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Abstract

We consider the problem of dynamic admission control in a Markovian loss system
with two classes of customers with different service rates and revenues, where arrivals
occur in batches. We establish a monotonicity property of optimal value functions,
which reduces the number of possibly optimal actions. We also show that under certain
conditions there exists a preferred class. These results are valid under a Markov arrival
process.

1 Introduction

The importance of dynamic admission control strategies has received increasing recognition
in recent years in many applications. The improvements in automation has made it possible
to implement sophisticated rules, for example in computer-controlled manufacturing facili-
ties and communication systems with automated digital switches. Thus, dynamic admission
policies are used more widely as revenue management tools especially in telecommunica-
tions, and in particular, in telephone service and support applications.

Dynamic rules offer the possibility of significantly improved performance through in-
creased flexibility of resourse allocation among different customer classes, as compared to
static rules. A static admission policy determines the priorities among different customer
classes only according to their service requirements and revenues, and so these rules are
completely independent of the system state. On the other hand, a dynamic admission pol-
icy decides on admitting an arriving customer based on the system state as well as the
customer’s class. A dynamic admission policy usually specifies a resource idling rule, since
a customer can be denied service, even in the presence of available resources, to provide a
better service level for future customers of a more profitable class.

There has been an increasing interest on multiclass loss networks recently due to the
growth in telecommunications systems. Admission control is one of the main research
areas on loss networks, see Chapter 4 of Ross (1995) for a comprehensive review. Most of
the research on the area concentrates on certain type of policies (e.g., coordinate convex
policies, trunk reservation policies) rather than analyzing the optimal policy; except the
following studies: In early 1970’s, Lippman & Ross (1971) analyze the optimal admission
rules for a system with one server and no waiting room which receives offers from customers
according to a joint service time and reward probability distribution, whereas Miller (1971)
for a system with ¢ parallel identical servers, no waiting room and & different customer



classes. Ku & Jordan (1997) consider two stations in tandem each with no waiting room
and parallel servers. Carrizosa, Conde & Munoz-Marquez (1998) present a static control
policy for acceptance/rejection of k classes in an M/G/c/c queue. In Ormeci, Burnetas
& Wal (1999b), the same system considered here is analyzed with single arrivals. Indeed,
all these studies, except for Lippman & Ross (1971), assume that the system has single
arrivals. However, batch arrivals are quite common especially in telecommunications. A
loss system with batch arrivals is considered by Puhalskii & Reiman (1998), where they
restrict the domain of admission policies to the set of trunk reservation policies.

In this paper, we consider a system, which consists of ¢ servers with no waiting room
and two classes of customers: each served class-i customer brings a reward of r; > 0 upon
his (her) departure. Arrivals occur according to a Poisson process with rate A and a batch
of j1 class-1 and jo class-2 customers arrives with probability pj ;. A class-é customer
requires an exponential service time with rate u;. We assume that we can accept some of
the customers and reject the rest from each batch. This is substantially different than the
case in which it is allowed to accept or reject the whole batch only. For the latter case,
we present an example which violates any expected monotonicity properties of an optimal
policy.

We prove a monotonicity of the value functions, which leads to a reduction in the number
of possible actions that can be optimal. In addition, we develop a set of sufficient conditions
which ensure that a customer class is “preferred”, in the sense that its customers are always
admitted whenever there are free servers, regardless of the system congestion level. The
meaning of “preferred” is different for systems which receive batches consisting of only one
class of customers and systems receiving mixed batches, although its definition remains
the same. With uniform batches, basicly two actions are compared at an arrival epoch:
keeping a server empty or filling him with a customer of the batch class. Thus, in this case,
‘preferring class ¢’ means that ‘a server working on a class-7 customer is more beneficial than
having him idle’, so that being preferred does not involve a comparison between the two
classes, which, in turn, allows to have more than one preferred class. However, when the
system receives batches consisting of both class 1 and 2, at most one of the classes can be
preferred: Assume that only one of the servers is empty and a mixed batch arrived, then only
one customer can be accepted, and so both classes cannot be preferred at the same time.
Thus, with mixed batches, ‘preferring class " means that ‘a server occupied with a class-¢
customer brings more benefit than both an empty server, and a server working on a class-k
customer, & # ¢’. Therefore, systems with uniform and mixed batches require different sets
of conditions for each class to be preferred. Our results still hold under Markov arrival
process (MAP), which is shown to approximate any independent arrival process arbitrarily
closely by Asmussen & Koole (1993).

This paper is organized as follows: In the next section, we present the corresponding
Markov Decision Process (MDP) model of the system described above. The third section
proves a monotonicity of optimal value functions. The fourth section presents the conditions
under which a preferred class exists and how to determine this class for systems with uniform
and mixed batches. In the fifth section, we give a brief remark on systems with ) = uo. The
sixth section presents a counterexample to any possible monotonicity of the value functions
when the whole batch has to be admitted or rejected. Finally, we discuss generalizations
and possible future research in the last section.



2 Markov Decision Model

2.1 Discrete time model of the system

In this section, we build a discrete time Markov decision process (MDP) for the system
described above with the objective of maximizing total expected discounted returns over a
finite time horizon with 3 as the discount rate. We can consider discounting as exponential
failures, i.e., the system closes down in an exponentially distributed time with rate g (for
the equivalence of the process with discounting and the process without discounting but
with an exponential deadline, see e.g., Walrand (1988)). We also assume without loss of
generality that u1 < ps. Arrivals occur according to a Poisson process with rate A, and
at each arrival epoch a batch of j; class-i customers seek admittance to the system, where
=0 Lot Pize = 1 and poo = 0. We denote pj,j, by p; occasionally. Then, maximum
possible rate out of any state is A + cus + §. Since the time between each transition is
always exponentially distributed and the maximum rate of transitions is finite, we can use
uniformization (introduced by Lippman (1975)) to build a discrete time equivalent of the
original system. Thus, we let A = X 4 cup + 8. We observe the state of the system at
each instant of a potential transition, so in every exponentially distributed time with rate
A. Then, if the system is in state z, a potential transition will occur with rate A, and
the actual transition will be an arrival with probability A/A, a class-i service completion
with probability z,u;/A, a “fictitious” service completion, which does not change the state
of the system, with probability (cpz — z1p1 — z2p2)/A, and finally the system will close
down with probability /4. Now, we can use normalization as well, so that we can assume,
using the appropriate time scale, A = 1. Then the system will be observed in exponentially
distributed intervals with mean 1, and, as described before, there will be an arrival with
probability A and a potential service completion with probability cgo.

The assumption yu; < u» implies that class-1 customers are “slow” customers. We use
this assumption quite often to couple the service times of class-1 and class-2 customers. If
we want to couple service times of a certain class-1 customer, say dp, and a class-2 customer,
say do, we let £ be a uniformly distributed random variable in (0, 1), and we generate the
service times of dy and d» using the same &, so customer dy leaves earlier than customer d;
leaves with probability 1. In terms of discrete time, this translates to the following: Both
customers leave the system with probability u;, and a class-2 customer departs from the
system with probability ps — p1 leaving the coupled class-1 customer in the system. Thus,
coupling never allows a coupled class-1 customer to leave the system while the coupled
class-2 customer is still there.

We define the state of the system including the last event occurred: Let z = (z1,x2) be
the state of the system when there are z; class-i customers in the system and a potential
service completion is observed, and (x,§) = (x1,z2; /1, j2) be the state of the system if a
batch of j; customers has arrived at the system to find z; class-i customers. Distinguishing
the last event occurred in the state of the system is quite artificial, but it reflects the
consequences of actions more clearly, as we see from the optimality equations given in the
next subsection. Note that we always have 21 + x2 < ¢ and the actions are defined only for
the states corresponding to an arrival,



2.2 Markov decision model for finite horizon

We denote the maximal expected 3-discounted net benefit of the system which starts in
state z and (x;j) when n observation points remain in the horizon by uw"(z) and v"(x; 7),
respectively. Let S be the set on which u™'s are defined, ie.,, S = {z : z1 + 22 < ¢}
y™(z;7) = (Wi(z;5),¥5(x; 7)) is defined as the optimal state to be in at the beginning of
period n+ 1, when the system is in state (z;j) at period n. We define S(z; ) as the action
space for state (x;7):

S(.’L’,j) = {9651331' Syt S$i+j‘i: i= 1:2}5

so that S(z;j) is the set of all feasible states which can be reached from state z when a
batch of j arrives at the system. Note that S(z;j) = {z} for (z;7) with ) + 22 = ¢,
regardless of the value of j.

Now we can present the optimality equations. Let e; be the vector which has a 1 at the
ith coordinate, and 0 elsewhere. Then, for z; + 29 < ¢

v (x;7) = max{u"(y) 1y € S(m;j)} (1)
wHz) =z + zopare + A pjv(E; )
3

+z1p1u™(z — €1) + Topou” (x — e2)
+(epp — T — Top2)u" (),

where we assume u™(—1,z3) = u™(0,z2) and w*(z1,-1) = v™*(x1,0). If the last event
occurred is an arrival of a batch consisting of j; class-i customers, which happens with
probability Ap;, ;., then y; —x; of j; class-i customers are accepted so that the system moves
to the state y. If a class-¢ customer finishes his service, with probability x;pu;, the system
state changes to x — ¢; with a reward of r;. The “fictitious” service completions, which
occur with probability cpg — x14; — xop2, affect neither the state nor the total reward of
the system. Finally, if the system closes down, with probability 3, the system receives no
more reward.

2.3 Infinite horizon models

We prove all our results for the objective of maximizing total expected $3-discounted reward
for a finite number of transitions, n, including the “fictitious” transitions due to the “fic-
titious” service completions. Thus, “finite” horizon problems are pseudo finite problems.
They provide the powerful tool of induction to prove our results for all n, which allows us
to consider the infinite horizon problems: All the results proven for finite n are true for the
limit n — oo, so the corresponding conclusions are valid when total expected F-discounted
reward over an infinite horizon is maximized. Moreover, since the state space and the action
space in each state are finite and the results hold for all 8, including 8 = 0, we have the
same conclusions for maximizing the long-run average reward. Here, we note that for the
results regarding to the preferred class, we specify the initial value function «° in such a
way that the rewards of customers, who are still in the system at n = 0, are collected even
if their services have not been finished. Of course, this makes no difference in the optimal
policy for infinite horizon problems.



We define v(z;j) (u(x)) as the maximal expected (-discounted reward for the system
starting in state (z;j) (z) over an infinite horizon. Thus, for 3 > 0, we have:

weid) = lim o"(z;))
u(z) = nh—rnc}o u™(z)

y(x; 7) = (w1(z; ), ye(z; 7)) is the corresponding action in state (x; 7) so that it is optimal
to have y;(z;j) class-¢ customers when a batch of j arrives at a system with z; class-:
customers. For # =0, u(z) — oo, so we need to consider the relative value functions and
the gain in the MDP usual formulation.

2.4 Effect of an additional customer

In our analysis below, the effect of an additional class-i customer in the system will be
important, so we define D™(ik)(z) as the difference in the total expected discounted rewards
between system A and system B if system A starts in state x ‘plus’ one class-i customer
and system B starts in z plus a class-k customer, where k = () means that system 2 is in
state x, i.e., there is no additional customer. We, occasionally, drop the arguments z and n
later on, when there is no danger of confusion in the reference. The four D™(ik) functions
of interest are D"(10), D™(20), D™(12) and D"(21). It is easy to see that D"(10)(z) =
uMx + 1) — u(z), D*(20)(z) = u(x + e2) — v*(z) and D*(12)(z) = —D"*(21)(x) =
u(z +e1) — u™(z + e2). We can interpret the difference D™(i0)(x) as the net benefit of the
system due to an additional class-i customer in state z when there are n more transitions,
whereas D™(12)(x) is the net benefit of the system when a class-1 customer already in the
system is changed to a class-2 customer in state z + e1.

If the arrivals were single, these functions, D™(ik)(z), could be used very effectively to
determine the optimal action for state xz. However, with batch arrivals, everything is more
complicated since different combinations of class-1 and class-2 customers can be accepted so
that the reference state = in D™(¢k)(z) is no longer fixed at each decision epoch. Still, these
functions prove to be useful in determining preferred class(es) as we see later in section 4.

2.5 A remark on rewards

In this model, we have considered only the rewards collected in the end of service. Rejection
costs, say b;, which are incurred at the time of the arrival of a rejected customer can be
incorperated in the model by redefining the reward r; as r; + ""Ttﬁb,; due to the discounting.
For a more general system with both rejection costs, b;, and rewards, r;, one can refer to
the thesis Ormeci (1998), where all the equivalent results of this paper are stated with a
more complicated notation, although the methods of proofs with or without rejection costs
are the same.

The present value of the reward brought by a class-i customer is —‘% due to the dis-
counting. We refer to this quantity as the immediate reward of a class-i customer and
denote it by R;. Thus, r; is the value of the reward in the end of service, whereas E; is its
value in the beginning of the service. Another qguantity of interest is the average reward of
a class-7 customer, ;.

[}



3 Monotonicity of Optimal Value Functions

In this section, we prove a monotonicity property of «™’s, an intuitive and simple result.
However, with batch arrivals, the proof of this result is very complicated. Also, unfortu-
nately, its implication on the optimal policy is not straighforward nor as strong as we would
like. We first state the monotonicity of u™’s, and show how this reduces the number of
possible optimal actions. Later on, we present several definitions and a rather technical
proof of Lemma 1.

Lemma 1 For allx + e; + ez € §, we have:
uz) —ut(z+e) —uP(zt+e)+ut(zter+e) <0 V21, (2)
whenever the inequality is true for n = 0.

We have interpreted the difference D™(i0) as the net profit of the system due to an
additional class-¢ customer, so inequality (2) shows that the net profit of the system due to
an additional class-i customer is decreasing in the number of class-k customers, k 5 4. If
the arrivals were single, as opposed to batch, this monotonicity of the value functions would
immediately translate to a threshold policy (see Ormeci et al. (1999b)). However, under
batch arrivals, existence of an optimal threshold policy is too strong to be deduced from
the above monotonicity. Indeed, concavity of u™’s in z; for fixed zx, k # i, would ensure
an optimal threshold policy for batch arrivals, but we have not been able to show this due
to the boundary effects and state dependent service rates. Concavity of the value functions
is difficult to establish even with single arrivals: Ormeci et al. (1999b) are able to show it
only under very restrictive conditions. Nevertheless, inequality (2) decreases the number of
possible actions, which can be optimal:

Theorem 1 Let y* = y™(z;j). Then, there are numbers {I{7(0),...,{f'(c — 1)} =12y such
that: Fori=1,2 and k # 1, either yf > [2(y}) or yi = min{c — ¥, Tk + ji}-

Proof. We first define I?(z;): For a given z;, we define IT(z;) as:
{T(x1) = min{l : «™(z; + 1,1) < u™(z1,1}}.

Similarly,
15{xe) = min{l : (!, z2 + 1) < (I, z2)}.

If there is no such ! for x;, we set I {x;) = ¢ — z;.

Let y* = y™(x; j). Assume, by contradiction, that there exists a state (z; 7) with optimal
actions y* such that y? < {2(y}) and y; # min{c — yf, = + jr}. We first observe that
yi < min{c—y}, zx +ji} to be feasible, so we assume that yf < min{c—y},zr+jr}. Hence
we can accept more class-k customers since a strictly positive number, i.e., zx + jx — ¥, of
class-k customers are rejected while there are strictly positive number, i.e., ¢ — yf — ¥}, of
free servers. Let z = (21, 22) with 2z = y;, and z; = {F(y;). Then, because yj < z; — 1:

0<u™(z—e;+ep)—ut(z—e) Su™y" +ex)—u™(y")



where the first inequality is by definition of I}, the second inequality is due to Lemma 1 and
to our assumption ¥} < [¥(yx). But this implies that the state y* + ex brings more benefit
than y*, which is a contradiction. O

Now, we concentrate on the proof of Lemma 1: We have to consider all the possible
actions in four different states, x, T+e1, £+¢2 and x+e;+eo. Thus, it is essential to specify
the sets of states reachable from each of these states and the relations within these sets,
when a batch of j arrives at the system. Let z! =z +-e;, 22 =z +es and Z =z + €1 + €2.
Then, we define the following sets for a given (z;j) with ;1 +z2 +2 < ¢

50 = S(x;))NS(x+ ey + e 5)

5 = {=z}

Sq = {(y1,x2):x1 <y1smin{ﬂ:1+j1,c—m2}}

T2 = {(931,:!12)=$2<y2Smin{$2+j2,C—$1}}

5% = STUSLUSEH

§T = {@m+1+j,2+1+42)}0S

S5 = {@m+1+,m) e +1<m<a+1+5p)NS
R o= {(yl,m2+1+j2)=$1+1591<$1+1+j1}f'13
5% = SPuSHush,.

In words, S? is the set of states reachable from both = and = + e; + eg, and so from z + e;
and = + ez as well. ST is the set of states reachable from z, but not from Z, whereas S is
the set of states reachable from Z and not from z. S? is a singleton and it is reachable only
from z, whereas S? is either a singleton or empty set, and reachable only from . Sets S
are reachable from z and z%, but neither from Z nor from z*, k # i; similarly sets S;:‘_”. are
reachable from # and z* and not from z and z*, k # . Also, note that sets Sf,- are empty
if 21 + 22 + 2+ 4; > ¢. Lemma 2 summarizes all useful, and also obvious, relations among
these sets, which is presented without a proof since all the relations are very easy to verify.

Lemma 2
(1) 8% =S(z+e1;5) NS(z +ez;5)
(2) 8% =S(x;)\S(x +e1 +e2;7)
(3) S®=S8(z+er+ e )\S(z; )
(4) 8% C S(z +e1;5) N S(x;5)
(5) SEHNS(z+ens)=50NS(x+e+eys) =0
(6) 72 C Sz + ez 7) N S(z; 5)
(7)  SZNS(z+ens)=5%NS(z+e +ey)) =0
(8) SEL C S(z+end)NS(z+er+e2;5)
(9)  SunNS(x+exs)=5nnS(z;j)=0
(10) T, C S(z +e2;5) N S{z + er + e2;5)
(11) S%NS(z+e;j) =85%NS(z;5) =0



Now we can present the proof of Lemma, 1:

Proof. (Lemma 1) Assume that u® satisfies inequality (2). Also assume that the
statement is true for n. We first show that v™’s also satisfy the inequality. We define §™
such that:

6" = v"(2;J) — v"(x + e2;7) — V(@ +e1; ) + V(@ + e1 + e2;5)

So we show that §® < 0 for all possible actions. Let y* = (y1,%3) = ¥"(z;j) and Y =
’ ! I

(47 ,v3 } = y*(x+e1+ey; 7) so that y* and y* are the optimal states to go from states (z; j)

and (z -+ ey + eg; 7), respectively. Now we differentiate the cases due to possible actions:

Case I: y* € S% and 3* € 0

In this case, we have u{y*) = u(y*) by the optimality of y* and *. Then we can assume
without loss of generality that y} = y¥ for s = 1,2. Since §° = S(zx + e1;7) N S(x + e2;7)
by Lemma 2 part (1} and v™’s are optimal:

& < uMyY) (YY) - W (BT +ut(yT) =0
Case II: y* € S% and ' € §*
Case I1.1: y*' € 5

Since §% = S(x + e1;5) N S(x + e2; 7) by Lemma. 2 part (1), ¥* is a feasible action in state
(z + e2; §), and because §7, C S(x +€;; ) by Lemma 2 part (8), y* is reachable from state
(z +e1;7). Then:

< ut(y') —utyt) - uy") +ut(yr) =0
Case IL.2: y* € 5%

This is very similar to Case II.1. We only need to observe that y* is feasible for state
(z+ez; j) since 8%, C S(z+ey; §) by Lemma 2 part (10), and y* is reachable from (z+ey; 7)
since S° C §(zx + e1;5) by Lemma 2 part (1).

Case IL.3: y* € 52

Since y* = (z1+1+1,T2+j2+1), it cannot be reached from either (z+ez; 7) or (z+e1; 7).
Therefore we cannot use the same technique as above. We first observe that the state (y, 72)
is reachable state (x + eg; 7} and (j1,¥3) is feasible for (z + e1; 7). We set the convention as
>y, @y} = 0 whenever ys < 31 and call this null summation. Then

< wt(ylus) —ut(ty3) —wt s ) +ut ()
= u(yh,u8) —u"(y} ,v3) — un(l, v ) + ut (")
yi'—l
+ Y [ews) - ut e 8) — o) + ut, )]
=y +1



y;l_l ’ /
+ Y [enwhee) - wwhh ) — w0l ) + )]
yz=y3+1
y{’—l yg’—l

+21 Y Y [uy) -uw) (3)

1=y +1y2=y5+1

y;' 1 y;’-——l

= > Y [uy) - ulyr+e1) —uly +e2) +ulyr + e1 + e2)]
Y1=Y) Yo=Y,

< 0

where the first inequality is due to the optimality of ¥™’s and feasibility of actions (y}, j2)
and (f1,¥3), in the first equality we add and subtract the same terms and in the second
we organize all the terms, finally the last inequality follows from the induction hypothesis.
Notice that the last summation cannot be null, because y} < ! for i = 1,2 due to our
assumptions y* € §° and ¥*' = (z1 + j1 + 1,22 + jo + 1).

Case IIL: y* & % and y* € S°

We need to consider three cases; y* € §5,, y* € S5, and y* = z, each of which is similar to
the corresponding subcase of Case II, and so the details are omitted.

Case I'V: y* € 5% and y* € §%

For this case, we have 9 subcases, most of which are proven similar to each other. We
consider two cases in detail and mention the similarities of the others:

Let y* € 55, and y* € S2. Then y* and y* are both reachable from (z + e;; 5} and
not reachable from (z + eg; 7). Thus we need to add and subtract terms as in equation (3).
Now observe that (y},y5 ) is feasible for (z +ez;j) and (y}',y3 ) is feasible for x +e;. Then:

< (YY) —utyl,ys) - utwh ) + et (YY)
-1y -1
= > 3 [u(y) —ulyr +e1) —uly +e2) +uly +e1 + eo)]
n=y; v2=u;
<0

by the induction hypothesis.

We employ the same method in the following cases: y* € ST, and y¥ € 8% y* e 2
and y*’ € Z . y* €S% and y*' € 8%, y* € 5% and ¥ € Z,, y* € ST and y* € §%. Notice
that in all these cases either y* or y* is reachable from neither (z + e1; j) nor (x + eg; §) or
both states can be reached from only one of them. Thus we cannot cancel out the terms,
instead we have add and subtract the terms as in (3).

If y* € 57, and v € 572, then y* is reachable from (z 4 ej; j) and y* is reachable from
{z + e2; 7). Then by optimality of v™’s:

& <u™yl,y3) —ututv3) —ut (Wl ) +utet,ys ) =0



Similarly, when y* € S} and y* € S%, y* is reachable from (z + ep;7) and y* is reachable
from (z + e3; 7).
Thus for all possible cases, §* < 0. Now we can consider »™*1:

w1 (z) — u" iz +eg) — w2z +e)) +uHz + e +e2)
= A5 Piva [v™(z;7) — v™(x + eg; §) — vz + e1;]) + v (z + e1 + e2; 7))

+z1h [z — 1, z9) —u™(zy — 1,22 + 1) — u™(z) + u"(z + e3))
+ [w(z) - u(z + e3) — u(z) + u™(z + e3)]

+xopto [u™(zy,ze — 1) —u(z) —u™(z) + 1,22 — 1) + u™(z + €1)]
+ie2 [w*(z) — u™(z) —u™(z + &) + u*(z +e1)]

+a [u™(z) —u™(z + e3) — u™(z + e1) + u™(z + €1 + e2)]

< 0

where o = (¢ — 1 —x2— 2)pa + (21 +1) (2 — p1). The terms in the summation are less than
or equal to 0 since v™'s are shown to satisfy the inequality, the y; and p» terms are 0 and
all other terms are non-positive by the induction hypothesis. Thus, the value functions, 4™,
satisfy inequality (2) for all n whenever u° does. ]

4 Existence of a Preferred Class

We define a preferred class as the class whose customers are always admitted to the system
whenever there are available servers. As discussed earlier, this definition leads to different
characterizations of preferred class(es) with uniform and mixed batches, which are analyzed
seperately in this section.

In determining the preferred class, two different criteria can be considered: one is the
relation between the average rewards, r;u;, of the two classes, which is similar to the well-
known cu rule in the stochastic scheduling literature. Recall that the ¢y rule gives priority
to the class with the highest average cost rate, ¢;u;, where ¢; is the holding cost and p;
is the service rate of class-i customers, so this class is preferred over the others. With
the objective of maximizing revenue, this rule translates to the ru rule, since the quantity
equivalent to ¢;u; is the average profit rate of class-i customers, ryu;. With single arrivals,
this rule determines the preferred class under certain conditions, but not for all possible
parameter values, see Ormeci et al. (19995) for a counterexample. When the batches are
uniform, these certain conditions for the cp rule to hold are almost the same with single
arrivals. However, with mixed batches, the cut rule is never guaranteed. In fact, whenever
Tip1 > Toua, class 1 is preferred with both uniform and mixed batches, but for class-2
customers, this cannot be claimed: Consider a firm which has to choose one from two jobs,
one of which brings $1,000 profit each month for 12 months and the other with a profit of
$1,200 per month for only 3 months. The possibility that the firm will have no job after 3
months works in favor of the longer duration job. Hence the low profit job may be preferred
over the high profit one. In other words, the system favors steady returns which can be
attained by longer service times although the average return is somewhat lower. The second
criterion to determine the preferred class is the relation between the immediate rewards,
R;. Indeed, whenever Rs > Ry, class 2 is the preferred class for both uniform and mixed
batches, but it is easy to see that this rule does not hold for class 1, since if class-1 customers
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are slow enough, the optimal policy may reject them even if their immediate rewards are
high. We present the conditions for class 1 to be preferred in terms of average rewards,
ri:’s, and for class 2 in terms of immediate rewards, R;’s.

In the proofs of this section, we use, mostly, induction and sample path analysis together.
The following «°, which is briefly mentioned in Section 2, satisfies all the statements, al-
lowing us to apply the induction:

uwz) =23Ry + 23R, Vz €S. (4)

This function corresponds to the assumption that the later rewards of customers, who are
still in the system at n = 0, are collected at n = 0.

Before analyzing the systems with mixed and uniform batches separately, we prove the
following result, which applies to both systems:

Lemma 3 For all x € § and for alln > 0:
(1) D*i0)(z) < R; fori=1,2.
(2) D*(12)(z) = —D™(21)(z) < Ry — Ry.

Proof. We prove the statements by a sample path analysis.

(1) Assume that system A is in state z + e; and system B in z in period n. We let
system A follow the optimal policy, 7, and system B imitate all the decisions of system
A. We couple the two systems via the service and interarrival times, i.e., except for the
additional customer in system A, all the departure and arrival times are the same in both
systems. We note that system B can always imitate system A since it always has at least as
many free servers as system A does. Then, the difference in the expected returns of systems
A and B is only due to the additional customer in system A:

DMi0)(z) = u™(z + &) — u"(2) S u"(z + &) — ux(z) = Rs.

where u}(x) is the expected discounted return of system B and R; is the immediate reward
of the additional class-i customer in the system, which will be collected eventually due to
the definition of u?.

(2) Assume that system A starts in state = + e; and system B starts in z + e, where
we now couple the additional class-1 customer, say customer dj, in system A with the
additional class-2 customer, say customer dy, as well as all other service and interarrival
times, so that, as discussed earlier, if d; leaves the system, dy also leaves. Then, we can
let system A follow the optimal policy and system B imitate all the decisions of system A.
Now, again, the difference in the expected discounted returns of system A and B is only
due to the addititonal customers in the beginning;:

D*M12)(z) =u"(z + e1) —u™(z +e2) S u™(z +€1) —u}{z +e3) = Ry — Ra,

with u(x + e2) the expected discounted return of system B. g
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4.1 Mixed batches

In this section, we assume that there exist j; > 0 and j2 > 0 with pj;,;, > 0, so we have
batches consisting of both classes. Then, whenever a mixed batch arrives at the system,
we need to compare at least three actions, having an empty server or having a server work
on class-1 or class-2 customer, i.e., we need to compare the values of u™(z), ©"*(z + €} and
u™(x + ez), respectively, when the system state is (z; 7) with j; > 0. If u™(z + ¢;) is greater
than u™(z) and u™(z + ex), ¢ # k for all , then class i is preferred. Hence, the effect of
changing a class-i customer to class k, D™(ik)(x), is important as well as the effect of an
additional class-¢ customer, D"(i0){z), in determining the preferred class. In fact, as we
see later in this section, if D™(ik)(x) > 0, then D™(i0){(z) > 0 so that the non-negativity of
D™(ik)(z) assures class i to be preferred.
We first present the sufficient conditions for class 2 to be preferred:

Theorem 2 If Ry > Ry, then class 2 is the preferred class.

Proof. Assume Rs; > R;. Then, Lemma 3 implies that
D*21)(z)> Re— R1 >0 Vzed Vn.

Hence, we only need to show that D™(20)(x) > 0 for all z and for all n. For D°(20)(z) > 0
for u? given by (4). Thus, assume that D™(20)(x) > 0 for all z and for n, and consider n+1:
Let system A be in state £ + e2 and system B in state z in period n 4+ 1. We let system
B take the optimal actions y* = y™+(z;4), and system A imitate these actions whenever
possible, i.e., whenever system B accepts at least one class-2 customer(s) so that y5 > xo.
Then, both systems end up in the same state. If 3 = zo and y] > =i, then we let system
A move to state y* + e3 — e), and if y§ = 2 and ¥} = =z, i.e., y* = z, then system A
also remains in its current state x + eo. If the extra customer in system A leaves, which
happens with probability uo, the two systems couple with a reward of r5. If there is any
other service completion, then the difference between two system remains the same due to
the extra class-2 customer in system A:

D™ 20)(z) = u"*Y(z+eg) ~ut(a)
= Amin{0, D"(21)(y" — e1), D™ (20)(y™)} + por2
+(c — 1)pe min{D™(20)(2)}
ze§
> 0
where the first inequality is due to coupling and the second follows by the induction hy-
pothesis D™(20) > 0 and the fact that D™(21) > 0 under the above assumption. Hence,

D™(20)(z) = 0 and D™(21)(z) > 0 for all  and for all n, implying that class-2 customers
are preferred. O

Thus, whenever Ry > Rj, class 2 is the preferred class. From this result, we can easily
observe the following corollary:

Corollary 1 Whenever ro > r1 so that class-2 customers bring higher rewards, and require
shorter service times, class-2 customers are preferred.
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We derive a similar condition for class 1 to be preferred. However, this requires some
mere work:

Lemma 4 Ifriu > i—iﬂ;—igrg,ug, then for all x € § and for all n:

n TaHo™= T1H1
(2) D*(12)(z) > 0.

Proof. We use induction on the number of transitions, n. Both statements are satisfied
for u® defined by (4). Assume that both are true for n. Notice that D™(10){z) > 0 for
all z € § by part (1) of the induction hypothesis. Now we have to consider two pairs of
systems, one for D"*1(10)(z) and the other for D"*+1(12)(z).

(1) Consider the first pair: Assume that system A is in state z + e; and system B is in
z in period n+ 1. We let system B follow the optimal policy, and set y* = y™{(x; 7). System
A takes the same action with system B, whenever it is possible, i.e., ¥ > x1; so that the
two systems couple with no difference in reward. If ¥} = z; and yi + y3 < ¢, then system
A goes to state y* + e1; and if y} = z; and y§ + y3 = ¢ so that y5 > z2, then system A
goes to state y* + e; — eg. With the departure of the additional class-1 customer in system
A, the systems again enter the same state but with a return of r;, whereas all other service
completions keep the difference between the two systems the same, which is due to the extra
class-1 customer, so that the difference between two systems is at least 0 by the induction
hypothesis. Then:

D™ (10)(x) > Amin{0, D*(10)(y*), D"(12)(y" — e2)} + pum
+(cuz — p1) ggg{D"(lo)(y)}
2 pary + (epp — pa) min{ D" (10) ()} (5)

where the first inequality is due to coupling and the second due to the induction hypotheses
D*(10)(z) > 0 and D™(12)(z) > 0. If r1u < roue, then D™(10)(x) > D282 118 ' apd so we

B2
have to show that D"*1(10)(z) > ZE2=D14 for all z € S:
oy — T
D*(10)(2) > pars + (ep — ) 22 =T
H2 — H1
1—A—po— 1-A—pm —
B2 — I M2 —
Tolp — T A4+ A+ p2+
_ e mim o At ] by A H2 B
M2 — M2 — py H2 — 1
> rapa — T4
H2 = p1

where the first equality is due to uniformization, and the last inequality follows by the
assumption of the theorem. If r1u; > roug, then we need to show that D®*1(10)(z) > 0 for
all z € §. By (5) and the induction hypothesis D™(10){x) > 0 for all x € S, we have:

D™(10)(x) = i > 0.
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Thus, the first statement is true for all x € S and for all n > 0.

(2) Now consider the second pair of systems: Let system A’ be in state x + e; and
system B’ in z + ey in period n + 1. System B’ takes the optimal actions, where we set
y* = y™(x +eg; §), and we let system A’ go to the state y* + e, — ez in this period, which is
always feasible. We, as in Lemma 3, couple the additional class-2 customer, say customer
dy, in system B’ with the additional class-1 customer, say customer d;, as well as all other
service and interarrival times. Then, if d; leaves the system, which happens with probability
1, do also leaves. The departure of d; leads the system to couple with a reward of r| — ry,
the departure of d2 alone, which happens with probability gz — u1, takes the systems to
two different states, x + ¢1 and z with a reward of —ry and whenever there is any other
transition, both systems continue to have their additional customers so that the difference
between the two systems is only due to changing a class-1 customer to class 2:

D)) 2 ADM12) (3 ~ e2) +pmalr1 = 2) + (2 = m)(=rz + D™(10)(=))
He— Duamin{D*(12)(3)}

. rotiy -7
> (A+ (= D) min{D"(12)9)} + (z — p) e {0, 22 =T
ves H2 —
+ripy — rope

> max {ripu; — ropo,0} >0

where the first inequality is due to the coupling, the second follows by the induction hypoth-
esis for D"(10)(z), and the last one is due to the the induction hypothesis for D?(12)(x).
This proves the second part of the lemma. (m|

Now we can conclude that under the following conditions class-1 customers are preferred:
Proposition 1 If riu; > i—iﬁ;—igrgm, then class 1 is the preferred class.

As discussed earlier, class 1 is the preferred class by Lemma 1 whenever the average
rewards of both classes are the same.

4.2 TUniform batches

In this section, we assume 377 _opji0 + X 5,—0P0jz = 1 with poo = 0 so that the batches
can have customers of only one class. In fact, this case is very similar to the system with
single arrivals, since both systems consider the drawback between having an empty server
and a server occupied by a class-i customer in each state, with the only difference that
batch arrivals require more states to be considered at each arrival epoch. However, ‘being
preferred’ is a global property so that this difference does not lead to a significant change
in determining which class(es) is preferred. In both systems, class ¢ is the preferred class,
if D™(i0)(z) > 0 for all € 8. The following theorem summarizes the sufficient conditions
for each class to be preferred, which are the same for single arrivals with A1 = A3°7 o Pji0

and A2 = A X% o Poj,, See Ormeci et al. (1999):

Theorem 3 Let M = AZ?;:O Pho and As = AE;:Q—-—O D0jz-
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(1) If Ra > ﬁle, then for all x € S and for all n, D™(20){(x) > 0, hence class 2 is
a preferred class.

(2} If ripy > T_ﬁfmmpg, then for all z € S and for all n, D*(10)(z) > 0, hence class
1 is a preferred class.

The proof of this theorem is very similar to those of Theorem 2 and Lemma 4, and of
Theorem 2 and Lemma 3 in Ormeci et al. (1999b), so it is omitted. The followings can be
easily observed:

M {u2 + B) . .

1} I < 1, then the preferred class is determined by the
O RS+ B h pref %
i rule.

(2} Both classes are preferred, if parameter values satisfy :
A1 (g2 + B) T2 JotpetB
(M +p2+ B8 +B8) ~ rp ~ A2
(3)Existence of a preferred class cannot be guaranteed if :
Mo tpz+ B Tapz Mgz + B)
A2 g (Mt p2+ B)(p + B)

However, we still expect to have a preferred class for all parameter values when the batches
are uniform:

Conjecture 1 There always exists a preferred class for the system with uniform batches.

5 A remark on systems with u; = us =

For these systems, the exponential service rates for both classes are the same, thus we only
need to consider the rewards of each class. We can assume without loss of generality that
r1 2 ro. Then, it can be easily proved, via a sample path argument, that class 1 is preferred.
Moreover, concavity of the optimal value functions is also easily assessed by Lemma 1 and
the observation that D"(12)(z) = ﬁ%(rl —rg) forallz € &:

Lemma 5 For allz+ ey +e3 € S, u™ is concave in x; for fized x, k # 1, t.e.,:

wx) — 2u™(z+e) +u(z+2¢) <0 VYn>1, (6)
whenever the tnequality is true for n = 0.
Proof. Let i =1, the proof is similar for ¢ = 2. We can rewrite inequality (6) as follows:

w(x) — 2u™(x + e1) + u"(x + 2e1)

= u(z) —u"(z +ey) — piﬁ(rl —rg) —u"(z +e1)
+u™z + e +e2) + #iﬂ(rl —r2)

= u™z)—u(z+te) —u(zte)+ut(r+e +e) <0

15



by Lemma 1. (]

As a result, the optimal policy is a trunk reservation policy with a preferred class: All
customers of class 1 are accepted to the system whenever there is an idle server, and class-2
customers are admitted to the system if the number of free servers is greater than a certain
number, I, where [ is determined easily by using the relation for D™(12)(x) and Theorem 1.
Moreover, this can be easily generalized to finite number of classes, K, with r; > 7;31. Then
class 1 is still preferred, and there exists thresholds, {, on the number of free servers with
Ik €y, k=2, ..., K, which determine the optimal trunk reservation policy completely.

6 A counterexample

In this section, we assume that either all customers of an incoming batch are accepted or
they are all rejected. Thus, we have two actions at each arrival epoch so that a™(z;j) = 1
if the batch j is accepted, a™(z;j) = 0 if it is rejected. Obviously, if  + e1j) + egj2 ¢ S,
the whole batch is rejected. The corresponding MDP is then as follows:

vM(2;7) = max{u(z + ej1 + e252), u"(x)}
W z) = mpgry +zopare + A Y P33 4)
1,92

+zpu(z — e1) + Touou™(x — e2)
+(cpe — 11 — Top2)u"(2),

where we set u™(y) = —oo if y € S to make sure that a batch 7 is rejected in state x
whenever = + e 71 + e2j2 € S.

Now we present an example which violates all possible monotonicity conditions: The
system has 5 servers. The parameter values are as follows, before normalization: A = 29,
po1 = 18/29, p1o = 1/29, pso = 10/29, p1 = p2 = 2, 1y 10, ro = 3 and @ = 0. Note
that, when 8 = 0, there is no difference in collecting the rewards in the beginning or in
the end of service, and in this case we assume that they are collected in the beginning of
service. Moreover, g1 = pg2, so we do not need to differentiate the classes of customers in
the system. Hence, we denote the system state by x, where x is the number of customers
in the system. The optimal admission policy of this particular example is in Table 1, with

g, = a(z; 7).

|z [[a10a01 |aso]

ojoio|1
1100
201 (0|0
311 (10
41 11110

Table 1: Optimal admission policy for the counter example

For this example single class-1 customers are rejected when there are no customers in
the system and accepted in all other states and single class-2 customers are rejected when
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there are less than 3 customers in the system and accepted otherwise. This example shows
that the optimal policy cannot be monotone with respect to the number of customers in
the system.

7 (Generalizations and Future Research

Our results still hold when the arrival process is a Markov arrival process (MAP) instead of
a Poisson process, see Ormeci (1998) for details. MAPs are defined by Asmussen & Koole
(1993) who have also shown that any independent arrival process with multiple classes
of customers can be approximated arbitrarily closely by an MAP. The MAPs bring two
main benefits: One is to be able to model the departure process of most queueing systems
with exponentially distributed sojourn time, which can then be used as input to the loss
system we consider. Secondly, the MAPs can model many generalizations of the exponential
distribution, e.g., phase-type renewal process and Markov Modulated Poisson Process (see
Hordijk & Koole (1993)).

We can also consider the system under a general arrival process, which can be modeled
as an embedded MDP at arrival times. This will somewhat generalize the MAPs.

In this paper, we assume that customers of each class bring fixed rewards. (")rmeci,
Burnetas & Emmons (1999a} have considered random rewards for each class with single
arrivals, where optimal policy is shown to be a threshold policy. Under random rewards,
one class cannot be specified as preferred, since the reward of each customer, even if they are
from the same class, varies. However, it is shown that there exist preferred customers under
certain conditions, where preferred customers of each class are specified as the customers
who bring at least a certain amount of reward.

The admission of customers into the system can also be controlled via pricing. Thus
instead of rejecting the customers, we can propose a price, which may or may not depend on
the state of the system, for which we are willing to serve the incoming customers. This kind
of control has been considered in the context of social optimization for different queueing
systems, see e.g., Naor (1969), Lippman & Stidham (1977) and Xu & Shantikumar (1993).
The only study on loss systems with pricing, we are aware of, is Miller & Buckman (1987)
who consider a static transfer pricing problem for one class in an M/M/c/c system which
serves as a mode] of a service department.
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