Report 1999-051
Admission Policies for a Two Class
Loss System with Random Rewards

E. Lerzan Ormeci, Apostolos Burnetas
and Hamilton Emmons

ISSN 1389-2355



Admission Policies for a Two Class Loss System
with Random Rewards

E. Lerzan Ormeci, Apostolos Burnetas and Hamilton Emmons

January 24, 2000

Abstract

We consider the problem of dynamic admission control in a Markovian loss queueing
system with two classes of customers with different service rates and random revenues.
We establish the existence of an optimal monotone policy. We also show that under
certain conditions there exist preferred customers from either of the classes.

1 Introduction

In this paper, we consider a loss system with ¢ identical parallel servers, no waiting room
and two classes of customers. Class-i customers arrive at the system according to a Poisson
process with rate A; and demand an exponential service time with mean 1/u;, where p; < po.
If a class-¢ customer is admitted to the system, a random reward of p; > 0 is collected in
the beginning of the service. We assume that p; has a probability density function f; with
finite mean, and the rewards of successive customers are independent. Our objective is
to describe the optimal policy for admitting jobs in order to maximize the total expected
discounted reward with continuous discount rate § over an infinite horizon or the long-run
average net profit. If we assume that rewards of customers are determined and collected in
the end of service, then the system is equivalent to the one whose customers of class-i offer
fixed rewards of r; with 7; = E[p;]. This system has been analyzed by Ormeci, Burnetas &
Wal (1999).

It is intuitively clear that the optimal policy would require a minimum offer from each
customer depending on his class and the current state of the system. We show that the
minimum offer for class j is increasing in the number of class-k customers, k # 7, in the
system. This is equivalent to the following monotonicity of the optimal policy: If a class-j
customer with a reward of p; is rejected when there are z; class-i customers in the system,
then (s}he will still be rejected if there are the same number of class-j customers and more
class-k, k # j, customers in the system. Moreover, we show that under certain conditions,
there are customer from either of the classes who offer sufficiently high rewards so that they
are never denied service unless all the servers are occupied. We call these customers as the
“prefered” customers.

There has been an increasing interest on multiclass loss networks recently due to the
growth in telecommunications systems. Admission control is one of the main research
areas on loss networks, see Chapter 4 of Ross (1995) for a comprehensive review. Most of
the research on the area concentrates on certain types of policies {e.g., coordinate convex



policies, trunk reservation policies) rather than analyzing the optimal policy directly; except
for the following studies: In early 1970’s, Lippman & Ross (1971), which is also known as
streetwalker’s dilemma in literature, analyze optimal admission rules for a system with one
server and no waiting room which receives offers from customers according to a joint service
time and reward probability distribution. Miller (1971) considers a system with ¢ parallel
identical servers, no waiting room and k different customer classes. All customers demand an
exponential service with the same rate, whereas they offer different fixed rewards determined
by their class. Later on, in late 1990’s, Ku & Jordan (1997) consider two stations in tandem
each with no waiting room and parallel servers. Carrizosa, Conde & Munoz-Marquez (1998)
present an optimal static control policy for acceptance/rejection of & classes in an M/G/c/c
queue, where each class has a different service requirement and a different reward. Ormeci
et al. (1999) consider the same system described above, where the rewards that customers
bring is fixed for each class. All these studies, except for Lippman & Ross (1971}, assume
that the rewards gained from the customers are fixed for each class, as opposed to random
rewards in our sytem. However, random rewards have been considered in queueing systems;
e.g., Ghoneim & Stidham (1985) analyze the optimal admission policies for a system with
two queues in series and two classes of customers who bring random rewards and require
different, services.

This paper is organized as follows: In the next section, we present the corresponding
Markov decision process model of the system described above. The third section proves
the existence of an optimal monotone policy. The fourth section presents the conditions
under which preferred customers exist and how to determine them. The extension of all
the results to infinite time horizon problems is considered in the fifth section. Finally, we
discuss generalizations and possible future research in the last section.

2 Markov Decision Model

2.1 Discrete time model of the system

In this section, we build a discrete time Markov decision process (MDP) for the system
described above with the objective of maximizing total expected discounted returns over a
finite time horizon with 3 as the discount rate. We can consider discounting as exponential
failures, i.e., the system closes down in an exponentially distributed time with rate 8 (for the
equivalence of the process with discounting and the process without discounting but with an
exponential deadline, see e.g., Walrand (1988)). We also assume without loss of generality
that py < pg. Then, maximum possible rate out of any state is A\; + Az +cpp + 3. Since the
time between each transition is always exponentially distributed and the maximum rate of
transitions is finite, we can use uniformization (introduced by Lippman (1975a)) to build
a discrete time equivalent of the original system. Thus, we let A = A + Ay 4 cus + 5.
We observe the state of the system at each instant of a potential transition, so in every
exponentially distributed time with rate A. Then, if the system is in state x, a potential
transition will occur with rate A, and the actual transition will be a class-j arrival with
probability A;/A, a class-i service completion with probability x;ui/A, a “fictitious” service
completion, which does not change the state of the system, with probability {eus — z1u7 ~
Zop2)/A, and finally the system will close down with probability 3/A. Now, we can use
normalization as well, so that we can assume, using the appropriate time scale, 4 = 1.



Then the system will be observed in exponentially distributed intervals with mean 1, and,
as described before, there will be an arrival with probability A; + A2 and a potential service
completion with probability cus.

The assumption g; < uo implies that class-1 customers are “slow” customers. We use
this assumption quite often to couple the service times of class-1 and class-2 customers. If
we want to couple service times of a certain class-1 customer, say d;, and a class-2 customer,
say dy, we let £ be a uniformly distributed random variable in (0,1), and we generate the
service times of d; and dy using the same £, so customer dy leaves earlier than customer d;
leaves with probability 1. In terms of discrete time, this translates to the following: Both
customers leave the system with probability u;, and a class-2 customer departs from the
system with probability pup — p1 leaving the coupled class-1 customer in the system. Thus,
coupling never allows a coupled class-1 customer to leave the system while the coupled
class-2 customer is still there.

We define the state of the system depending on the type of the last transition: If
the transition is due to a class-j arrival with a reward of p;, then the state is (x;j) =
(x1,22;J, p;), where z; is the number of class-i customers in the system. Otherwise, i.e.,
if there is a potential service completion, the state is x = (x1,z3). Distinguishing the last
event occurred in the state of the system is quite artificial, but it reflects the consequences of
actions more clearly, as we see from the optimality equations given in the next subsection.
Note that we always have x; + zo < ¢ and the actions are defined only for the states
corresponding to an arrival.

2.2 Markov decision model for finite horizon

The objective is to maximize the total expected discounted reward over a finite horizon;
let u,(x) and v,y (z; ) be the maximal expected 3-discounted profit, starting in state x and
(x; 7), respectively, when n transitions remain in the horizon. Computing v,(z; j) requires
a comparison of two actions: accepting the incoming class-j customer which implies moving
to state x + e; with a reward of p;, where e; is defined as the vector which has a 1 at the
Fth coordinate, and 0 elsewhere, and rejecting him (her) so that the system remains in the
same state with no reward or cost. We define a,(z; j) as the optimal action in state (z; )
when there are n remaining transitions, where a,(z;7) = 1 if it is optimal to accept the
arriving customer of class j and 0 otherwise. We let & be the set on which u,’s are defined,
ie,S={z:z;1 +xz2<c}.
The optimality equations of this model are as follows: For 1 +z3 < e

vn(w;7) = max{p; +un(z +€;),un(z)} (1)
Unt1(T) M Evn(z; 1)] + Ao Efvn(z; 2)] +

Tip1un(z — €1) + Zoptoun(z — e) +

{ep2 — 1 — Tapg)un(z),

where we set up(—1,z2) = un(0,z2) and uy(z1,—1) = uy(x1,0). For 1 + 22 = ¢, no
customers can be accepted so that a,(x;j} = 0, and thus v,(z; 7) = un(z). If the last event
occurred is a class-j arrival, which happens with probability A;, (s)he is either accepted
so that the system moves to the state = + ¢; with a random reward of p;, or rejected,
which keeps the system in the same state x. If a class-7 customer finishes his service, with



probability x;p;, the system state changes to z — e;. The “fictitious” service completions,
which occur with probability cugs — 11 — 2op9, affect neither the state nor the total reward
of the system. Finally, if the system closes down, with probability 3, the system receives
no more reward.

2.3 Infinite horizon models

We prove all our results for the objective of maximizing total expected S-discounted reward
for a finite number of transitions, n, including the “fictitious” transitions due to the “fic-
titious” service completions. Thus, “finite” horizon problems are pseudo finite problems.
They provide the powerful tool of induction to prove our results for all n, which allows us
to consider the infinite horizon problems: All the results proven for finite n are true for the
limit n — oo, so the corresponding conclusions are valid when total expected 3-discounted
reward over an infinite horizon is maximized.

We consider the objective of maximizing expected long-run return as well. All our results
hold for all 3, including # = 0 and the model is unichain since state (0,0) is reachable from
all states. Then, it is straightforward to verify that the conditions introduced by Lippman
(1975b) are satisfied in this system, see Ormeci (1998) for details. Therefore, we have the
same conclusions for the value functions, which maximizes the long-run average reward.

We define v(z; j) and w(z) as the maximal expected S-discounted reward for the system
starting in state (z;j) and «, respectively, over an infinite horizon. Thus, for § > 0, we
have:

v(z;g) = lim wn(;j)
u(x) JLIIgOun(m)

a(z; §) is the corresponding action in state (x;7) so that a(x;j) = 1 if it is optimal to the
customer and a(z;j) = 0 otherwise. For 8 = 0, u(z) — oo, so we need to consider the
relative value functions and the gain in the usual MDP formulation.

2.4 Minimum offer required from an incoming customer

We choose to serve a customer, if both rejecting and accepting him (her) is optimal. Then,
from equation (1), we easily observe that:

an(z;7) =1 <= un(zr) —un(z+e;) < p;

Now let Dy,(0j)(z) = un(x) — un{z + e;). Hence, the optimal policy accepts a class-j
customer only if (s)he offers at least D,(07)(x) as a reward when the system is in state .
Thus, D,(05)(x} is the minimum offer that the optimal policy demands from an incoming
class-j customer, i.e., it determines a threshold level in state z such that if the random
reward p; of a class-j customer who finds the system in state = exceeds this threshold level,
(s)he will be admitted to the system, otherwise (s)he will be rejected.

More generally, we define D, (ij)(x) as the difference in the total expected discounted
rewards between system 1 and system 2 if system 1 starts in state = ‘plus’ one type 7 job
and system 2 starts in x plus a type § job, when there are n more transitions in the horizon,
where ¢ = 0 means that system 1 is in state x, i.e., there is no additional customer. We,
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occasionally, drop the arguments = and n later on, when there is no danger of confusion
in the reference. The four D,(¢j) functions of interest are D,(01), D,(02), D,(12) and
Dr(21) given by Dp(01}{z) = un(z) — un(z + €1), Dnp(02)(z) = us(z) — un(z + e2) and
D,(21)(z) = —Dp(12)(z) = un(z + e2) — un(z + ;). We can interpret the difference
D, (07)(z) in a slightly different way as well, so that it corresponds to the expected burden
that an additional class-j customer brings to the system in state z when there are n more
transitions. Then, the difference D,(21)(z)} also finds its interpretation as the expected
burden of changing a class-2 customer who is already in the system to a class-1 customer
in state x + es.

3 Existence of a monotone optimal policy

In this section we show that the minimum offer, D,(05)(z), demanded from class-j cus-
tomers in state z is increasing in the number of class-k customers in the system, & # j, so
that it is more difficult for a class-j customer to be admitted when there are more class-k
customers in the system. Intuitively, we expect that the required minimum offer is increas-
ing with the congestion level in the system. Thus, the result of this section is less than our
expectation, since we have not shown that the minimum offer for class j is increasing in the
number of class-j customers; which corresponds to the concavity of u, in x; for fixed x,
k # j. However, we were not able to prove the concavity of u, because of the boundary
effects. We also note that concavity of u,’s would lead to monotonicity of D,(07)(x).

Lemma 1 For all x with x)+x2+2 < ¢ (or equivalently for all x such that x+e;+e2 € §):
Un(x) ~Un(z +€2) —up(z +e1) +up{z+e1+e) <0 Vr2>1, (2)
for all functions up(z) that also satisfy (2), and are otherwise arbitrary.

Proof. Assume that ug satisfies (2). Note that many functions satisfy this inequality
including up{z) = 0. We prove the statement by induction on the number of remaining
transitions, so assume that the statement is true for n.

We first show that v,(.; 1)’s also satisfy this monotonicity. We define é such that:

§ = vp{x;1) —vn(z +e1;1) — vp(z + €95 1) + vp{z + €1 + €2; 1)

Whenever there is a class-1 arrival, there are four possible cases due to the actions a,(z;1)
and ap(x +e; +e2;1):

Case I: an(z;1) =ap(z+e; +exl)=0
8 Sun(xr) —un(z +e1) —un(z+e3) +un(z +e3+e2) <0

where the first inequality follows from the case assumptions and optimality of v,’s and the
second one from the induction hypothesis.

Case I1: a,(z;1) =1 and ay(z +e1 +e2;1) =0
§<up(zr+er)+p—up(zt+e)—u(z+er+e)—pr+upfz+e1+e)=0

where the inequality follows from the case assumptions and optimality of v,’s.



Case III: an(z;1) =0 and an(z + 1 +e2;1) =1
6 L up(x) — un(z + 2e1) — p1 — un(z + €2) +un(z + 21 + 2) + ;1
= Up(Z) — un(x + e2) — un(z + 1) + un(z + €1 + €2)
+un(z + e1) — up(x + €1 + e3) — Un(z + 2e1) + un(z + 2e1 +€2) <0

where the first inequality is true due to the case assumptions and optimality of v,'s and
the second one due to the induction hypothesis.

Case IV: ay(z;1) =1 and ap(z +e; +e;1) =1
b <up(z+e1) —un(z+2e;) —un(z+e1+eg) +un(z+2e; +e3) <0

where the first inequality is true due to the case assumptions and optimality of v,’s and
the second one due to the induction hypothesis.

Hence, v,(x;1)’s satisfy inequality (2) for all p;, and so E[v,(z;1)] also satisfies the
inequality. Ef[vn(z;2)] can be proved to satisfy inequality (2) in a similar way. Thus, we
can consider up4)’s:

Un+1(2) — Unt1(T + €2) — Unq1 (T + €1) + Uny1(Z + €1 + €2)
=AM (Elvn(z;1)] — Elva(x + e2;1)] — Efvn(z + e151)] + Efva(z + €1 + €2;1)])
+Az  (Elvn{z;2)] — Elvn(z + e2;2)] — Elun(x + €152)] + Elvn(z + €1 + €2; 2)])
+x11  [un(z — €1) — un(z — e1 + €2) — un(z) + un(z + e2)]
+p1 [un(®) — un(z + €2) — un(z) + unl{z + e2)]
+xopy  {un(z — e2) — un(x) —un(z + €1 — €2) + un(z + 1))
+po  [un(z) — un(z) —un(z + 1) + un(z + 1))
+a [un(z) — un(z + e2) — up(z + 1) + up(z + €1 + e2)]
< 0

where o = cua — (1 + V)pi — (22 + 1)}, The first two terms are less than or equal to 0
since E[vy]’s are shown to satisfy the inequality, the third, fifth and seventh terms are also
non-positive by the induction hypothesis whereas fourth and sixth terms are 0. Thus, the
value functions, uy,, satisfy inequality (2) for all n whenever ug does. O

This lemma guarantees the following monotonicity of the optimal policy:

Theorem 1 If it is optimal to reject a class-j customer in state (x;7), then it is optimal
to reject him (her) in all states (x + leg;J) withl > 1 and k # 3.

4 Existence of preferred customers

We define the preferred customers as the customers who are always admitted to the system
whenever there is at least one idle server. In this section, we show that under certain
conditions there are preferred customers from either of the classes. This is natural in the
sense that whenever customers are willing to pay sufficiently high prices, they should receive
immediate service if there is an available server.

First, we consider the system in which the rewards of class j are unbounded, i.e., we
assume that for all M > 0, P{p; > M} > 0. Then we easily conclude that there are
always preferred customers of this class: We have interpreted the difference D,(07)(z) as



the burden of an additional class-j customer, and seen that a customer of class j bringing
a reward of p; is admitted to the system if D,(0j){(x) < p;. Since the set S is finite,
Dinaz(0j) = maxzes{Dn(07)(2)} < co. Then, P{p; > Dmez(0j)}} > 0 so that there
exist class-j customers who are willing to pay high enough prices to be served immediately
whenever there is an available server.

Proposition 1 If rewards of class-j customers, p;’s, are unbounded, then there are pre-
ferred class-j customers.

From now on, we assume that rewards are bounded for both classes, so there exists a
Pj < oo, such that P{p; > j;} =0 and P{p; < p;} =1 for j = 1,2. Clearly, from practical
point of view as well as the mathematics of the analysis, this is the more interesting case.
Under this assumption, we need to analyze the behavior of the differences D,(i7)(z) in
more detail to be able to show the existence of preferred customers. Indeed, showing that
Dyn(0j)(z) < p; for all z € S is equivalent to prove the existence of preferred customers of
class j, since then class-j customers who offer high enough rewards arrive at the system
with the positive probability of P{Dpez(0j) < p; < p;}. We first show the non-negativity
of D,{(07)(x)’s and D,(21)(x):

Lemma 2 For j=1,2, forallz € 8 and n > 0:
(1) Dn(07)(z) = 0.
(2) Da(21)(z) = —Da(12)(z) 2 0.

Proof. We prove the statements by a sample path analysis.

(1) Assume that system A is in state z and system B in z + e; in period n. We let
system B follow the optimal policy, 7, and system A imitate all the decisions of system
B. We couple the two systems via the service and interarrival times, i.e., except for the
additional customer in system B, all the departure and arrival times are the same in both
systems. We note that system A can always imitate system B since it always has at least
as many free servers as system B does. Then, all future rewards of system A and B are the
same:

Dn(05)(x) = un(z) — un(z + €;) 2 up(x) — un(z +e;} = 0.

where u] (x) is the expected discounted return of system A.

(2) Assume that system A starts in state x + e; and system B starts in = + e;, where
we now couple the additional class-2 customer, say customer dy, in system A with the
additional class-1 customer, say customer d;, in system B, as well as all other service and
interarrival times, so that, as discussed earlier, if d; leaves the system, dj also leaves. Then,
we can let system B follow the optimal policy and system A imitate all the decisions of
system B. Now, again, all future rewards of both systems are equal:

Dn(21)(z) =up(z + e2) —un(z + 1) > ul(z +e2) —un(z +€;) =0,
with 4™ (z + e2) the expected discounted return of system A. o

up(z) is the expected discounted total reward of the system under the optimal policy
when there are n more transitions. Thus, u,(z) refers to the future rewards: The rewards



are collected in the beginning of service, hence the customers who are already in the system
do not bring any benefit in the future. In other words, the customers initially in the system
bring only more burden by preventing to accept more customers. Hence, it is always more
preferable to be in a state where there are less or faster customers, which is, indeed, the
conclusion of Lemma 2.

Now, we prove that under certain conditions, there are preferred customer of class 2:

Theorem 2 If f:;";l > r-!-).::]m’ then for allx € § and for alln, D,(02)(x) < p2, hence there
are preferred class-2 customers.

Proof. Let ps > mﬁl. We use induction to prove the result. The function up(z) =0
for all x € § clearly satisfies the statement. So assume that the statement is also true for
period n, and consider period n+1. Now we use a sample path argument: Let system A be
in state x and system B in z + e3 in period n+ 1. System A takes the optimal actions and
system B rejects all customers in period n+ 1. Consider an arrival. If system A also rejects
either of the two classes, both systems remain in their current states, preserving the extra
class-2 customer. Acceptance of a class-1 customer with a reward of p; to system A leads
two systems to two different states z + e; and x + ez with a difference of p; in the value
functions. If a class-2 customer bringing a reward of p; is admitted to system A, then the
two systems couple with a difference of ps in reward. With the departure of the additional
class-2 customer in system B, the systems again enter the same state, but with no difference
in reward, whereas all other service completions keep the extra class-2 customer in system
A. Then:

D 11(02)(z)

Up41(2) — Unt1(x + €2)

< Ay max{Dn(12)(x) + p1, Dn(OQ)(:L‘)} + Ag max{pz, Dn(02)($)} Fpox0
+(c— 1)p2 r;lggc{Dn((J?)(y)}

< Armax{p,p2} + A2+ (1 — A — Ao — pa — B)p2

< Armax{p; — p2,0} + (1 — p2 — )2

where the first inequality is due to the coupling, the second inequality follows from the
definition of p;, the induction hypothesis, part 2 of Lemma 2 and uniformization. If g2 > 71,
then the statement is proven. Otherwise, we have:

D 1(02)(z) < A(pL— p2) + (1 — p2 — B)p2 = p2 — (M1 + p2 + B2 + Mipr < 2
where the last inequality is due to the assumption of the theorem. a
We derive a similar condition for class 1 to be preferred. However, this requires some

more work, since we have to consider an upper bound on D,(21)(z) simultaneously with
the minimum offer for class 1, D,(01){z).

Lemma 3 If%ﬁf—iz’g) < 52—'%\2”2—"'1@, then for allz € S and for all n:

(1) Dn(01)(z) < p1.

He — p1 _
(2) Da(21)(x) < WPL



Proof. We use induction on the number of transitions, n. Both statements are satisfied
for ug(x) = 0 for all £ € S. Assume that both are true for n. Now we have to consider two
pairs of systems, one for Dp11(01)(x) and the other for D,41(12)(z).

(1)} Consider the first pair: Assume that system A is in state x and system B is in z + ¢;
in period n + 1, and we couple the two systems in such a way that system A follows the
optimal policy, whereas system B rejects all customers in period n + 1. If upon an arrival
system A also rejects either of the two classes, both systems remain in their current states,
preserving the extra class-1 customer. Acceptance of a class-1 customer with a reward of
p1 to system A leads both systems to enter the same state with a difference of p; in reward.
If a class-2 customer bringing p2 is admitted to system A, then the systems move to two
different states x+e2 and z+e; with a difference of ps. With the departure of the additional
class-1 customer in system B, the systems again enter the same state but with no return,
whereas all other service completions keep the difference between the two systems the same.
Then:

Dp1(01)(z) < dymax{py, Da(01)(z)} + Az max{D,(21)(z) + p2, Dn{01)(x)}
Hepz — pa) max{ Dn(01)(y)}

A max{p, Dn(01)(z)} + Ao max{D,(21){z) + p2, p1}
+1l=-X—de—p1—B)p

< /\1151-i-)\2llﬂa~x{‘u2 _'ulﬁl+.52,ﬁl} +(1=M == =P
pz + 8

_ m+8 } _

< A = ,0 1— -

< Agmax {Pz prpry12) + (1= p1— B)ps

where the first inequality is due to coupling, the second due to the definition of p;, the
induction hypothesis for D,,(10){(z) and uniformization, and the third one follows from the
induction hypotheses for Dy, (10)(z) and D, (21)(z). If po < #;i p1, the statement is proven;
otherwise:

IA

i+ P
p2+ 0
2 Igﬁl()\z +p2+B) < pr
where the last inequality is due to the assumption of the theorem. Thus, the first statement
is true for all x € § and for all n > (.

(2) Now consider the second pair of systems: Let system A’ be in state z+e3 and system
B’ in 2+ ¢ in period n+ 1. System A’ takes the optimal actions and system B’ imitates all
the actions of system A’ in this period. We, as in Lemma 2, couple the additional class-2
customer, say customer ds, in system A’ with the additional class-1 customer, say customer
d; in system B’, as well as all other service and interarrival times. Then, if d; leaves the
system, which happens with probability ui1, d2 also leaves. The departure of d; leads the
system to couple with no reward, the departure of ds alone, which happens with probability
w2 — p1, takes the systems to two different states, « and x +e; with no reward and whenever
there is any other transition, both systems continue to have their additional customers so
that the difference between the two systems is due to changing a class-1 customer to class

Dpyp1(01)(z) < Aopo— Ap Ai+(1—m—PB);

< p1+ Agpa —
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Dris(2)(@) < g1 x 0+ (42— j)Da(01)@) + (s + Do + (c — Dz max{Da(21) ()}

- H2 — M1 _ H2 — H1_
< - +(l—-pp— f)—=——"p) = ——
< (p2—p)pr+(1-p2— ) oy ey 22
where the first inequality is due to the coupling and the second follows by uniformization
and the induction hypotheses for both D,(01)(z) and D,(21)(z). This proves the second

part of the lemma. O

This lemma immediately leads to the following theorem which gives the sufficient con-
ditions for class 1 to be preferred:

Theorem 3 If % < m’—};—"’""g, then there are preferred customers of class 1.

Theorem 2 and 3 present sufficient conditions to have preferred customers of class 2
and 1, respectively. Theorem 2 implies that if the upper bound of both classes are the
same, then there are always preferred class-2 customers. This is very intuitive, since we
would prefer to serve the faster customers if both classes offer the same reward; i.e., in
this case whenever a class-2 customer offers a random reward of g2, (s)he will certainly be
accepted if there is an idle server. Theorem 3 is not that easy to interpret since the quantity

Az"}?:f _I_g‘_‘g is not necessarily greater than 1. However, we can still conclude that, in
order to have preferred class-1 customers, we need stronger conditions on the ratio of upper
bounds, g—f, to accomodate the slowness of class-1 customers. Notice that we have these
conditions because the rewards are collected in the beginning of service, the conclusions
can be quite different when we assume otherwise. For example, as mentioned earlier, if the
rewards are determined and so collected in the end of the service, the system changes to the
system in Ormeci et al. (1999) with fixed rewards of E[p;]. Then, the slower customers are
preferred whenever E[p,] = E[ps], since they provide more steady income for the system.
See Ormeci et al. (1999) for details.

5 Future Research

We can consider the system under a general arrival process, which can be modeled as
an embedded MDP at arrival times. This allows us to model especially computer and
communication systems in a better way, since recently it has been verified that the arrival
processes in these systems do not satisfy the assumptions of Poisson arrivals (see e.g. Leland,
Taqqu, Willinger & Wilson (1994) and Willinger, Taqqu, Leland & Wilson (1995)).

The admission of customers into the system can also be controlled via pricing. Thus,
instead of rejecting the customers, we can propose a price, which may or may not depend on
the state of the system, for which we are willing to serve the incoming customer. This kind
of control has been considered in the context of social optimization for different queueing
systems, see e.g., Naor (1969), Lippman & Stidham (1977) and Xu & Shantikumar (1993).
The only study on loss systems with pricing is Miller & Buckman (1987) who consider a
static transfer pricing problem for one class in an M /M /c/c system which serves as a model
of a service department.
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This system can be considered under batch arrivals, which can model computer and
communication systems better. Lippman & Ross (1971) are the first to consider the batch
arrivals for a single server no waiting room system. Ormeci & Burnetas (1999) have also
considered a system under batch arrivals which has ¢ identical parallel servers and two
classes of customers with fixed rewards and rejection costs. They were able to characterize
the optimal policy only partially, but still the system has been shown to have certain
monotonicity properties. Similar results may be obtained with random rewards.
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