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Abstract

We consider d�dimensional Brownian motion in a scaled Poissonian potential

and the principal Dirichlet eigenvalue �ground state energy� of the corresponding

Schr�odinger operator� The scaling is chosen to be of critical order� i�e� it is deter�

mined by the typical size of large holes in the Poissonian cloud� We prove existence

of a phase transition in dimensions d � �	 There exists a critical scaling constant

for the potential� Below this constant the scaled in
nite volume limit of the cor�

responding principal Dirichlet eigenvalue is linear in the scale� On the other hand�

this limit is strictly smaller than the linear bound for large values of the scaling

constant� For d � � we prove that this phase transition does not take place on that

scale� Further we show that the analogous picture holds true for the partition sum

of the underlying motion process�

� INTRODUCTION AND RESULTS

In this article� we consider standard Brownian motion in R
d � d � �� which evolves in a

scaled random potential� The scaled random potential is obtained by translating a �xed

shape function W to all the points of a Poissonian cloud with constant intensity � � ��

Let P stand for the law of the Poissonian point process � �
P

i �xi � � 	where � is the

set of all simple pure locally �nite point measures on Rd
� The random scaled Poissonian

potential is then de�ned as follows� for x � R
d � � � �� t � � and � � ��

V��t	x� �

def
�

�

	log t
��d
V 	x� �


def
�

�

	log t
��d

X
i

W 	x� xi
� 	���


where we assume that the shape function W � � is measurable� bounded� compactly

supported and
R
W 	x
dx � �� For z � R

d let Pz stand for the standard Wiener measure

on C	R� �R
d
 starting from z 	its canonical process is denoted by Z�
�
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Let us for the moment restrict to the unscaled Poissonian potential V � The Feynman


Kac functional u	t� z
 � Ez

h
exp

n
� R t

�
V 	Zs� �
ds

oi
represents the bounded weak solu


tion of the random parabolic equation�
	tu � �

�
�u� V u�

ut�� � ��
	���


Sznitman ���� Theorem ������ has proved that on a set of full P
measure for z � R
d

� log u	t� z
 � c	d� �

t

	log t
��d
� as t��� 	���


where c	d� �
� de�ned in 	������
 of ���� is the constant

c	d� �

def
� 
d

�vd
d

���d
� 	���


here 
d denotes the principal Dirichlet eigenvalue on the d
dimensional unit ball to the

potential �� and vd is the volume of the d
dimensional unit ball� A crucial role in the

proof of 	���
 is played by the principal Dirichlet eigenvalues to the potential V on the

boxes 	�t� t
d� Analysing the asymptotic behavior of these principal Dirichlet eigenval


ues� one sees that the main contribution comes from the large holes in the 	random


Poissonian potential V � The box 	�t� t
d typically contains a ball having a radius of order
d��dv

���d
d 	log t
��d which receives no point of � 	see Sznitman ���� Formula 	������
 and

Theorem �����
� In this article we examine whether such large holes are still dominant

when we rescale the Poissonian potential in an appropriate way 	see 	���

� the costs

of con�ning a Brownian particle to large Poissonian holes now compete with the costs

arising in an averaged scaled Poissonian potential� the scaling is chosen such that these

two costs are of the same �order��

The main role in this context is played by the principal Dirichlet eigenvalue� It is

de�ned as follows� The principal Dirichlet eigenvalue on the non
empty open set U � R
d

to the potential V��t is 	see also Sznitman ���� 	�����




V��t	U

def
� inf

�Z
U

�

�
jr�j� � V��t�

�dx � � � C�
c 	U
�

Z
U

�� � �

�
� 	���


Rescaling the potential properly has the following e�ect� Consider test functions varying

on the scale of large holes of the Poissonian cloud� Then the gradient term 	kinetic energy


and the potential term live on the same scale� Therefore we ask� which term �wins� in

this setting� Our main results are the following theorems�

Theorem ��� For all d � � and � � ��

P � a�s� lim sup
t��

	log t
��d 
V��t		�t� t
d
 � c	d� �
� 	���


�



In fact we prove a slightly stronger quantitative asymptotic bound for � �� 	see 	����

�

Theorem ��� proves that in our context we obtain an eigenvalue which is strictly smaller

than in the unscaled case 	see ���� Theorem �����
� In the unscaled case one observes

that the eigenfunctions essentially live in the large Poissonian holes� In our model� the

eigenfunctions prefer large connected regions where the number of Poissonian particles

is less than its expectation� These regions are typically larger 	by a �
dependent factor


than the holes in Sznitman�s context� Henceforth the contribution from the potential

term can be compensated by the gradient term in such a way that we obtain a smaller

value than in the unscaled picture�

Theorem ��� For d � � there exists �c � � such that for all � � �c

P�a�s� lim
t��

	log t
��d
V��t		�t� t
d
 � �� 	���


Theorems ��� and ��� prove that for d � � we observe a phase transition on the scale

	log t
��d� There exists a critical scaling constant� Below this constant the asymptotic

behavior of the principal Dirichlet eigenvalue is linear in the scaling� we can choose as test

function a C�
c 
approximation to the normalized constant function on 	�t� t
d to evaluate

	���
� this test function provides already the correct asymptotic behavior in 	���
� This

picture changes for large �� we have an upper bound which is strictly smaller than the

linear one 	see 	���

� this improved upper bound is obtained using other test functions�

these test functions are supported on regions having a volume proportional to log t� The

number of particles in these regions has to be less than its expected value�

For d � � the situation is completely di�erent� namely�

Theorem ��� Let d � � and � � �� Then

P�a�s� lim sup
t��

	log t
��d
V��t		�t� t
d
 � �� 	���


In Lemma ��� we provide a more quantitative bound� Theorem ��� was in the beginning

quite surprising� Our main tool to prove Theorem ��� is the Cwickel
Lieb
Rosenbljum

Theorem 	see Theorem ��� in Simon ���
� it suggests that the critical dimension might be

d � �� However a closer look at the below used �grey�scale technique� 	proof of Lemma

���
 shows that for d � � not the small deep holes cause problems but the large shallow

ones� These large shallow holes can not be treated by that Theorem� their e�ect is in fact

so strong that we observe in three dimensions a similar picture as for d � �� ��

Next we consider the partition sum of Brownian motion in the scaled Poissonian po


tential 	starting at the origin
�

S�
t��

def
� E�

�
exp

�
� �

	log t
��d

Z t

�

V 	Zs� �
ds

��
� 	���


�



The time scale t is the natural one� because on this space
time scale the Brownian motion

with killing has enough time to experience the whole box 	�t� t
d� respectively the large

holes in the box 	�t� t
d 	whenever such a strategy is favorable for the survival of the

Brownian particles
� We have the following results�

Theorem ��� For all d � � and � � ��

P�a�s� lim inf
t��

	log t
��d

t
logS�

t�� � �c	d� �
� 	����


For d � � there exists �c � � such that for all � � �c

P�a�s� lim
t��

	log t
��d

t
logS�

t�� � ��� 	����


For d � � and � � �

P�a�s� lim inf
t��

	log t
��d

t
logS�

t�� � ��� 	����


One should compare these results with 	���
� It would also be interesting to examine

the path behavior of Brownian motion in a scaled Poissonian potential� However� this

question goes beyond the scope of this article� So far� our picture suggests that for d � �

and small � the motion process should be di�usive� whereas for large � or d � � we expect

a superdi�usive behavior�

The statements hold true for general W � � 	measurable� bounded� compactly sup


ported
 with
R
W 	x
dx � � and general Poissonian intensity � � �� All one has to change

is to scale the critical scaling parameter � according to the choice of d� � and W and to

multiply the right
hand side of 	���
� 	���
� 	����
 and 	����
 by a constant depending

only on d� � and W � We restrict ourselves to the case
R
W 	x
dx � � and � � � since it

already covers the whole  avor of the problem and since the general case can be recovered

by a simple scaling argument�

By standard arguments coming from time
independent second order quantum me


chanical perturbation theory one sees that � �� 
V��t		�t� t
d
 is concave� henceforth

� �� lim inft��	log t

��d
V��t		�t� t
d
 is concave�

This article is organised as follows� In Section � we give some general results and

de�nitions that we use in the whole article�

In Section � we provide the lower bound on the principal Dirichlet eigenvalue in the

low
�
regime 	d � �
� This consists of three parts� Part �� We generalize the Cwickel


Lieb
Rosenbljum Theorem 	Theorem ��� in Simon ���
 to our situation� where we do

not have one big hole in the Poissonian cloud but many holes which are separated by

large distances 	see Lemma ��� below
� The main tool here is a comparison theorem

by Sznitman for principal Dirichlet eigenvalues on di�erent domains 	see ���� Theorem

�



������
� Part �� Next we de�ne the notion of big holes� We introduce a �stu!ng� function

to �repair� the potential in regions� where there are too large holes 		����

	����

� In

Lemma ��� we prove that we can compare the principal Dirichlet eigenvalue of the original

potential with the eigenvalue of the repaired potential� The main tools in this part are

large deviation estimates for having a big hole in the Poissonian cloud con�guration on

all �grey
scale� levels� Part �� Finally we estimate the principal Dirichlet eigenvalue of

the repaired potential from below by classical methods�

In Section � we give the upper bounds on the principal Dirichlet eigenvalues� The

upper bounds are based on a variational principle 	Lemma ���
� This is obtained by

the G�artner
Ellis large deviation theorem 	Theorem ������ ���
 applied to integrals of test

functions with respect to the Poissonian cloud con�guration� We derive all our upper

bounds by optimising this variational principle 	for the according ��s
� This is done in

Lemmas ���� ��� and ���� The remarkable thing here is that the relevant optimisation

problems on ��� �� behave qualitatively very di�erently for d 	 �� d � �� and d � ��

This emphasizes that d � � is the critical dimension� it also corresponds to the fact that

the �grey�scale� estimates for the lower bound 	proof of Lemma ���
 become easier in

dimensions d � � 	see remark after the proof of Lemma ���
�

In Section � we �nally give the translation of the results concerning the principal

Dirichlet eigenvalue to results about partition sums for Brownian motion in a scaled

Poissonian potential�

� PRELIMINARIES

In this section we do all the preparatory work to prove our results� We start with the

following de�nitions� For t � �� we de�ne

Tt def
� 	�t� t
d� 	���


W�
def
� supx�Rd W 	x
� and a denotes the minimal radius such that suppW 
 "Ba	�
�

where Ba	�
 is the open ball with center � and radius a� Next we state the following

measurability result�

Lemma ��� 
V��t 	Tt
 is measurable in � and decreasing in t�

Proof of Lemma ���� The measurability follows from 	�����
 in ���� it su!ces there to con


sider a countable dense collection of test functions � � C�
c 	Tt
 with k�k� � � to evaluate

the principal Dirichlet eigenvalue� The decrease in t can easily be seen from 	�����
 and

	������
 in ���� �

�



Lemma ��� If there exist c�� 
 � � and a sequence en
n���� � of positive numbers such

that for all large n � N we have

P
�
	log n
��d
V��n	Tn
 � c� � en

	
� n��� 	���


then P�a�s�

lim inf
t��

	log t
��d 
V��t	Tt
 � c�� 	���


Proof of Lemma ���� Consider the subsequence mn
def
�
�
n���

	
� hence for this subsequence

we can apply the Borel
Cantelli Lemma to see that 	���
 holds for n�� 	n � N
� But

then our claim follows by Lemma ��� and limn log
�
	n� �
���

	
� log

�
n���

	
� �� �

The following lemma estimates large deviations for Poisson random variables�

Lemma ��� Let N
P� Poisson	�
� � � � � �� Then

P�N � 	�� �
�� 	 e��
����� 	���


Proof of Lemma ���� We use the exponential Chebyshev
inequality for s � ��

P�N � 	�� �
�� 	 es������E �e�sN �

� exp	�s	�� �
 � e�s � ���
 � exp	�g	�
�
� 	���


where we have set s � � log	���
 � �� i�e� e�s�� � ��� and g	�
 � 	���
 log	���
���

We have g�	�
 � � log	� � �
� g��	�
 � ��	�� �
 � �� g	�
 � �� and g�	�
 � �� therefore

g	�
 � �
�
��� Inserting this into 	���
 proves Lemma ���� �

� LOWER BOUND IN THE LOW���REGIME

��� Generalization of the Cwickel�Lieb�Rosenbljum Theorem

At the heart of the proof of the lower bound in Theorem ��� lies a nice theorem which is

due to Cwickel
Lieb
Rosenbljum 	CLR
 	see Theorem ��� in ���
� Here is also an important

step where the calculations in dimensions d � �� � break down 	see Simon ���
� First we

quote the CLR Theorem� We de�ne V�
def
� max	���V 
�

Theorem ��� 	Theorem 
��� ��
� Let d � �� There exists a constant ad such that for

all potentials V �not necessarily positive	 with V � Ld��	Rd
 and

ad

Z
jV�	x
jd��dx � �� 	���


we have 
V 	R
d
 � ��

�



Our �rst goal is to generalize this result to a situation where one has many holes in the

potential� but the distances between the holes are large�

Let d � �� and Uj be supported on Aj � R
d � ��j 	 Uj 	 �� with for all j

ad

Z
jUjjd��dx � �� 	���


and �
def
� supj �j � 	���
� Further we assume that

l
def
� inf

j ��i
dist	Aj� Ai
 � �� 	���


We set U
def
�
P

j Uj� Then

Lemma ��� Assume d � �� Choose �� � � and de
ne f	l

def
� l�� log� l� Then there

exists L � L	d� ��
 such that for all � � �� and for all l � L the following holds�


U	R
d
 � �f	l
� 	���


Proof of Lemma ���� Our main goal is to apply Theorem ������ of ���� Therefore we

have to estimate A�B�C de�ned in 	������
 of ���� We start with the following de�nitions�

A def
�
S

j Aj� and O is the open l��
neighborhood of A� Notice that the disjoint holes

Aj have also a disjoint l��
neighborhood 	which are denoted by Oj
� Further we de�ne

V
def
� U � � � � so that we do not have to bother about signs� i�e�

for all open sets U � R
d � 
V 	U
 � �� 	���


We claim


V 	O
 � � � f	l
 	 
V 	R
d
� 	���


The inequality 	���
 implies 	���
� due to the CLR Theorem 	Theorem ���
 we know that


Uj	R
d
 � � for all j� hence we have 	using 	���




U	R
d
 � 
V 	R

d
� �

� 
V 	O
 � � � f	l
� �

� inf
j

V 	Oj
 � � � f	l
� � 	���


� 	inf
j

Uj	R

d
 � �
 � � � f	l
� �

� �f	l
�

There remains to prove 	���
� To make to notations consistent with ��� we de�ne U�
def
� O

and U�
def
� R

d and 

def
� 	
V 	U�
 � � � f	l

�� Either 
 � �� then 	using 	���




V 	U�
 � � � 
V 	U�
 	 
V 	U�
 � � 	 f	l
� 	���


�



which �nishes the proof in the case 
 � ��

Or 
 � �� hence 	for large l


� � 
 � 
V 	U�
 � � � f	l
 	 
V 	U�




�� f	l


�

�
� 	���


We de�ne the entrance time �
def
� inffs � �� Zs � Ag of Z� into the holes A� the exit time

TU�
def
� inffs � �� Zs �� U�g of Z� from U�� and

S�
def
� � � �TU� � TU� and Sk��

def
� S� � �Sk � Sk for k � �� 	����


where �t is the time shift� Because on the time interval 	Sk� Sk��� the Brownian motion

has to travel at least distance l�� � �� we have that for all x � R
d � limk Sk � � Px
a�s�

	which is Condition 	������
 of ���
� Using Corollary ����� and Formula 	������
 of ���

together with 	���
 we obtain for some �xed constant c�	d
 � � that

A
def
� sup

x�Rd
� �

Z �

�


e	uEx

�
TU� � u� exp

�
�
Z u

�

V 	Zs
ds

��
du

	 c�	d




�

f	l


���d��

��� 	����


Next we have� again using Corollary ����� and Formula 	������
 of ��� together with 	���


and the fact that 
 	 �	�� f	l
���
 	 
V 	Ac
	�� f	l
���
�

B
def
� sup

x��U�

Z �

�


e	uEx

�
� � TU� � u� exp

�
�
Z u

�

V 	Zs
ds

��
du

	 � � sup
x��U�

Z �

�


e	uEx

�
TAc � u� exp

�
�
Z u

�

V 	Zs
ds

��
du 	����


	 c�	d




�

f	l


���d��

���

There remains to estimate

C
def
� sup

x��U�

Ex

�
� � TU� � exp

�

� �

Z 


�

V 	Zs
ds

��
� 	����


On Ac we have V � �� hence V � 
 � � � 
V 	U�
 � � � f	l
 � f	l
� Therefore

C 	 sup
x��U�

Ex

�
exp

�
�
Z 


�

f	l
ds

��
	 E�

�
exp

��f	l
TB���l�	�


	
	����


	 exp
��c�	d
lf	l
���
 � for all large l�

�



where the last step can be seen by generalizing the result for the one
dimensional exit

time 	Formula ����� of ���
 to our d
dimensional situation� Hence for all large l�

AC 	 c�	d
 exp

�

d

�
� �

�
log



�

f	l


�
� c�	d
 log

��� l

�
� �� 	����


So Theorem ������ of ��� gives that 
 � 
V 	U�
 � � � f	l
 	 
V 	U�
 for all large l� which

�nishes the proof of 	���
� �

��� The grey�scale technique

We use di�erent scales of volumes� td 
 l	t
d 
 log t 
 �	t
 log t 
 � 	for large values

of t
� �a	t
 
 b	t
� means that a	t
�b	t
 � � as t � �� The meanings of the scaling

functions are roughly�

� td is the scale of the �universe box� Tt�
� l	t
 is the length scale of the minimal distance between the sets Ai in Lemma ����

� log t is the scale of the largest hole in the potential on a box Tt�
� �	t
 log t is the scale on which we de�ne the �stu!ng� function�

� � is the scale of the support of the shape function W �

Here are the main requirements on the scaling functions that we shall use later� we need�

with the notation of Lemma ����

	log t
��d � f	l	t

 t���� � and �	t

t���� �� 	����


but �	t
 should converge only so slowly that

log l	t


�	t
 log t
t���� � and � log�	t


�	t
 log t
t���� �� 	����


certainly we can choose such an �	t
 when we choose l	t
 such that log l	t
� log t
t���� ��

To simplify things� we assume that

�

�
n�	t


�
d

def
�

t

l	t

and n�	t


�
d

def
�

l	t


	�	t
 log t

�
d

	����


are integers 	we want to avoid dealing with fractions of boxes
� We split the universe box

Tt � 	�t� t
d into n�	t
 cubes

Aj � Aj	t

def
� 	�t� � � � ��t
 � l	t
j � ��� l	t

d 	����


�



of volume l	t
d�

j � J � J	t

def
� f�� � � � � n�	t


�
d � �gd� 	����


jJ	t
j � n�	t
� the union over all Aj coincides with Tt only up to a null set at the boundary
of Tt 	since Tt is an open box
� Next we split each of these boxes Aj into n�	t
 smaller

boxes

Ki�j � Ki�j	t

def
� 	�t� � � � ��t
 � l	t
j � 	�	t
 log t


�
d i� ��� 	�	t
 log t


�
d 
d 	����


of volume �	t
 log t�

i � I � I	t

def
� f�� � � � � n�	t


�
d � �gd� 	����


jI	t
j � n�	t
� We partition J	t
 into �d classes Jk	t
� k � f�� �gd� where Jk � Jk	t

def
�

J	t
 � 	k � 	�Z
d
� we observe that dist	Ai� Aj
 � l	t
 for i� j � Jk	t
� i �� j�

Finally we split these boxes Ki�j into even smaller boxes on the scale of the diameter

of the potential� We choose the length "a	t
 such that a 	 "a	t
 	 �a� and such that

	�	t
 log t

�
d�"a	t
 is an integer 	for t large enough
� this is again done to avoid handling

with fractions of boxes� We de�ne the boxes

Cm
def
� m"a	t
 � ��� "a	t

d� 	����


for m � Z
d� and the index set Ci�j def

� fm � Z
d � Cm 
 Ki�jg�

We introduce a random �stu!ng� function� It has the purpose to �repair� the potential�

where the truncated version V �M of V is too small 	caused by the randomness of ��

M � � denotes a truncation level
� The truncated potential may be too small in the box

Ki�j for two reasons�

�
 The total number of points of the Poissonian point process in the box Ki�j might be

too low� this is measured by the quantity

�i�j
def
� �� �	Ki�j


jKi�jj � 	����


�
 The points inside the box Ki�j might clump too much� leaving holes in other parts of

the box� To measure this� we introduce the event

F
���
i�j � F

���
i�j 	t�M� �


def
�

��
�� � � �

X
m�Ci�j

��	Cm
� 	�	Cm
 � "M
� � �

�
jKi�jj

��
� � 	����


��



where � � � denotes a 	small
 allowed tolerance and "M
def
� M�	�dW�
�

We de�ne the random �stu!ng� function U 	depending on M � �� t� and on the Pois


sonian cloud con�guration �
� for j � J � k � f�� �gd�

Uj	x

def
� �

X
i�I

h
	�i�j�f�i�j����g
 � �

F
���
i�j

i
�Ki�j

	x
 	supported on Aj
� 	����


#Uk
def
�
X
j�Jk

Uj 	supported on
S

j�Jk
Aj
� 	����


U	x

def
�
X
j�J

Uj	x
 �
X

k�f���gd

#Uk 	supported on Tt
� 	����


This means that we work with a �grey
scale picture� for repairing the �rst kind of holes�

but a �black
and
white picture� is su!cient to repair the second kind of holes� The

Poissonian cloud con�guration � � � is �repaired� by U in the following sense�

�
Z
Ki�j

U	x
 dx �
X
m�Ci�j

	�	Cm
 � "M
 � 	�� �
jKi�jj� 	����


this is obvious on the event F
���
i�j � while on 	F

���
i�j 


c it follows fromX
m�Ci�j

	�	Cm
 � "M
 � �	Ki�j
� jKi�jj�
�

� jKi�jj
�
�� �i�j � �

�

�
	����


� jKi�jj	�� � � �i�j�f�i�j����g
�

We observe the following bounds for U �

� � U � ��� 	����


We need scaled versions of the functions Uj and #Uk too� Using p � p	d

def
� �d � � we

de�ne�

Uj���t
def
� p

�

	log t
��d
Uj and #Uk���t

def
� p

�

	log t
��d
#Uk� 	����


Finally we de�ne the �repaired version� of the potential�

#V M
��t

def
� p

�

	log t
��d
�
	V �M � U
�Tt � �T c

t

	
� 	����


We apply the following lemma to the decomposition

V��t � p�� #V M
��t �

X
k�f���gd

p�� #Uk���t over Tt� 	����


with pi � p for all i in 	����
�

��



Lemma ��� Given a decomposition V �Pn
i�� Ui of a potential V over a connected open

set B 
 R
d and weights p�� � � � � pn � � with

P
i p

��
i � � we have


V 	B
 �
nX
i��

p��
i 
piUi	B
� 	����


Proof of Lemma ���� Let TB
def
� inffs � Zs �� Bg denote the exit time of Z� from B� We

have for T � � by monotonicity of the expectation and H�older�s inequality�

Ex

�
exp

�
�
Z T

�

V 	Zs
 ds

�
� TB � T

�
	

nY
i��

Ex

�
exp

�
�
Z T

�

Ui	Zs
 ds

�pi

� TB � T

� �
pi

�

	����


Consequently� the Feynman
Kac representation of the principal Dirichlet eigenvalue im


plies for every x � B�


V 	B
 � � lim
T��

�

T
logEx

�
exp

�
�
Z T

�

V 	Zs
 ds

�
� TB � T

�

� � lim
T��

�

T

nX
i��

p��
i logEx

�
exp

�
�
Z T

�

piUi	Zs
 ds

�
� TB � T

�
	����


�
nX
i��

p��
i 
piUi	B
�

�

The next lemma bounds the probability that Poissonian points clump to much inside a

box Ki�j�

Lemma ��� For all � � � there exists M � M	�
 � � such that for all �su�ciently

large	 t the following bound holds�

P�F
���
i�j � 	 e��
�t� log t���� 	����


Proof of Lemma ��
� Take a �xed 
 � ���� The exponential Chebyshev
inequality implies

P�F
���
i�j 	t�M� �
� 	 e�	�jKi�j j��E

�
exp

�

��	Cm
� 	�	Cm
 � "M
�


	jKi�j j�jCmj � 	����


By the dominated convergence theorem� the last expectation goes to � as M ��� recall

that "M is proportional to M � We choose M so large that this expectation is less than

ea
d�	������ 	 ejCmj�	������� recall 	����
� We get P�F

���
i�j 	t�M� �
� 	 e�jKi�j j�� � e��
�t� log t����

This proves the lemma� �

��



Lemma ��� Assume d � �� For all exponents 
 � � there is a �c � � such that for all

� � 	�� �c
 and � � � there exists a tc � � such that the following holds for all t � tc�

P

h

V��t	Tt
 � p��
 
VM

��t
	Tt
� c		d
f	l	t



i
� �� t��� 	����


where c		d

def
� �dp�� � �d�	�d � �
 and M � M	�
 is taken from Lemma ��
�

Proof of Lemma ���� We are going to estimate 
 
Uk���t
	Tt
 by inserting the decomposition

#Uk���t �
P

j�Jk
Uj���t in Lemma ���� We observe for j �� j �� j� j � � Jk�

dist	Aj� Aj�
 � l	t
� 	����


and there exists a tc	d� �c�W 
 � � such that for all t � tc	d� �c�W 
� � � 	�� �c
 and all

Poissonian cloud con�gurations � the pointwise lower bound #Uk���t � �� � ��� is valid�
see 	����
 and 	����
� We de�ne the event

Ej � Ej	d� �� �� t

def
�

�
ad

Z
jUj���tj d� dx � �

�
� 	����


we remark that M is according to Lemma ��� a �xed constant depending only on ��

Lemma ��� implies that for l	t
 � L	d� �
 the estimate 
 
Uk���t
	Tt
 � �f	l	t

 holds on the

event
T

j�J Ej� therefore by Lemma ����


V��t	Tt
 � p��
 
VM
��t
	Tt
 � p��

X
k�f���gd


 
Uk���t
	Tt


� p��
 
VM
��t
	Tt
� c		d
f	l	t

� 	����


There remains to derive a lower bound for P�
T

j�J Ej� which converges to � su!ciently

fast� Set h	�

def
� �

d
� �f�����g and c�	d


def
� �p

d
�ad� then

Ec
j �

�
c�	d


�d��

log t

X
i�I

	h	�i�j
 � �
F
���
i�j

jKi�jj � �

�

 E

���c
j � E

���c
j � 	����


with the events

E
���c
j

def
�

�X
i�I

h	�i�j
 � c�
�	t


�
and E

���c
j

def
�

�X
i�I

�
F
���
i�j
� c�

�	t


�
� 	����


here we abbreviate c� � c�	�� d
 � c�	d

����d��� recall jKi�jj � �	t
 log t�

We divide h in di�erent �grey
scales�� Set h�	�

def
�
PN���

n�� ���n���d���f��n�������ng �
h	�
 with N	�
 � N so large that ��N��� � ���� one should note that �i�j 	 �� Using this

we estimate

E
���c
j 


�X
i�I

h�	�i�j
 � c�
�	t


�
	����


��



	We introduce the abbreviations Nn � Nn	d� �� t

def
� c�


�t�
��n���d�� and �n

def
� ��n�


�

��
�

N���X
n��

N��
n jfi � I � ��n � �i�j � �ngj � �

��
� 	����


	De�ne the �nite set R�
def
� f k

�N���
� k � ��� �N	�
� � Zg� and for r � � de�ne q�	r


def
�

maxf� � R� � � 	 rg� i�e� q�	r
 	 r � q�	r
�
�

�N���
for � 	 r 	 �� and q�	r
 � � for r � ��

Consequently the assumption
PN���

n�� rn � � with all rn � � implies
PN���

n�� q�	rn
 � ����

this statement is trivial when there exists a rn � ��




��
�

N���X
n��

q�
�
N��
n jfi � I � ��n � �i�j � �ngj

� � �

�

��
� 	����


	The next union runs over the �nite set

R�
def
� f� � 	��� � � � � �N���
 � R

N���
� �

PN���
n�� �n � �

�
g�




�
��R�

N����
n��

fjfi � I � ��n � �i�j � �ngj � �nNng 	����


	We prepare the application of the van den Berg$Kesten
inequality� Let I� denote the

set of all partitions 	I�� � � � � IN���
 of I into N	�
 sets� some of the In may be empty�


�
�
��R�

�
�In��I�

N����
n��

fjfi � In � ��n � �i�j � �ngj � �nNng



�
��R�

�
�In��I�

N����
n��

fjfi � In � �i�j � �ngj � �nNng � 	����


As in ��� one sees that one can generalize the usual van den Berg$Kesten
inequality on the

lattice to our Poissonian point process problem� the events fjfi � I � �i�j � �ngj � �nNng
are decreasing 	since the random variables �i�j are decreasing functions of the Poissonian

cloud con�guration �
 and they �need to occur on disjoint domains�� We get

P

�
� �
�In��I�

N����
n��

fjfi � In � �i�j � �ngj � �nNng
�
� 	 N���Y

n��

P �jfi � I � �i�j � �ngj � �nNn� �

	����


��



We introduce the events

F
�n�
i�j

def
� f�i�j � �ng � f�	Ki�j
 � 	�� �n
jKi�jjg� 	����


for n � �� i � I� j � J � one should not confuse these events F
�n�
i�j � n � � 	which take

care about �lling holes on a �grey
scale level�
 with the event F
���
i�j � which was introduced

in 	����
� and which takes care of �clumps� in the Poissonian cloud con�guration� how


ever the similar notation was chosen intentionally to treat both kinds of �repairing the

potential� at the same time below� We get

P�E
���c
j � 	

X
��R�

N���Y
n��

P �jfi � I � �i�j � �ngj � �nNn�

�
X
��R�

N���Y
n��

P

�X
i�I

�
F
�n�
i�j
� �nNn

�
	����


	We may drop the factors in the last product with �n � �� since they are �� let M�
def
�

fn � N � � 	 n 	 N	�
� �n � �g for � � R��


�
X
��R�

Y
n�M�

P

�X
i�I

�
F
�n�
i�j
� �nNn

�
� 	����


Next we use Lemma ��� to estimate

P�F
�n�
i�j � 	 exp



��

�
��njKi�jj

�
� exp



��

�
��n�	t
 log t

�
� 	����


We now treat E
���c
j and E

���c
j both at the same time� recall that these two events correspond

to the two di�erent reasons to �repair� the potential� To get a uniform notation� we

introduce an additional point 	call it �
 to the index set� R�
�

def
� f�g�R�� the extra point

� takes care of E���c
j � We set M�

def
� f�g� �� def

� �� and

M��n �M��n	d� �� t

def
�

�
�nNn �

��n���d���n
c��d��d��
�t�

for � � R�� n � M��
c�

�t�

� �
c��d��d��
�t�

for � � �� n � ��
	����


We join 	����
� 	����
 and 	����
 to obtain

P�Ec
j � 	

X
��R�

�

Y
n�M�

P

�X
i�I

�
F
�n�
i�j
�M��n

�
� 	����


��



We use the exponential Chebyshev
inequality� the independence of the events 	F
�n�
i�j 
i�I

	n � M�� � � R�
�
� and the bounds 	����
 and 	����
 to get for � � ��

P

�X
i�I

�
F
�n�
i�j
�M��n

�
	 e��M��nE

�
exp

 
�
X
i�I

�
F
�n�
i�j

!�

� e��M��n
Y
i�I

E �exp	��
F
�n�
i�j

� 	 e��M��n

Y
i�I

	� � e�P�F
�n�
i�j �
 	����


	 e��M��n

Y
i�I

exp	e�P�F
�n�
i�j �
 	 exp



��M��n � jIje� exp



��

�
��n�	t
 log t

��

	We choose the optimal �� which is determined by jIje� exp	��
�
��n�	t
 log t
 � M��n� i�e�

� � �
�
��n�	t
 log t� log jIj� logM��n � � 	t large
�


� exp



�M��n

�
��n�	t
 log t�M��n log jIj �M��n logM��n �M��n

�
� 	����


Therefore we obtain the estimate

P�Ec
j � 	

X
��R�

�

Y
n�M�

exp



�M��n

�
��n�	t
 log t�M��n log jIj �M��n logM��n �M��n

�
�

	����


and hence

P

��
j�J

Ec
j

�
	
X
j�J

P�Ec
j � 	����


	
X
��R�

�

exp

"
#log jJ j� X

n�M�



�M��n

�
��n�	t
 log t �M��n log jIj �M��n logM��n �M��n

�$A

	using log jJ j � d	log � � log t� log l	t

 and log jIj � d log l	t
� log�	t
� log log t�


�
X
��R�

�

exp

"
#
"
#d� X

n�M�

M��n	d� �� t


�
��n�	t


$
A log t � o������d�t

$
A � 	����


with the higher order terms

on�������d�t
def
�dM��n log l	t
�M��n logM��n �M��n log�	t
�M��n log log t�M��n�

o������d�t
def
�d log �� d log l	t
 �

X
n�M�

on�������d�t�

��



Recall De�nition 	����
� M��n	d� �� t
 is proportional to �	t
��� We use the choice of the

asymptotic behavior 	����
�	����
 of l	t
 and �	t
 to see o������d�t� log t
t���� �� Now we

examine the leading term in 	����
 for � � R��

X
n�M�

M��n

�
��n�	t
 �

X
n�M�

�c
	d

��d�����n

�d��
�n � c
	d


�d��
� 	����


we have set c
	d

def
� c�	d


����d����� and we have used d � �� i�e� ��d�����n � �� andP
n�M�

�n � �
�
� In the case � � � we obtain the right
hand side in 	����
 as a lower

bound� too� M����
�
��	t
�� � c
	d
��

d��� It is important to note that this right
hand side

in 	����
 does not depend on �� this allows us to choose �c independent of the value of ��

Inserting these estimates� we get

P

��
j�J

Ec
j

�
	
X
��R�

�

exp
��
d� c
	d
�

�d��
�
log t� o������d�t

�
� 	����


The sum over � is �nite� consequently we get the following result� For all 
 � � there

exists �c � � such that for all � � 	�� �c
 and � � � there is tc � � such that the following

bound holds for all t � tc�

P

��
j�J

Ej	d� �� �� t

c

�
	 t��� 	����


This proves Lemma ���� �

Remark� The case d � � could be handled in a simpler way� one may choose one speci


�ed � only 	instead of all � � R�
� e�g� �n � c�	d� �
�
�d�����n for some � � � � d���� and

c�	d� �

�� def

�
P�

n�� �
�d�����n� drop step 	����
� and replace

S
��R�

TN���
n�� in 	����
 by

SN���
n�� �

So for d � � one does not have to apply the van den Berg$Kesten
inequality� However�

this simpli�cation does not su!ce for d � �� It is interesting to examine why the method

does not apply for d � �� not the small� deep holes change the picture� but the large�

shallow ones do 	see 	����

� �

��� Lower bound on the principal Dirichlet eigenvalue for the �repaired�

potential

Consider the unscaled version of the �repaired� potential

#V M
t

def
�

	log t
��d

p�
#V M
��t � 	����


��



where #V M
��t is given in 	����
� We abbreviate �	t


def
� 	�	t
 log t
��d � diam	Ki�j
�

p
d� this

is the scale on which we have de�ned our �stu!ng� function� it scales as follows�

�� �	t
� 	log t
��d� as t��� 	����


The following lemma estimates integrals of the �repaired� potential with respect to 	suf


�ciently regular
 test functions�

Lemma ��� Let � � Rd � R denote a non�negative� uniformly Lipschitz continuous�

compactly supported test function with Lipschitz constant ��� Let the support of � be

contained in a ball with a radius R � �	t
� Assume that t is so large that �	t
 � a� Then

there is a constant c� � c�	d
 � � such thatZ
Rd

�	x
 #V M
t 	x
 dx � 	�� �



Z
Rd

�	x
 dx� c�R
d�	t
��

�
� 	����


The test function � and the radius R may both depend on t� we will choose later the right

scale R � R	t
 to apply the lemma�

Proof of Lemma ���� We de�ne the boxes Kl
def
� �	t
l���� �	t

d� for all l � Z

d� compare

this with the de�nition 	����
 of Ki�j� We remark that �	t
 is chosen such that we do

not have to deal with fractions of boxes at the boundary of Tt 	see 	����

� Cm 	m � Z
d


are the boxes de�ned in 	����
 	they live on the same scale as the support of W 
� We

estimate #V M
t from below by the following decomposition

#V M
t 	x
 �

X
l�Zd

#V l� �M
t 	x
� 	����


where 	using the abbreviation b
�M�
m

def
� 	 "M��	Cm

�� with b�M�

m � � for �	Cm
 � �� recall
"M � M�	�dW�

�

#V l� �M
t 	x


def
�

�%�
%�
��Kl

	x
U	x
 �
P

m�Zd

Cm	Kl ��


b
�M�
m

R
Cm

W 	x� y
�	dy
 for Kl � Tt �� ��

�Kl
	x
 for Kl � Tt � ��

	����


To verify 	����
 we remark that on T c
t the inequality is clear� whereas on Tt we observe the

following� On fx � Tt � V 	x
 	Mg the inequality follows from b
�M�
m 	 � and the fact that

we only increase the potential if we integrate also over the obstacles in the a
neighborhood

of Tt 	for �boundary� boxes Kl
� On fx � Tt � V 	x
 � Mg�

b�M�
m

Z
Cm

W 	x� y
�	dy
 	 W�b
�M�
m �	Cm
 	 W�

"M� 	����


��



Since the box Cm which contains x has at most �d � � neighboring boxes 	all the other

boxes Cm� do note lie within the range of W 	x � �

 the claim follows from �dW�
"M �

M � V 	x
 �M �

The function #V l� �M
t 	x
 is supported on the a
neighborhoodKa

l ofKl� which has diameter

diam	Ka
l 
 � diam	Kl
� �a 	 c���	t
 with c�� � c��	d


def
�
p
d�� 	by our assumptions on

t
� Using Fubini�s theorem and 	����
 we see thatZ
Rd

#V l� �M
t 	x
 dx � 	�� �
jKlj� 	����


this is valid in both cases Kl � Tt �� � and Kl � Tt � �� HenceZ
Rd

�	x
 #V l� �M
t 	x
 dx �



inf
y�Ka

l

�	y


�Z
Rd

#V l� �M
t 	x
 dx

� 	�� �
jKlj


inf
y�Ka

l

�	y


�
	����


� 	�� �



Z
Kl

�	x
 dx� c���	t
��jKlj
�
�

Let L � L	t

def
� fl � Z

d � Ka
l �supp� �� �g� the cardinality of this set of indices is bounded

by jLj 	 jBR�diam�Ka
l �
	�
j�jKlj 	 jB�	�
j	R � diam	Kl
 � �a
d�jKlj 	 c��R

d�jKlj�where
c�� � c��	d


def
� jB�	�
j	� �

p
d
d� Summing 	����
 over all l � L and using 	����
 we getZ

Rd

�	x
 #V M
t 	x
 dx � 	�� �


X
l�L


Z
Kl

�	x
 dx� c���	t
��jKlj
�

� 	�� �



Z
Rd

�	x
 dx� c�R
d�	t
��

�
� 	����


with c�
def
� c��c��� Lemma ��� is proved� �

Proof of the lower bound in Theorem ���� As in Lemma ��� we choose 
 � �� � � �c�

� � � such that for all t � tc

P

h

V��t	Tt
 � p��
 
VM

��t
	Tt
� c		d
f	l	t



i
� �� t��� 	����


Formula 	����
 and the bound 	����
 on U imply

� 	 #V M
��t 	 p

�

	log t
��d
	M � �
� 	����


We use the following criterion to estimate the principal Dirichlet eigenvalue 
 
VM
��t
	Tt
 from

below� see e�g� Proposition ����� in ���� For all T � ��


 
VM
��t
	Tt
 � �

T



�� sup

x�Tt

Ex

�
exp



�
Z T

�

#V M
��t 	Zs
 ds

�
� T � TTt

��
� 	����


��



We apply this criterion on a time scale T � T 	t
 with

�	t
� � T 	t
� 	log t
��d� as t��� 	����


We start to estimate the right
hand side of 	����
� Let x � Tt�

Ex

�
exp



�
Z T

�

#V M
��t 	Zs
 ds

�
� T � TTt

�
	 Ex

�
exp



�
Z T

�

#V M
��t 	Zs
 ds

��

	 �� Ex

�Z T

�

#V M
��t 	Zs
 ds

�
�
�

�



Tp�	M � �


	log t
��d

��

� 	����


where we have used e�z 	 ��z� �
�
z�� which is valid for all z � �� and 	����
� We observe

the following asymptotic behavior of the last summand in 	����
�

�

�



T 	t
p�	M � �


	log t
��d

��

� T 	t


	log t
��d
� as t��� 	����


which is valid for �xed M and �� Let p	s� x� y

def
� 	��s
�d��e�jy�xj

����s� denote the Brown


ian transition density� Set %T 	y

def
�
R T
�
p	s� �� y
 ds� this function has the scaling property

%T 	y
 � T ��d��%�	T
����y
� and it ful�lls

R
Rd
%T 	y
 dy � T � We estimate the middle term

in expression 	����
� First we use Fubini�s theorem twice�

Ex

�Z T

�

#V M
��t 	Zs
 ds

�
�

Z T

�

Z
Rd

#V M
��t 	y
p	s� x� y
 dy ds

�

Z
Rd

#V M
��t 	y
%T 	y � x
 dy 	����


	We introduce a compactly supported� uniformly Lipschitz continuous test function � 	
� 	 %� and a scaled version of it� �T 	y


def
� T ��d���	T����y
 	 %T 	y
� 


�
Z
Rd

#V M
��t 	y
�T 	y � x
 dy� 	����


Let � be supported in a ball of radius r� � �� then �T is supported in a ball with radius

R � R	t

def
�
p
T 	t
r� 
 �	t
� as t��� 	����


Lemma ��� provides a lower bound for the term in 	����
�Z
Rd

#V M
��t 	y
�T 	y � x
 dy �

p�

	log t
��d

Z
Rd

#V M
t 	y
�T 	y � x
 dy

� p�

	log t
��d
	�� �


�k�Tk� � c�T
d��rd��	t
��T

�
	����


�
p�T

	log t
��d
	�� �


�k�k� � c�T
�����	t
rd���

�
�

��



where we have used the scaling behavior ��T � T ���d����� of the Lipschitz constants�

Using 	����

	����
 we obtain

	log t
��d

p

 
VM

��t
	Tt
 � �	�� �
 k�k� � e�	t
� 	����


where by our choice of T 	t
 	see 	����



e�	t

def
� �	�� �
c�T

�����	t
rd��� �
�

�
p��	M � �
�

T

	log t
��d
� �� as t���

	����


Using 	����
 we see that for all t � tc�

P
�
	log t
��d
V��t	Tt
 � �	�� �
 k�k� � e	t


	 � �� t��� 	����


with 	see 	����
 and 	����



e	t

def
� e�	t
 � c		d
	log t


��df	l	t

� �� as t��� 	����


Applying Lemma ��� we �nd that for all 
 � � there is a �c � � such that for all � � �c� for

all � � �� and for all � 	 � 	 %� 	compactly supported� uniformly Lipschitz continuous


P
a�s� lim inf
t��

	log t
��d
V��t	Tt
 � �	�� �
 k�k� � 	����


Finally we optimize over � and let � � � to see that our claim follows for all � � �c	



	
 � � arbitrarily
� This �nishes the proof of the lower bound in Theorem ���� �

� UPPER BOUNDS

The derivation of upper bounds is based on a variational principle� This is obtained using

the large deviation theorem of G�artner and Ellis 	Theorem ����� in ���
� First we prepare

the application of this large deviation result� We apply it to integrals of test functions

with respect to Poissonian cloud con�gurations� For this reason we examine the following

rate functions�

Let � be a bounded measurable test function with compact support� We de�ne the

generating function of the Poisson process�

&�	�

def
� log E

�
exp

�
�

Z
Rd

�� d�

��
�

Z
Rd

	e��
� � �
 dx� � � R � 	���


and its one�dimensional Fenchel�Legendre transform

&��	�

def
� sup

��R
	��� &�	�

 � 	���


We collect some important properties of this function�

��



Lemma ��� Assume that k�k� � ��

�� &�� is a convex� non�negative� real�analytic function on the interval 	���
 with the

global minimum &��	�
 � �� Especially� &�� is monotonically decreasing on the in�

terval 	�� �
�

�� Set S
def
� fx � R

d � �	x
 �� �g� Then &��	�

����� jSj with a vertical tangent�

d
d�
&��	�


����� ��� More quantitatively� There are constants � � �	�
 � �� c�� �

c��	�
 � � and c�� � c��	�
 such that for all � � � � � the following upper bound

holds�
&��	�
 	 jSj� c��� log�� c���� 	���


Proof of Lemma ���� Proof of ��� The integrand x �� e���x�
� � � depends analytically on

�� and the upper bound x �� sup��K je���x�� � �j is integrable for all compact subsets K

of the complex plane� hence &�	�
 �� for all � � R� and &� is a real
analytic function�

We observe that

&��	�
 �

Z
Rd

��e��
�

dx

�
������ �
������ � 	���


by the dominated convergence theorem and the monotone convergence theorem respec


tively� Furthermore &��	�
 � k�k�� � �� &� is strictly convex since

&���	�
 �

Z
Rd

�	e��
�

dx � �� 	���


Consequently the inverse function &���
� � 	���
 � R of &�� is real
analytic as well� and

we have the following description of &�� in terms of this function�

&��	�
 � &���
� 	�
�� &�	&

���
� 	�

� for � � � ��� 	���


This shows that &�� is real
analytic over 	���
� too� The convexity of &�� follows directly

from its de�nition� see ���� Lemma ������ We evaluate� &��	�
 � �&�	�
 � �� This is the

global minimum of &��� since we have for � � � � &��	�
 �� by 	strict
 convexity of &��

� � &�	�
 � &�	�
 � 	�� �
&��	�
 � �&��	�
� 	���


with equality only for � � �� � � ��

Proof of ��� Di�erentiation of the equation 	���
 yields d
d�
&��	�
 � &���

� 	�
 for � � 	���
�

and using &��	�
 � � as � � �� 	see 	���

 we get &���
� 	�
� �� as � � ��

Let A 
 R
d be measurable� jAj ��� and a � �� We determine explicitly�

&a�A	�
 � 	e�a
� � �
jAj� 	���


&�a�A	�
 � jAj� a��� log	a��jAj���
� a���
����� jAj� 	���


��



Let A�
def
� fx � R

d � j�	x
j � �g for � � �� Set s
def
� sup j�j� and assume that � � � is so

small that jA�j � �� We get�

��A� 	 j�j 	 s�S� 	����


&��A�
	�
 � &�	�
 � &s�S	�
 for � 	 �� 	����


&���A� 	�
 	 &��	�
 	 &�s�S	�
 for small � � �� 	����


one should observe that the left inequality in 	����
 holds for � � 	�� ��	�

 with some

��	�
 � �� while the inequality on the right
hand side in 	����
 is valid for all � � 	�� �
�

where � � � does not depend on �� We take the limit � � � in 	����
�

jA�j � lim
���

&���A� 	�
 	 lim inf
���

&��	�
 	 lim sup
���

&��	�
 	 lim
���

&�s�S	�
 � jSj� 	����


This implies lim��� &
�
�	�
 � jSj using jA�j ����� jSj� The quantitative bound 	���
 is a

consequence of 	����
 and 	���
� Lemma ��� is proved� �

The function &�� plays an essential role in the following variational principle�

Lemma ��� Assume that � � H�	Rd
 is continuous� compactly supported� and normal�

ized� k�k� � �� Further assume that � � 	�� �
 ful
lls

&��	�
 � d� 	����


Then

P�a�s� lim sup
t��

	log t
��d 
V��t	Tt
 	
�

�
kr�k�� � ��� 	����


Proof of Lemma ���� Assume that � is supported in Br	�
� r � � �xed� with a positive

distance between supp � and Br	�

c� For t � � we choose a pairwise disjoint family of

balls Br�log t���d	y
 
 Tt� y � Yt�r� where log jYt�rj� log t t���� d� 	To be speci�c� one may

choose Yt�r
def
� �r	log t
��dZd � Tt�r�log t���d �
 We de�ne �y�t�r to be a scaled and translated

version of � supported in Br�log t���d	y
�

�y�t�r	x

def
� 	log t
�����		log t
���d	x� y

� 	����


the normalizing factor is chosen such that k�y�t�rk� � �� By the variational characterisation

of the principal Dirichlet eigenvalue we know


V��t	Tt
 	 min
y�Yt�r



�

�
kr�y�t�rk�� �

Z
Rd

V��t�
�
y�t�r dx

�
� 	����


or by scaling�

	log t
��d
V��t	Tt
 	
�

�
kr�k�� � � min

y�Yt�r

Z
Rd

V ��
y�t�r dx� 	����


��



We rewrite the last integral� using the notation 	��� � ��
	x

def
�
R
Rd
��	z � x
��	z
 dz�Z

Rd

V ��
y�t�r dx �

Z
Rd

W� � ��
y�t�r d�� 	����


Therefore the integral in 	����
 depends only on the points of the Poissonian cloud con


�guration in an a�neighborhood of supp �y�t�r� which is contained in Br�log t���d	y
 at least

for large t� These balls are pairwise disjoint� hence
R
Rd
W� � ��

y�t�r d�� y � Yt�r� are i�i�d�

random variables� Using the Laplace transform of a Poisson process we get the generat


ing functions of these random variables� in the calculation we use a scaled version of W �

de�ned by Wt	x

def
� 	log t
W 		log t
��dx
� kWtk� � ��

�

log t
log E

�
exp

�
	log t
�

Z
Rd

W� � ��
y�t�r d�

��

�
�

log t

Z
Rd

	expf	log t
�W� � ��
��t�rg � �
 dx 	����


�

Z
Rd

	expf�W�
t � ��g � �
 dx

t���� &�	�
�

we have used the dominated convergence theorem� one observes 	W�
t � ��
	x


t���� ��	x


for all x � R
d by continuity of �� further recall that � is compactly supported and bounded�

&� is de�ned and real
analytic on the whole real line� therefore the G�artner�Ellis theorem

is applicable 	Theorem ����� in ���� unfortunately the theorem is stated there for integer

parameter sequences only� but this is not essential for our application� for example� one

may intermediately introduce factors �log t�� log t
t���� � below
�

lim inf
t��

�

log t
logP

�Z
Rd

V ��
��t�r dx � �

�
� � inf

m��
&��	m
 � �&��	�
� 	����


we used in the last step that &�� is monotonically decreasing and continuous on the interval

	�� �
� We estimate the probability of the minimum in 	����
 being too large 	using some

error terms o��t
t���� � and o��t

t���� �
 for large t�

log P

�
min
y�Yt�r

Z
Rd

V ��
y�t�r dx � �

�
� jYt�rj logP

�Z
Rd

W� � ��
��t�r dx � �

�

	 �jYt�rjP
�Z

Rd

V ��
��t�r dx � �

�
	 �jYt�rj exp

�
	log t
	�&��	�
� o��t




	����


	 � exp
�
	log t
	d� &��	�
� o��t



 	 �t��� 	t large
�

where 

def
� d� &��	�
 � �� see 	����
� We insert this into 	����
 and obtain for large t�

P

�
	log t
��d
V��t	Tt
 �

�

�
kr�k�� � ��

�
	 exp

��t���
 � 	����


��



The Borel�Cantelli argument 	as in Lemma ���
 implies the upper bound 	����
� which

is the claim of Lemma ���� �

The next lemma proves the upper bound in Theorem ���� However� for this upper bound

the assumptions d � � and � � �c are irrelevant�

Lemma ��� Let d � � be any dimension� and � � �� Then

P�a�s� lim sup
t��

	log t
��d 
V��t	Tt
 	 �� 	����


Proof of Lemma ���� Let � denote an arbitrary test function that ful�lls the assumptions

in Lemma ���� For r � � we introduce the scaled version

�r	x

def
� r�d���	x�r
� 	����


it scales as follows�

k�rk�� � � and kr�rk�� � r�� kr�k�� � 	����


&�r	�
 � rd&�	r
�d�
 and &��r	�
 � rd&��	�
� 	����


We choose a function � �� r	�
 for � � 	�� �
 such that

r	�

������ and &��r���	�
 � r	�
d&��	�


����� �� 	����


this is possible since lim��� &
�
�	�
 � �� The scaling rules 	����
 imply

�

�

&&r�r���&&�� � �� �
kr�k��
�r	�
�

� ��
����� �� 	����


The upper bound 	����
 is now a consequence of Lemma ���� �

The next lemma improves the upper bound 	����
 for low dimensions� We strengthen

Theorem ��� slightly by including a quantitative bound�

Lemma ��� Let d � � and � � �� For every B � � there is a c�	 � � such that for every

� � 	�� B
�

P�a�s� lim sup
t��

	log t
��d
V��t	Tt
 	 � � c�	�
	��	�d�� 	����


Proof of Lemma ��
� We use the same setup as in the proof of Lemma ���� This time� a

more detailed analysis of &��	�
 near � � � is required�

The Taylor expansion of &�� around its global minimum at �� � � provides an upper

bound for &�� in some ���neighborhood of �� There are constants c�� � c��	�
 � � and

�� � 	�� �� such that for all � with j�� �j � �� we have

&��	�
 	 c��	�� �
�� 	����


��



When we plug 	����
� 	����
� and 	����
 into Lemma ���� we see that

P�a�s� lim sup
t��

	log t
��d
V��t	Tt
 	
�

�r�
kr�k�� � ��� 	����


whenever

c��r
d	�� �
� � d and � � �� � � ��� 	����


Given B � � we choose �rst c�� � c��	B� �
 � � so small that c��B
d��	�d� � �� and

c
��d
�� d

���d � � kr�k��
� c

��	�d
�� � 	����


recall d � �� Then we choose c�
 � c�
	B� �
 � � so that

c
��d
�� d

���dc
	�d
�� � c��

�
 � � kr�k��
� c��� 	����


the choice 	����
 of c�� guarantees that such a c�
 exists� Finally we choose � � 	�� B


and set �� � � c���
d��	�d� � �� and r � c�
�

����	�d�� With these choices the conditions

	����
 are ful�lled� and

�

�r�
kr�k�� � �� � � � c�	�

	��	�d�� 	����


where c�	
def
� c�� � �

�
kr�k�� c��

�
 � �� In view of bound 	����
 this �nishes the proof of

Lemma ���� �

Finally we prove the upper bound in the large���regime� A consequence of Sznitman�s

Theorem ������ ���� is� P � a�s� lim supt�� 	log t
��d 
V��t	Tt
 	 c	d� �
� We prove an

upper bound which is a little bit smaller than c	d� �
 for all �nite �� We state a slightly

sharpened version of Theorem ���� we include a quantitative upper bound for � ���

Lemma ��� For all � � � the following asymptotic upper bound holds� There are positive

constants c�� � c��	d
� c�� � c��	d
 and B� � B�	d
� such that for all � � B��

P � a�s� lim sup
t��

	log t
��d 
V��t	Tt
 	 c	d� �
� c��e
�c�	�� 	����


Proof of Theorem ��� and Lemma ���� This time we analyze the variational principle

	����
�	����
 for � close to � and a special choice of �� Let � � H�	Rd
 denote the

	normalized
 principal Dirichlet eigenfunction of ��
�
� on the unit ball� we extend this

eigenfunction by � outside of this ball� Lemma ���� the quantitative upper bound 	���


for &�	�
� and the scaling properties 	����
 and 	����
 yield

P�a�s� lim sup
t��

	log t
��d
V��t	Tt
 	

d
r�

� ��� 	����


��



whenever

m
def
�

rd

d
	vd � c��� log�� c���
 � �� 	����


and � is small enough 	� � � � �
� recall the notation 
d � 
V��	B�	�

 �
�
�
kr�k�� and

vd � jB�	�
j� We optimize 	����
 under the constraint 	����
�


d
r�

� �� � m���d
dd
���d	vd � c��� log�� c���


��d � �� 	����


	We use Lipschitz continuity of x �� x��d at x � vd� the next estimate holds for some

constants c�� � c��	d
 � � and c�� � c��	d
� when � � � is su!ciently small and m is

su!ciently close to �� recall c	d� �
 � 
dd
���dv

��d
d �


	 m���dc	d� �
 � c��� log�� c���� �� 	����


	We substitute the optimal value � � e����c���c����c��
����� � �


� m���dc	d� �
� c��e
����c���c����c�� � 	����


Finally we let m � �� This proves the asymptotic bound 	����
 for an appropriate choice

of the constants B�� c�� and c��� Theorem ��� is a consequence of 	����
 and the mono


tonicity of � �� 
V��t	Tt
� �

� ASYMPTOTIC BEHAVIOR OF THE PARTITION SUM

In this section we give the relations between the principal Dirichlet eigenvalue on Tt �
	�t� t
d and the partition sum for Brownian motion in a scaled Poissonian potential S�

t���

Proof of Theorem ��
� First we give the upper bound on S�
t��� Using Theorem ����� of

��� we see that 	where TTt
def
� inffs � �� Zs �� Ttg is the exit time from Tt


S�
t�� 	 P� �TTt 	 t� � E�

�
exp

�
�
Z t

�

V��t	Zs� �
ds

�
� TTt � t

�
	���


	 �d exp f�t��g � c��	d

�
	
V��t 	Tt
 t
d�� � �

�
exp

��
V��t 	Tt
 t
 �
where the �rst term on the right
hand side of 	���
 has been estimated by the standard

one
dimensional estimate using the re ection principle� We remark that the leading term

is the second one� the exponent 
V��t 	Tt
 t grows slower than of order t as t � �� But

this together with the results on 
V��t	Tt
 gives the upper bound in Theorem ����

��



So let us come to the lower bounds� Let U be a subset in Tt� then we denote by #U the

open
p
d
neighborhood of U � Consider y � U such that 	������
 of ��� holds� i�e� if � is

the nonnegative normalized principal Dirichlet eigenfunction to our problem on U � so we

want to choose y such that �� puts enough mass close to it�
R
y�������d

��	x
dx � ��	�j #U j
�
We imitate the proof of Theorem ������ ���� for our scaled potential� Using Proposition

������ of ���� we obtain for A
def
� y � ���� ��d and t � �

S�
t�� � inf

A
A
rRd�V��t	�� �� �
 	���


� �

�j #U jE�

�
exp

�
�
Z H�A�

�

V��t	Zs� �
ds

�
� H	A
 ��

�
exp

��
V��t 	U
 t
 �
where H	A
 is the entrance time of Z� into A and for an open set U � R

d

rU�V��t	u� x� y

def
� p	u� x� y
Eu

x�y

�
exp

�
�
Z u

�

V��t	Zs� �
ds

�
� TU � u

�
� 	���


with p	u� x� y
 the Brownian transition density and P u
x�y the Brownian bridge measure

	from x to y in time u
� for a reference see Appendix A of ���� Estimating the �rst term

in 	���
 we obtain

inf
A
A

rRd�V��t	�� �� �
 � inf
������d
������d

r������d�V��	�� �� �
 exp
�
�� sup

y�������d
V��t

�
� 	���


Using 	������
 of ��� we see that

P
a�s� sup
��t�t�d

V��t � o
�
	log t
����d

�
� as t��� 	���


We come back to the remaining terms in 	���
� De�ne s � s	t

def
� t	log t
���d and choose

U � Ts � 	�s� s
d� hence j #U j 	 	�t
d for all large t� Further we see that via the shape

theorem 	Theorem ������ ���
� there exists a constant � � �	d�W 
 such that for almost

every � and for all large t 	H	A
 	 H	 "B�	y




E�

�
exp

�
�
Z H�A�

�

V��t	Zs� �
ds

�
� H	A
 ��

�

� E�

�
exp

�
�
Z H� �B��y��

�

V 	Zs� �
ds

�
� H	 "B�	y

 ��

�
	���


� exp f��sg �
Collecting 	���

	���
 we obtain P
a�s� for all large t

S�
t�� � c��	d
 exp

��
V��t 	Ts
 t� �s� 	d� �
 log t
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Then the claims follow from the remark that the leading orders of 
V��t 	Ts
 and 
V��t 	Tt

are the same as t � �� For large t we have s 	 t� hence using the monotonicity of the

principal Dirichlet eigenvalue 
V��t	Ts
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� Using 	log t� log s
��d � � as t � ��

we obtain P
a�s�

lim sup
t��

	log t
��d 
V��t 	Ts
 	 lim sup
s��

	log s
��d 
V��s 	Ts
 � 	���


This together with the asymptotic upper bounds on 
V��s	Ts
 �nishes the proof of Theo

rem ���� �
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