the state x + e;, or rejected, which keeps the system in the same state z.
If a class-i customer finishes his service, with probability x;u;, the system state changes to



T —e; with a reward of r;. The “fictitious” service completions, which occur with probability
cpia — T — Tope, affect neither the state nor the total reward of the system. Finally, if
the system closes down, with probability 3, the system receives no more reward.

2.3 Infinite horizon models

We prove all our results for the objective of maximizing total expected 3-discounted reward
for a finite number of transitions, n, including the “fictitious” transitions due to the “fic-
titious” service completions. Thus, “finite” horizon problems are pseudo finite problems.
They provide the powerful tool of induction to prove our results for all n, which allows us
to consider the infinite horizon problems: All the results proven for finite n are true for the
limit n — o0, so the corresponding conclusions are valid when total expected S-discounted
reward over an infinite horizon is maximized. Moreover, since the state space and the action
space In each state are finite and the results hold for all 3, including 8 = 0, we have the
same conclusions for maximizing the long-run average reward. Here, we note that for the
results regarding to the preferred class, we specify the initial value function ug in such a
way that the rewards of customers, who are still in the system at n = 0, are collected even
if their services have not been finished. Of course, this makes no difference in the optimal
policy for infinite horizon problems.

We define v(z;j) (u(z)) as the maximal expected 3-discounted reward for the system
starting in state (z; ) (x} over an infinite horizon. Thus, for 8 > 0, we have:

v(z;j) = JLngovn(st)

a{z; j) is the corresponding action in state (z;j) so that a(z;j) = 1 if the customer is
accepted and a{x;j) = 0 otherwise. For 8 = 0, u{z) — oo, so we need to consider the
relative value functions and the gain in the usual MDP formulation.

2.4 Effect of an additional customer

We choose to serve a customer, if both rejecting and accepting him (her) is optimal. Then,
from equation (1), it is easy to see that

an(z;§) =1 <= 0 < up(z+e;) — un(x).

We can interpret the difference u,(z + e;) — un(z) as the benefit of the system due to
an additional class-j customer in state x when there are n more transitions. Then, the
optimal policy accepts a class-j customer only if the benefit (s)he brings to the system is
positive. These differences play a crucial role in determining preferred class(es). Therefore,
we define Dp,(ij)(x) as the difference in the total expected discounted rewards between
system 1 and system 2 if system 1 starts in state z ‘plus’ one class-i job and system 2
starts in = plus a class-j job, where 5 = 0 means that system 2 is in state z, i.e., there
is no additional customer. We, occasionally, drop the arguments = and n later on, when
there is no danger of confusion in the reference. The four D,(:j) functions of interest are
D.(10), D4(20), Dn(12) and D,(21). It is easy to see that D,(10)}(x) = up(z +e1) — un(z),
Dp(20)(x) = un(z + e2) — un(z) and D,(12)(z) = —D,(21)(z) = un(z + €1) — un(z + e2).
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Hence, the difference D,(0){z) corresponds to the net benefit of the system due to an
additional class-i customer in state 2 when there are n more transitions, whereas D,,(12)(x)
is the net benefit of the system when a class-1 customer already in the system is changed
to a class-2 customer in state z + e7.

Now, we can identify a preferred class in terms of D, (7j)’s. First, we note that an(z;7) =
1 if and only if 0 < Dy(j0)(z). Then, if Do(j0)(x) > 0 for all z € S, class-j customers
are preferred; since if the net benefit of accepting a class-j customer is non-negative for all
states, then class j is a preferred class.

2.5 A remark on rewards

In this model, we have considered only the rewards collected at the end of service. Rejection
costs, say b;, which are incurred at the time of the arrival of a rejected customer can be
incorporated in the model by redefining the reward r; as r; + l‘ﬁ'f—’bi due to the discounting.
For a more general system with both rejection costs, b;, and réwards, r;, one can refer to
the thesis Ormeci (1998), where all the equivalent results of this paper are stated with a
more complicated notation, although the methods of proofs with or without rejection costs
are the same.

The present value of the reward brought by a class-i customer is —'% due to the dis-
counting. We refer to this quantity as the immediate reward of a class-i customer and
denote it by R;. Thus, r; is the value of the reward in the end of service, whereas R; is its
value in the beginning of the service. Another quantity of interest is the average reward of
a class-i customer, ;4;.

3 Existence of an optimal threshold policy

In this section we show that there exists an optimal policy which can be determined by
optimal thresholds. For this, we prove that the value functions, u,’s, satisfy the following
monotonicity for all n whenever up does.

Lemma 1 For all z with 1 + 2 + 2 < ¢ (or equivalently for all z + e; + ez € §):
Un(z) —un(z +e2) —up{z +e1) +up(z +e1+e) <0 Vn>1, (2)
whenever the inequality is true for n = 0.

Proof. Assume that wp satisfies the above inequality. Note that many functions satisfy
this inequality including ug(z) = 0 for all z and up given by equation (3). We prove the
statement by induction on the number of remaining transitions, so assume:

Un(z) —un(z +e3) —up(z+e1) +up{z+e1+e) <0 Vet+e+e2€S8
We first show that the vn(.;j)’s also satisfy this monotonicity, so let §; be such that:
6n(j) = vn(#;7) — valz + €2;5) —vn(z + €15 7) + vn(z + €1 + €2 7).

We consider the four possible cases due to actions a,(z; 1) and a,(x +e;1 +e2; 1) upon class-1
arrivals:



Case I: an(z;1) =an(z+e1+ep;1)=0

82(1) < up(x) —un(z+e2) —up(z+e1) +un(z+e +e) <0

where the first inequality follows from the case assumptions and the optimality of the v,’s
and the second one from the induction hypothesis.

Case IT: a,(z;1)=1and an(x +e; +e3;1) =0

n(l) € uplztel)—un(zt+ert+er)—up(z+er)+un(z+e+e)=20
where the inequality follows from the case assumptions and the optimality of the v,’s.

Case III: a,(z;1)=0and ap(z +e; +e3;1)=1

8a(1) < up(z) — up(z + e2) — Un(x + 2€1) + un(z + 21 + €2)

Un () — un(z + e2) —un{x + 1) + unlz + €1 + e2)

+un(z + e1) — un{z + e1 + e2) — un(x + 2e1) +un(z + 21 + €2)
< 0

where the first inequality is true due to the case assumptions and the optimality of the v,’s
and the second one due to the induction hypothesis.

Case IV: ap(z;1)=1and an(z+e; +e;1) =1

6n(l) < up(z+er) —us(z+er+e3) —un(z +26e1) +up(z + 261 +e3) <0

where the first inequality is true due to the case assumptions and the optimality of the v,’s
and the second one due to the induction hypothesis.

The v,(z;2)’s can be proved to satisfy inequality (2} in a similar way. Thus, we can
consider Up4.1:

Un41(Z) — Unt1(T + €2) — uny1(x + €1) + Unpa (T + €1+ e2)
=AM [vn(x;1) — vp(z + e2;1) — vp(z + €151) + vn(z + €1 + €2; 1))
+A2 [Un(z;2) — vp(z + e2;2) — vp(z + €1;2) + vn(x + €1 + €2; 2)]
+z1p1 [un(z —e1) — un(z + €3 — 1) — up(z) + up(z + e2)]
+p1 [un(z) — un(z + €2) — un(z) + un(z + e3))
+x2pr  [un(T — e2) — un(T) — un(z + €1 — €2) + un(x + €1))]
thz  [un() = tn(2) = tn(z + 1) + Un(z + e1)]
+a [n(z) — un(z + €2) — un(z + 1) + up(z + €1 + €2)]
< 0

where a = cug — (1 + 1)1 — (z2 + 1}pe. The first two terms are less than or equal to 0
since &p(j) < 0, the third, fifth and seventh terms are also non-positive by the induction
hypothesis whereas the fourth and sixth terms are 0. Thus, the value functions, uy,, satisfy



inequality (2) for all n whenever ug does. ]

Intuitively, we expect that it should be more difficult to accept customers when there are
many customers already in the system, and so the benefit of the system due to additional
customers should decrease with the number of customers in the system. Lemma 1 shows
that the benefit due to an additional class-j customer, i.e., D, (j0)(z), is decreasing in the
number of class-i customers, x;, ¢ # j. This is less than our expectation, since we have
not shown that the benefit of an additional class-7 customer decreases in the number of
class-j customers; which corresponds to the concavity of u, in z; for fixed x;, 1 # 5. We
prove the concavity of u, in x2 for fixed x; under very restrictive conditions in Section 6.
However, we were not able to prove the concavity of uy, for all parameters because of the
boundary effects. We also note that concavity of the u,’s would lead to monotonicity of
the thresholds. Nevertheless, one easily sees that Lemma 1 guarantees the existence of an
optimal threshold policy:

Theorem 1 There exist numbers {I%(0), ..., 15 (c — 1)}qi=1,2) such that:

)0 x> l,l.b(:t:l)
an(z; 1) = { 1 : otherwise

PR B U 5 R li(ﬂ:g)
n(2;2) = { 1 otherwise

4 Existence of a preferred class

In this section, we show that under certain conditions customers of one class are admitted to
the system whenever there is an idle server; i.e., there exists a preferred class. In determining
preferred class(es), the first criterion one thinks of is the well-known ¢y rule, which translates
to our system as the ru rule. Recall that the cu rule is an index rule which always gives
priority to a job of class ¢* with the largest value of ¢;u; among the present jobs, where ¢;
is the unit holding cost and u; is average rate of service for class-i customers. ¢;u; is the
average cost of having a class-i customer in the system, so the cu rule serves the “most
expensive” customers first. In our problem, this corresponds to admitting all customers of
the class which brings the highest average reward, r;u;, whenever there is at least one idle
server. Under certain conditions, the preferred class is, indeed, determined by the ru rule.
However, this rule does not hold for all parameters; we present a counterexample in the next
section. Another criterion can be the index rule which uses the immediate reward of each
class, R;; but it is easy to see that if class-1 customers are slow enough, the optimal policy
may reject them even if their immediate rewards are high. As we see later in this section,
each of the criteria favors one of the classes, and neither of them determines a preferred
class for all possible parameters.

We present the conditions for class 1 to be preferred in terms of average rewards, r;u;’s,
and for class 2 in terms of immediate rewards, R;’s. We have interpreted the differences
D, (j0)(x) as the net profit of the system due to an additional class-j customer in state z.
In this section, we concentrate on these differences to show that under certain conditions,
they are non-negative; which implies that the corresponding class is preferred. We also
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consider the quantity Dn(12)(z), the effect of changing a class-1 customer in the system to
a class-2 customer in state x.

In the proofs of this section, we use, mostly, induction and sample path analysis together.
The following ug, which is briefly mentioned in Section 2, satisfies all the statements, al-
lowing us to apply the induction:

ug(x) = 1Ry + x2Rs Yz e S. (3)

This function corresponds to the assumption that the later rewards of customers, who are
still in the system at n = 0, are collected at n = 0. We, now, give upper bounds on the
differences, D,(i0)(x) and D,(12)(z):

Lemma 2 For allxz € S and for all n > 0:
(1) Dp(i0)(z) < R; fori=1,2.
(2) Da(12)(z) = —~D,(21)(z) < Ry — Ry.

Proof. We prove the statements by a sample path analysis.

(1) Assume that system A is in state z + ¢; and system B in z when there are n
remaining transitions. We let system A follow the optimal policy, 7, and system B imitate
all the decisions of system A. We couple the two systems via the service and interarrival
times, i.e., except for the additional customer in system A, all the departure and arrival
times are the same in both systems. We note that system B can always imitate system A
since it always has at least as many free servers as systemn A does. Then, the difference in
the expected returns of systems A and B is only due to the additional customer in system
A:

Dp(i0)(z) = un(z + €;) — un(x) < unl(z + &) —upn(z) = R;.

where uj,(z) is the expected discounted return of system B and R; is the immediate reward
of the additional class-i customer in the system, which will be collected eventually due to
the definition of ug.

(2) Assume that system A starts in state x + e; and system B starts in = + e3, where
we now couple the additional class-1 customer, say customer dj, in system A with the
additional class-2 customer, say customer dz, as well as all other service and interarrival
times, so that, as discussed earlier, if dj leaves the system, ds also leaves. Then, we can
let system A follow the optimal policy and system B imitate all the decisions of system A.
Now, again, the difference in the expected discounted returns of system A and B is only
due to the addititonal customers in the beginning:

Dn(12)(z) = up(x + €1) — up(x + e2) < up{x + 1) —up(z + e2) = Ry — Ry,
with u](x + e3) the expected discounted return of system B. ]
Using this lemma, we can present the conditions for class 2 to be preferred:

Theorem 2 If Ry > r_ﬁﬁle, then for all z € § and for all n, Dp(20){x) > 0, hence
class 2 is a preferred class.



Proof. Let Ry > r_l_’;}le. We use induction to prove the result. The function ug
defined by equation (3) clearly satisfies Dg(20){z) 2> O for all z € S. So assume that the
statement is also true for period n, and consider period n + 1. Now we use a sample path
argument: Let system A be in state x + ey and system B in x in period n + 1. System
A rejects all customers in period n + 1 and system B takes the optimal actions. Consider
an arrival. If system B also rejects either of the two classes, both systems remain in their
current states, preserving the extra class-2 customer which leads to a non-negative difference
in the rewards of the two systems due to the induction hypothesis. Acceptance of a class-1
customer to system B leads two systems to two different states x + ez and x +e;. If a
class-2 customer is admitted to system B, then the two systems couple with no difference
in reward. With the departure of the additional class-2 customer in system A, the systems
again enter the same state but with a return of r», whereas all other service completions
keep the extra class-2 customer in system A so that the difference between two systems is
at least 0 by the induction hypothesis. Then:

Dn11(20)(x) = uns1(z + e2) — unta{x)
Armin{Dy(21)(x), 0} + A2 min{0, D, (20)(x)} + pare
+(c — 1)pe min{ Da(20)(y)}

yES
A1 min{Rg — Ry, 0} + Xg % 0+ pars
+(1—/\1—/\2-—[.L2——ﬁ) x 0
> M min{Rz — Ry, 0} + roun

v

v

where the first inequality is due to the coupling, the second inequality follows from part 2
of Lemma 2 and uniformization. If Ry > Rj, then the statement is proven. Otherwise, we
have:

Dn+1(20)($) > /\1(R2 - R1) + ([-52 + ﬁ)Rg = (/\1 + pn + ﬂ)Rg - )\1R1 >0

where the last inequality is due to the assumption of the theorem. a

Thus, whenever Ry > r-l-)ﬁle’ class 2 is a preferred class. R» is the immediate

reward of class 2. ﬁm is the probability that a class-1 customer arrives before the
system closes down or a class-2 customer finishes service. Then, if the immediate reward
of a class-2 customer is higher than the expected reward of waiting for the next class-1
customer, it is more profitable to allocate one of the available servers to an arriving class-
2 customer instead of reserving it for a future class-1 customer. We have the following
corollary of this result:

Corollary 1 Whenever ry > 7y so that class-2 customers bring higher rewards, and require
shorter service times, class-2 customers are preferred.

We derive a similar condition for class 1 to be preferred. However, this requires some
more work, since we have to consider a lower bound on the effect of changing a class-1
customer to a class-2 customer as well as the effect of an additional class-1 customer.
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—22
Az+po+f

(1) Dr(10)(z} > 0.

T1§1 — ToH2
(2) Da12)(@) > BT

Proof. We use induction on the number of transitions, n. Both statements are satisfied

for ug defined by (3). Assume that both are true for n. Now we have to consider two pairs

of systems, one for Dy41(10)(x) and the other for Dy41(12)(x).

(1) Consider the first pair: Assume that system A is in state z + e; and system B is
in z in period n + 1, and we couple the two systems in such a way that system A rejects
all customers in period n + 1, whereas system B follows the optimal policy. If upon an
arrival system B also rejects either of the two classes, both systems remain in their current
states, preserving the extra class-1 customer which leads to a non-negative difference in the
rewards of the systems due to the induction hypothesis. Acceptance of a class-1 customer
to system B leads both systems to enter the same state with no difference in reward. If
a class-2 customer is admitted to system B, then the systems move to two different states
T +e; and = + ea. With the departure of the additional class-1 customer in system A,
the systems again enter the same state but with a return of r;, whereas all other service
completions keep the difference between the two systems the same, i.e., the only difference
is the extra class-1 customer, so that the difference between the two systems is at least 0
by the induction hypothesis. Then:

Lemma 3 If rip > ropg, then for allx € 8§ and for all n:

Dp1(10)(z) = A min{Dp(10)(x), 0} + A2 min{D,(10)(z), Dn(12)(z)} + p1m
Hepz — ) min{ Dn(10)(y)}

A1 % 0+ Aomin{0, Dp(12)(x)} + pam
+(1—/\1—/\2—,u,1—ﬁ) x 0

TR T TaH2
> Adgming —= O} +r
= 2 { 12 +)6 » 141
where the first inequality is due to coupling, the second due to the induction hypothesis
for D,(10)(x) and uniformization, and finally the third one follows from the induction
hypothesis for D,(12)(x). If r1p1 > ra2pu2, the statement is proven; otherwise:

v

Artpz+ B Agrops >0
p2+ B 2 +p8 -

where the last inequality is due to the assumption of the theorem. Thus, the first statement
is true for all x € & and for all n > 0.

(2) Now consider the second pair of systems: Let system A’ be in state z+e; and system
B’ in £+ 2 in period n+ 1. System B’ takes the optimal actions and system A’ imitates all
the actions of system B’ in this period. We, as in Lemma 2, couple the additional class-2
customer, say customer d, in system B’ with the additional class-1 customer, say customer
dy in system A’, as well as all other service and interarrival times. Then, if d; leaves the
system, which happens with probability g;, ds also leaves. The departure of d; leads the
system to couple with a reward of ry — ro, the departure of ds alone, which happens with
probability uo — 1, takes the systems to two different states, x + e; and x with a reward

Dy (10)(z) = mm

11



of —r2 and whenever there is any other transition, both systems continue to have their
additional customers so that the difference between the two systems is due to changing a
class-1 customer to class 2:

Duss(12)() 2 pia(ry = 2) + (ua — pr)(~72 + Da(10)(z)
(A + Do + (o — Do) min{ Da(12)(0))}

TIM1 — Top2
2 T —_ T2 2 + 1 — 2 - _—
101 — rop2 + (1 — p2 — B) Py
_ i — o2
p2 + 0

where the first inequality is due to the coupling and the second follows by uniformization
and the induction hypotheses for both D,(10)(z) and D,(12)}{zx). This proves the second
part of the lemma. a

This lemma immediately leads to the following theorem which gives the sufficient con-
ditions for class 1 to be preferred:

Theorem 3 Ifriuy > mmug, then class 1 is a preferred class.

5 A discussion on preferred class and a counterexample

5.1 Non-existence of a preferred class

In the previous section, we give sufficient conditions for each class to be preferred. It is easily
observed that these conditions are not complementary, i.e., for certain values of parameters
our results cannot claim that there exists a preferred class:

Remark 1 If the parameter values are such that:

Aa+pe+ B8 rops Ai(p2 + B)
Ag < 11 < (A4 p2+ B + 6)’ )

then our resulis are inconclusive.

We consider a control problem, so it is more likely to consider the system at an op-
erational level, rather than at a strategical or tactical level. This requires 8 to be small
(8 < 0.001), so that for many parameter values the first term in (4) will be larger than the
third implying that a preferred class does exist. Whenever there is not a preferred class, we
know little about the optimal policy: We still have a threshold policy, and it is also easy to
show that the optimal policy has to use all the servers. However, our results, so far, do not
guarantee that in each state at least one of the two classes has to be accepted. Of course,
this is very counterintuitive, and we conjecture that it is never optimal to reject both of the
classes in any state:

Conjecture 1 For all parameter values, there erists mo state in which both classes are
rejected.

12



It is easier to believe that the system preference may change dynamically, so that it may
be optimal to accept either of the classes in some states and reject in the others, i.e., there
is not a preferred class. However, we do not believe this:

Conjecture 2 There always exists a preferred class.

5.2 A counterexample to the ru rule

We present a counterexample to the ru rule in which class-2 customers are rejected in two
of the states, whereas class 1 is accepted in all states, even if the average reward of class 2
is slightly higher than that of class 1. The system has 6 servers. The parameter values are
as follows, before normalization: A; = 3, A2 = 0.01, g = 0.5, p2 = 5, ry = 2, ro = 0.202
and @ = 0 so that 731 = 1 and roue = 1.01. The optimal policy accepts class-1 customers
in all states, so class 1 is the preferred class in this example. However, class-2 customers
are rejected in states (1,4) and (0,5).

5.3 Sufficient conditions for the ru rule

From the results of the previous section, we can easily derive sufficient conditions for the
rit rule to determine the preferred class:

Corollary 2

A (p2 + B)

(A1 + g2 + B)(p1 + B)
rurule.

<1, thenthepreferredclass isdeterminedbythe

Proof. If rops > ripr:

ol /\1(.”2 +ﬁ)
T1H1 =t (AL + p2 + B){pm + B)

so that class 2 is preferred by Theorem 2.
If ryp1 > roug, then:

ropz g ettt h
T1H1 Az
which implies that class-1 customers are preferred by Theorem 3. O

Note that this corollary gives the sufficient conditions. So, even if the given condition
is not satisfied, the class with higher r;x; might still be preferred.

6 Concavity of the value functions under certain conditions

The system cannot have more than ¢ customers at any time. Thus, as the number of class-
i customers increases in the system, we expect that thresholds on the number of class-j,
£ # j, customers decreases. This is, in fact, what we have observed in all the examples we
have worked out and it corresponds to the concavity of the u,’s in z; for fixed z;, j # <.

13



However, it is difficult to prove the concavity in full generality because of the boundary
effects and state-dependent service rates. We derive explicit expressions for bounds on the
differences due to an additional customer, D,(j0)(z), and due to changing the class of a
customer, Dy (i)(z), to show the concavity of the u,’s in z3 only under some restrictive
conditions on the parameters:

Condition 1: 282 < M_ﬁeﬁ &

T1H1

A(pe — ) < (g1 + B)(p2 + B) (1 T 2-: )

iti : A 20 A +
Condition 2: r-l-.ulﬂ-_ﬂ < Tfﬂf < m u?+ﬁ &
A(pe — pa) < (a1 + B){(u2 + 8) (1 + {f—j,%)

We first observe that under either of these conditions class 1 is a preferred class. This
is obvious for Condition 1 (see Theorem 3). Now consider Condition 2. It can be easily
shown that the second part of Condition 2 is equivalent to:

A ptB (u2 + B)?
Mt +B)(m+6) ~ (M) pe+B)

But then we have:

M (ps + B) (12 + B)? p2+ B p2+ 8
<1+ <14 2270 2270
(i +B8)(M+pe+8) =" A+ M+pe+8) " M+ Ao
Thus when Condition 2 is satisfied, we have:
Ao + g +
oty < -—2-‘—{5—!3?‘1#1

which implies that class 1 is preferred by Theorem 3. Moreover, it is easily observed from
Theorem 2 that class 2 is also preferred under Condition 2. Now we can present the following
result:

Lemma 4 Assume that either Condition 1 or Condition 2 is satisfied. Then, for allz € S
and for alln > 0:

(1) un(z) is concave in zy for each fized z;, i.e.,
Dn(20)(z + e2) < Dn(20)(z).
A
2} Rg— ——————R) £ D,(20)(x).
@) B2 = s R < Da(20)(@)

The proof of this lemma is very technical, which requires to derive explicit expressions
of a lower bound on D,(20)(z) and an upper bound on D,(21)(z). Conclusions of the
previous sections do not need these explicit forms, which are very complicated in sight and
bring no intuition at all. Thus, we exclude them from the main body of the paper. We
present the proof of this lemma along with another lemma in the Appendix. Proofs of both

lemmas are based on induction, and they are conceptually straightforward although very
tedious.
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Under Condit_;ion 2, both class 1 and 2 are preferred so that thresholds for both classes
are trivial, i.e., (k) =c—k for all k =0,..,¢— 1 for j = 1,2. For Condition 1, concavity
of the u,’s in x2 guarantees the monotonicity of the thresholds:

Proposition 1 Assume that Condition 1 holds. Then, I2(k) is decreasing in k.

Proof. By definition of I2(k), we have ap (I2(k), k;2) = 0. Then:
wn (k) b+ 2) = un (k) + 1) < up (B(R), K +1) —up (2(k), &) < 0

where the first inequality is due to a, ({2(k),k;2) = 0 and the second is due to Lemma 4.
But then by definition of I2(k + 1), i2(k + 1) < I2(k). O

7 (Generalizations and Future Research

Our results still hold when the arrival process is a Markov arrival process (MAP) instead of
a Poisson process, see Ormeci (1998) for details. MAPs are defined by Asmussen & Koole
(1993) who have also shown that any independent arrival process with multiple classes
of customers can be approximated arbitrarily closely by an MAP. The MAPs bring two
main benefits: One is to be able to model the departure process of most queueing systems
with exponentially distributed sojourn time, which can then be used as input to the loss
system we consider. For example, we can define an appropriate MAP to reproduce the main
result of Ku & Jordan (1997). Secondly, the MAPs can model many generalizations of the
exponential distribution, e.g., phase-type renewal process and Markov Modulated Poisson
Process (see Hordijk & Koole (1993)).

We can also consider the system under a general arrival process, which can be modeled
as an embedded MDP at arrival epochs. This will generalize the MAPs.

A system with more than two classes is another natural extension to be considered. The
arguments used here to determine preferred class(es) can still be used when the number
of classes is increased, but the sufficient conditions for a class to be preferred will consist
of relations between the rewards and service rates of this class and all the other classes.
Moreover, existence of thresholds, in this case, is very difficult to establish. As a result, the
extension of our results to systems with more classes is not obvious, and so worthwhile to
explore.

We have also considered the system under batch arrivals (see Ormeci & Burnetas (1999)).
Although some of the results can be replicated exactly for batch arrivals, they are not enough
to characterize the optimal policy in terms of thresholds. However, we can still show the
existence of a preferred class under certain conditions.

In this paper, we assume that customers of each class bring fixed rewards. In Ormeci,
Burnetas & Emmons (1999}, we have considered random rewards for each class. We have
shown the existence of thresholds. Under random rewards, we cannot specify one class as
preferred, since the reward of each customer, even if they are from the same class, varies.
However, it is shown that there exist preferred customers under certain conditions, where
preferred customers of each class are specified as the customers who bring at least a certain
amount of reward.

15



Assuming fixed rewards for each class also implies that we have no control over the
rewards. However, pricing has been an important issue for the last decades. Thus, we can
reverse the roles in the system we have considered so that we do not have the control on the
admission but on the reward of an incoming customer, which gives us an indirect admission
control. Miller & Buckman (1987) have considered a static transfer pricing problem for one
class in an M /M/c/c system which serves as a model of a service department. More general
pricing schemes can be considered, e.g. dynamic pricing can be also allowed as opposed to
static pricing.
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8 Appendix

We want to prove Lemma 4. For this, we first define D™"(55) and D% (i) as a lower and
an upper bound, respectively, on the differences D,(¢j)(x), so that for all n:
DI™(ig) < Dn(if)(z) < D7**(i)  Vz €S

Now, we need to prove the following lemma, which will be used in the proof of Lemma 4.

Lemma 5
A rotg _ Az +po+ B
1)y I < <
(1) f)\1+,u1+ﬁ_1”1#1_ A2
Jor al n>0;:
rrp1 (A + A+ po + B) —ropa(M + Ao+ + 6)
(A1 + A+ 2 + B)(pa + B) + Mpz — 1)

; Ao + pa + B) — ropiod
& 0 < D™in(10) = ria (A < Dn(10)(z).
< D 0) (M + A2+ p2+ B+ 8) + Mlpe — ) ~ (10)(=)

Top2 AL
9) I < ,
@ f?‘l#1_)\1+#1+5

, then for all z€ &,

D™"(12) = < Dp(12)(x)

then for all £ €8 for all n>0:

mingqoy _ _ T(Mtua+B)  raup
Dr12) = M+ +B)ue+B) pe+p < Da(12)(z) and
Tnin _ 11
0< D"(10) = 31— < D, (10)(@).

Proof. We only give a sketch of the proof: We consider the differences D, (12)(zx)
and Dp(10)(x} simultaneously, and use the same sample path analysis as in the proof of
Lemma 3. We consider two pairs of systems at the same time, one pair for D,(12)(x)
and the other for D,(10)(z). D™"(12) and D™"(10) are lower bounds for D,(12)(z) and
Dy (10)(z), respectively, whereas in Lemma 3, lower bound for D,(10)(z) is 0, and for
Dp(12)(z) it is ﬂ%’%’ﬂ Thus, in this lemma, both lower bounds have more complicated
expressions under each of the conditions. However, this does not affect the method of the
proof, so that after replacing these lower bounds appropriately, the proof proceeds exactly
in the same way as Lemma 3. a

Now, we are ready to prove Lemina 4:

Lemma 4 Assume that either Condition 1 or Condition 2 is satisfied. Then, for allz € S
and for alln > 0:

(1) up{x) is concave in xy for each fized zi, i.e.,
Dy (20)( + e2) < Dp(20)(z).

A1
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Proof.  We show both statements together by induction on the remaining number of
transitions under either of the two conditions. Let up be defined by (3). Then, all claims
are true for n = 0. Now assume for n.

Assume that Condition 1 is true. We first show that v,(.; j)’s also satisfy the mono-
tonicity in part (1). Consider v,(.;1)’s. We differentiate the cases when all the servers are
occupied and when there is at least one free server. If x1 + 22 + 2 < ¢

vz + 2e2;1) —vp(z +e2;1) = un(T+e1 + 2e2) —un(z + 1 + e2)
< up{x+er+ez) —us(z+er)
= wvp{z +e2;1) — vn(x; 1)
where the inequality follows from the induction hypothesis and the rest is due to the fact

that class 1 is preferred under either of the assumed conditions. If 21 + z2 + 2 = ¢, we
consider the right and left hand sides of the inequality separately:

Vo (T + e2;1) —vp(z;1) = un(x +e1 + €2) — un(z + 1) > DT(20)
up(x + 2e2;1) —vn(z + e2;1) = up(z+ 2e2) —un(x + €1 +e2)
< Dpe(a1)
by definition of D™%(3j) and D™ (ij). Thus if D™"(20) > D™e*(21), then the de-
sired inequality is satisfied. From Lemma 5, part {2) (note that D%*(21) = —Dp**(12)),
Dmin(20) > D™3%(21) if and only if
A4 rip (A + pg + B)
(1 +B) (M +p2+6) = (M +p1+8)(pz+B)
MM+ +B)(p2+8) < (M +pe + B +68) =
0 < (2 + B)(m + B) (M1 + p2 + B) — M(p2 — m1)

which is true by the second part of Condition 1.

Now we consider v,(.;2)’s. Due to the induction hypothesis, we can have only three
different cases for a,(z + 2e2;2) and a,(z; 2) since an(x;2) = 0 and a,(z + 2e3;2) = 1 is not
allowed. When the actions are the same for both states (z + 2e;) and z, the statement is
obviously true by the induction hypothesis. Hence we need to consider only the case with
an(z;2) = 1 and an(z + 2e5;2) = 0:

Un(T;2) — Un(T + €2;2) — vn(x + €2;2) + vp(x + 2€9;2) <
Up(ZT + e2) — un{x + €2) — un(z + 2e2) + un(z +2e2) = 0

where the inequality follows from the optimality of vy, ’s.
Now we can consider wn41's:

Unt1(Z) — 2una1 (T + €2) + Unt1(z + 2e2)

Mvn(z; 1) — 2un(z + e2;1) + vn(z + 2e9; 1)]

A2[va(z; 2) — 2un(z + e2;2) + vp(z + 2e9; 2))]

T [un(z — €1) — 2un(z — €1 + e3) + un(z — €1 + 2e3)]
zapa[un (T — €2) — 2un(z) + un(z + €2)]

+ + +
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+ peafun(®) — 2un(z) + un(z +e2)]
+  polun(z) — 2un(z + e2) + un(z + €2)]
+ [{e— 21— 22 — 2z + x1(p2 — p1)][ualz) — 2un(z + €2) + un(z + 2e2)] 2 0

where the first two terms are non-positive since we have shown that vy,’s satisfy the given
inequality, the third, fourth and seventh terms are non-positive by the induction hypothesis
and fifth and sixth terms cancel out each other. Thus part (1) is true for all n under
Condition 1.

Now we show that part (2) is also true under Condition 1. For v,(.; 1), we have:

Up(z +e2;1) —up(z;1) > minfun(z + ey + e2) —un(z +e1),
un(x + e2) — un(z +e1)}
min{D;"*(20), D"*(21)} = D™ (21),

v

where the first inequality is due the fact that a,(x;1) = 1 whenever z; + 22 < ¢ and
an(z;1) = 0 if 1 + @2 = ¢, the second is due to definitions of D7%"(20) and D"(12) and
finally the last equality follows since D™"(21) = —D%*(12) = R; ~ R; < DI*™(20) by
Lemma 2, which is easily verified.

For j = 2, we first observe that DT"(20) < 0:

w2 A1y <0
pr+pB (Mt+pe+B(m+06)

by the assumption on roua2/r1p1. Then:

Un(x + €2;2) — vp(x;2) > min{un(z + €2} — un{z), un(x + e2) — up{z + €2),
un(z + 2e2) — un(z + e2)}
> min{DI*"*(20),0} = D?*™(20)

where the first inequality is due to statement (1) which does not allow an(z;2) = 0 and
an(z + e2;2) = 1 simultaneously, the second inequality is by definition of D™"(20) and last
equality follows from the above observation, D™"(20) < 0. Then, for %,41, we have:

Drny1(20)(z) > rops + M DT(21) + A DT(20) + (¢ — 1)p2 DI™(20)
= roug+ N |22 T 1 (1 A1 - p2 — B)DI(20)

pe+pB  mtp
; AL pg+ B)rape My
— Dmm 20 + ( —
n " (20) p2 + B p1+ 06
—(M + p2 + B)D7(20)
= Dmm(20)

where all relations follow from the induction hypothesis, uniformization and some algebra.
Thus, both statements are proven under Condition 1.
Now suppose that Condition 2 is satisfied. We only need to show that we still have
Diin(90) > DM (21) since the rest of the proof depends only on the observation that class
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1 is a preferred class under either of the conditions. Under Condition 2, Lemma 5, part (2)
implies that D**(20) > D*%(21) if and only if

RN , < it Xt B) —ram t ot + )
A+ p2+ B T (Mt pe+ B + B) + Arlpz — )
(M + A2 + p2 + B) (1 + B)(p2 + B) — A2(u2 — 1)
Ro A — < =
2do{p2 — 1) < By pYgr——"
Ry _ (M1 + e+ p2 +B) (k1 + B)(u2 + B) = Mp2 — )
R~ Ag(Ar + p2 + B)(pe — p1)

If the right hand side of the inequality is greater than the quantity Aj(p2 + 8)/(M + p2 +
B)(111 + B), then the above inequality is always satisfied by the first part of Condition 2:

M Qat et +B)(m +B) (s +8) — M(u2 — m)
M+p2+8~ A2(M1 + p2 + B) (p2 — )
Ado(pg — ) + M(uz — 1) < M+ Ae +pe + B)( + B) (e +8) =
(A1 4+ A2)(p2 — p1)A1 < (A1 + A2 + p2 + B) (1 + B) (12 + B)

—

which is always true by the second part of Condition 2. Thus —DT"(20) < D7"(12) =
—D7%(21) and so wvy(.; 1)’s satisfy the monotonicity.
Hence, both statements are true under either Condition 1 or Condition 2. 0
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