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Abstract

We consider an M/G/1 queue with the special feature that the
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sy > sr. The high-speed periods are exponentially distributed, and
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a rational Laplace-Stieltjes transform, we obtain the joint distribution
of the buffer content and the state of the server speed. (ii) For the
case that the distribution of the low-speed periods and/or the service
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cases in which the offered traffic load is smaller respectively larger
than the low service speed are shown to result in completely different
asymptotics.
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1 Introduction and model description

This paper is devoted to the M/G/1 queue that alternates between two ser
vice speeds sz, and sy > sr. The high-speed periods are assumed to be
negative exponentially distributed, and the low-speed periods have a general
distribution L(-). We are mainly interested in the distribution of the work-
load. In case L(-) has a rational Laplace-Stieltjes Transform (LST), we obtain
an exact expression for the LST of the workload distribution. Subsequently
we turn to the case that both L(-) and the service request distribution may
have a regularly varying tail at infinity (see Definitions of the Appendix).
We determine the tail behaviour of the workload. It turns out that one has
to distinguish between two cases, (i) sp < p and (ii) sz > p; here p indicates
the offered request load, viz., the arrival rate of customers times their mean
service request. In case (ii) the slow speed is already enough to handle the
offered traffic, and the tail behaviour of the workload is determined by the
tail behaviour of the service request distribution. In case (i) the workload
has a positive drift during the low-speed periods, and the tail behaviour of
the workload distribution is determined by the heaviest of the tails of the
service request distribution and L(-).

Our motivation for this study is two-fold. Firstly, the single-server queue
with various speeds is a very natural and practically important model, that
deserves a renewed interest w.r.t. the performance analysis of integrated
services communication networks. In such networks, the influence of high
priority traffic on low-priority traffic is often reflected in a variable capacity
for low-priority traffic. For example, the available capacity for ABR or non
real-time VBR traffic depends on the presence or absence of high-priority
real-time VBR traffic. Other examples are provided by scheduling disciplines
like GPS (Generalized Processor Sharing). As a design paradigm, GPS is at
the heart of commonly-used scheduling algorithms for high-speed switches
such as Weighted Fair Queueing. From a queueing point of view, GPS gives
rise to the analysis of coupled servers, where the speed of one server varies
depending on whether another server is busy or idle.

A second motivation for this study is the convincing evidence of long-
tailed traffic characteristics in high-speed communication networks. Early
indications of the long-range dependence of Ethernet traffic, attributed to
long-tailed file size distributions, were reported in [18]. Long-tailed charac
teristics of the scene length distribution of MPEG video streams were inves-



tigated in [16, 17]. These and other empirical findings have triggered the-
oretical developments in the modelling and queueing analysis of long-tailed
traffic phenomena. The influence of long-tailed service time distributions on
waiting time and workload distributions of the single-server queue has been
investigated in considerable detail; many results are gathered in the book
[22]. For multi-server queues, very little is known. A recent study [6] has
been devoted to an analysis of the workload tail behaviour of a heterogeneous
two-server queue with one exponential and one heavy-tailed server. This tail
behaviour is shown to exhibit completely different behaviour, depending on
whether the exponential server alone does or does not have enough capacity
to handle all offered traffic. In the framework of GPS, a similar phenomenon
has been observed, cf. [4, 5]. In the present study we investigate the influence
of long-tailed periods with slow service on the tail behaviour of the workload
of a single-server queue. It should be noted that the low-speed period may
correspond to a period in which another server in a GPS-operated switch is
busy. Our model is in one sense more general: The low-speed periods do not
necessarily correspond to busy periods of another queue.

There is a considerable literature on the single-server queue with several
service speeds, but to the best of our knowledge the issue of regularly varying
tail behaviour has not yet been discussed in this respect. An early paper is
due to Yechiali and Naor [26]. They have studied the M/M/1 queue which
alternates between two (see [27] for an extension) exponentially distributed
phases, the arrival and service rates depending on the phase. Neuts [21] has
generalized their study to the M/G/1 case. He deviates from the assump-
tions in [26] by assuming that the service time distribution of a customer
depends only on the state of the phase process at the time his service begins.
Halfin [14] analyzes the buffer content of an M/G/1 queue whose service rate
varies according to a birth-and-death process with ¢ + 1 states. A system
of Volterra-type integral equations is derived for the joint distribution of the
buffer content and the phase of the birth-and-death process, and is used for
the numerical calculation of the distribution. Regterschot and De Smit [23]
have studied an M/G/1 queue in which both the arrival rate and the service
time distribution depend on the state of an underlying finite-state Markov
chain. Dudin [11] and Dudin and Markov [12] have analysed the most gen-
eral model: an M/G/1 queue in a semi-Markovian environment. In those
papers the residence times in states of the semi-Markov process are assumed
to have a limited PH-distribution. Several authors have considered queues
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with service interruptions. In our setting this corresponds to taking sz = 0.
Some recent studies concerning such queues are Takine and Sengupta [25],
Li et al. [19], and Nifiez Queija [24].

The paper is organized as follows. In Section 2 we derive an expression
for the joint steady-state distribution of the buffer content and the state
of the server (low- or high speed). These expressions involve an unknown
function @(z). In Section 3 we show how (z) can be determined in case
the low-speed period distribution has a rational LST. Unfortunately, we are
not able to determine (J(z) in the general case. However, in Section 4 we
demonstrate how one can still determine the tail behaviour of the buffer
content distribution, when L(-) and/or the service request distribution is
regularly varying at infinity. We provide explicit asymptotics for this tail
behaviour, distinguishing between p < sz and p > s;. In the former case the
tail of the unknown distribution is only determined by the tail of the service
request distribution; in the latter case, it is determined by the heaviest of the
tails of the service request distribution and the low-speed period distribution.

We end the present section with a detailed model description. We consider
the M/G/1 queue with an infinite buffer, where customers arrive according
to a Poisson process with rate A. The required service times have distribution
B(t) with LST B(s), Re s > 0, and mean . Service is in order of arrival. The
speed of the server alternates between two constant values sy and sy > sr.
The high-speed periods are distributed exponentially with mean 1/v. The
low-speed periods have distribution L(¢) with LST é(s), Re s > 0, and
mean §. All interarrival intervals, service requests, lengths of high-speed
periods and lengths of low-speed periods are independent.

2 The buffer content

Let V(¢) be the buffer content (workload) at time ¢. Let X(¢) be a random
variable that alternates between the states H and L. X(t) does not depend
on V(t). If X(t) = H (respectively X(¢) = L) then a customer in service
is served with speed sy (sp). Observe that {(V(¢),X(¢)), ¢t > 0} is not a
Markov process. A Markov process can be obtained by taking a third quan-
tity into consideration, viz., the time Lpas(t) that has passed since the last
change of service speed. We can study the joint distribution of the Markov
process {(V(), X(t), Lpast(t)), ¢ > 0} in a similar way as Cohen [[§], Sec-



tion I1.6.2] analyzes the M/G/1 queue (via the method of the supplementary
variable}. Introduce the following distribution functions, for v > 0, t,7 > 0:

Fy(v,t) = P(V(t) <wv, X(t) = H),

Fr(v,t,)dyp := P(V() <v,X(t) =L, n < Lpast(t) <+ dn).

The ergodicity condition for this system is easily seen to be:
é sr 4 1/v <

S+1/v F T s/
A formal proof may be done using Lyapunov functions, cf. Fayolle et al. [13];
we refrain from giving this proof. If this ergodicity condition holds, then we
shall denote the stationary workload by V' and the corresponding steady-state

distribution functions by Fgy(v) and Fr(v,n).
It readily follows from the model specification that, for v,t,7 > 0, At ] 0:

A8 < (1)

Fr(v,t + At)

= Fu(v+suAt,1)(1 = AAD)(L — vA?) + AAE / B(v — z)dFy(z,1)
=0
}H

+ (1 — AAL) /FL('U +spAt,n, t)P(n < L <n+ At | Lpase > n)dn

+ o{ At)
= (Fu(v,t)+ Wmm)u — M)(1 = vAt)
+ AA¢ j B(v — z)dFy(z,t)
Fr(v+ SLAt n,t)dL(n)
+ At f 70 + o(At), (2)

FL(”? Tht + At)

1-L
= Fr(v+s.At,n— At,t)l yyon -(—n)At)(l — AAt)

)



+ AAt f B(v — e)dFz(z,n — AL, 1)+ o(At)

=0

= (Fi(v,n,t) + W%At _9k LS’T;"’”) - _1 L_( ;’(_”Lt)(l — AAY)
+AAL / B(v — 2)dFy(z,n,1) + o(At), (3)

=0

P(V(t) v, X(t) = L, Lpast(t) < At) = vAtFy(v + sgAt) + o(At). (4)

Let At tend to zero in (2), (3) and (4). Assume that the ergodicity con-
dition (1) holds. Then we get the following equations for the steady-state
distribution functions:

sHaFgJ”) — uFu(v)+ A f (1 - B(v — 2))dFi(z)
e
—f Filo, ) L ®)
MT(:’@ - SL%%Q_FL(”’"HE'%()W)
—AFL(v,n)+/\_f:B(U—w)dFL(x,n), (6)
Fi(v,04) = vFav). (7)
Inroduce the following LST:
Op(w) = ]“ exp{—wv}dFp(v), Rew >0,
Dp(w,n) = _Zo exp{—wv}dFy(n,q), Rew>0.



Then by (5), (6) and (7) we have
v®p(w) 1 —B(w)

sH[QH(w) — FH(O)] = - 4+ A _w @H(w)
1 T @L(Wan)
5 mdL(n), (8)
%B@%::’n) = s[@c(w,n) — FL(0,n)] - L%‘DL(w, 77)1 f’(g()ﬂ)
g, g0, Q
Op(w,04) = vOy(w). (10)
Now define the function
Up(w,n):= ] L(LZ’(Z;, Rew>0, n>0
Then (9) implies the equation

TR — (o = A1~ B aloon) — s BPTE (1)

Writing
Uy (w,n) = Clw,n)exp{(szw — A(1 — B(w)))n},
the function C(w,n) should satisfy the equation

@%’.ﬁ = —spwexp{—(spw — A(1 = B(w)))n}

FL(Oa ’?)
1—L(n)

Hence

FL(O,CU)

Clw, 1) = C(w,0) — szw / exp{~(sp M1 = f))a} £ 5de

=0

Moreover, by (10):

C(w,O) = \IIL(w, 0+) = @L(w,0-|-) = V@H(w).
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Thus

VUplw,n) = exp{(siw — A(l — B{w)))n} (14)
x [v8a(w) — szw fexp{—(st - (1 - B(w)))z) IF i(%(‘; )) de].

Finally we get the following equation for ®,(w,n):

Op(w,n) = (1= L(n))exp{(sw — M1 = B(w)))n} (15)
X [V@H(w) — spwfexp{—(spw — A(1 = B(w)))z} fi(%(ﬂ;)) d:I:],

and, using (8) and (14), the following equation for ®y(w):

Oy (w)fv + M1 — B(w)) — syw]

= —suwFu(0)+ [ Wfw,n)dL(n)
= —sywFy(0)+ f exp{(srw — A1 — B(w)))n} (16)
X [V@H(w) — spw [exp{—(sy.u — A1 - B(w)))z} fi(%(z))dm]dfl(n)

We shall work out the obtained equations (15) and (16} in two particular

Cases.
1. Consider w, Rew > 0, such that

A1 — B(w)) — spw} < 0. (17)

Recall that 8(s) is the LST of the distribution L(-) of the low-speed periods.
It follows from (16) that

Du(w)lv + A1 = Bw)) = saw — v8{A(1 - f(w)) — szw}]
= —SHUJFH(O) - stR(w), (18)



where

o0

Rw) = [ exp{(sw~ M1~ B(w))} (19)

=0

7 Fi(0,z)

y f exp{~(s1 = M1 = B()))e} = 7 sdad Ln)

z=0

Note that (17) necessarily holds whenever
Re (A(1l — B(w)) — spw) > 0, (20)

but may not hold when the inequality is reversed. If A8 > sz, then (20), and
hence also (18), is valid for all w small enough with positive real part.

Note also, that whenever s;, = 0, (17) is true for all w with Rew > 0 and,
moreover, the equation (18) is easily solvable. In fact, substituting w = 0
into (18), we get the constant

AB(1 + v8) — sn

Fu(0) = 1+vd

and we then derive @y (w) and ®1(w,n) from (18) and (15) respectively.
2. Let us now suppose that

Re (Al — B(w)) — spw) < 0. (21)
In this case we have

0 < lim |C(w,m)| = lim |exp{—(szw — M1 — B(w)))n}¥r{w,n)|
< lim Jexp{—(szw — A(L = B(w)))n}¥r(0,n)|, Rew>0.

Note that the latter limit equals zero, because of (21) and because of the
fact that Uy (0,n) is constant, which is an immediate corollary of (11). Then
using (12), (13) and (15),

Fr(0,z)

1= L)

Clw,n) = sww / exp{—(szw — M1 — B(w)))z)

T



by(w) = 7 exp{~(opw = M1 = BN} A hde, (22
Bufw,m) = suw(l — L(m))exp{(szw — M1 — Bw))} (23)
7 exp{—(op = M1~ B(u))a} 2 pds,
and finally using (16) and (2;), when (21) holds:
B4 (w)ly + A1 — B(w)) — s (24)
= —shwFu(0) + spw Zexp{(sw — (1= @)}
7 exp{~(s10 = M1 = B(u)))e} {2 p L dadL(n)

Note that, if A3 < sg, then (21) is true for all w small enough with Rew > 0
and (23) and (24) hold for all such w.

If the function FL(0,2)/(1 — L(z)) were known, then ®x(w) and @y (w,7)
would also be known, yielding a complete solution of the problem. Let us
clarify the meaning of this unknown function

_ Fu(0,2)
wa_liL@y

We can write

Fr(0,2) Fr(oo,z)

Q) = Flooa) 1= L(z)’
where the second term

FL(OO, :U) _ _

- I() ~ Uy (0,2) = const

by (11). (In fact, %2—5)2 equals P(X = L) times the density of the excess

life distribution of a low-speed period, divided by 1 — L(z), so this constant
equals 6/(¢ + 1/v) times 1/§, which is 1/(é + 1/v).) In view of (7),

FL(OO,.’B) = = = -
T I(g) = [1(e0,04) = vFiuleo) = o
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The term
FL(O, .’C)
FL(OO: m)
equals the probability P(V = 0| Lyase = z, X = L) that the buffer is empty
at a given moment in time, under condition that the system has been in state
L for a time z.
We now express @(z) into the LST ®4(-). Consider the M/G/1 queue with
one service speed r. The LST of the conditional probability P(0 | z,v) that
the buffer is empty at time z if the initial workload is v, is well known (see
(4.92), page 260 in (8], where the speed is assumed to be 1):

i _ exp{=ri(s £ A(L = G(s)v)
/ exp{—sz} P(0 | ,v)dz = S (E=CE) L (25)

= P(0] z)

=0
where G(s) is the LST of the busy period of this system.
In our system the following then holds (use PASTA to equate the steady-
state workload distribution during high-speed periods with the workload dis-
tribution at the end of such a period):

7exp{—sm}PL(0 | z)de
_ FHIOO) 7 ]oexp{—sx}PL(O | 2, v)ded Fy(v)

v=0 =0

(
1 T exp{—si'(s+ A1 — Gr(s)))v}
Fia(o0) / ST -G) dFr(v)
Ou sz’ (s + A1 — Gi(5))))
Fr(oo)(s + M1 = GL(s))) ’
where G(s) is the busy period of the ordinary M/(G/1 system that always

operates at speed sp.
So we may introduce

v=0

7 Fi(0,z) ,  v®u(st'(s + M1 = Gi(s))))
q(s) .—mfo exp{—sx}mdw = S+ M1 = GL() , Res > 0.
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e+ico

o) = {252 = %fm exp{sz}a(s)ds
i v (s7'(s + M1 ~ Gi(s))))
= %s-im exp{sz} S+ M= Ga()) ds, &> 0.(27)

Thus the unknown function Q(2) has been expressed in ®g(-). In general,
we don’t know how to determine (J(z). However, in the case of low-speed
period distributions with a rational LST, Q}(z) can be determined; this is
demonstrated in the next section. And in case the low-speed periods have a
distribution that is regularly varying at infinity, one can determine the tail
behaviour of the workload distribution; this is the subject of Section 4.

3 Rational LST of the low-speed period dis-
tribution

In this section we derive the solution of the main equations for the case in
which the LST of the distribution of the low-speed periods is rational; viz.,
it has the form &(s) = §;(s)/é2(s), where &,(s), d2(s) are relatively prime
polynomials, the degree of 4,(s) being higher than that of &,(s). Without
loss of generality we can write

i

8a(s) = [I(s —s5)™,

=1
where s,. .., s, are different from each other, m; € {1,2,...} and Res; < 0,
7 =1,2,...,n (because 6(s) is analytic for Res > 0). The equation (18)
holds for all w with Rew > 0, except (cf. (17)} those w for which

f(w) :=SLW_’\(1_ﬂ(w))=_3j: J=12,...,n.

For all s with Res > 0 there exists exactly one w with Rew > 0 such that
flw) = s, see e.g. 8], p. 548. So (18) holds in the whole positive half-plane
except for wi,...,wy such that f(w;) = —s;. It follows from (18) that

—-SHFH(O) —_ S[,R(w)
wlk(w) ’

Op(w) = (28)
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where R(w) is given in (19) and where, for Re w > 0,
k(w) :=v+ A1 — f(w)) — spw — vé{—f(w)}.

Let us compute the function R(w). Using (27),

o] £+100
RWw) = 5= ] exp{f(w)n} / exp{—f(w)e} [ exp{sz)q(s) dsdadLin)
£4i00 00 n
= 55 | 49 [ exo(fim [ exl(s - flw))a) dedLn)ds
= [0 2L (exp (s — S} ~1) ALl s
1T a)0f=s} = =)
2mi J s — f(w) '

The integrand of the last integral has n poles in the right-half plane, these
are zeros of 8;{—s}: —s;, —s2,..., —s,. Consider the semi-circle with centre
in € and radius R in the right-half plane. Choose R so large that all n above-
mentioned poles are inside the semi-circle. Then the integral along the line
segment from £ — i1/ to ¢ + ¢ R and then along the semi-circle back to ¢ — iR
equals minus the sum of the residues of the integrand at those poles. Since
the integral along the semi-circle disappears when R — oo (this is directly
seen for example from the representation (26) of g(s)), we have:

_ m,-—l dm;,—l

- q(a bi{—a}
.Z —1'dam1‘1{a— w) TTix;( a——s,)’"-}

:r=1

—_ ?
a-——s_,

and via (28):

B1(w) o (29)
—SHFH(O) — 3L E )_Jl ! da;n;_l {a E i__aj) } a=-s;
B 3—1 f?‘-J
= wlk(w)
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The numerator of (29) has 3°7_; m; + 1 unknown constants: Fy(0) and
the 377, mJ constants relating to the ith derivative of ¢(s) at s = sj,
1 =0,. —1,5 =1,...,n. So we observe that, due to (26), ®y(w)
is completely determined by FH( 0) and its values in a finite number of points
(and, whenever the poles of §{s} are of multiplicity more than 1, the values
of its derivatives of the appropriate order at these points).

The following lemma shows the way to find these values.

Lemma 3.1 Let Af — sy + vé(AB — s1) < 0. Then the function g(w) =
wTk(w) has ezactly 7 m; zeros at Rew > 0.

Proof. First, let us note that the number of zeros of the function g(w) is the
same for all low speeds s} € [sr, su]. In fact, otherwise (since zeros of g(w)
depend continuously on the parameters) for some s} € [sz, sy] there would
be a zero w with Rew = 0. But this is impossible, because of

g(0) = A8 — sy +vé(AB—s1) <0 for all s € [s1,s54], (30)
and, for real ¢,

9@l = 7 (v + M1 — B(i4)) — suid] — v|{A(1 = B(w)) = s }) > 0. (31)

So, it suffices to prove that g(w) has exactly 37, m; zeros, when sy=sp.
In the latter case we have

flw) = spw — A1 = B{w)) = spw — A1 — B(w)).

The function (v — f(w))de{~f(w)} has %, m; + 1 zeros at Rew > 0. In
fact, the zeros of this function are at points f(w) = v or f(w) = —s,.
Since Rev > 0, Re{—s;) > 0, again by [8], each of these last equations has
exactly one zero of multiplicity 1 at Rew > 0. Then by Rouché’s theorem
the function (v — f(w))do{—f(w)} — vdi{~f(w)} has 7, m; + 1 zeros at
Rew > 0. Then k(w) = (v — f(w)) — vé{—f(w)} has 7_, m; + 1 zeros at
Rew > 0. Note that one of these zeros is w = 0 and

klw) = (A8 — sg)(1 + vé)w(l + 0(1)) as w — 0.

Hence g(w) = w™'k(w) has 3°7_; m; zeros at Rew > 0. Moreover, it follows
from (30) and (31) that none of these zeros is situated on Rew = 0. The
lemma is proved.
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Let us point out now that since the left-hand side of (29) is analytic in
the whole half-plane Rew > 0 and never equals zero, the right-hand side
must satisfy the same properties. Then the zeros of the denominator of the
right-hand side should also be the zeros of the numerator of the right-hand
side, and of the same multiplicity. Substituting them into the numerator we
obtain 3°7_, m; equations. We get one more equation if we substitute w =0
in (29) and take into account (30) and the fact that ®4(0) = 1/(1 + vé).
Thus we have a system of 3°7_; m; +1 linear equations for as many unknown
constants, which has one solution. Substituting these constants again into
(29), we find ®gy(w).

Note that ®7(w,n) now may be found from (15), if we substitute instead

of fAI?(—‘cl its representation (27):

®p(w,n) = (1 — L(n)) exp{ f(w)n} [v@n (w)

v / “on(s7(s L Gul M) explals = Jw)} = 1)y
(s + M1 = Go(s))(s — T@) |

e—ico

Moreover, the integral
functions and constants:

ffPL w,m)d _ H-fw)} - L ()

reo @L(w,n)dn may be expressed in already known

n=0 f(l’.d)
etioco
_spw q(s)(8{=s}f(w) = 8{—f(w)}s + s — f(w))
211'2f f S(S _ f(w)) ds
_ @)1,
= vex(w)
f(w) "
e i )mJ—l de—l q(a) 61{—&}
L E o 1 P da™i—1 {a(a —_ f(w)) Hi;éj(_a —_ Si)m' } G-=—s_,'

Remark 3.1. As already said in the Introduction, the papers [11, 12, 23]
are considering a similar model to the one in the present section. The model
of [23] is more general in the sense that it allows several server states; it is
less general in the sense that it assumes an underlying Markov modulated
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process. The papers [11, 12] study a very general M/G/1 model in which the
arrival rate, service speed and allocated service requests depend on the state
of a semi-Markov process. In the case of limited PH-distributions for resi-
dence times in states of that semi-Markov process, the way of obtaining the
workload LST via the computation of zeros of the determinant is indicated.
The case that we have studied in the present section is more restricted, but
therefore allows a very detailed and complete analysis.

3.1 Example: exponential low-speed periods

We will show how this procedure works on a simple example. Let the distri-

bution of the low-speed periods be exponential with parameter {. Then the
LST é(s) = C% has one pole s = —( and é = 1/{. The equation (29) reduces

to
SHJ""H(O)—SL_AQ(CWK
0r(e) = —— iy (32)

By Lemma 3.1 the function g{w) = w™'k(w) has one zero w; of multiplicity 1
at Rew > 0. Substituting it into (32), we get

— s Fi(0) — Cif?}% 0. (33)

Now, substitution of w = 0 into (32) gives

“onT0) = sagl() = LTI &

It follows from (33) and (34) that

(AB(v +¢) — Cs — wsp)(¢ — flwi))
sp(v + () f(wn)
—C(AB(C +v) — s — s1v)
sa(v + ) f(w) '

Finally, substituting the constants F(0) and ¢({) just found into (32), we
obtain the workload transforms for both the high- and low-speed periods:

1/8(\B(v +1/8) — syl/S — spv)
(spwi — Al = Bwi)))(v + 1/6)

16

q(¢) =

Fy(0)

@H(w) =



wA(Blw1) = B(w)) + spwy — w))
(v + M1 = B(w)) — saw)(1/8 + M1 — B(w)) — spw) — v/&’

i y vAB(v + 1/8) — sp /8 — sLv)
o) = [ Bulw,mdn= (srwr — (1 — B(wn)) (v + 1/9)

" w(AB(wn) — B(w)) + su(wr — w))
(v 4+ M1 = f(w)) = spw)(1/é + M1 = B(w)) — spw) — v/

4 Buffer content asymptotics

In this section we discuss the asymptotic behaviour of the workload distri-
bution under the assumption that B(¢) and/or L(t) has a regularly varying
tail. We distinguish between the cases AZ > s and A8 < sp. The more deli-
cate case AB = sy, is not discussed. We restrict ourselves to the theoretically
interesting case of regular variation with an index between 1 and 2; however,
larger values can also be handled.

Theorem 4.1 Let

1-B(t) = [Ca+o)t™"L(t), t— oo,
1—L(t) = [Cp+oW)t™l(t), t— oo,

where 1 < 11,1, < 2, [1(t),1:(t) are slowly varying functions.
(i) Let A3 > s. Then

1 _:mS ~ Fg(v) = [Da+ 0(1)]vl_mi"("""2)l}{(v), (35)
V—({%{”—) — Fi(v,n) = v(1 = L(n))[Dg + o(1)]p*~™irt1#2) 15 (v)(36)
1 -|V-51/5 / Fi(v,mdy = [Dp+o(L)]p' =m0ty (v), (37)



as v — oo, where ly(v), {r(v) are slowly varying functions and
ACg 1
(AB—su)+ov(AB—sp)1l —vy’
v(AB —s)2Cy, 1
J (14+v8)(AB —sg)+ov(AB —sp)) 1 — vy’
ACE 1
(AB—su)+6v(AB—s)1l — 1y
v(AB —s)2Cy 1
(1+ w8 (MG — su) +v(AB —sp)) 1 — vy’

ifl/l < V3,

if va < iy,

Dy =

+

if 1 = 1y

/\V5CB 1
(AB—sg)+v(AB—sL)l —uy’
v(AB = sp)2 sy — AB)CL 1
(L+vd) (A8 —su)+ov(AB —sp)) 1 — 1y’
AvéCp 1
(AB —su)+ov(AB—3sL) 1l —1y

V(/\ﬁ — SL)VZ—I(SH - /\ﬁ)CL 1
L+ 08) (M~ s1) + v (M8 —s2)) 1 — v’

(i1) Let A < sy. Then
1

5~ Fa(®) = (D + oDl la () (38)

2D Fyfom) = (1~ L) + oD l(o), (39)

vé
1+vé

if in < vy,

if vz < 11,

Dy,

Z-fD'l = ls3.

_|_

_fFL(v,n)dn, = [Dr+o(1)u' ™" (v), (40)

n=0
as v — 0o, where lg(v), {L(v) are slowly varying functions and

ACB 1

Du = (AB~sg)+ 8B —s.)1 —1n’
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)\I/(SCB 1
(AB —su)+ov(AB—sp) 1~y

Remark 4.1. The theorem indicates that (i) if AZ > sz, then the tail
of the workload distribution is determined by the heaviest of the tails of
the service request and low-speed period distributions, and (ii) if A8 < st
then the tail of the workload distribution is only determined by the tail of
the service request distribution. Moreover, the sum of the workload tails in
(38) and (40) behaves as if the system is always operating with the speed
(sg+vésp)/(14v48) which is the average speed of the server. In fact, consider
a stable M/G/1 system with the required service time distribution B(:) and
one constant speed of service r. Let us denote the distribution function of
its workload by W7(v). Then by [7], the assumption

1— B(t) = [Cs + o(L)Jt~*1(t), t— oo,

Dy =

with Cg > 0, 1 < v < 2, {(t) slowly varying, implies that

1 —W7(v) =[D, +o()]x!¥I(v), v — oo, (41)
where \C ]
_ B
Dr = r—Mv-—-1

Let us compare our two-speeds system with the M/G/1, having the same
arrival intensity and required service time distribution, but one constant ser-
vice speed sy. Indeed, this system is always stable, whenever our two-speeds
system is stable. In addition to this, for any given realisation of arrivals and
services, a workload of this one-speed system is never greater than the one
of our two-speeds system. Thus, by simple arguments of stochastic ordering,
we get the following lower bound:

Fy(v)

L= Fr(00)

>1—W?*¥(v) = [D,, + o(D)]v! ™ hL(v), v—o00.  (42)

Moreover, in case (ii), the low speed sy, is sufficient for the M/G/1 queue to
be stable. Comparing in the same way our system with the M/G/1, having
all the same characteristics but a constant service speed s, we get the upper
bound:

FH(‘U)
FH(OO)

1-— <1—W?%(v) = [D,, + o{1)Jv' ™ l(v), v— oo (43)
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Thus, in case (ii), we have bounds for the tail of the distribution function
Fr(v) from both sides, and both of them are of order v!~*!. Similar bounds
are, of course, true for Fy(v,n) and [2, F(v,n)dn.

Remark 4.2. It is well known [7] that (41) can also be written as

AB
r— A8

M T1-B(u)
=) P

(f(v) ~ g(v) denotes f(v)/g(v) — 1 for v — o0). Then (38) and (40) can be
rewritten in a similar way; e.g. (38) becomes

1 AB
1505 PO~ o T T oot = B

Remark 4.3 In [5] the impact of regular variation in the coupled processors
model is investigated. The service times are assumed to be regularly varying
with the indexes 1; and i for the first and the second processor respectively.
The second processor always operates at one constant speed, while the first
processor operates at a lower speed when the second processor is busy and
at a higher speed when the second processor is free. The tail of the workload
distribution is found. It is shown to be regularly varying with the index 1y
if the low speed is larger than the offered traffic load and with the index
min(zy, ;) if the low speed is smaller than that. We would like to remark that
this result is a particular case of Theorem 4.1 just stated. In fact, the high

speed periods of the first processor are exponential and the low-speed periods
correspond to the busy periods of the second processor, whence by [20] they
are regularly varying with the index v,. The asymptotic constants found in [5]
coincide with ours in this particular case. But our result is more general, since
in our model the low speed periods do not necessarily correspond to the busy
periods of another queueing system.

1 —-Wr(v) ~ du

P(B" > v)

P(B™ >v), v— o0.

Proof of Theorem 4.1. The proof will essentially rely on Lemma 6.1 from the
Appendix. This lemma implies

Blw) = 1=Pw—[Cp+o)]I(1 =) i(l/w), wl 0 (44)
dw) = 1—bw—[Cr+o(D)I(l —m)w?l(ljw), wl0.  (45)

Case (i): AB > si.
We shall find the asymptotics of ®@y(w) when w | 0 using equation (18},
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which holds for all w sufficiently small with Rew > 0 in this case. Using (44}
and (45), the asymptotics of the second term in the left-hand side of (18) is
seen to be:

k(w) =v+ A1 — f(w)) — sgw —vé{A(1 — B(w)) — spw}
= [(AB—su)+ vé(AF — sp)jw (46)
+ [ACB(1 + v&)I'(1 — 1) i (1/w)
+ vCL(Af — s5)?T(1 — 2w la(1/w)](1 + 0o(1)), wlO0.

Let us consider the right-hand side of (18) and prove that its asymptotics
is Cw + O(w?) as w | 0, where

C=—-sgP(V=0,c=H)-s,P(V=0,z=0L).

This is equivalent with the fact that (remember that f(w) = spw — A{1 —

B(w))):

R@) = [ ewlfn [ eol-fwat 232 dr)
= PV =0,z=1L)+0w). (47)

Let us show this. Since A8 > sy, for all sufficiently small s with Res < 0
there exist w;(s) and w;(s) at Rew > 0 such that f(wi(s)) = flwa(s)) = s
(ef. [9], p. 297). Moreover wy(s) = 0 and wo(s) — w2(0) > 0 as s — 0. The
function f(w) being analytic at w,(0) > 0, by the implicit function theorem

wa(s) = wa(0) + O(s), as s T 0. (48)

Let us define g(w) = we(f(w)) for sufficiently small w with Rew > 0. Due to
the expansion f(w) = (sp — AB)w(l + o(1)) as w | 0, we have

e(w) = e(0) + O(w), as w | 0. (49)
where £(0) = w,(0) > 0. The definition of e(w) provides the equality f(w) =
f(e(w)). Then, using (18):

By (e(w) K(e(w)) — sue(w) Fa(0)

R(w) = R(e(w)) = S1e(0)
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for all sufficiently small w with Rew > 0. Finally (49), (50) together with the
analyticity of the functions ®g(w) and k(w) at (0) > 0 imply the required
expansion

R(w) = R(0) + O(w), as w 0.

Moreover

R(0) = 7]? FL%”‘ de dL(n 7FL0:B = P(V=02=1L),

n=0x=0 r=0

and (47) is proved.
Now, substituting (46) and (47) into (18), we have

Op(w)
—[Plv=0,z = H)sy + P(v =0,z = L)sg]w(l + O(w))
A8 — sy + vd(AB — sp)|w + [Kw i1 /w) + Kaw*2l2(1/w)](1 + o(1))
_ =[Plv=0,z = H)sg+ P(v =0, = L)sy] y
- OB —sm) + V508 —51) (1+0)
[1 _ Kw (1) (14 0(1)  KwmHa(1/w)(1 + 0(1))]
(AB—sy)+vd(AB—sL) (AB—sg)+vé(A3—sp)?

where

K. = XCs(l+v6)I(1 —u),
Ky = vCL(M\8 —s51)”T(1 — ).

Moreover, substituting w = 0 into (18), we obtain the constant

—Pv=0,2=H)sg—Plo=0,z=L)s;, _ B B
(0B — su) + v6(\3 — s1.) = @x(0) = Frr(oo) = 17 ”(55'1)

Finally, Lemma 6.1 in the appendix applies and we get (35).

Case (ii): AB < sg.
We start with the equation (24), which holds for all w such that Re(spw —
Al — B(w))) > 0 and consequently in this case for all sufficiently small w
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with positive real part. Adding the term v®y(w)(—1 — §f(w)) to both sides
of (24) and using the representation (22), we get:

Py (w)[-vif(w) + A1 — B(w)) — suw] (52)
= - sgwFy(0)

+suw [ exp{—f(@)e}( [ exp{f(wn}dL(n) -1 f(w)o)

z=0 n=0

Fr(0,z)
1— L(z)

By (44) the asymptotics of the second term in the left-hand side of (52) is
the following:

dz.

X

—v8f(w) + A1 — B(w)) — spw (53)
= (A8 —=sy +vé(AB — sp)jw + M1 + v§)CaI(1 — v ) 11 (1/w)(1 + o(1))
as w ] 0.

Let us prove that the right-hand side of (52) is
w[ —-sgP(V=0,X=H)—sP(V=0,X=L)+ O(w”"l""")] (54)

for some € > 0 when w | 0. As shown in p. 548 of [8], for all s with Res >
0 there exists exactly one w(s) with Rew(s) > 0 such that f(w(s)) = s.
Moreover w(s) is regular at Res > 0 and continuous at Res > 0, w(0) = 0.
Then the function

R(s) = / exp{—s:r:}( f exp{sn}dL{n) -1 — 36) fi(%(?)dm (55)

z=0 =0

is well defined and continuous in Res > 0. In fact, due to (52),
R(s) = R(f(w(s))
= Opu(w(s))[-véf(w(s)) + A1 = Bw(s))) = spw(s)lw™ (s)sg’
+ SHSEIFH(O),

where all functions at the right-hand side are well defined and continuous.
We will prove that for some gy > 0

R(s)+ P(V=0,X =L)=0(s" 1) s]0. (56)
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First of all, remember that

FL(O, :C) _ v

Q@) =TI ~ T3

PE(O |$)1

as was noticed in Section 2. Here the conditional probability Pr(0 | z) equals
the probability that at time z the buffer is empty in the M/G/1 system with
the same arrival rate A and the service time distribution B(-) but with one
constant service speed s and the initial workload distribution as the one at
high-speed periods in our two-speeds system. Since A3 < s, this M/G/1
system with one service speed sz is stable. Then, as # — oo, PL{0 | z)
tends to the stationary probability of zero workload in this system, which is
1 — AB/sg. Thus we can write

(st —AB) | A .
Q) = S22+ Q(e), (57)

where (}(z) = 0 as 2 — oo. We show in Lemma 6.2 in the Appendix that
for all € > 0,

|Q(a¢)| = 0(3:1"”‘+5), T — 00. (58)
We have
R(s)+ P(V=0,X=1L)
= [ exp{=sa}( [ exp{ns}dL(n) - 1) Q(z)dz
+ [ Q- L@)Qe)de~s [(1-Lm)d [ exp{-s2} Q(z)d
=0 n=0 z=0

= s [(1- L) [ exp{-52}(Q(a +n) - Q) dody

= s [(1— L) [ exp{-ss}Qz +n) — Q@) dzdn

= I1+'12"I&
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where

| oo
L = s [ (1= Lm)exp{snt—1) [ exp{-sz}Q(z)dzdn,
L =s [ (1-1m) [ exp{-s2HQ+n) - Qz))dudy,
n=1/ls| z=0
1/]s| n .
I = s [ (1= L(n)) [ exp{—sz}Q(z) d.

We will find the asymptotics of each of these terms /;, I; and I3 as s | 0.
Let us fix an arbitrary € > 0. To estimate I}, we observe that due to (58)
(put sz = t):

ls f exp{—s:c}@(x)d:clgs / exp{—sz}|Q(z)| dz

S O(S) + SVI—].—E / exp{_t}tl—VI+E dt — O(Sul—].—s)1

t=0

uniformly for all > 0. Moreover, due to the assumption of the theorem on
the distribution function L(.),

1/s 1/s
| [ (1= Linexpfsn} = Vdu| <25 [ (1= Limndn = O(s 1),

Then I} = O(s*#*272-2%), To treat the second term I3, we note again that
due to (58)

|s [ exp(=s2H@(z + 1) - Q) de]

z=0

S O(S) + 23”1—1_8 / exp{_t}tl'—ul'i"E dt —_ O(S.Ul—l—g),

=0



uniformly for all # > 0 and that due to the assumption of the theorem
[ (= L(m)dn = 0(s=71).
n=1/s

So, I, = O(s"1**2727%¢)_ Finally, to estimate [3, we have by (58) for all
sufficiently large n

(1= L) [ exp{-s2}Q(z) da| < (1 - L) [ |Q(=)]dz < Cin? 7242,

=0 =0

where Cy > 0 is a constant. Then I35 = O(s)+ O(s*+*27%-2¢), Thus I, + I, +
Is = O(s) + O(s"1~12=1=2%) for gil ¢ > 0. Let us choose ¢ < (12 — 1)/2.
Then (56) is fulfilled. Since f(w) = (s — AB)w(1 + o(1)), as w | 0, (54)
follows.

Substituting the expansions (53) and (54) into (52}, we have

Py (w) (59)
—[P(V =0,X = H)sgy + P(V = 0,X = L)sy]
OB —sn) + 26008 — 1)

" [1 _ ACp(1 + w1 — ) T (1/w)(1 + 0(1))]
(Aﬁ—sH)-I-I/J(/\ﬁ—SL) '

(14 0w 1))

Moreover, substitution of w = 0 into (59) gives the unknown constant as
n (51). Applying Lemma 6.1, we get (38).

The results (36), (37) and (39), (40) come from (15) and (23), the previous
results (35) and (38) and again Lemma 6.1.

5 Conclusion

We have considered an M/G/1 queue with the special feature that the speed
of the server alternates between two constant values sy, and sy > s;. For the
case that the distribution of the low-speed periods has a rational Laplace-
Stieltjes transform, we have obtained the joint distribution of the buffer con-
tent and the state of the server speed. For the case that the distribution
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of the low-speed periods and/or the service request distribution is regularly
varying at infinity, we have obtained explicit asymptotics for the tail of the
buffer content distribution. The two cases in which the offered traffic load is
smaller respectively larger than the low service speed were shown to result in
completely different asymptotics. When it is smaller, the tail of the workload
distribution is only determined by the tail of the service request distribution.
The case in which the offered traffic load equals the low service speed is more
delicate; we leave its analysis as an open problem.

Another interesting problem for future research is the generalization of
the present model to one with K > 2 different service speeds.

Finally we would like to observe a relation between the present model and
an M/(G/1 queue with one service speed but with the feature that the arrival
intensity alternates between two constant values Ay and Ay > Ar. For the
ordinary M/G/1 queue, it is clear that multiplication of the arrival rate by a
factor c has exactly the same effect on the steady-state workload distribution
as the division of the service speed by c¢. In fact, given the same initial buffer
content, the workload distribution of the former model at time ¢ coincides
with the one of the latter model at time ¢t for any ¢ > 0. In the model of
the present paper, the service speed during the H-periods is multiplied by a
factor sy /sy compared to the service speed during the L-periods. Instead,
we could also have divided the arrival rate by sy /sy during the H-periods,
and simultaneously have multiplied the mean length 1/v of the H-periods
by that factor sy/sr. By taking appropriate weight factors w.r.t. the L- and
H-periods, we could then determine the workload distribution in the model
with two arrival rates from that in the model with two service speeds — and
vice versa.
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6 Appendix

Definition 6.1 A measurable positive function f(t) is called regularly vary-
ing of index v if for all z > 0

fl=t)

— ", as i — oo.
f(2)

Definition 6.2 A measurable positive function I(t) is called slowly varying
if it is regularly varying of index v = 0.

We also use without mention the following fact: for all slowly varying
function [(¢) and ell ¢ > 0

t7el(t) = 0, tl(t) > 00, ast— oo.

Lemma 6.1 Let Z be a non-negative random variable with LST ®(w), (1)
a slowly varying function, v € (n,n + 1), (n € N) and C > 0. Then the
following are equivalent:

(i) P(Z > 1) = $F5[C +o(D]tI(t), t— oo;
(i1) E[Z™] < oo and
®(w) = zﬂ: W + (—1)*"C + o(D)|w"I(1/w), w 0.

=0 7!
Proof. See Theorem 8.1.6 of [3].
Lemma 6.2 Let A3 < sp. Foralle >0
|@(2)| = o(x!~"17*), T — 00, (60)

Proof. Remember that

Qfz) =

v

T3 g PV =01 Loase = 2,X = L) = (1= A3/sp)l,

where P(V = 0| Lpast = 2, X = L) is the probability that at a given moment
of time the buffer is empty under condition that by this moment the system
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has been operating at low speed for a time . Let us introduce the interval
of time Tpast(t) since the last change of speeds until the first moment when
the buffer is empty:

Toast(f) (= min{s | s >t — Lpast(t), V(s) = 0} — (£ — Lpase(?)).

Denote by N(t) the number of customers in the system at time t. Let us also
introduce the random variables Vjas(#) and Npast(t) which are the workload
and the number of customers in the buffer at the moment of the last change
of speeds:

Viast(t) := V(t — Lpast(2)); Npast(t) := N(t — Lpast(t)).
Then by the formula of total probability
Q) < 155 PV = 0] Lpsae = 2, X = Ly Tyase S 2/2) — (1= AB/s1)]

X P(Tpast < /2 | Lpast =z, X = L)

2v
mP(Tpast > .’E/Q | Lpast — .T,X = L)

v 2v 2v

1+u6J1+ 1+V5J2+ 1 +V5J3’

_l_

where
Ji = |P(V=0] Lpast = 2, X = L, Tpast < 2/2) — (1= AG/s1)l,
J2 = P(Tpast > 7/2| Lpast = 7, X = L, Npase < [z(s1 — AB)/(80)]),
Js = P(Npasi > [z(s2 — AB)/(8B)] | Lpast = 2, X = L),

([] denotes an integer part).

Let us fix an arbitrary ¢ > 0. We show that J;, J;, J3 are all o(z!~"1+¢).
The term J; refers to the situation where the buffer has already become
empty before z/2. Note that, whenever Ty = ¢ < z, the probability P(V =
0| Lpast = z, X = L, Tpast = t) equals the probability that at a given moment
of time the workload is zero under condition that by this moment the system
has been working at the low speed for a time z — ¢ and that at the moment
of the last change of speeds the workload was zero:

P(V=0]Lpast =7, X = L, Tpast = 1)
= P(V=OILPaSt=m_t,X=L,Vpast=0).
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But the latter probability equals the probability that the buffer is empty at
the moment of time # — ¢ in the M/G/1 system having the same arrival and
service time characteristics but only one constant service speed sz and zero
workload at the initial moment. The speed of convergence of this probability
to the stationary probability 1 — A3/sy in this one-speed queueing system
was found in [2], it is of order O((z — t)'~*{(z — t)), as z — t = oo, where
[(z) is a slowly varying function. Then

[Ji] < sup [P(V=0|Lpast =2 —t,X =L, Vpast =0) — (1 — AB/sL)
0<t<z/2
= ofz~n1 T,
The term J, refers to the situation that it takes a very long time (> 2/2)
before the buffer first empties, although the queue length at the last change
of speeds is at most [z(s, — AB)/(48)]. We observe that

|J2| < P(Gy+ G2+ -+ + Glags,-ap)/148)) > /2)
< P(G] +Gs+ - F G[z(u_,\,@)/(‘gg)] - [.’C(SL — /\ﬂ)/(‘lﬁ)]EG, > ;E/4)

Here the random variables G;, G, . .. are independent and distributed as the
busy period in the M/G/1 system with an arrival intensity A, service time
distribution B(-) and one constant service speed s;. Their mean EG; =
B(sp — AB)~'. It was shown in [20] that the G are regularly varying with
the index v1. Then by the principle of large deviations for regularly varying
random variables with index € (1, 2), see e.g. [15] or [10], there exists a
constant C' > 0 such that

|Jo| < Cla(se — AB)/(4B8))P(G, — EGy > z/4)

for all sufficiently large z. Then J; = o(z!™**¢) for all ¢ > 0 as ¢ — co.
Finally, J5 is the probability that at the moment of switch from the high to
the low speed, the number of customers in our two-speeds system exceeds the
number [z(s;,—AB3)/(48)]- By PASTA this equals the probability that at high
speed periods the number of customers exceeds this number. Let us again
compare our system with the M/G/1 system having the same arrival and
service characteristics and the same initial distribution but only one constant
service speed sz. Denote its number of customers at time ¢ by N*:(¢). Then
for any given realisation of arrivals and services the number of customers in
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our two-speeds system is never greater than the numbre of customers in this
one-speed system, i.e. N(t) < N%L(t). As in the Remark 4.1, by elementary
arguments of stochastic ordering we get:

Ja P(N > [z(sL — A3)/(4B)] | X = H)

< P(N*t > [z(s — AB)/(48))).-

It follows from [1] that the latter probability is regularly varying of index
1 — 1. Then Jy = o(z!~*17¢) for all ¢ > 0 and the lemma is proved.
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