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Abstract

A carousel is a computer controlled warehousing system, which is widely
used to store small and medium sized goods. One of the most important
performance characteristics of such systems is the response time, which
mostly depends on the travel time. In this paper we consider some rea-
sonable heuristics for order picking. In particular we establish properties
of the Nearest Item (NI) heuristic. We derive tight upper bounds for the
travel time and a closed form expression for its mean value.

1 Introduction

A carousel is an automated warehousing system consisting of a large number of
shelfs or drawers rotating in a closed loop in either direction. Such systems are
used for storage and retrieval of small and medium sized goods. The picker has
a fixed position in front of the carousel, which rotates the required items to the
picker. The advantage of such systems is that the picker has time for sorting,
packing, labeling etc., while the carousel is rotating.

An order is a list of items to be picked. Ideally, the items should be picked in
a sequence minimising the total pick time, which is the travel time plus the pure
pick time. The latter obviously does not depend on the pick strategy. Hence, we
only have to consider the travel time in order to minimise the total pick time.

Bartoldi and Platzman [1] and Stern [3] study the optimal pick strategy for a
carousel system. They show that there are only 2n candidate sequences, where n
is the number of positions to be retrieved. It implies that an optimal route can
always be found in linear time. Rouwenhorst et al. [2] provide some stochastic
upper bounds for the optimal route. Their upper bounds are proved to be rather
tight. Nevertheless, neither the probability distribution nor tight upper bounds
for the minimal travel time have yet been not obtained.

In their paper Bartoldi and Platzman [1] also consider some simple heuristics
for a carousel system. One of these heuristics is the Nearest Item (NI) heuristic,
where the next item to be picked is always the nearest one. In particular, the



authors prove that the travel distance under the NI heuristic is never greater than
one rotation of the carousel. In the present paper we improve this upper bound
and we show that the new upper bound is tight. Also, we obtain a closed form
expression for the mean travel time under the assumption of uniformly distributed
pick positions.

The paper is organised as follows. In the next section we introduce the model
and some notation. In Section 3 we study upper bounds for the travel time
under the NI heuristic. In particular, we improve an upper bound of Bartoldi
and Platzman [1]. In Section 4 we derive a closed-form expression for the mean
travel time under the NI heuristic. In the final section we briefly discuss our
results.

2 Carousel model

Following Bartoldi and Platzman [1] and Rouwenhorst et al. [2] we represent a
carousel as a circle of length 1. We suppose that the pick positions are uniformly
distributed, and we denote the shortest distance between the positions y and z
on a carousel by p(y, z) (see Fig. 1). We assume that the acceleration time of the

A
Figure 1: A carousel system.

carousel is negligible or assigned to pick time. Hence, the travel distance can be
identified with the travel time.

The presentation will become more clear, when we act as if the picker travels
to the pick positions instead of the other way around. In the sequel we shall
denote by

w = (wo,wr,...,w,) € [0,1)"!

a list of n + 1 positions, where wy is the start position of the picker and w; with
t=1,2,...,n,is the tth pick position. This completes the model description. In
the next section we will explore the NI heuristic.



3 NI heuristic: upper bounds

The main object in this section is to establish an upper bound for the NI heuristic
and to prove its tightness. The NI heuristic can be described as follows (cf.
Bartoldi and Platzman [1]):

Step 1: Always rotate to the nearest item to be retrieved.

An important feature of the NI heuristic is that it has the following ‘recursive’
property:

Property 3.1 The remaining part of the NI heuristic is equal to the NI heuristic
for the rest of the items with the picker’s current position as starting point.

To study the NI heuristic we will compare it with the Shorter Direction (SD)
heuristic, which is described in Bartoldi and Platzman [1] as follows:

Step 1: Evaluate the length of the route that simply rotates clockwise, and the
length of the route that simply rotates counter-clockwise.

Step 2: Choose the shorter of the two routes from step 1.

By applying the NI heuristic to retrieve a list of n items, the picker will
subsequently visit the positions w;,, w;,, ..., w;,. For convenience we denote

T =w;, 1 =1,2,...,n; 19 = wp.
We also introduce the following random variables:

TNT — the travel time to retrieve n items under the NT heuristic;

TSP — the travel time to retrieve n items under the SD heuristic.

These random variables are of course functions of the elementary random event
w € [0,1)""!. Since the NI heuristic seems to be slightly more subtle than the
SD heuristic, one can expect that it performs better with high probability. In
fact, we will prove that the NI heuristic is never worse than the SD heuristic.

Lemma 3.2 For any w € [0,1)"*! it holds that TN (w) < TP (w).

Proof. We will present a proof by induction to n. It is clear that for any
w € [0,1)? we have TN (w) = TPP(w) = p(wo,x1). Now suppose that for some
=1,2,... we have TNV (w) < TPP(w), w € [0,1)"*!. Then we will prove that
Té\fl (w) < TP (w), w € [0,1)""2. The proof is illustrated in Fig. 2. First, recall
that under the SD heuristic the carousel always rotates in the same direction.
There are only two possible routes of that kind, and their lengths differ only
in the first segment. Therefore, choosing the shorter direction actually means
choosing the shorter first interval. Hence, the algorithm for the SD heuristic can
be formulated as follows:
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Figure 2: An illustration for the proof of Lemma 3.2.

Step 1: Rotate to the nearest item.
Step 2: Proceed further in the same direction.

It means that the NI and SD heuristic start with the same segment of length
p(xg, x1). After the first step the picker is at position z; and n items remain to
be picked. Thus, the current situation can be described by w' € [0,1)"'. The
remaining travel time under the SD heuristic cannot be shorter than 757 (w'),
since by definition TP (w') is the minimal travel time needed to pick n items by
proceeding in the same direction. Hence,

plao, 1) + TP (') < TR0 (). (1)
Further, due to property 3.1 we have

Ty (w) = plwo, a1) + T, (). (2)
From (2), the induction assumption and (1) it follows that

T (w) = plao, 1) + T, (W) < plao, 21) + 177 (W) < T (w),

which completes the proof. O

In order to pick n items under the NI heuristic, n segments of the carousel
should be covered. Their lengths are p(xg,z1), p(x1,22), ..., p(¢n_1,%,). Note
that they do not necessarily coincide with gaps between two adjacent items, since
under the NI heuristic the carousel can rotate in different directions (see Fig. 2).
Bartoldi and Platzman [1] showed that TN is always less than 1 for all n. Now
we shall use Lemma 1 to prove the following stronger assertion.

Theorem 3.3 For any w € [0,1)""! and any k = 1,2,...,n, the total length of
the k largest segments under the NI heuristic never exceeds 1 — 1/2F.



Proof. Consider the NI heuristics starting in an arbitrary point zo € [0, 1).
Let 1 <[y <ly <...<l, <nbetheindices of the k largest segments in the order
we cover them. The sequence of corresponding lengths p(z;, 1, x1,), p(x1, -1, 21,),
ooy p(@y,—1,2y,) is of course not necessarily monotone.

We proceed with the NI heuristic until facing the first segment ;. Now the
picker is at point z;,_1, and there are still n — [y + 1 positions to be visited.

Consider the case that p(wy, _1,7;,) > 1/2F. If we pick the remaining n—1; + 1
items under the SD heuristic starting at point z;, _;, then the travel time cannot
exceed 1 — 1/2%. Then, from Property 3.1 and Lemma 3.2 it follows that the
remaining travel time under the NI heuristic also does not exceed 1—1/2%. Recall
that [, is the first one of the k largest segments faced under the NI heuristic.
Hence, all k£ largest segments are included in the remaining path. So, their total
length cannot be greater than 1 — 1/2*,

Now, assume that p(x;, 1,2;,) < 1/2*. Then we proceed further until interval
Iy is faced. If p(xy, 1,21,) > 1/2F=1 then we can use similar arguments as above
to conclude that the total length of the remaining £ — 1 of the k£ largest segments
is not greater than 1 — 1/2F7! and it immediately follows that the total length
of k largest segments does not exceed

plzy, 1,a,) +1—1/28 <12k w1 — 172 =1 - 1/2".

If p(x, 1, 21,) < 1/2%71) then we proceed with the NI heuristic and repeat the
same arguments. Finally, two cases are possible:

1. There exists an i = 2,3,...,k such that p(x;_1,z;,) < 1/287H 5 =
1,2,...,i—1,and p(x;, 1,2;,) > 1/257"1 In this case the remaining path
under the NI heuristic is not longer than 1 — 1/2¥="*1 and therefore the
total length of the k largest segments does not exceed

1 1 1 1 1

1—1
zjlp(a?ljfl,xl]—)_kl—m < ﬁ+%++w+1—m
]:

B 1
= 1—?.

2. For each i = 2,3,...,k we have p(x;, 1,2;,) < 1/28=1 Then the total
length of the k largest segments is less than

1 1 1 1
?—F%-F...-Fi:l—?.
Thus, in both cases the assertion of the theorem holds. O

Since the complete travel time is identical to the total length of the n largest
segments, an upper bound for the travel time under the NI heuristic immediately
follows from Theorem 3.3.



Corollary 3.4 For each w € [0,1)"" the travel time under the NI heuristic
satisfies
TN (w) <1—1/2" (3)

Let us give an example to show that Corollary 3.4 provides a tight upper
bound.

Example 3.5 Let n = 5, and let the starting position of the picker be zy = 0.
The items to be picked are located at the positions 1/32, 3/32, 7/32, 15/32 and
31/32 — ¢, where ¢ is positive and arbitrarily small (see Fig. 3).

— NI heuristic

--» Optimal route

Figure 3: An example for which the travel time is arbitrarily close to the upper
bound.

Then the travel distance under the NI heuristic is

1+2+4+8+<16 >_31 1
32 732 32 732 " \32 %) T 32 T T p %

The upper bound 1 —1/2% is tight, since ¢ is arbitrarily small. A similar example
can be easily constructed for any n.

Remark 3.6 In Example 3.5 the travel time does not really achieve its upper
bound. However, if the picker starts at point zyo = 0 and needs to pick only one
item at point 21 = 1/2, then the travel time is equal to its upper bound 1/2. For
n > 1 the upper bound can also be achieved, if we assume that when the travel
times to the nearest items clockwise and counter-clockwise are exactly the same,
the picker always proceeds, say, clockwise. Now, if we put € = 0 in the example
above, then the travel time will be exactly 1 — 1/25.

Note that Example 3.5 is ‘the worst’ we can construct. Indeed, from the proof
of Theorem 3.3 it follows that if the first segment is smaller or greater than 1/2"
then the travel time to pick n items under the NI heuristic is less than 1 —1/2".
The only case when the upper bound can be achieved is when p(zg,z,) = 1/2".
Then after the first step, the picker is at position z; and n — 1 items remain to be

6



picked. Due to Property 3.1 we can use similar arguments to show that the upper
bound can only be achieved if p(z, z2) = 1/2" 1. The same can be done for each
of the n steps under the NI heuristic. It implies that the upper bound can be
achieved if and only if the [-th segment has length 1/2"~!*! for all [ = 1,2,..., n.

Fig. 3 also shows that the NI strategy is sometimes far from optimal. Indeed,
in the case under consideration the optimal sequence is: 31/32 — ¢, 1/32, 3/32,
7/32, 15/32. The total length of this route is

1 1 1 2 4 g8 17 5
<32+6>Jr<32+6>+32+32+32+32_32Jr =
which is much less than 31/32 — ¢, when ¢ is small.

Due to (3) we can roughly estimate the probability that the pick sequences
under the NI and SD heuristics coincide. In other words, we are speaking about
the probability that the carousel never changes direction under the NI heuristic.
For example, this always happens when w is such that 797 (w) < 1/2. The prob-
ability of this event is 1/2"~!. This value can be treated as a rough lower bound
for the probability that the NI and SD heuristics coincide. Further, according to
(3) the travel time under the NI heuristic can not exceed 1 —1/2". It means that
the NI and SD heuristics can coincide only for w’s satisfying TP (w) < 1—1/2".
Thus, we have:

2n11 < Prob{NI concides with SD} < 2- (1 — 2%) — (1 — 2n11> . (4)
For n = 1 both bounds in (4) are equal to 1. If n tends to infinity, then the lower
bound tends to 0, but the upper bound tends to 1. It is mentioned in Bartoldi
and Platzman [1] that both heuristics will coincide with high probability if the
item density is large, i.e. if n is increasing. Thus, the upper bound in (4) can be
used as a rough estimation, when n is large.

4 Mean travel time under the NI heuristic

To derive a formula for the mean travel time under the NI heuristic we will
develop a procedure exploiting property 3.1. According to this property the
remaining part of the NI heuristic after the first step is equal to the NI heuristic
for the other n — 1 items with the picker’s current position as starting point. The
expected travel time of the first step can be found straightforwardly. However, the
expectation of the remaining travel time is not just the mean travel time under
the NI heuristic for n — 1 items, because we also need to take into consideration
the empty space at one side of the picker’s position (namely, the first segment,
which is clearly without any items to be picked). So, we can obtain a recursive
equation for the mean travel time conditioned on the empty space at one side
of the picker’s position. Denote by E(TN!|t) the mean travel time under the NI
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heuristic, given that at one side of the picker’s starting point there is an empty
space of size t. Then the mean travel time under the NI heuristic is just equal to
E(T;Y)0):

E(T,") = E(T,"|0). (5)
Our object now is to derive a formula for E(TN'|t), t € [0,1).

The case t > 1/2 is trivial, since in this case the carousel will rotate in one
direction only. It is easy to see that there are n segments to cover, and the average
length of each segment is (1 —¢)/(n + 1). Thus, we have:

n

BT =" (-1, 1/2<t<1. (6)

Let us now consider ¢ < 1/2. We will derive a recursive equation for E(TN|t)
by conditioning on the location of the nearest item. Let f,(y|t) denote the density
of the travel time to the nearest item given that there is an empty space of size ¢
near the starting point. There are two possible cases, which are shown in Fig. 4.
For y <t we have

A A

Figure 4: Two possible locations of the nearest item.

falylt) =n(1 =t —y)" /(1 =1)",
and after this step there will be empty space of size t + y. For t < y < 1/2 it
holds that

falylt) = 2n(1 = 2y)" 71 /(1 = 1)",
and after such a step there will be empty space of size 2y. Now we use the full
expectation formula:

By = [ (B e ) +o] ay

To find a solution for equation (7) we first introduce the functions

D,(t)=E(TNH(1-t)", n=01,....
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Here
Dy(t) = E(Tg " [t)(1 —1)° =

Also from (6) it directly follows that for all n = 1,2,... we have

D,(t) = nil (11—t 1/2<t<1. (8)

Now we can rewrite equation (7) in the following form:

t 1/2
Du(t) = /0 nDy_1(t +y) dy + /1t 20D, 1(2y) dy
¢ 1/2
+ / n(l—t—y)" tydy +/ 2n(1 —2y)"lydy, 0<t<1/2.(9)
0 t

The last two integrals in (9) can be easily calculated. Putting 7 = y + ¢ in the
first integral and 7 = 2y in the second one, we simplify equation (9) to:

(1 - t) n+1 (1 - 2t) n+1

Dn(t):/tlnDnl(T)dT+ L Capay o 0st<iz (0

Since Dy(t) = 0 we obtain from (10) that

Dy(t) = a ;t)Q _a _4%)2, 0<t<1/2. (11)

To proceed we make the following assumption:
D,(t) = a,(1 —t)"™ +b,(1—2t)"" n=1,2,...; 0<t<1/2, (12)

where a,, and b,, are coefficients depending on n. If (12) is correct, then according
to (10) and (11) we obtain the recursion

n 1
“ n+1 On-1F n+1 “ / (13)
The coefficients a,, n = 1,2,... are uniquely determined by (13), and it is easy

to check that a, = n/(n + 1) satisfies (13). The recursion for the coefficients b,
n=1,2,..., also follows from (10) and (11):

n 1
by = ———bpy — ———; by =1/4. 14
2n+1) """ 2n+1) / (14)

From (14) we derive
2(n + 1)by = nb,_; — 1.

Denote b, = (n + 1)b,. Then we have

1 1
V=g —g =12
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Thus,
bl

1
n Z?Z—Ew:§—L

and we finally obtain

1 1
b, = (——1), n=12,....
n+1\2"

Thus, assumption (12) implies that

n 1 1
D,(t) = 1—t"+1——<1——>1 2t)" L =1,2,..;0<t<1/2.
15

We now check that (15) indeed satisfies (10). Substitution of (8) and (15) into
(10) yields

1
D,i(t) = /tn(l—T)”HdT

1/2 1 (1=t (1—2t)""
1——)(1—-27)""d —
* /t ( 2”>( ™) T n+ 2 2(n+2)

n+1 1
n+2( ) n+2

2n+1> (1—2t)"" 0<t<1/2,

which coincides with (15). Our results are summarised in the following theorem:

Theorem 4.1 For alln =1,2,... we have:
1 1 — 2¢)n+t

” (1—t)—<1——> L=20"" hcp o1y
BTN = ¢ nitl 20) (n+1)(1—1t)" (16)

1—t 1/2<t<1;

n+1( ) [2<t< 1

1 1

BNy = = —(1——) . 1

(T.") n+1 ) n+1 (17)

Remark 4.2 We can use the same procedure to obtain higher moments of TN.
To obtain the second moment, say, we need to consider the conditional expec-
tation E([TN1]?|t), for which we can find an explicit expression for 1/2 <t < 1
and derive a recursive equation similar to (7) for 0 < ¢ < 1/2. The solution for
this recursive equation can be found by similar calculations, but the resulting
expression becomes definitely more complex.

Let us compare the mean performance of the NI and SD heuristics. One can
see (cf. Rouwenhorst et al. [2]) that

ot 0<t<1/2
SD _ ) > U = )
P(T; <t)_{2t”—(2t—1)”, 1/2<t<1.
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Hence, it is easy to compute that

BIP) = S
n+1l 2n+1
If the carousel just rotates in the same arbitrarily chosen direction, then the mean
travel time is clearly n/(n+1), since there are n segments to cover, and 1/(n+1)
is the average length of each segment. If the SD heristic is applied, then the mean
travel time will be reduced by 1/2 of an average segment. By applying the NI
heuristic, we can reduce the mean travel time by a fraction 1 —1/2" of an average
segment. Obviously, when n is large the difference between different heuristics
becomes negligible.

5 Discussion

One can distinguish two main directions for studying the performance of carousel
systems. The first one concerns the analysis of the optimal order picking strategy.
However, a detailed analysis of probabilistic characteristics of the response time
is quite complicated (cf. Rouwenhorst et al. [2]).

The other main direction is developing and studying simple heuristics for order
picking in carousel systems. In practice they can be very useful, because they
provide reasonable control without much (computational) effort. Probabilistic
properties of such heuristics sometimes can be obtained analytically. So, in real
life one may prefer simple heuristics because (a) they don’t require much effort,
and (b) their properties are well-understood.

The present paper can be classified in the second direction. We studied in
detail the NI heuristic. We provided a tight upper bound for the travel time.
Moreover, in Section 4 we developed a procedure to obtain the mean travel time
under the NI heuristic. Most likely, the same procedure can also be used for
the detailed probabilistic analysis of simple heuristics for order picking (cf. Re-
mark 4.2).

The analysis becomes much more complicated for a system of two carousels
operated by one picker. The additional and crucial feature of this system is the
presence of switch-over times. Clearly the travel time now significantly depends
on the switch-over time. For example, if the switch-over time is close to zero,
then it actually reduces to the case of a single carousel system. On the other
hand, if the switch-over time is large, then it will strongly effect the travel time.
To the best of our knowledge, multiple carousel systems have not been studied
in the literature so far. Recent research, however, indicates that the techniques
developed in this paper to find a tight upper bound for the travel time under
the NI heuristic, as well as its mean value, are also promising for the analysis of
simple heuristics for order picking in multiple carousel systems.
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