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Abstract

In this paper we review some recent results obtained in [4] on metasta-
bility and nucleation for the two-dimensional lattice gas with Kawasaki
dynamics at low temperature and low density. We also present some new
results on the typical path of nucleation and discuss some open problems.
The conservation of particles makes the analysis much harder than for
Glauber dynamics.
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1 Recent results on metastability and nucleation

1.1. Introduction. Metastability is a dynamic phenomenocn taking place in the
vicinity of a first-order phase transition. Typical examples are supersaturated
vapours and magnetic materials with a magnetization opposite to the external
field. We may prepare the system in a pure equilibrium phase, characterized by
thermodynamic parameters close to a phase transition curve, and change one
of the parameters so as to move to the opposite side of the curve. We may then
observe that the system, instead of undergoing a phase transition, persists in
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the old unstable phase, called metastable state, until it tunnels to a new stable
phase. The escape from this metastable state is driven by the formation of a
“critical nucleus” of the new phase.

The activation energy necessary to nucleate a large enough droplet of the
new phase can be very high, so that the life-time of the metastable state can be
very long. Before the escape, which itself takes place in a relatively short time,
the system behaves in a stationary way (in some sort of temporary equilibrium)
characterized by many unsuccessful attempts to nucleate.

The above two examples share the main features of metastability, but they
exhibit some physically relevant differences. The supersaturated vapour is con-
servative: expansion and contraction of a liquid droplet inside the supersat-
urated vapour take place via absorption and evaporation, which preserve the
number of particles. A possible model is provided by the Kawasaki lattice
gas dynamics, where the elementary process is an exchange between occupa-
tion numbers of neighbouring sites. The equilibrium in this case is naturally
described by the canonical Gibbs ensemble. The magnetic materials, on the
other hand, are non-conservative: expansion and contraction of the droplet
take place via spin flips at the boundary of the droplet, which do not preserve
the magnetization. A possible model is provided by the Glauber Ising spin
dynamics, where the elementary process is a flipping of individual spins. The
equilibrium in this case is the grand-canonical Gibbs ensemble.

Let us compare these two types of dynamics. To fix ideas, we choose in both
cases a Metropolis algorithm and adopt the lattice gas language, i.e., the plus
sites in the Ising spin version correspond to the occupied sites in the lattice gas
version. The magnetization then corresponds to the particle density. In the
Kawasaki dynamics, when we analyze a small subsystem, both this subsystem
and the “reservoir” given by the rest of the system have to be simultaneously
taken into consideration, as they both take part in the dynamics. In particular,
if we want to describe the growth of a nucleus of liquid inside the supersaturated
vapour, then we are forced to analyze the surrounding gas and its interaction
with the nucleus through an exchange of particles. In contrast, such an ex-
change does not occur in the Glauber dynamics, since particles can be created
or annihilated. We may formally think of the Glauber dynamics as a lattice gas
dynamics with an “omnipresent reservoir” of particles. But we do not need to
include this reservoir into our description, since it does not participate in the
dynamics. We refer to [10] for relevant references.

1.2. A simplified model. In [4] we considered a local version of the Kawasaki
lattice gas model defined as follows. Let Ag C Z2 be a large finite box centered
at the origin, with periodic boundary conditions. Let A C Ag be a smaller
box centered at the origin. We think of Ag as our full system and of A as our
“observation window”. With each xz € Az we associate an occupation variable
n(z), assuming the values 0 or 1 for z € A and any non-negative integer for
z € Ag\A. A lattice gas configuration is denoted by

Ag\A

ne X ={0,1}} x N, (1.1)



We take the interaction to be defined by the following Hamiltonian:

Hem=-U Y n@n), (1.2)

(x,y)ef\(',

where f&a is the set of bonds in Ag = A \ 8~ A with 8~ A the interior boundary
of A. Thus, there is a binding energy U > 0 between neighboring occupied sites
in Ag. The interaction only acts inside Ag. Outside Aq there is no interaction,
outside A there is even no exclusion.

We fix the particle density in Ag at p = e~2# with A > 0. This corresponds
to a total number of particles

Nag(n) = 3 nlz) = plAg] = N. (1.3)
wEAﬁ

On the set of configurations with N particles
Ny ={n€X: Na,(n) = N} (1.4)

we define the canonical Gibbs measure

oyl = () e ) (L5)

ZN
with Zy = 32 vy e—PH(),

We will consider a stochastic dynamics on the state space Ay given by inde-
pendent random walks outside A and Kawasaki dynamics inside A. The latter
means that inside A two nearest-neighbor sites 2 and y exchange their occupa-
tion numbers, leading from the configuration n to the configuration »*¥, at a
rate given by e AT )-Hl+ where []; denotes the positive part. Clearly,
vy is the equilibrium measure of this dynamics.

We see from the choice of the density p that, in order to have particles at
all, we must pick |Ag| at least exponentially large in 5. This means that the
regime where Ag is fixed, typically considered in the Glauber dynamics, has no
relevance here. We are in fact interested in the regime

A€ (U2U), B—oo, lim l1og|Ag| = o0, (1.6)
ﬁ—}ooﬁ

corresponding to a low temperature and low density limit. The restriction on
A arises as follows. The density p, = pg(8) of the saturated vapour is related
to the spontaneous magnetization m* = m*(8) in the spin language by the
formula p, = li(;ll Since m* = 1 — e~2UB+9(8) for large 8 in the lattice gas
language, a supersaturated vapour with p > p, correponds to A < 2U. On
the other hand, in order to have a metastable regime at all, we need A > U,
since otherwise even a minimal cluster of two particles would have a tendency
to grow. This is because e”? is the typical time for the two particles to break
up under the Kawasaki dynamics, while e2# is the typical time needed for the
gas to send in a third particle.



1.3. Notation. Let

B={neX: n(z)=1Vz e Ay}

O={ne: n(z)=0Vze A} (1.7)

For 7j € X = {0, 1}’_‘, let 5 denote the canonical Gibbs measure on & condi-
tioned on the configuration inside A being 7, i.e.,

) = ()

& W(Ty)

where I = {n € X: n|z = 77}, 7|z is the restriction of n to A, and v = vy is
the canonical Gibbs measure defined in (1.5). For f € X, write P, to denote
the probability law of the Markov process (n:}:>¢ on X following the above
stochastic dynamics when 7 is chosen according to v;. For A C &, let

(n € &), (1.8)

T4 = min{t > 0: 0, € A} (1.9)
be the first hitting time of the set A.
Let B _
H(7) = H(n) + ANg(7) (7€ &) (1.10)

be the local grand-canonical Hamiltonian associated with A, i.e., —A plays the
role of a chemical potential. For 7,7’ € X, let H(7,7%') be the solution of the
minimax problem between 7 and 7, i.e.,

H#H,7)=_ min maxH 1.11
() =, min  maxH(3) 1)

with the minimum running over all paths from 7 to #'.

saddle

150 U A)t—2)+20

FiG. 1. Local saddles of H

The energy barriers for adding resp. removing a row or column of length £ on
a rectangular droplet are given in terms of the local saddles of H (see Fig. 1):

energy barrier for adding = 2A-U

energy barrier for removing = (2U — A){£ - 2) + 2U. (1.12)



The balance of the two barriers gives the critical droplet size:

¢, = [wti A]. (1.13)

It is possible to evaluate H (], @) and to identify the set C* of saddle point
configurations where the minimax between 0 and M is achieved. Indeed, let
R* C X be the set of configurations inside A where the particles form a quasi-
square with side lengths £, — 1 and £., with a protuberance attached anywhere
to one of the sides of length £,, and with a free particle anywhere else, all
contained in Ay (see Fig. 2). Then it turns out that C* D R* is the set of those
configurations that are U-equivalent to some configuration in R*, i.e., can be
connected to that configuration via a path with a maximal saddle U.

F1G. 2. A critical droplet configuration

1.4. Main theorem on metastability and nucleation. We are now ready
to formulate the main result in [4].

Theorem 1 ([4]) Let A € (3U,2U) and suppose that 2—I7U75 is not integer.

(a) Let R C X be the set of configurations inside A where the particles form
a square or guasi-square contained in Ag. For 1 € R, let £1(7) x &(7) with
[41(7) — &2(7)] < 1 be the square or quasi-square of particles in 7, and let
(7} = min{€,(7), £2(A)}. Then, for any 7 € R,

) <f: lim P, (m<ma)=1
_ s (1.14)
L) >2¢: lmP, (r@a<m)=1
B—o0

(b) Let Onm = max{t < rm: n € O} and 1q ;. g = min{t > bom: m € C*}.
Then

!311}11010113’,,[:j (The-m < ™a) =1 (1.15)

(c) Let T =T(U,A) = —U(262 — 46, +2) + A(€2 — £, + 2). Then

Jim Py, (e““‘”ﬁ <m< e<r+5)ﬂ) —1 ¥6>o0. (1.16)

en



Theorem 1 not only identifies the size and shape of the critical droplet (see
Fig. 2), it also shows that the critical droplet is the “gate” of the transition
from O to M, and it identifies the transition time up to logarithmic equivalence
in 8. Note that I'(U, A) is the energy of the critical droplet under the local
grand-canonical Hamiltonian in (1.10).

A result similar to Theorem 1 under the Glauber dynamics has been derived
in [6], [7].

There are important differences in the way clusters evolve under the Kawasa-
ki dynamics and the Glauber dynamics. In particular, under the Kawasaki
dynamics there is a movement of particles along the border of a rectangular
droplet, leading to a (more stable) square or quasi-square droplet on a time
scale much shorter than the one needed to grow or shrink (namely e®#). It
turns out that the geometry of this movement has its own peculiarities.

Our simplified model is a local version of a lattice gas. The removal of the
interaction outside Ag and the exclusion outside A allows us to mathematically
control the gas. From a physical point of view this approximation seems very
reasonable, because 8 — oo corresponds to a low density limit (p = e‘Aﬂ) in
which the gas essentially behaves like an ideal gas.

The rest of this paper is organized as follows. In Section 2 we sketch the
main ideas behind the proof of Theorem 1 (the full proof in [4] is long and
technically complicated). The key ingredient is Proposition 2 below, which
gives bounds on some of the transition probabilities in a “reduced dynamics”.
In Section 3 we formulate a sharpening of the latter (Proposition 3 below).
Under a certain conjecture (Conjecture 4 below), this sharpening is used to
extend Theorem 1 to a statement about the “typical trajectory” followed by
the reduced dynamics during the nucleation (Theorem 5 below). In Section 4
we close by formulating some open problems.

2 Sketch of the proof of Theorem 1

The main ingredients in the proof of Theorem 1 are the following:

1. Control of the gas particles outside A over long time intervals via random
walk estimates.

2. Study of a local Markov chain on A in which the efect of the gas outside A
is simulated by creation of particles on 8~ A at rate e~ and annihilation
of particles when they attempt to leave A.

3. Control of the interaction between the gas outside A and the configuration
inside A by means of a comparison of the full Markov chain and the local
Markov chain.

We comment on each of these ingredients in some more detail.

1. Starting from equilibrium, we can obtain a priori estimates on the density of
the gas particles in large boxes around A in terms of large deviation estimates



away from the equilibrium measure. These estimates turn out to be superexpo-
nentially sharp in 8 up to times that are exponentially large in 3. These density
estimates can be combined with standard random walk estimates in order to
control the behavior of the gas particles over long time intervals. For instance,
we can prove that the probability that a gas particle arrives at a given site
z € &~ A at a given time ¢ is of order e=2#, provided ¢ is at least of order e®?
itself. This estimate shows that the arrival of gas particles can be described by
a creation process on 3~ A at rate e~#, Similarly, since a random walk in two
dimensions is almost transient, once a particle leaves A it will typically need a
very long time to return. Hence, an annihilation process fur such particles is a
good approximation.

2. We define the local Markov chain (;) on X by considering the Metropolis
algorithm with Hamiltonian H defined in (1.10). This dynamics precisely cor-
responds to the Kawasaki dynamics inside A, to creation of particles on - A
at rate e"®8, and to annihilation of particles when they attempt to leave A .
This dynamics is in the Freidlin-Wentzell regime (see [3]) and thus its analysis
can be carried out rather easily.

We can classify the configurations in A into subsets of increasing geometric
“regularity”:
X DA DA DA, (2.1)

We can prove that the local Markov chain (7)) visits the set A; within a time
T;e®8 with a probability that is close to one superexponentially in 3, where
do > 0 is arbitrary and

Ti=1<kKTy=e"P «T3=¢"F (2.2)

are the basic time scales of the dynamics. This behavior is referred to as the
“recurrence property”.

The set A is chosen to consist of those configurations that are local minima
of H, i.e., those 7 such that there is no path from 7 to any #’ with H(#’) < H(%)
along whlch the energy H does not increase. Following the ideas developed in
the Freidlin-Wentzell scenario, we choose the set X, C .1’1 to consist of those
configurations 7 such that there is no path from 7 to any 7’ with H(7') < H(7),
this time allowing paths that contain segments in which the energy H increases
but not more than U, i.e., we replace the concept of a non-increasing path by
a “downbhill cascade in which a sequence of lakes of depth at most U can be
present”. Replacing U by A, we obtain an even smaller set X3 C A5.

With this iterative procedure, we are selecting configurations that are ever
more “regular” from a geometric point of view. For instance, configurations
in X have no free particles, configurations in A; have no protuberances. The
configurations in A3 can be characterized as follows. For 0 < £; — £; < 1, let
R¢, ¢, denote the set of all configurations inside A where the occupied sites form
an £; x £, rectangle, including all possible translations and rotations. These
are called squares or quasi-squares. Let £ denote the set of all configurations
where the occupied sites form a square or quasi-square with minimal side length
b > %‘1 (€9 is the side length of A) with “holes” inside that have a sufficiently
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regular shape. These are called lacunary squares or quasi-squares. It turns out
that &3 = (UOSEz—hSlRZI,ﬂz) ucL.

3. We now come to the difficult part of the proof. Namely, we have to compare
the local Markov chain and the full Markov chain by studying the interaction
of the gas particles outside A with the configuration inside A.

The first step here is to prove that also for the full Markov chain (7;) the
recurrence property holds for suitably regular sets:

X = {n€&:ql; €A}
Yo = {neX:q|; € A2} (2.3)
X; = {neX:qlg € A3, Ny, \aln) =0}

Here, {_ = eA__zmﬁ with v > 0 arbitrary is a space scale slightly below the
typical inter-particle distance 1/,/p, and the recurrence to A; occurs within time
T;e%8, just as in the case of the local Markov chain, for a suitable & = do(yo)
satisfying lim., 0 do(g) = 0. This recurrence property suggests that we look
at (m) only when it visits the regular configurations in X;. Indeed, by using
the fact that configurations in X3 have no particles in A;_\A, we can apply
the results proved in Step 1, because gas particles need a time of order 2% to
arrive in A.

The reduced Markov chain (nf) is defined as follows. For 77 € X3, consider
the set of configurations that are reachable from 7} within energy A, i.e.,

Cy ={7 € X H(7,n) — H@) < A}. (2.4)

Extend this definition to the configurations in X in the obvious way: for n € A3,
consider the set

C,? ={neX: q|ze C?,ﬁ{_\}. (2.5)
Now put
o = 0
oo = min{t>0: n &Ch} (2.6)
and, for ¢ € N, put
7 = min{t > g;_1: y € A3} (2.7)
g = min{t > & cr?,-l-}' .
Then
= 1y § € N, (28)

defines a (discrete-time) Markov chain (77)ien, on A3 with transition proba-
bilities

PR, 0’y =Py(ns, =1n'). (2.9)
Forpe A3 and 7 € 11?3, let
PR Iy)= >  PRnq". (2.10)
n”EIﬁana

The key estimate in Step 3 is the following proposition:

8



Proposition 2 ([4]) There exists 6 = 6(do,70), satisfying limg, 4,10 6(d0,v0) =
0, and By > 0 such that for oll B > By:
(%) Ifﬁ € Rh,fz) ﬁ’ € R£1+1,€2; then

3 R 3 —(A-U)8 _—é8
') > . 5
qel}';lrl]l . P, Iy) > e e (2.11)

(i",‘-) Ifﬁ € Rf]_,eg, ﬁ’ S R£1’£2_1, then

3 Ry T, ~(@U=-2)(&-1)8 -8
nel}:slr?xap (mIy) 2 e € (2.12)

(ii) If 7 € L, then there exists a sequence fjo,7,---, 7, Satisfying o = 7,
meL fori=1,...,n—1, 0, € A3\ L, and || = |Fi-1] fori=1,...,n, such
that

i j R 1. —(2U-A)3 —58
o, min PR T} 2 € e, (2.13)
(iv) Let
rim=4a-U if 71 € Reyp, with £y > £,
r(7) = QU - A){l1 —1) if 7€ Ry e, withéy <& (2.14)
r(f) =2U — A ifje L.
Then i
max max PR, 1) < e TP (2.15)

nel; i €Xs: i €3 (7)

where £3(7}) is the set of configurations in X3 that are A-equivalent to 7, i.e.,
can be connected to 7§ via a path with mazimal saddle A.

The estimates in Proposition 2 can be used to study the behavior of (n;)
over long time intervals. Indeed, the trajectory of (n?) corresponding to a given
trajectory of (7;) contains all the relevant information on the behavior of (1)
in terms of the sequence of squares or quasi-squares visited by (1}, while the
details of the trajectory of (7;) corresponding to time intervals shorter than e®#
are neglected in (nf).

The definition of the reduced Markov chain can obviously be adapted to
construct a local reduced chain (%), starting from (7;) instead of (n;). It is
immediate that the estimates in Proposition 2 are logarithmically equivalent to
the corresponding transition probabilities of (%), thus providing a comparison
between the full Markov chain and the local Markov chain.

The proof of Proposition 2 is quite complicated, expecially part (iv). Indeed,
for the latter we have introduced in {4] a coloring of particles: particles inside
A are “white”, particles outside Ay_ or inside A;_\A but coming from Ag\A,_
are “green”, while particles inside A;_\A but coming from A are “red”. It
is not difficult to show that the results of Step 1 are sufficient to control the
effect of the green particles. The difficult part is to control the effect of the
red particles. The main idea here is to control at the same time the regularity
of the configuration inside A, in terms of the sets A;, and the behavior of
the random walks describing the red particles. It is possible to show that the



interaction between the red particles and the white particles can take place only
during time intervals in which the local configuration is not in A,. Cutting out
these interaction time intervals, we find that red particles behave essentially
as independent random walks. Following this idea, we are able to control the
interaction between the red particles and the white particles via the recurrence
property to A; of (n).

3 New results on the typical path of nucleation

In the proof of Theorem 1 reviewed in Section 2, we have used the idea that
the full Markov chain (7;) behaves like the local Markov chain (7;). Namely, we
have shown that they have similar recurrence properties, and even that there
is a partial equivalence by means of Proposition 2.

A first natural question therefore is the following: Is it possible to prove
a complete equivalence between (7n:) and (7;)? More precisely: Is it possible
to improve Proposition 2 in the sense of controlling all transition probabilities
from above and from below by quantities that are logarithmically equivalent to
the corresponding transition probabilities of (nf‘)? Such an equivalence would
represent a canonical vs. grand-canonical equivalence from a dynamic point of
view.

A second natural question, weaker than this equivalence, is the following:
What is the typical path followed by the dynamics when going from O to
B? For Markov chains with a finite state space the problem of the first exit
from a suitable set of states has been completely solved in the Freidlin-Wentzel
scenario (see [11], [9], [1]). In particular, for a reversible finite Markov chain
like {(77;) the identification of the exiting path is easy (see [8], [11]). However,
for our dynamics with [Ag| = 0o as 8 — oo the lack of a complete equivalence
between (1) and (7;) causes that we cannot take advantage of these finite-
volume results. Still, we can define the typical paths of (7;) in terms of the
typical paths of (nf), which are restricted to A. Indeed, due to the recurrence
property to the set X3, the typical paths of (nf) define the typical paths of
(7:) directly. Again, the solution of the problem is related to an improvement
of Proposition 2. In particular, we need more detailed upper bounds on the
various transition probabilities (uniform in the gas configuration outside A).

From the sketch of the proof of Proposition 2 in Section 2 it is clear that
upper bounds are the more difficult estimates. For this reason improvements
of Proposition 2 are far from trivial. By using the ideas developed in [4] we are
able to prove the following:

Proposition 3 There ezists By > 0 such thet, for all 8 > By and 7,7 € A,

Rip [ < e~ B@A)-A(@)-A)8
ne!;lﬁaﬁx%P (mIy)<e : (3.1)

Moreover, we believe that we can prove that the reduced Markov chain typically
makes transitions only between nearest-neighbor squares or quasi-squares:

10



Conjecture 4 For 7 € Re e, C X3, let 7~ = Re,—1 and gt = Rey41,6,-
Then there exist o > 0 and k > 0 such that, for all 3 > By and 7 # 77,77,

R(p I} < e~ 1AT)—H(T)~A+x]8
nel?,ﬁ‘wxxsp (mIy)<e - (3:2)

Proposition 3 and Conjecture 4 provide the answer to our first question on
the equivalence of the full Markov chain and the local Markov chain. Indeed,
combining Propositions 2 and 3, we have the logarithmic equivalence for all the
nearest-neighbor transition probabilities of (n?) and (7}, and from Conjecture
4 we conclude that these are the only relevant transitions.

By using the ideas developed in [4] in combination with Proposition 3 and
Conjecture 4, we are now able to prove the following result identifying the
typical path of nucleation:

Theorem 5 Suppose that Conjecture 4 is true. Then for all k,e > 0 there
exists Bo = Po(k,€) such that, for all B > By,

Py ((m)te[au,.,f.] €Tepl0om= 0) >1—e™"P, (3.3)

where Te g is the set of all trajectories ¢ = (¢y) such that its reduced trajectory
(qbf), when changing state, follows the sequence

D, R?,Z: R2,3: R3,33 ey .1 (34)
and ¢ spends in each Cyr a time that falls in the interval

[r@F)+a-dB JrgF)+a+dp) (3.5)

Here, r is given by (2.14), while

Cr = {WeXinzely})
Cp = {7 €& H{,7) - H() <r(n) + A}

are the analogues of (2.4) and (2.5).

(3.6)

4 Open problems

The main challenge is to prove the analogues of Theorems 1 and 5 in the case of
a Hamiltonian with interaction everywhere in Ag, i.e., the complete Kawasaki
dynamics. We believe that a first step in this direction should be done by
considering an intermediate model with energy interaction only in Ag but with
exclusion everywhere in Ag. By using coupling methods, such a model can be
compared with our simplified model.

Our simplified model in fact focusses on the local aspects of metastability
and nucleation: the removal of the interaction outside Ag forces the critical
droplet to appear inside Ag. In the full model with interaction and exclusion
throughout Ag, if liminfg_,q, J%log |Ag| is large enough, then the decay from

11



the metastable to the stable state is driven by the formation of many droplets
far away from the origin, which subsequently grow and coalesce. This is a much
harder problem, which we hope to tackle in the future (see [2] for a description
of this behavior for Ising spins under Glauber dynamics). In the full model
also the question of the growth of large supercritical droplets comes up, which
is absent for the simplified model because Aq is finite. For Kawasaki dynamics
this poses new problems compared to Glauber dynamics, because large droplets
deplete the gas.

But, even when remaining with our simplified model, there are other non-
trivial problems to settle. For instance, we can try to study an anisotropic
interaction. This means that we replace the Hamiltonian in (1.2) by

Hm) =-Un Y. nl@m)-Us, Y. n@n), (4.1)

(zy)ehyt (z.y)€Ry”

where A}"(A%") is the set of horizontal (vertical) bonds in Ag and Uy # U,.
The interesting question is whether the shapes of the droplets typically visited
by the dynamics during the nucleation process coincide with the Wulff shapes
at low temperature. This comparison has been done for the Glauber dynamics
in [5].

Another interesting problem is to analyze the three-dimensional version of
our simplified model. We expect here a non-trivial behavior even for the local
Markov chain. The movement of particles along the border of the droplet will
produce much more complicated geometric problems.
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