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Abstract

We consider d-dimensional Brownian motion in a scaled Poissonian potential
and the principal Dirichlet eigenvalue (ground state energy) of the corresponding
Schrodinger operator. The scaling is chosen to be of critical order, i.e. it is deter-
mined by the typical size of large holes in the Poissonian cloud. We prove existence
of a phase transition in dimensions d > 4: There exists a critical scaling constant
for the potential. Below this constant the scaled infinite volume limit of the cor-
responding principal Dirichlet eigenvalue is linear in the scale. On the other hand,
this limit is strictly smaller than the linear bound for large values of the scaling
constant. For d < 4 we prove that this phase transition does not take place on that
scale. Further we show that the analogous picture holds true for the partition sum
of the underlying motion process.

0 INTRODUCTION AND RESULTS

In this article, we consider standard Brownian motion in R?, d > 1, which evolves in a
scaled random potential. The scaled random potential is obtained by translating a fixed
shape function W to all the points of a Poissonian cloud with constant intensity v = 1.
Let P stand for the law of the Poissonian point process w = ) . 0,, € Q (where Q is the
set of all simple pure locally finite point measures on R?). The random scaled Poissonian
potential is then defined as follows, for x € R?, 3 > 0, ¢ > 0 and w € Q:

def [ def [ |
Vﬂ’t(l',u)) = WV(I,W) = W zl: W(I’ — Il), (01)
where we assume that the shape function W > 0 is measurable, bounded, compactly
supported and [ W (x)dx = 1. For z € R? let P, stand for the standard Wiener measure
on C(R,,R?) starting from z (its canonical process is denoted by Z.).
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Let us for the moment restrict to the unscaled Poissonian potential V. The Feynman-
Kac functional u(t, z) = E. [exp{ fo (Zg,w ds}] represents the bounded weak solu-
tion of the random parabolic equation

- 1 _
{ Ou = 5Au—Vu, (0.2)
Ut=p — 1.
Sznitman [5], Theorem 4.5.1, has proved that on a set of full P-measure for z € R?
t
—logu(t,z) ~ c(d, I)W, as t — oo, (0.3)
where ¢(d, 1), defined in (4.4.20) of [5], is the constant
. 2/d
o(d, 1) % 2y ( ;) , (0.4)

here \; denotes the principal Dirichlet eigenvalue on the d-dimensional unit ball to the
potential 0, and v, is the volume of the d-dimensional unit ball. A crucial role in the
proof of (0.3) is played by the principal Dirichlet eigenvalues to the potential V' on the
boxes (—t,t)?. Analysing the asymptotic behavior of these principal Dirichlet eigenval-
ues, one sees that the main contribution comes from the large holes in the (random)
Poissonian potential V. The box (—t,¢)¢ typically contains a ball having a radius of order
d/4y M (log )1/ which receives no point of w (see Sznitman [5], Formula (4.4.38) and
Theorem 4.4.6). In this article we examine whether such large holes are still dominant
when we rescale the Poissonian potential in an appropriate way (see (0.1)): the costs
of confining a Brownian particle to large Poissonian holes now compete with the costs
arising in an averaged scaled Poissonian potential; the scaling is chosen such that these
two costs are of the same “order”.

The main role in this context is played by the principal Dirichlet eigenvalue. It is
defined as follows: The principal Dirichlet eigenvalue on the non-empty open set U C R?
to the potential Vj, is (see also Sznitman [5], (3.1.2))

vy, (U) = inf {/U % Vo + Vsed?da : ¢ € C§°(U),/U¢2 = 1} . (0.5)

Rescaling the potential properly has the following effect: Consider test functions varying
on the scale of large holes of the Poissonian cloud. Then the gradient term (kinetic energy)
and the potential term live on the same scale. Therefore we ask, which term “wins” in
this setting. Our main results are the following theorems:

Theorem 0.1 For alld > 1 and > 0,

P — a.s. limsup (log#)*/* A, (=t 1)) < e(d, 1). (0.6)

t—oo



In fact we prove a slightly stronger quantitative asymptotic bound for 5 — oo (see (3.37)).
Theorem 0.1 proves that in our context we obtain an eigenvalue which is strictly smaller
than in the unscaled case (see [5], Theorem 4.4.6). In the unscaled case one observes
that the eigenfunctions essentially live in the large Poissonian holes. In our model, the
eigenfunctions prefer large connected regions where the number of Poissonian particles
is less than its expectation. These regions are typically larger (by a (-dependent factor)
than the holes in Sznitman’s context. Henceforth the contribution from the potential
term can be compensated by the gradient term in such a way that we obtain a smaller
value than in the unscaled picture.

Theorem 0.2 For d > 4 there exists 3. > 0 such that for all § < 3,

P-a.s. tlinolo (log t)2/d/\vﬁ,t((—t,t)d) = 0. (0.7)
Theorems 0.1 and 0.2 prove that for d > 4 we observe a phase transition on the scale
(logt)?/?: There exists a critical scaling constant. Below this constant the asymptotic
behavior of the principal Dirichlet eigenvalue is linear in the scaling: we can choose as test
function a C>°-approximation to the normalized constant function on (—t,#)? to evaluate
(0.5); this test function provides already the correct asymptotic behavior in (0.7). This
picture changes for large 3: we have an upper bound which is strictly smaller than the
linear one (see (0.6)); this improved upper bound is obtained using other test functions:
these test functions are supported on regions having a volume proportional to log¢. The
number of particles in these regions has to be less than its expected value.

For d < 4 the situation is completely different, namely:

Theorem 0.3 Let d <4 and > 0. Then

P-a.s. limsup (log t)Q/d/\Vﬁ,t((—t,t)d) < f. (0.8)
t—oo
In Lemma 3.4 we provide a more quantitative bound. Theorem 0.3 was in the beginning
quite surprising: Our main tool to prove Theorem 0.2 is the Cwickel-Lieb-Rosenbljum
Theorem (see Theorem 9.3 in Simon [4]); it suggests that the critical dimension might be
d = 3. However a closer look at the below used “grey—scale technique” (proof of Lemma
2.5) shows that for d = 3 not the small deep holes cause problems but the large shallow
ones. These large shallow holes can not be treated by that Theorem; their effect is in fact
so strong that we observe in three dimensions a similar picture as for d =1, 2.
Next we consider the partition sum of Brownian motion in the scaled Poissonian po-
tential (starting at the origin),

s < B, {exp {_(log% /OtV(Zs,W)dSH : (0.9)



The time scale ¢ is the natural one, because on this space-time scale the Brownian motion
with killing has enough time to experience the whole box (—t,t)¢, respectively the large
holes in the box (—t,)? (whenever such a strategy is favorable for the survival of the
Brownian particles). We have the following results:

Theorem 0.4 For alld > 1 and > 0,

1 2/d
P-a.s. lim inf M

t—o0

log S5 > —c(d, 1). (0.10)

For d > 4 there exists 3, > 0 such that for all § < [3.

1 t 2/d
P-a.s. tliglo (log )" log ¢ = — 0. (0.11)
Ford< 4 and 3 >0
o (log )
P-a.s. htnlglf log Sy > —P3. (0.12)

One should compare these results with (0.3). It would also be interesting to examine
the path behavior of Brownian motion in a scaled Poissonian potential. However, this
question goes beyond the scope of this article. So far, our picture suggests that for d > 4
and small 3 the motion process should be diffusive, whereas for large (3 or d < 4 we expect
a superdiffusive behavior.

The statements hold true for general W > 0 (measurable, bounded, compactly sup-
ported) with [ W (x)dz > 0 and general Poissonian intensity # > 0. All one has to change
is to scale the critical scaling parameter [ according to the choice of d,v and W and to
multiply the right-hand side of (0.7), (0.8), (0.11) and (0.12) by a constant depending
only on d, v and W. We restrict ourselves to the case [ W(z)dr =1 and v = 1 since it
already covers the whole flavor of the problem and since the general case can be recovered
by a simple scaling argument.

By standard arguments coming from time-independent second order quantum me-
chanical perturbation theory one sees that 3 — Ay, ((—t,t)?) is concave; henceforth
3+ liminf, o (log 1)/ Ay, , ((—t,t)?) is concave.

This article is organised as follows: In Section 1 we give some general results and
definitions that we use in the whole article.

In Section 2 we provide the lower bound on the principal Dirichlet eigenvalue in the
low-(-regime (d > 4). This consists of three parts: Part 1: We generalize the Cwickel-
Lieb-Rosenbljum Theorem (Theorem 9.3 in Simon [4]) to our situation, where we do
not have one big hole in the Poissonian cloud but many holes which are separated by
large distances (see Lemma 2.2 below). The main tool here is a comparison theorem
by Sznitman for principal Dirichlet eigenvalues on different domains (see [5], Theorem
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3.1.11). Part 2: Next we define the notion of big holes. We introduce a “stuffing” function
to “repair” the potential in regions, where there are too large holes ((2.26)-(2.28)). In
Lemma 2.5 we prove that we can compare the principal Dirichlet eigenvalue of the original
potential with the eigenvalue of the repaired potential. The main tools in this part are
large deviation estimates for having a big hole in the Poissonian cloud configuration on
all “grey-scale” levels. Part 3: Finally we estimate the principal Dirichlet eigenvalue of
the repaired potential from below by classical methods.

In Section 3 we give the upper bounds on the principal Dirichlet eigenvalues. The
upper bounds are based on a variational principle (Lemma 3.2). This is obtained by
the Gértner-Ellis large deviation theorem (Theorem 2.3.6, [2]) applied to integrals of test
functions with respect to the Poissonian cloud configuration. We derive all our upper
bounds by optimising this variational principle (for the according ’s). This is done in
Lemmas 3.3, 3.4 and 3.5. The remarkable thing here is that the relevant optimisation
problems on [0, 1] behave qualitatively very differently for d < 3, d = 4, and d > 4.
This emphasizes that d = 4 is the critical dimension; it also corresponds to the fact that
the “grey—scale” estimates for the lower bound (proof of Lemma 2.5) become easier in
dimensions d > 5 (see remark after the proof of Lemma 2.5).

In Section 4 we finally give the translation of the results concerning the principal
Dirichlet eigenvalue to results about partition sums for Brownian motion in a scaled
Poissonian potential.

1 PRELIMINARIES

In this section we do all the preparatory work to prove our results. We start with the
following definitions: For ¢ > 0, we define

T, Y (=, 1), (1.1)
W, sup,ere W(2), and a denotes the minimal radius such that supp W C B,(0),
where B,(0) is the open ball with center 0 and radius a. Next we state the following
measurability result:

Lemma 1.1 Ay, , (7;) is measurable in w and decreasing in t.

Proof of Lemma 1.1. The measurability follows from (3.1.2) in [5]; it suffices there to con-
sider a countable dense collection of test functions ¢ € C'°(7;) with ||¢|]s = 1 to evaluate
the principal Dirichlet eigenvalue. The decrease in ¢ can easily be seen from (3.1.4) and
(3.1.33) in [5]. O



Lemma 1.2 If there exist c¢1, ¥ > 0 and a sequence e, — 0 of positive numbers such
that for all large n € N we have

P [(log n)Q/d)\Vﬁ,n(Tn) < —e,] <n’, (1.2)
then P-a.s.
liminf (log )% My, (T2) > e (1.3)

Proof of Lemma 1.2. Consider the subsequence m,, o [nQ/”], hence for this subsequence
we can apply the Borel-Cantelli Lemma to see that (1.3) holds for n — oo (n € N). But
then our claim follows by Lemma 1.1 and lim, log [(n — 1)*”] /log [n*”] = 1. O

The following lemma estimates large deviations for Poisson random variables:
Lemma 1.3 Let N ~ Poisson(i), 0 <e < 1. Then

PN < (1—2)u] < e==H/2, (1.4)
Proof of Lemma 1.3. We use the exponential Chebyshev-inequality for s > 0:

PN < (1 —e)p] < e*I=HE[e=V]
= exp((s(1 = =) + e = 1) = exp(—g()n), (1.5

where we have set s = —log(1—¢) > 0,ie. e —1 = —¢, and g(¢) = (1—¢)log(l —¢) +e=.
We have ¢'(z) = —log(1 —2), ¢"(¢) = 1/(1 —<) > 1, g(0) = 0, and ¢'(0) = 0; therefore
g(e) > 3. Inserting this into (1.5) proves Lemma 1.3. O

2 LOWER BOUND IN THE LOW-3-REGIME

2.1 Generalization of the Cwickel-Lieb-Rosenbljum Theorem

At the heart of the proof of the lower bound in Theorem 0.2 lies a nice theorem which is
due to Cwickel-Lieb-Rosenbljum (CLR) (see Theorem 9.3 in [4]). Here is also an important
step where the calculations in dimensions d = 1,2 break down (see Simon [3]). First we

quote the CLR Theorem: We define V_ o max(0, V).

Theorem 2.1 (Theorem 9.3, [4]) Let d > 3. There exists a constant aq such that for
all potentials V' (not necessarily positive) with V € LY?(R?) and

ad/ V() 2d < 1, (2.1)

we have \y(R?) > 0.



Our first goal is to generalize this result to a situation where one has many holes in the
potential, but the distances between the holes are large.
Let d > 3, and U, be supported on A; C R, —y; < U; <0, with for all j

ad/ U2 de < 1, (2.2)

and 7 o sup; v, € (0,00). Further we assume that
= inf dist(4;, 4) > 1. (2.3)
VE=

def

We set U = »_,U;. Then

Lemma 2.2 Assume d > 3. Choose vy > 0 and define f(l) of [72log®l. Then there
exists L = L(d,yy) such that for all v < 7o and for all | > L the following holds:

Ao (RY) > —f(D). (2.4)

Proof of Lemma 2.2. Our main goal is to apply Theorem 3.1.11 of [5]. Therefore we
have to estimate A, B, C' defined in (3.1.36) of [5]. We start with the following definitions:

ALY U; 4j, and O is the open [/4-neighborhood of A. Notice that the disjoint holes

A; have also a disjoint [/4-neighborhood (which are denoted by ;). Further we define

Ve Uy ~v > 0 so that we do not have to bother about signs, i.e.

for all open sets Y C R?, Ay (U) > 0. (2.5)
We claim
M (0) Ay = f(I) < Av(R). (2.6)

The inequality (2.6) implies (2.4): due to the CLR Theorem (Theorem 2.1) we know that
Au,(R?) > 0 for all j, hence we have (using (2.6))

AR = A(RY) -y

> M(O)Ay = f(l) =~

— i1}f/\v((’)j)/\7—f(l)_7 (2.7)
> (igl_f/\Uj(Rd)—Irv)/\V—f(l)_V

> —f(l).

There remains to prove (2.6). To make to notations consistent with [5] we define U “o

and Uy = R* and A S (A\y(Uh) Ay — f(1)),. Either A =0, then (using (2.5))

Av(Uh) Ay = Av(Us) < Av(Uh) Ay < (D), (2.8)



which finishes the proof in the case A = 0.
Or A > 0, hence (for large 1)

0 <A=Av(lh) Ay = f(I) < Av(lh) (1_ @) : (2.9)

We define the entrance time 7 inf{s > 0, Z, € A} of Z. into the holes A, the exit time
def .

Ty, = inf{s > 0,7, ¢ Uy} of Z. from U;, and

51 déf T O eTul + TU1 and Sk-i—l déf 51 o esk + Sk for k > 17 (210)

where 6, is the time shift. Because on the time interval (S, Sk4+1] the Brownian motion
has to travel at least distance [/4 > 0, we have that for all x € R?, limy, S, = oo P,-a.s.
(which is Condition (3.1.38) of [5]). Using Corollary 3.1.3 and Formula (3.1.19) of [5]
together with (2.9) we obtain for some fixed constant cy(d) > 0 that

A sup 1 +/ NeME, {Tu1 > U, exp {—/ V(Zs)ds}] du
z€ERY 0 0

< o(d) (%)HM < . (2.11)

Next we have, again using Corollary 3.1.3 and Formula (3.1.19) of [5] together with (2.9)
and the fact that A < (1 — f(I)y 1) < Ay (A) (1 — f(I)yv 1),

B & sup/ NeME, [T/\Tu2>u,exp{ / V(Z H du
el Jo 0

- s)ds
< 1+ Sup/ AeME, [TAC >, exp {—/ V(Zs)ds}] du (2.12)
x¢U1 JO 0

< eo(d) (%)HM < 00.

There remains to estimate

c S;glp E, |:T < Ty, exp {)\T —/ V(Zs)ds}] : (2.13)
¢l 0

On A° we have V' =, hence V.— A=~ — Ay (U) Ay + f(I) > f(I). Therefore

e [ = g0
Ey [exp {—f(1)T50,/ }] (2.14)
exp {—Cg(d)lf(l)l/Q} : for all large [,

C
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where the last step can be seen by generalizing the result for the one-dimensional exit
time (Formula 3.0.1 of [1]) to our d-dimensional situation. Hence for all large [:

AC < eo(d)exp { (g + 1) log (%) — ¢3(d) log/” l} <1 (2.15)

So Theorem 3.1.11 of [5] gives that A = Ay (Uy) Ay — f(I) < Ay (Uy) for all large [, which
finishes the proof of (2.6). O

2.2 The grey-scale technique

We use different scales of volumes: t¢ > [(t)? > logt > a(t)logt > 1 (for large values
of t); “a(t) > b(t)” means that a(t)/b(t) — oo as t — oo. The meanings of the scaling
functions are roughly:

o t?is the scale of the “universe box” T;;

e [(t) is the length scale of the minimal distance between the sets A; in Lemma 2.2;

logt is the scale of the largest hole in the potential on a box 7;;

a(t)logt is the scale on which we define the “stuffing” function;

1 is the scale of the support of the shape function W.

Here are the main requirements on the scaling functions that we shall use later: we need,
with the notation of Lemma 2.2:

(log)?®. f(I(1) ==0  and  at) =20, (2.16)
but «(t) should converge only so slowly that

1 oo 1 —o0
logllt) = and _ loga(t) =20 (2.17)
a(t)logt a(t)logt

certainly we can choose such an «(t) when we choose [(t) such that logi(t)/logt =% 0.
To simplify things, we assume that

1 1def T 1
—ni(t)d = — d t)d = ———— 2.18
Smt) W™ n2(t) (2.18)
are integers (we want to avoid dealing with fractions of boxes). We split the universe box
T, = (—t,t) into ny(t) cubes

def

A= A;(t) = (—t, ..., —t)+1(t)7 +[0,1(1))" (2.19)



of volume I(t)¢,
jeJ=Jt) ¥ {o,... ()i —1}7 (2.20)

|.J(t)| = ny(t); the union over all A; coincides with 7; only up to a null set at the boundary
of 7; (since 7; is an open box). Next we split each of these boxes A; into ny(t) smaller
boxes

+ 10, (au(t) log t)d)* (2.21)

&\’—‘

Koy = Kig(®) & (b ) + (1)) + (a(t) log 1) &

of volume «(t)logt,

iel=1It)%{0,... ny(t)s — 1} (2.22)
|I(t)| = ny(t). We partition J(t) into 2¢ classes Ji(t), k € {0,1}¢, where J;, = Ji(t) o
J(t) N (k + (2Z)%); we observe that dist(A;, A;) > I(¢) for i,5 € Ji(t), i # j.

Finally we split these boxes K;; into even smaller boxes on the scale of the diameter
of the potential. We choose the length a(t) such that « < a(t) < 2a, and such that
(a(t)logt)a/a(t) is an integer (for ¢ large enough); this is again done to avoid handling
with fractions of boxes. We define the boxes

Con & ma(t) + [0,a(t))?, (2.23)
for m € Z¢, and the index set C;; & {m € 2¢: C,, C K;;}.

We introduce a random “stuffing” function: It has the purpose to “repair” the potential,
where the truncated version VA M of V' is too small (caused by the randomness of w;
M > 1 denotes a truncation level). The truncated potential may be too small in the box
K; ; for two reasons:

1) The total number of points of the Poissonian point process in the box Kj;; might be
too low; this is measured by the quantity

def w(K; ;)
§ij=1- % =
il

(2.24)

2) The points inside the box K, ; might clump too much, leaving holes in other parts of
the box. To measure this, we introduce the event

. (2.25)

Z’J

def v n
FY=F9tMnE{we: Y [w(Cn) — (@(Cn) A M) > 5

10



where 1 > 0 denotes a (small) allowed tolerance and M % M/(31W..).

We define the random “stuffing” function U (depending on M, 7, t, and on the Pois-
sonian cloud configuration w): for j € J, k € {0,1}<,

UJ(.’L') d:ef _ Z [(gi,jl{&,@nﬂ}) V ]'F,(O):| 1Ki,j (.’L‘) (supported on Aj), (226)
icl N
U, & Z U, (supported on {J,.; Aj),  (2.27)
J€EJk
Ulx) o Z U;(z) = Z Uk (supported on 7;).  (2.28)
JjeJ ke{o,1}4

This means that we work with a “grey-scale picture” for repairing the first kind of holes,
but a “black-and-white picture” is sufficient to repair the second kind of holes. The
Poissonian cloud configuration w € €2 is “repaired” by U in the following sense:

- /I Ulw)de + D (W(C) AM) > (1= )| Ky ; (2.29)

this is obvious on the event F}Sg), while on (F»(O-))C it follows from

Z’J
Z (W(Cm) A M) > w([(i,j) — R’i’j|g
mECi,j
n
= K| (1 —&ij— 5) (2.30)

> K| (1 =1 = & jlig onp2))-
We observe the following bounds for U:

0>U>—1. (2.31)

We need scaled versions of the functions U; and Ui too: Using p = p(d) 20 4 1 we
define:

def [ _ 5 def b
Uj,ﬁ,t == pw[]] and Uk,ﬂ,t = pi(log t)Q/d Uk (232)
Finally we define the “repaired version” of the potential:
gMAt B oy A M- U+ 1] 2.33
Bt p(log t)2/d |:( ) Tt + 7T, ] ( )
We apply the following lemma to the decomposition
Ve > p’lvﬂ]"/{ + Z pilﬁkﬁ,t over 7T;, (2.34)

ke{0,1}4

with p; = p for all i in (2.35):

11



Lemma 2.3 Given a decomposition V>3 U; of a potential V over a connected open
set B CR? and weights pq, ... ,p, > 1 with Zipi_l =1 we have

MW(B) > S 5 (B, (2.35)

Proof of Lemma 2.3. Let Ty % inf{s : Z, ¢ B} denote the exit time of Z. from B. We
have for T > 0 by monotonicity of the expectation and Hoélder’s inequality:

b oo [ vizaas) n 1] <m0 [ wizya) 1y 1]
(2.36)

Consequently, the Feynman-Kac representation of the principal Dirichlet eigenvalue im-
plies for every x € B:

1 T
Ayv(B) = — lim TlogECD {exp {—/0 V(Zy) ds} , T > T]

T—o0

v

1 < r
— lim — Zp;llog E, {exp {—/ piUi(Zs) ds} ,Tp > T] (2.37)
— 0

T—o0 T -
1=

= Z p;l)\piUi(B)'
=1

|

The next lemma bounds the probability that Poissonian points clump to much inside a
box Ki’ji

Lemma 2.4 For all n > 0 there exists M = M(n) > 1 such that for all (sufficiently
large) t the following bound holds:

P[FY] < e~(e®lest)/2, (2.38)

Proof of Lemma 2.4. Take a fixed A > 1/n. The exponential Chebyshev-inequality implies

|Ki,j]/1Cml

PIE (t, M, )] < e E12E [exp {Aw(Cr) — (0(Cin) A M)]}] (2.39)

By the dominated convergence theorem, the last expectation goes to 1 as M — oo; recall
that M is proportional to M. We choose M so large that this expectation is less than
edAn=1)/2 < plCnlMn=1)/2 recall (2.23). We get ]P’[Fi(‘?-) (t, M,n)] < e 1Kisl/2 = g=(alt)logt)/2,
This proves the lemma. u
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Lemma 2.5 Assume d > 4. For all exponents v > 0 there is a 3. > 0 such that for all
B € (0,8.) and n > 0 there exists a t. > 0 such that the following holds for all t > t.:

P\, (Te) > p  Apa(T) — eald) f(I(1) | 21—t (2.40)

where c4(d) el gdp=1 = 24/(21 4+ 1) and M = M(n) is taken from Lemma 2.4.

Proof of Lemma 2.5. We are going to estimate Ag, , t(Tt) by inserting the decomposition
Urpi = > jes, Ujpe in Lemma 2.2: We observe for j # j', j,j" € Ji,

and there exists a t.(d, 5., W) > 0 such that for all t > t.(d, 5., W), § € (0, ,.) and all
Poissonian cloud configurations w the pointwise lower bound Uy 3, > —1 = —7p is valid;
see (2.31) and (2.32). We define the event

E;=E;(d.n 8,t)% {ad/wmﬁ da < 1}, (2.42)

we remark that M is according to Lemma 2.4 a fixed constant depending only on 7.
Lemma 2.2 implies that for [(f) > L(d, 1) the estimate Ay,  (7;) > —f(I(t)) holds on the
event ;. Ej; therefore by Lemma 2.3:

Avﬁ,t(,];) > _1)‘VM Z /\Ukﬁt t
ke{o,1}4
> p Ay (T) - @) 2.9

There remains to derive a lower bound for P[(;.; E;] which converges to 1 sufficiently

fast. Set h(&) o §g1{§>n/g} and c5(d) o 2p%ad, then

d/2
Ej = {c5<d>5— D (&) V1 o) K| > 2} C B U B, (244)

c de c de C
E(l d f {Zh é.l] Z —t)} and E](2) d:f {Z lFi((;) Z I('St)}, (245)

el

here we abbreviate cg = c6(/3,d) = c5(d) ™' 37Y?; recall |K; ;| = a(t)logt.

n=

h(¢) with N(n) € N so large that 27¥™ < 5/2; one should note that & ; < 1. Using this
we estimate

We divide h in different “grey-scales”: Set hy(€) o ZN(Z) 20 DY2] o i ngmny >

{Zhl . 2—)} (2.46)



(We introduce the abbreviations N, = N, (d, 3,) = 0(6)2(" D42 and £, & 27m)

ZN {iel:2e, > 6, >e,}>1 (2.47)

def def

(Define the finite set R, {2N( : k€ [0,2N(n)] N Z}, and for r > 0 define ¢,(r) =
max{p € R, : p < r};ie q(r )<7“<qn( )+2N(n) for 0 <r <1, and ¢,(r) =1 for r > 1.

Consequently the assumption Z 1 )y > 1 with all 7, > 0 implies Zg(q ¢y(rn) > 1/2;
this statement is trivial when there exists a 7, > 1:)

N(n)
1
Z 4 (N, i € T222, 2 65 > en}l) 2 5 (2.48)
(The next union runs over the finite set
def N N
Ry E {p=(p1...poniy) € RY ™ N W p, > 1)
N(n)
U MNiliel2en 28>}l 2 pa} (2.49)
PERy n=1

(We prepare the application of the van den Berg/Kesten-inequality: Let Z, denote the
set, of all partitions (I,... ,Iney) of I into N(n) sets; some of the I,, may be empty:)

N(n)
= U N{{ieh:2e>8&; >} > puNo}

PERy (In)€Ty n=1
N(n)

clJ U NiHien &>l >N} (2.50)

PERy (In)€T, n=1

As in [6] one sees that one can generalize the usual van den Berg/Kesten-inequality on the
lattice to our Poissonian point process problem: the events {|{i € I : &;; > e, }| > pa Ny}
are decreasing (since the random variables &; ; are decreasing functions of the Poissonian
cloud configuration w) and they “need to occur on disjoint domains”. We get

N(n) N(n)
Pl | ({{i€l:&;>en}l>pNa} <H]P’|{z€] Eii > et > pulN,].
(In)€Z, n=1

(2.51)
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We introduce the events

FOELg > ) = {w(K;) < (1-=2,)

K}, (2.52)

forn > 1,1 € I, 5 € J; one should not confuse these events F("), n > 1 (which take

care about filling holes on a “grey-scale level”) with the event Fl( ]), which was introduced
n (2.25), and which takes care of “clumps” in the Poissonian cloud configuration; how-
ever the similar notation was chosen intentionally to treat both kinds of “repairing the

potential” at the same time below. We get

N(n)
EVT< S T PI{i el &> et > o
PERy n=1
N(n)
o] SimEY 25
pGRn n=1 i€l

(We may drop the factors in the last product with p, = 0, since they are 1: let M, o

{neN:1<n<N(@), p, >0} for peR,:)

=> I] Zlny > pnNn] . (2.54)

PERy NEM, el

Next we use Lemma 1.3 to estimate
(n) 1 1
PIF;;] <exp | =, |Kijl ) = exp { —5=na(t) logt (2.55)

We now treat E ¢ and E( both at the same time; recall that these two events correspond

to the two dlfferent reasons to “repair” the potential: To get a uniform notation, we

introduce an additional point (call it ) to the index set: R o {*} UR,; the extra point

) def

x takes care of E]( We set M, = {0}, co 1, and

9(n—1)d/2 N
p,n pn ‘
(t) W for p =, n = 0.

We join (2.44), (2.45) and (2.54) to obtain

PES< Y J[P [Z Lyt > Mp,n] . (2.57)

PER} neM, el
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We use the exponential Chebyshev-inequality, the independence of the events (Fz(?))zg
(n € M,, p € Ry), and the bounds (2.55) and (2.38) to get for o > 0:

P [Z lFl(?) Z M exp (0’ Z lFl(;L)>

el el

S efo'Mp,nE

= oo T Elexp(o1 )] < e [[(1 + e BIES) (2:58)

el el

1
< e TLexpleBIFS) < exp (=00 -+ 11e”exp (- 22a(0)1ost ) )

el

choose the optimal o, which is determined by |I|e” exp(—31s2a(t)logt) = M, ,, i.e.

(Wi 3€
o= %s a(t)logt —log |I| +log M, ., > 0 (t large):)

M,
= exp (—#eia(t) logt + M, log|I| — M,,logM,,+ M, n> . (2.59)

Therefore we obtain the estimate

PIES] < Z H eXp( a(t)logt+M log || — pnlogMpn+Mpn>,
PER; nEM,
(2.60)
and hence
U Es| < PIEY (2.61)
jeJ je

M, n
< Z exp | log|J| + Z <—¢sia(t)logt+M log |I] — pnlogMpn—i-Mpn)

PERS neM,

(using log |.J| = d(log 2 + logt — log(t)) and log |I| = dlogl(t) — log a(t) — loglogt:)

M
= Z exp | [ d— Z Msia(t) logt + 046,41 | (2.62)

2
PERS neM,

with the higher order terms

On,B.pdit difdenlogl( t)—M,,logM,, — M,,loga(t)— M,,loglogt+ M,,,

O0n.,B,pd,t —dlog 2 —dlogl(t) Z On,n,B,pd,t-
neM,
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Recall Definition (2.56): M, ,(d, 3,t) is proportional to a(t)"'. We use the choice of the

asymptotic behavior (2.16)-(2.17) of {(¢) and «(t) to see 0,5,.4:/logt =% 0. Now we
examine the leading term in (2.62) for p € R,

M,. Q(d/Q*Q)n d
Y Berzam = Y 2era p > ) (2.63)

neM, neM, ﬁd/2 ﬁd/2
we have set cr(d) = c5(d)"12-%2-2, and we have used d > 4, ie. 2@/2-2n > 1 and
Donem, Pr > 1. In the case p = x we obtain the right-hand side in (2.63) as a lower
bound, too: M, s2a(t)/2 > c7(d)/3%?. Tt is important to note that this right-hand side
in (2.63) does not depend on 7; this allows us to choose [3. independent of the value of 7.
Inserting these estimates, we get

PIUE

JeJ

< Z exp —cr( d)ﬁ’d/Q) logt + On’ﬁ‘p‘d‘t> . (2.64)
PER;

The sum over p is finite; consequently we get the following result: For all ©# > 0 there
exists 4. > 0 such that for all 3 € (0, 3.) and 1 > 0 there is t. > 0 such that the following
bound holds for all ¢ > t.:

U Ei(d,n. gty | <t (2.65)

JjeJ

This proves Lemma 2.5. u

Remark: The case d > 4 could be handled in a simpler way: one may choose one speci-
fied p only (instead of all p € R,), e.g. p, = cs(d, §)2(4/279" for some 0 <§<d/2—2and
cs(d, 6) 1 4L 5% 20@/2-n qrop step (2.48), and replace U,er, NN in (2.49) by YN

So for d > 4 one does not have to apply the van den Berg/Kesten- 1nequality. However,
this simplification does not suffice for d = 4. It is interesting to examine why the method
does not apply for d = 3: not the small, deep holes change the picture, but the large,
shallow ones do (see (2.63)). O

2.3 Lower bound on the principal Dirichlet eigenvalue for the “repaired”
potential

Consider the unscaled version of the “repaired” potential

M def (10gt)2/d M

tef (10817 Grar 2.66
t p/@ Bt ( )
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where V1 is given in (2.33). We abbreviate r(t) ' (a(t)logt)/? = diam (K, ;)//d, this

is the scale on which we have defined our “stuffing” function, it scales as follows:
1 < k(t) < (logt)Yd,  ast — oo. (2.67)

The following lemma estimates integrals of the “repaired” potential with respect to (suf-
ficiently regular) test functions:

Lemma 2.6 Let ¢ : R — R denote a non-negative, uniformly Lipschitz continuous,
compactly supported test function with Lipschitz constant (,. Let the support of ¢ be
contained in a ball with a radius R > k(t). Assume that t is so large that k(t) > a. Then
there is a constant co = co(d) > 0 such that

/Rd p(x)VM(x) de > (1—n) (/Rd p(a)de — CQR%(t)&p) . (2.68)

The test function ¢ and the radius R may both depend on t; we will choose later the right
scale R = R(t) to apply the lemma.

Proof of Lemma, 2.6. We define the boxes K; & k(E)+]0, (1)), for all | € Z% compare
this with the definition (2.21) of K;;. We remark that x(¢) is chosen such that we do
not have to deal with fractions of boxes at the boundary of 7; (see (2.18)). C,, (m € Z%)
are the boxes defined in (2.23) (they live on the same scale as the support of W). We
estimate ‘N/tM from below by the following decomposition

VM) > Y VM ), (2.69)

lezd

where (using the abbreviation piy) & (M /w(Cp)) A1 with b)) =1 for w(C,,) = 0; recall
M = M/(3"W,,)):

<IN, def “la(@U(@) + Zd b [ W(r—y)w(dy) for K;nT, #9,
Vt’ (l') = Cn:nmel%,;é@ (2.70)

1](,(1‘) for KlﬂTt:@.

To verify (2.69) we remark that on 7, the inequality is clear, whereas on 7; we observe the
following: On {x € 7; : V(z) < M} the inequality follows from b'2”) < 1 and the fact that
we only increase the potential if we integrate also over the obstacles in the a-neighborhood
of 7; (for “boundary” boxes K;). On {zx € T, : V(x) > M}:

bgy)/ W(z — y)w(dy) < WabMw(Cp) < Wi M. (2.71)
Cm

18



Since the box C,, which contains z has at most 3¢ — 1 neighboring boxes (all the other
boxes Cy, do note lie within the range of W (z — -)) the claim follows from 3¢W M =
M=V(x)ANM.

The function ‘N/tl’M(x) is supported on the a-neighborhood &' of K, which has diameter
diam(K}") = diam(K;) + 2a < cipr(t) with c19 = c19(d) & /d+2 (by our assumptions on
t). Using Fubini’s theorem and (2.29) we see that

/ T () de > (1 — )| Kl (2.72)
Rd

this is valid in both cases K; N7; # () and K; N7; = (). Hence

[ o ez (nt o) [ 7@

yeK}

> (-l (ag o) 27)
> (=) ([ ot o= cuntte 1K)

Let L = L(t) o {l € Z¢ : K*nsupp ¢ # 0}; the cardinality of this set of indices is bounded

by |L| < |BR+diam(Kl“)(0)|/|Kl| < |B1(0)|(R + diam(K;) + 2a)?/| K| < c11RY/|K;|,where

c11 = cpp(d) o |B1(0)|(3 4+ v/d)% Summing (2.73) over all I € L and using (2.69) we get

/Rd o(x)VM(z)de > (1 —n) Z </Kz () dx — cror(t)l,| K >

lel

> ) ([ ewyas - cariutor, ) (274

) def )
with cg = c19c1;. Lemma 2.6 is proved. O

Proof of the lower bound in Theorem 0.2. As in Lemma 2.5 we choose ¢ > 0, [ < [,
n > 0 such that for all ¢ > .

P [M(T) > 9™\ (T) — el FU0)] > 1= 177, (2.75)
Formula (2.33) and the bound (2.31) on U imply
~ v 15}

We use the following criterion to estimate the principal Dirichlet eigenvalue /\‘7[% (7;) from

below, see e.g. Proposition 3.1.4 in [5]: For all T > 0,

Ao (T7) > % (1 — sup E, [exp (— /OT V(Z,) ds> VT < TTD : (2.77)

B,t z€T;
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We apply this criterion on a time scale T = T'(t) with
k()? < T(t) < (logt)??,  ast — oo. (2.78)

We start to estimate the right-hand side of (2.77): Let x € 7.

E, [exp <— /OT V(Z) ds> T < Tﬁ] < FE, [exp (- /OT V(Z) ds)]
<1-E, [/OT vﬁf\’/tf(Zs)ds] +% (%)2, (2.79)

where we have used e * <1 -2+ %,2'2, which is valid for all z > 0, and (2.76). We observe
the following asymptotic behavior of the last summand in (2.79):

1 (T(t)pﬁ(M+1)>2 . T
(

2 (log t)2/d log t)%/d’

as t — oo, (2.80)

which is valid for fixed M and ﬁ Let p(s 2,y) © (27ms)~4/2e~lv=al/(29) denote the Brown-

ian transition density. Set ®7(y fo (s,0,y)ds; this function has the scaling property
Or(y) = T2 (T~/?y), and 1t fulfills [p, ®7(y) dy = T. We estimate the middle term
in expression (2.79): First we use Fubini’s theorem twice:

T T
E, [/ VﬁAﬁ(Zs)dS] :/ / Vﬁl‘ﬁ(y)p(s,x,y) dy ds
0 0 Rd

= /Rd VY (y)2r(y — x)dy (2.81)

(We introduce a compactly supported, uniformly Lipschitz continuous test function 0 <
© < ®; and a scaled version of it: pp(y) = T1-92p(T—2y) < &7 (y): )

> [ Viwert - )y (2.82)

R
Let ¢ be supported in a ball of radius r, > 1; then o7 is supported in a ball with radius
R=Rt) Y /T(tyr,> r(t), ast— oo (2.83)

Lemma 2.6 provides a lower bound for the term in (2.82):

/Rd Vﬁ]"/{(y)@T(y —x)dy = ﬁ /d VM () er(y — x) dy
> o= ) (lorl = T adn(ot,,) (280

= g1 = 1) (el =~ r(0re,).
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where we have used the scaling behavior (,, = T1=9/2( of the Lipschitz constants.
Using (2.77)-(2.79) we obtain

log t)?/4
Q80 2 50 = m o, = ea(9) (2.55)
where by our choice of T(t) (see (2.78))
ex(t) 2 B(1 = g)esT=2(t)rle, + pSA(M +1)*—— 0 as t — oo
1 9 pre Ty (log t)?/4 ' :
(2.86)

Using (2.75) we see that for all ¢ > ¢
P [(log ) Avy, () = (1= ) gl — ()] 21— 17, (257
with (see (2.16) and (2.86))

e(t) & e (t) + cad)(log )2 f(I(t)) — 0, as t — oo. (2.88)

Applying Lemma 1.2 we find that for all ¢ > 0 there is a 3. > 0 such that for all 3 < j,, for
all 7 > 0, and for all 0 < ¢ < ®; (compactly supported, uniformly Lipschitz continuous)

P-a.s. lim inf(logt)Q/d)\VB,t(’];) > B =) el - (2.89)

t—oo

Finally we optimize over ¢ and let n — 0 to see that our claim follows for all 5 < .(1)
(¥ > 0 arbitrarily). This finishes the proof of the lower bound in Theorem 0.2. a

3 UPPER BOUNDS

The derivation of upper bounds is based on a variational principle. This is obtained using
the large deviation theorem of Gértner and Ellis (Theorem 2.3.6 in [2]). First we prepare
the application of this large deviation result: We apply it to integrals of test functions
with respect to Poissonian cloud configurations. For this reason we examine the following
rate functions:

Let ¢ be a bounded measurable test function with compact support. We define the
generating function of the Poisson process:

Ay(o) Elog B {exp{a/ ¢ de :/ (e —1)dz, oc€R, (3.1)
Rd Rd

and its one—dimensional Fenchel-Legendre transform

A5(n) % sup (o= Ao(o) (3:2)

We collect some important properties of this function:
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Lemma 3.1 Assume that ||¢||, = 1.

1. A} is a convex, non-negative, real-analytic function on the interval (0, 00) with the
global minimum A;‘)(l) = 0. Especially, Aj is monotonically decreasing on the in-
terval (0,1).

2. Set S & {r € R" : ¢(x) # 0}. Then Aj(n) #18 |S| with a wvertical tangent:

%A;(,u) 10 . More quantitatively: There are constants 6 = 6(¢) > 0, ¢1p =
c12(®) > 0 and c13 = c13(¢) such that for all 0 < p < 6 the following upper bound

holds: Nj(p) < |S]+ crzplog pp — cizpe. (3.3)

Proof of Lemma 3.1. Proof of 1.: The integrand x +— (@)’ _ 1 depends analytically on
o, and the upper bound z +— sup,g |e"¢(‘”)2 — 1| is integrable for all compact subsets K
of the complex plane; hence Ay(0) < oo for all ¢ € R, and A, is a real-analytic function.
We observe that

AQ)(O') = ¢260¢2 dx { 0—+00 (34)
Rd —

by the dominated convergence theorem and the monotone convergence theorem respec-
tively. Furthermore Aj(0) = 6] = 1. A, is strictly convex since

Nj(o) = / ¢*e”” dx > 0. (3.5)
Rd

Consequently the inverse function A:z;_l 1 (0,00) — R of A} is real-analytic as well, and
we have the following description of Aj in terms of this function:

Aj(n) = AT () = Ap (A (), for 0 < pu < o0, (3.6)

This shows that A} is real-analytic over (0, 00), too. The convexity of A7 follows directly
from its definition; see [2], Lemma 2.2.5. We evaluate: A%(1) = —A4(0) = 0. This is the
global minimum of A}, since we have for 0 < = Aj(0) < oo by (strict) convexity of Ay:

0= A5(0) 2 As(o) + (0 — 0)AY(0) = — A3 (1), (3.7)

with equality only for p =1, 0 = 0.

Proof of 2.: Differentiation of the equation (3.6) yields %A;‘)(u) = AL () for € (0, 00),
and using Aj(co) | 0 as 0 — —oo (see (3.4)) we get A;‘l(u) — —oo as u | 0.

Let A C R? be measurable, |A| < oo, and a > 0. We determine explicitly:

Aary(0) = (7 = 1)]A], (3.8)
NS () = Al +a 2plogla ?|A] ) —a 2 22 1A (3.9)
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Let A, & {x € R?: |p(x)| > e} for £ > 0. Set s © sup |¢], and assume that € > 0 is so
small that |A.| > 0. We get:

51A€ < |¢)| < 815, (310)

Ay (0) > Aglo) > Agg(o) for o <0, (3.11)

AL, (w) < AG(r) <A () for small ;o > 0; (3.12)

one should observe that the left inequality in (3.12) holds for x € (0,6,(¢)) with some
61(2) > 0, while the inequality on the right-hand side in (3.12) is valid for all u € (0, 6),
where 6 > 0 does not depend on . We take the limit x4 | 0 in (3.12):

|A.| = I;HEA;A () <liminf A% (p) < limsup Aj(p) < llHRA:lS(,u) = |S]. (3.13)

This implies lim, o A5(1) = |S| using [A.] =0 |S|. The quantitative bound (3.3) is a
consequence of (3.12) and (3.9). Lemma 3.1 is proved. O

The function A} plays an essential role in the following variational principle:

Lemma 3.2 Assume that ¢ € H*(R?) is continuous, compactly supported, and normal-
ized: ||¢l|, = 1. Further assume that po € (0,1) fulfills

A(p) < d. (3.14)
Then

P-a.s. limsup (logt)%/* A (T7) < ||V¢||2 + B (3.15)

t—o0

Proof of Lemma 3.2. Assume that ¢ is supported in B,(0), r > 0 fixed, with a positive
distance between supp ¢ and B,(0)°. For t > 0 we choose a pairwise disjoint family of
balls Br(logt)w(y) C T,y € Y:,, where log|Y;.|/logt =%, (To be specific: one may

choose Y}, def 2r(logt)/42.7 N T, r(log £)1/d- ) We define ¢, , to be a scaled and translated
version of ¢ supported in B, g y1/4(y):

Syer () E (logt)2((log )Yz — y)); (3.16)

the normalizing factor is chosen such that ||¢, ¢ .||, = 1. By the variational characterisation

I
of the principal Dirichlet eigenvalue we know

N () < i (G090t [ Vi o) (3.17)

or by scaling:

(o5 " "Avs (T) < 5 Vol + 5 in [ VR, do .19
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def

We rewrite the last integral, using the notation (Y7 * 1) (x Jpa U1 (2 — 2)a(2) dz

/Rdngy”da:: RdW * ¢py dw (3.19)

Therefore the integral in (3.18) depends only on the points of the Poissonian cloud con-
figuration in an a—neighborhood of supp ¢y 1, which is contained in B, g 4)1/4 (y) at least
for large t. These balls are pairwise disjoint; hence fRd W~ x gby” dw, y € Y;,, are 1.i.d.
random variables. Using the Laplace transform of a Poisson process we get the generat-
ing functions of these random variables; in the calculation we use a scaled version of W,
defined by Wi (z) = (log )W ((logt)"/4z), W, = 1:

1
@logE [exp{(logt)a RdW *Qbytr H

= gt Ju (exp{(log t)oW ™~ x ¢g,,} — 1) dx (3.20)

N / (exp{oW,” % 6"} — 1) dz == Ay(0);
Rd

we have used the dominated convergence theorem: one observes (W, x ¢%)(x) == ¢2(x)
for all z € R¢ by continuity of ¢; further recall that ¢ is compactly supported and bounded.
A, is defined and real-analytic on the whole real line; therefore the Gartner—Ellis theorem
is applicable (Theorem 2.3.6 in [2]; unfortunately the theorem is stated there for integer
parameter sequences only, but this is not essential for our application: for example, one
may intermediately introduce factors [log#]/logt —= 1 below):

hmlnfl—log]P’ {/ ngOtrda: < ,UJ} > — inf Af(m) = —Ag(p); (3.21)

t—o0 Og m<p

we used in the last step that A} is monotonically decreasing and continuous on the interval
(0,1). We estimate the probability of the minimum in (3.18) being too large (using some

t—o0 t—o0
error terms 07y — 0 and o0y, — 0) for large ¢:

1ogP{min/ V¢y”da:2u]=|m,r|logﬁb[/ W gh,, do > p
R4 Rd

YyEY: »
< —|Y;, P [/d Vi, do < u] < —[Vio|exp {(logt)(—=Aj(n) —or)}  (3.22)
R

< —exp{(log)(d — Aj(1) — 02,)} < —t"% (¢ large),

where ¥ & d — A%(p) > 05 see (3.14). We insert this into (3.18) and obtain for large t:

P[aogtwmﬁt( D> —||v¢||2+m] < exp {1772} (3.23)
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The Borel-Cantelli argument (as in Lemma 1.2) implies the upper bound (3.15), which
is the claim of Lemma 3.2. O

The next lemma proves the upper bound in Theorem 0.2. However, for this upper bound
the assumptions d > 4 and [ < 3, are irrelevant:

Lemma 3.3 Let d > 1 be any dimension, and 3 > 0. Then

P-a.s. limsup (logt)*/* v (T7) < . (3.24)

t—o0

Proof of Lemma 3.3. Let ¢ denote an arbitrary test function that fulfills the assumptions
in Lemma 3.2. For r > 0 we introduce the scaled version

on(x) = 1 /7); (3.25)

it scales as follows:
looll; =1 and ||V, ][5 =r2|IVoll;. (3.26)
A, (o) =r*Ay(r~%o) and A} (u) = r?A%(u). (3.27)

We choose a function p +— r(u) for g € (0,1) such that

11 * * 11
r(p) =00 and  AG () = r(p) A (n) 7 0; (3.28)

this is possible since lim,j; Aj (1) = 0. The scaling rules (3.26) imply

IVoll,

1 2 1
3 ‘|V¢T(H)H2—|—ﬂ,u: 2 () + 6 £ B, (3.29)
The upper bound (3.24) is now a consequence of Lemma 3.2. a

The next lemma improves the upper bound (3.24) for low dimensions: We strengthen
Theorem 0.3 slightly by including a quantitative bound:

Lemma 3.4 Letd < 4 and 3 > 0. For every B > 0 there is a c14 > 0 such that for every
pe(0,B):

P-a.s. lim sup(log t)Q/d)\Vﬁ,t(Tt) < B — a8, (3.30)

t—oo

Proof of Lemma 3.4. We use the same setup as in the proof of Lemma 3.3. This time, a
more detailed analysis of A;‘)(u) near p = 1 is required:

The Taylor expansion of Aj around its global minimum at pp = 1 provides an upper
bound for A} in some s4-neighborhood of 1: There are constants ci5 = ci5(¢) > 0 and
£ € (0,1] such that for all g with | — 1| < =4 we have

Aj(p) < eas(p = 1)% (3.31)
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When we plug (3.26), (3.27), and (3.31) into Lemma 3.2, we see that

1
P-as.  limsup(logt)*“\y, (7)) < 53 IV o5+ B, (3.32)
t—o00 ' r
whenever
csrt(1—p)? < d and 0<1—p<e, (3.33)

Given B > 0 we choose first c15 = c14(B, ¢) > 0 so small that c;aBY*% < £, and
d 2 1-4/d
c'd M < 2|Vl e (3:34)
recall d < 4. Then we choose ¢17 = ¢17(B, ¢) > 0 so that
Al < 6 < 2|V, e (3.35)

the choice (3.34) of ¢4 guarantees that such a ¢i7 exists. Finally we choose § € (0, B)
and set 1 — p1 = c16Y4Y < 2, and r = 173724~ With these choices the conditions
(3.33) are fulfilled, and

1 u—
53 Vol + B =5 — cup=?, (3.36)
where 1y & ¢qg — : Vo3¢ > 0. In view of bound (3.32) this finishes the proof of
Lemma 3.4. 0

Finally we prove the upper bound in the large-(-regime: A consequence of Sznitman’s
Theorem 4.4.6, [5], is: P — a.s.limsup, ., (logt)** Ay, (7;) < c(d,1). We prove an
upper bound which is a little bit smaller than ¢(d, 1) for all finite 5. We state a slightly
sharpened version of Theorem 0.1: we include a quantitative upper bound for f — oo:

Lemma 3.5 For all f > 0 the following asymptotic upper bound holds: There are positive
constants c¢1g = c13(d), c19 = c19(d) and By = By(d), such that for all f > By:

P — a.s. limsup (log )%/ A, (Ty) < e(d, 1) — crze™ P, (3.37)
t—oo
Proof of Theorem 0.1 and Lemma 3.5. This time we analyze the variational principle
(3.14)—(3.15) for u close to 0 and a special choice of ¢: Let ¢ € H'(R?) denote the
(normalized) principal Dirichlet eigenfunction of —%A on the unit ball; we extend this
eigenfunction by 0 outside of this ball. Lemma 3.2, the quantitative upper bound (3.3)
for A*(¢), and the scaling properties (3.26) and (3.27) yield

A
P-as.  limsup(logt)” Ay, (7)) < T—;l + By, (3.38)

t—o0
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whenever

d
def T

m = E(vd + craplog pn — ci3p) < 1, (3.39)

and g is small enough (0 < g < §); recall the notation Ay = Ay—o(B1(0)) = 3 IVol5 and
vg = |B1(0)|. We optimize (3.38) under the constraint (3.39):

A _ _
T—Z + B =m HINgd 2 vg + craplog pu — crsp) 4+ B (3.40)

(We use Lipschitz continuity of 2 + 2*¢ at 2 = vg: the next estimate holds for some
constants cyg = cop(d) > 0 and ¢9; = ¢91(d), when p > 0 is sufficiently small and m is
sufficiently close to 1; recall ¢(d, 1) = Agd~2/402/ %)

<m~4e(d, 1) + cyoplog it — carp + B (3.41)
(We substitute the optimal value p = e(~#-c+ea)/en 725 ¢ )

= (1) — cppelPemben)ien, (342)

Finally we let m 1 1. This proves the asymptotic bound (3.37) for an appropriate choice
of the constants By, ¢ig and ¢j9. Theorem 0.1 is a consequence of (3.37) and the mono-
tonicity of # — Ay, ,(7;). O

4 ASYMPTOTIC BEHAVIOR OF THE PARTITION SUM

In this section we give the relations between the principal Dirichlet eigenvalue on 7, =
(—t,t)? and the partition sum for Brownian motion in a scaled Poissonian potential Silg-

Proof of Theorem 0.4. First we give the upper bound on S¢;. Using Theorem 3.1.2 of

[5] we see that (where T7, o inf{s > 0,7, ¢ 7;} is the exit time from 7;)

Sty < Po[Tr, <t + Ey {exp {— /t V/gvt(Zs,w)ds} ,Tr, > t} (4.1)
< Adexp{—t/2} + caa(d) ((Av,, (T2) )% + 1) exp {=A\v,, (T)t},

where the first term on the right-hand side of (4.1) has been estimated by the standard
one-dimensional estimate using the reflection principle. We remark that the leading term
is the second one, the exponent Ay, , (7;)t grows slower than of order ¢ as t — oo. But
this together with the results on Ay, ,(7;) gives the upper bound in Theorem 0.4.
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So let us come to the lower bounds. Let U be a subset in 7;, then we denote by U the
open v/d-neighborhood of U. Consider y € U such that (6.1.17) of [5] holds, i.e. if ¢ is
the nonnegative normalized principal Dirichlet eigenfunction to our problem on U, so we
want to choose y such that ¢* puts enough mass close to it: fy+[_171}d 2 (z)dx > 1/(2|0)).
We imitate the proof of Theorem 6.1.1, [5], for our scaled potential: Using Proposition

3.1.12 of [5], we obtain for A < y+[~1,1]% and ¢ > 2

Sz:)ﬁ > AHifA TRd v, (27 K ) (42)
1 H(A)
.mEO exp —/ Vsi(Zs,w)ds ¢, H(A) < ool exp {=Ay,, (U)t},
0

where H(A) is the entrance time of Z. into A and for an open set U C R?

TU,Vﬁ,t(uv €, y) d:ef p(U,I, y)E;L,y |:€Xp {_/ V/B,t(Zsaw)ds} 7TU > u:| ) (43)
0

with p(u,x,y) the Brownian transition density and P}, the Brownian bridge measure
(from x to y in time u), for a reference see Appendix A of [5]. Estimating the first term
in (4.2) we obtain

inf 2...)>  inf i rro(2, - ) Vieb . (44
’iIXlATRd’VB’t( )2 [—1,1]5g[—1,1]dr( aptv=of )eXp{ y+?1l£2)d ﬁ’t} -
Using (4.5.12) of [5] we see that

P-a.s. sup Var=o0 ((logt)1_2/d) : as t — oo. (4.5)

(7t’t)d

We come back to the remaining terms in (4.2): Define s = s(t) o t(logt)~%/¢ and choose
U=1T, = (—s,5)" hence |U] < (2t)¢ for all large ¢. Further we see that via the shape
theorem (Theorem 5.2.5, [5]), there exists a constant o = a(d, W) such that for almost
every w and for all large t (H(A) < H(Bi(y)))

H(A)
exp {—/0 Vg,t(Zs,w)ds} yH(A) < oo]

H(B1(y)) -
exp {— /0 V(Zs,w)ds} H(Bu(y)) < oo] (4.6)

> exp {—as}.

Ey

> Fy

Collecting (4.2)-(4.6) we obtain P-a.s. for all large ¢

Sis > ca3(d) exp {—/\VM (T)t—as—(d+1) logt} ) (4.7)
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Then the claims follow from the remark that the leading orders of Ay, , (7,) and Ay, (7;)
are the same as t — oo: For large ¢ we have s < ¢, hence using the monotonicity of the
principal Dirichlet eigenvalue Ay, ,(7;) < Ay, (7). Using (logt/log $)Y* = 1ast — oo,
we obtain P-a.s.

lim sup (log t)*/* v, (T;) < limsup (log s)2/? v, (T5) (4.8)

t—o0 §—00

This together with the asymptotic upper bounds on Ay, (7;) finishes the proof of Theo-
rem 0.4. O
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