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Abstract

We develop the Lyapunov exponent of (max,+)-linear systems into a Taylor series. To
this end, we extend the theory of weak differentiation of matrices in the (max,+) semiring
to higher-order weak differentiation. This leads to conditions for the analyticity of matrices
in the (max,+) semiring. Elaborating on the ergodic theory for {max,+)-linear stochastic
systems, we establish conditions for the analyticity of the Lyapunov exponent of {max,+)
linear systems. Moreover, we derive lower bounds for the radius of convergence of the Taylor
series. The two main ingredients are: (1) the radius of convergence of the Taylor series of
matrices in the {max,+)-semiring, and (2) the coupling time of the system, that is, the time
it takes an arbitrarily started trajectory of the system to couple with a stationary version.
We illustrate our results by applying it to a simple sample system and thereby improving the
results on the domain of convergence of the Taylor series of the Lyapunov exponent for this
particular system known in the literature so far.

1 Imtroduction

In this paper we study Taylor series expansions of the Lyapunov exponent of (max,+)-linear
stochastic systems, the class of systems which can be described by a certain class of Petri nets,
called stochastic event graphs. More specifically, we consider (max,+)-linear stochastic systems
depending on a parameter, say #. The Lyapunov exponent is then developed into a Taylor series
with respect to #. For example, & may be a parameter of one of the firing time distributions of the
event graph. In a queueing application, this refers to # being e.g. the mean service time at one of
the queues. However, more general dependencies of the system dynamic on & may be modelled as
well. For example, Baccelli and Hong give in [2] an example from computer science: they model a
window flow control mechanism and let # be the probability that the window flow operates with
nominal window size and 1 — f the probability that a reduced window size is used.

We apply the technique of weak differentiation, a technique first introduced by Pfiug for gradi-
ent estimation for Markov chains, see [11] and the references therein. In [6], weak differentiation of
random matrices in the {max,+)-semiring has been introduced, and analytic expansions of n-fold
products in the (max,+) semiring have been given in [7]. In our paper, we extend these results to
finite horizon products, that is, we consider the case when n is a stopping time. This extension
allows us to develop the Lyapunov exponent of {max,+)-linear systems into a Taylor series. This
approach has the following benefits:

e The Taylor series can be developed at any point of analyticity, which is in contrast to the
results known so far, where only Maclaurin series have been studied.
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the Netherlands, where he was supported by the EC-TMR project ALAPEDES under grant ERBFMRXCT960074.



e The radius of convergence of the Taylor series of the Lyapunov exponent is deduced from
more elementary properties of the system, which allows us to predict the radius of conver-
gence in a very simple manner.

We illustrate our approach with a simple system following a Bernoulli scheme, like the window
flow example mentioned above. More specifically, we show that the Lyapunov exponent of the
Bernoulli scheme can to any point # € [0, 1) be developed into a Taylor series that converges at
least on [f — (2¢)~1,8 + (2¢)~1) N [0,1), where ¢ > 1 denotes the coupling times of one of the
matrices of the Bernoulli scheme (for a definition of the coupling time see Section 3.1 or [1]). This
implies that the Lyapunov exponent can be extended to a complex furiction that is analytical on
a strip around the real interval [0, 1) with width (2¢)~!, which extends the results in [2] and [3].

The paper is organised as follows. In the next section, we introduce the (max,+)-semiring.
In Section 3 we show that the Lyapunov exponent can be represented by the difference between
two finite horizon experiments. Section 4 establishes conditions that imply the analyticity of finite
products in the (max,+)-semiring. In Section 5, we extend the results of the previous section to
randem horizon experiments. Then we combine these results with the finite horizon representation
of the Lyapunov exponent as established in Section 3, which subsequently will provide the desired
Taylor series of the Lyapunov exponent. We conclude the section with an illustrating example.

2 (Max,+)-linear Stochastic Systems

In this section we introduce the (max,+)-semiring. This structure was first introduced in [5]. For
an extensive discussion of the (max,+)-algebra and similar structures we refer to [1].

2.1 The (Max,+)—Semiring

Let ¢ = —co and denote by IR, the set IRU {¢}. For elements @, b € IR, we define the operations
& and @ by

a®db=max(a,b) and aeb=a+b,

where we adopt the convention that for all « € IR max(a, —00) = max(—00,a) = a and a +
(—00) = —0co+a = —co. The set IR, together with the operations & and @ 1s called the (maz, +)
semuring' and is denoted by IRmax. In particular, ¢ is the neutral element for the operation & and
absorbing for @, that is, for all @ € IR; a @ ¢ = €. The neutral element for @ is e := 0. Moreover,
IR, is idempotent, that is, for all ¢ € IR, ¢ @ a = a. Idempotent semirings are called dioids in [1).
The structure IRy,ax is richer than that of a semiring since ® is commutative and has an inverse.
However, in what follows we will work with matrices over IR, and thereby lose, like in conventional
algebra, commutativity and general invertability of the product.

We extend the (max,+)-semiring to matrices in the following way. For A, B € IR? %7, we define
A& B as follows

(A®B)ij=Ai; ®B;; ,1<4,j<J.

For A € R!*/ and B € IR/*¥ | we define A® B by
J
(A@B) =P A; ®Bjx ,1<i</, 1<k<K. (1)
i=1

The matrix £ with all elements equal to ¢ is the zero element of the & matrix operation. On
IR/, the matrix E with diagonal elements equal to e and € elsewhere is the neutral element
of the @ matrix operation. We denote the J x J-dimensional matrices over IR, equipped with
the operations @ and @ defined as above by IR1%) = (R/*7, &, ®, £, E). Observe that IR;%;

LA semiring is a set R endowed with two binary operations, @ and @, so that & is associative and commutative
with zero-element ¢, @ is associative and has zero—element e, @ distributes over & and ¢ is absorbing for &.



1s again a semiring. To simplify notation, we write IB.;’ for IR;"’“, that is, ]R,fr denotes the set of
J-dimensional vectors over IR,.

Some of the statements to be presented below hold for general matrices in IR}, whereas
others only hold for a restricted class of matrices. For example, there are statements that are only
true for matrices with at least one entry in each row different from e. Furthermore, sometimes
we do assume that (initial) vectors are different from ¢. However, these assumptions impose no
restriction on the class of systems that can be treated.

Let some probability space (2, F, P) be given on which all random variables introduced below
are defined. We say that a random matrix has fired support if the probability that A;; = ¢ is either
zero or one. We call A integrable if A has fixed support and if E[A4; ;} < oo for all non-¢ entries of
A.

A (random) matrix A € iR;'x" is said to be irreducible if A has fixed support and if for all 4, j
a sequence i = fp,...,&m = j exists such that A;;,,, > efor 0 <I < m.

2.2 Examples of (Max,+)-linear Stochastic Networks

In the following we give examples of (max,+)-linear queueing networks. For a necessary and
sufficient condition for the (max,+)-linearity of a queueing network, we refer to [8].

Example 1 Consider a closed system of J single—server queuves in tandem, with infinite buffers.
In the system, customers have to pass through the queues consecutively so as to receive service at
each server. After service completion at the J** server, the customers return to the first queue for
a new cycle of service.

For the sake of simplicity we assume that there are J customers circulating through the nelwork
and that initially there is one customer at each queue. Let o;(k) denote the k** service time at
gueue j and let z;{k) be the time of the k" service completion af node j, so that the time evolution
of the system can be deseribed by a J-dvmensional vector 2(k) = (21(k), ..., 2:(k)) following

z(k+1) = A(k) @ z(k),
where the matriz A(k) looks like

[o1(k) ¢ € o1 (k)
as(k) oa(k) € .

Atk =1) = (@)

ci-1(k) eyoa(k) €
€ oi{k) os(k) ]

for k > 1. For more examples of this kind we refer to [9].

Suppose that one of the service time distributions depends on a parameter, say, #. For example,
# may be the mean of one of the service times. In this case, the (max,+)-linear recursion describing
the system dynamics depends on 8 through these service times. The following example is of a
different kind: here the distribution of the transition matrix as a whole depends on 8.

Example 2 (Baccelli & Hong, [2]) Consider a cyclic tandem queueing network consisting of a
single-server and a multi-server, each with deterministic service times. Service times of the single—
server station equal ¢, whereas service times at the multi-server station equal ¢'. Two customers
circulale in the network. The time evolution of this network is described by a (maz,+)-linear
sequence (k) = (x1(k),...,za(k)), where (k) is the k'® begin of service at the single-server
station and zo(k) its k*" departure epoch; za(k) is the k*® begin of service at the multi—server
station and z4(k) its k** departure epoch. The system then follows

z(k+1) = D; ® x(k),
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Consider the cyclic tandem network again, but with one of the servers of the multi-server broken
down. This system follows
z(k+ 1) = Dy @ z(k),
where
A
TE €€
ceco ¢
ced e

Dy =

Assume that such a breakdown occurs after service completion with probability 1 — 0. Let Ag(k)
have distribution

P(Ag(k)=Dy) =98

and
PlAg(k)=D2)=1-8,

then
zo(k + 1) = Ag(k) © zo(k)

describes the time evolution of the system with random breakdowns.

2.3 The Space ]R:XJ

The aim of our analysis is to study (max,+)-linear stochastic systems. More specifically, we

are interested in {max, +)-linear models of stochastic networks such as queueing systems. These

models have in common that the entries of the corresponding transition matrices are either non—

negative or equal to e. Therefore, it suffices for our purpose to restrict our analysis to the semiring
Ronax = (IR = [0, 00} U {—c0}, & = max,® = +,6 = —00,e = 0) .

Moreover, (IR., &, ¢) is a monoid and with quasi norm?

3
2]l = [lfz]lg, = max (m,x+ 1) ,

that is, {a) ||x{| > 0 for all 2, (b) ||=]| =0 if and only if z = ¢, and (c} ||z & y|| < ||z]| + ||y|| for
all 2, y. The quasi norm {{z|| is extended to IR, > by

1A} = (|Allger = max (11450l 1 15 €I, 1€6<T),

for A & !R:XI. Observe that for every integrable A, Ff||A}|] < cc.
On IR,, we introduce a metric d(-, ) as follows. For 2,y € IR, we set d(z,y) = [z —y|, d(z,¢) =

oo = d(e, x), and d(e, ¢) = 0. This metric is extended to [R:XI by

d(A,B) == d.sx:(A,B) = max(d(A;;,B;i): 1<j<J, 1<i<]I),
% jir D =)= Sts

2]t is possible to equip [Rmay with the metric dz,y) = em2x(zy) _ cmin(z) | Hence, |jx|] := d{z, ) wounld
be a natural choice for || - [|. But later in the text we will study functions of the type g : Rmax = IR such that
lg(x}] € e1 + cz|l=||* for constants c;,cz and k. A key condition for analysis will be that E[||z||*] < co. Hence,
taking ||z|[ = e* imposes a severe restriction, which is the reason why we work with |jz{| = max(1/(z + 1),z + 1).



for A, BeIR. ™.

_Jxl . .
The space (IR, 8 ,d) is a separable metric space. In addition to that, each continuous mapping

g :[0,00)7*! IR can be extended to a continuous mapping § : IR,:XJT — IR through §(z) = g(x)
for all z € [0,00)?*! and otherwise zero, see Lemma, 2 in [7].

One of the corner stones of our analysis is to establish a kind of generalised non-expansiveness
of the @-product. More precisely, let the mapping D(-,-) be such that

Ve,y€IR)VA,BeR.* . D(A@=z Bay) < DA B) + D(z,y). (3)

Then we call a mapping g : IR/*? — IR non-ezpansive with respect to D(-, ) if for all A, B € R/
|g(A) — g(B)| < D(A, B).

Put another way, the non—expansiveness of a mapping g allows us to switch from distances between
performance measures of trajectories of (max,+)-linear systems to distances between matrices and
vectors, respectively, in IRgXJ, for which we can establish upper bounds by applying Inequality (3).
Of course, the above introduced metric d(-, -) is the first candidate for D(-,-) in (3). Unfortunately,
Inequality (3) does not hold for (-, -}, which will become clear in the proof of the following lemma.

. ¥ § .
In what follows we introduce a different way of measuring distances in IR, **_To this end, we
define for ¢,y € IR,
o(e,y) = [ll=ll — Iyl

and for 4, B e R, '

5(A, B) = 6pox(A, B) = max (8(Aji, But) : V(id), (kD) € T x T) |
We obtain 6{A, &) =|||A] 1| and §(A, E) = ||A]| if A # £ and otherwise zero.

- [xd
Lemma 1 Let A/B € ]REX be such that each row of A and B contains at least one element
different from ¢, then it holds for z,y € IR’ that

(Ao x,Bay) < §(A,B) + d(z,y) .

Proof: Let j4(i) be such that

J
A,‘J’A(,‘) [} Tijapy = @Aij = T; € IR
F=1

and jB(i) such that
J

Bijeiy @ Yoy = @B.J @y €IR.

i=1
Straightforward calculation yields
d(Axnz, B y)
="}?X{ Nl Aijag) @ zja@l| — 1Brjegy @ yizmll |}
=max{ | Aijai) @ 25a6) = Bijae) @yim |}
S“}?X{MUA(:') - By |} + "}?x{ |zjai) — ¥imy | }
<6(A,B) +d(z,y),

which concludes the proof of the first part of the lemma. Note that the last inequality fails for



IxJ .. . . :
In what follows we call g : ]R,E>< — IR non-expansive if g is non—expansive with respect to
4(-, ), in formula:

VA, BEe R = |g(A) - g(B)| < §(A, B). (4)

Examples of non-expansive maps are the coordinate-wise projection onto IR, that is, for fixed
i,§ we set g{A) = A;; if A;; € IR and otherwise zero, and the maximum operator, that is,
g(A) = max(4; ;).

We conclude this section with the remark that 6(-, -} is a metric on IR:X"r but that the topology
induced by 4(-, -} is too weak for any practical purpose, that is, if we extend a continuous mapping

. JRE b 2 . . .
9:[0,00)7*7 5 IR to a mapping j : IR, .~ — IR, usually § is not continuous with respect to é(-, -),
which is in contrast to the metric d(-, ) as mentioned earlier.

3 Ergodic Theory
Ergodic theory for (max,+)-linear studies the asymptotic behaviour of the sequence

2(k+1) = A(K)@a(k), k>0,

with £(0) = zg. One distinguishes between two types of asymptotic results:
(i) first-order limits

. x(k)

lim

k=oo k'

(ii) second-order limits
kl_l)n;lo (:L,(k) - :r:j(k)) and klglgo (:cj(k +1) - :cJ(k))

Note that, in contrast to first-order limits, second-order limits are random variables and one has
to consider carefully in which sense these limits are justified.

In this paper, we study type second-order limits of the type limyooo(zj(k + 1) — ;(k)). As
we will explain below, many interesting performance characteristics can be described through this
type of difference.

A first-order limit is an inverse throughput. For example, the throughput of station j in
Example 1 can be obtained from .

Pl Bt

Second-order limits are related to waiting times and cycle times. Consider the closed tandem
network in Example 1. There are J customers circulating through the system. Thus, the &£* and
the (k + J)** departure from queue j refer to the same {physical) customer and the cycle time of
this customer equals

zj(k + J) —x;(k).

Hence, the existence of the second-order limit z;(k + 1) — z;(k) implies limit results on cycle
times of customers. For more details on the modelling of performance characteristics of queueing
systems via first-order and second-order expressions we refer to [9] and [10].

3.1 First—Order Limits

We now state the celebrated cyclicity theorem for deterministic matrices, which is of key impor-
tance for our analysis.

o



Theorem 1 (Baccelli et al. [1]} For each irreducible matriz A € IR} *” | uniquely defined inte-
gers c(A), o(A) and a uniguely defined real number X\ = A(A) exist such that for all n > ¢(A)

An+cr:.4] LS /\a(A]_?I AP
which implies that for all initiol vectors the sequence z(k +1) = A @ x(k), k > 0, satisfies

lim ﬂ—,\.

koo & -
The number ¢(A) is called the coupling time of A, a(A) is called the cyclicity of A and X is the

unique eigenvalue of A.
Let V(A) be the eigenspace of A, it holds for all n > ¢(A) and all z € ]fo‘]

A" @z € V(4).

A sufficient condition for A to be of cyclicity one is that the critical graph of A has a single
strongly connected subgraph with cyclicity one (see [1] for the definition of the critical graph and
for that of its cyclicity). This property will be referred to as sesf-cyc! below.

Theorem 2 (Theorem 7.27 in [1]) Assume that {A(k)} is a stationary and ergodic sequence
of random matrices in ]R‘:"J, and that A(0) is irreducible and integrable. Then for the sequence
z(k + 1) = A(k) @ z(k), with 2(0) = zq, the following limits exist with probability one and are
independent of the initial vector

Ry 1
lim zgfi(i) @wo = 7E

k= oo

k—1
X A@D @ xg] =A.

i=0

The constant A is referred to as the (maz, +) Lyapunov exponent of the sequence of random
matrices {A(k)}. There is no ambiguity in denoting the Lyapunov exponent of {A(k)} and the
eigenvalue of a matrix A by the same symbol, since for A(k) = A, for all £, the Lyapunov exponent
of {A(k)} is just the eigenvalue of A.

Consider for example the system in Example 1. If we assume that the service times o;(k)
are i.i.d. with finite mean for each j and that the sequences {¢;(k)} (1 € j < J) are mutually
independent, then Theorem 2 applies. This is in contrast to the situation of Example 2. Here, A(k)
has no fixed support (and is therefore not integrable) and the theorem does not apply. In order to
obtain an ergodic theorem for sequences with no fixed support, we restrict ourselves to sequences
satisfying the following two conditions:

(C1) The sequence {A(k)} is i.i.d. with a countable state space A.
(C2) Each A € A has at least one entry different from € on each line.
We have the following

Theorem 3 Under assumptions (C1) and (C2), if A contains at least one irreducible scsi-cycl
matriz, then the following limil exists with probability one for all initial vectors 2o € IR’ and is

independent of xg
k-1

.1 o _
All}nc;lo Z @A(I) F kg = AL

Proof: We sketch the proof. Let ¢ denote the coupling time of A, with A € A a scsl-cycl
matrix. With positive probability, we observe the event {A(:) = A: 0 < i < e¢— 1}. On this event
z(c) € V(A), see Theorem 1. Since V(A) is a single point in the projective space and, therefore,
compact, Theorem 2.10 in [4] applies and we obtain that for all j with probability one

m %xj(k)z)\,

li
k=o0



which proves the theorem. O

The above theorem applies to the system in Example 2, and it applies to the system in Exam-
ple 1 if we assume that the service times o;(k) are 1.i.d. for each j and have discrete support.

3.2 Second—-Order Limits

Mairesse introduced in [10] the concept of a “pattern” of a sequence of matrices in order to study
second—order limits. In the following we combine his results with results on first~order limits in
order to represent second-order limits by finite horizon experiments. We follow the line of argument
of Baccelli and Hong in [2].

Let A = {a(!)} be a finite or countable collection of J x J-dimensional irreducible matrices.
We think of A as the state space of the random sequence {A(k)} following a discrete law. We
say that {A(k)} admits a pattern if a matrix A and a finite number N exist such that (1) A=
any ®an-1®...©@a; and P(A(k4+n)=a,:1<n<N)>0forall k, and (2) A is an irreducible
scsl—cycl matrix. We call A the matrix associated with the pattern of {A(k)}. For easy reference,
we introduce the following condition.

(C3) The sequence {A(k)} has a pattern with associated matrix A such that A is irreducible and
scsl-cycl. An eigenvector of A will be denoted by X,.

The fact that {A(%k)} admits a pattern resembles a sort of memoryless property of (max +)-linear
systems. To see this, let z(k + 1) = A(k) @ z(k) be a stochastic sequence defined via {A(k)} and
assume that {A(L)} has a pattern with associated matrix A. For vectors @,y € IR}, let z — y
denote the component-wise difference, that is, (x — y); = &; ~ y;, where we adopt the convention
that e —z = ¢ and 2 — ¢ = oo for ¢ # ¢, and ¢ — ¢ = 0. In what follows we consider the limit
of z(k + 1) — z(k) for & towards oo, where the limit has to be understood component-wise. In
order to prove the existence of this limit we will work with a backward coupling argument. For
this reason it is more convenient to let the index % run backwards. More precisely, we set

0
A, = R Alk)

k=-m

and

e =A%, @y = ® A(ky @ =g,

k==m

with ) = zg, that is, z%,, is the state of the sequence {z(k)}, started at time —m in zg, at time
0. The sequence {x%,, : m > 0} evolves backwards in time according to

Sﬂ(l(m_i_l) = Ao_rn [ A(—(m + ].)) & Iy -
Note that z(k) and 2%, are equal in distribution. With this notation the second-order limit reads
lim AN @2, — 2% =A(l)® ®A(L ) @ o — ®A

k—+oo
k=—c0 k==oo

Suppose that, going backwards in time, after 7 steps we observe for the first time c(A) times the
pattern of {A( }} in a row. More precisely, let & denote the ¢{A)-fold concatenation of the string
(an,an—1,...,a1), which implies that @ has M = c(A_) N components. Then 7 is defined by

0= inf{k> 0| A(=k) = @y, A(~k + 1) = &,..., A(—k + (M — 1)) = ap},

and we obtain in accordance with Theorem 1 that, independent of the sequence {z°, : k > n},

the random variable =2 is an eigenvector of A, in formula: z° e V(A).



For v € ]PL;‘r ., we define multiplication by a scalar v € IR, by component-wise multiplication:
(v @ u); =@ u,. It can be easily checked that

VveR,,vER! : Bov—CRv=Ba(rev)-Ca(yduv), (5)
forall B,C € ]R:xJ. We now use the fact that eigenvectors of a scsl-cycl matrix are equal up to
scalar multiplication: if w, v € V(4), then a v € IR, exists such that v =4 @ u (see Theorem 3.101
in [1]). Hence, (5) implies

Vo,ueV(4): Bov—-Cov=Bau—-Cou, (6)
for matrices 4, B,C € IR;'XJ. Combining the above arguments, we obtain

lim A(1) @ 2%, - 2%,
k=co

0 0
=A) e Q) Aklez — X Alk)@ <o

k=—o00 k=—0co
o] 2 —-n=1
=Al)® & Ak eAWe &K Ak
k=—n+M-1 - k=—00 )
=XoeV(A)
0 R —-n—1
- R AkeiAWe Q) Alk) o
k==n+M-1 . k==o0 ,
=:XpeV(A)
(5) 0 0
2 A e R Ak) ez - X AR) @z
k=—n k=—n

=A@ A%, @z0 — A, ®zp < 00,

Hence, the second-order limit can be represented by a (random) finite horizon experiment.
Next we will show that the above limit representation also holds if we consider expectations.
To this end, we assume that the entries of A(k) are either positive or ¢, that is, we assume

Alk) € IR;IXJ. Furthermore, we assume that
(C4) For all k, each row of A(k) has at least one element different from zero and zq € [0, 00)’.

Condition (C4) implies that z(k) € TR’ for all k. Let (); denote the projection on the b
component and recall that (-); is non-expansive. This makes it possible to apply Lemma 1 and
we obtain for all m € IN and all j

0 0
(A(l)-::_a Q) Alk) -;;e,-zo) = (E@ & A(k)@zg)

k=-m i k=-m i

4 0 0

(5)6 (A(l)rg, Q) Alk)@zo, B2 X) A(k)rgrzo)
k==m k==m

L.1

< 8(A(1), E)

= ||4(1)]]-

Integrability of A(1) implies E||A(1)|]] < oo and applying the dominated convergence theorem



to the above second-order limit, we obtain
lim Efz(k+ 1) — 2(k)]
k=0

= ngigq E[A(L)® 2%, — mgk]

=F [ lim A(1) @22, — :c?_k]
koo

1 0
=F {@ A(k)y @ 2o — ® A(k) & 30] < 0o (7)

k==n k=—n
The main result of this section can now be stated as follows.

Theorem 4 Under assumptions (C1) to (C4), an almost surely finite stopping time 7 € IN exists,
such that for all zo € IR’

A= lim Efz(k+1) — 2(k)]

1 0
=E | Q) Ak)@z0 — Q) Alk) @ 2| < 00,
k=—n k=—n
Proof: It remains to be shown that
A= lim Efz(k+1) - z(k)}.
R—eo

The limit on the right-hand side of the above formula exists, and, applying a Cesaro averaging
argument, we obtain

Jim Ela(k+1) - 2(b)= lim £ Efa(k).

In Lemma 1 in [2] Baccelli and Hong showed that under the conditions of the theorem it holds
that

1
M1, Pl =2
which concludes the proof of the theorem. O

Remark 1 If we apply a Cesaro averaging argument, the second-order limit in Theorem [ yields
that, under the assumptions (C1) to (C4), the limit in Theorem § also holds for the expected value

of z;(k)/k for all j.

3.3 Problem Statement

Let # € © be a real-valued parameter, © being an interval. We shall take 4 to be a variational
parameter of the sequence {Ay(k)} of square matrices in IR7*” and study sequences {wq(k)}
following

zg(k + 1)=Ag(k} D zg(k), k>0,

with 25(0) = 2o for all 8.
The aim of this paper is to develop the second-order limit

Jim Eze(k +1) — z4(k)] (8)

into a Taylor series. This will then-lead to Taylor series expansions of the Lyapunov exponent of
{Ag(®)}. Moreover, we obtain Taylor series expansions of many performance measures of interest,
like waiting times or mean queue lengths.

To avoid an inflation of subscripts, we will in what follows suppress the subscript @ when this
causes no confusion.
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4 Weak Derivatives of Random Matrices

We denote by CP(IR:XI) = CP(IR;IX!,dexf(‘, -}) the set of all functions g : IR;IXI — IR such

Ixi
that |g(z)] < 1 + callz]|* for all z € IR, *" and all I with 0 <{ < p, for p > 0. In addition to that
. JxI . Jxr
we assume that the set of bounded continuous mappings from IR, *" to IR is a subset of Cy(IR, * )

for all p > 0.
The set of all measures on (IR:XI, F)is denoted by M = M (IR':“), where F denotes the Borel
field of ]REJXI. Moreover, the n-fold product field will be denoted by F™. The set of probability

measures on (IR:XI,J-“) is denoted by My C M. For u, v € M, we say that p is v—continuous, in
symbols v >> p, if v(A) = 0 implies ¢(A) = 0 for all A € F. The v—continuity of ¢ implies that
the Radon-Nikodyn derivative of p with respect to v exists. Put another way, if v > g, then the
v-density of g, denoted by f(u,v) exists. If g 3> up for all 8 € ©, we write fo(z) = f(ue, p)(z).
In what follows we let d" fy/d6™ denote the n** derivative of fy, provided that it exists, and set
fo =d%fa/dB®.

Definition 1 Let v, uy € My be such thc:ftr v > pg for all @ € ©. We call uy n times v-Lipschitz

J
differentiable at 6 with respect to Cp(IR, * ), or n times Lipschitz differentiable for short, if

o fo(z) = flpe,p)(z) is (n + 1)times differentiable with respect to & on © for v almost all z;
o for all m < n+ 1 mappings KT exst, such that

dm .
de—mfe(-”»”) < Kj'(z),

sup
fe®
v almost surely, and

o forallm<n+41

fll:vllkf\’}"(a:)u(dm) < o0,

Let pg be n times Lipschitz differentiable, then probability measures pgn"!'),,ug"‘_) € M, and
a constant ¢{™) > 0 exist such that

dr _
%fyd.ue = c®) (/9 d#‘(;n’ﬂ - fgd,uf,"’ )) , {9)

forall g € Cp(miXI). The triple (c(™), pf,"""),pg“"')) is called the n** order weak derivative of iy,

the measure ,uf,"""" is called the positive part and ,uf,"") is called the negative part of the weak

derivative, and the constant c¢(?) is called the normalisation constant. If the right-hand side in

(9) equals zero for all g € C,,(]R:XI), we say that the n** weak derivative of g is not significant,
whereas we call it significant otherwise. If the n*# weak derivative of p4 is not significant, we take
(0, ptg, p19) as the n** order weak derivative. We denote by s(yuy) the supremum over the set of all
orders n such that the n** order weak derivative of g is significant. If s(up) = 0o, we say that pug
is oo times weakly differentiable.

Weak differentiability of a random variable is defined by the same property of the induced
measure. Let (X : ¢ € ©) be defined on the common probability space (2, F, P) such that

PXe = py. We call (c("), X‘gn""),Xé"’-)) an nt* order weak derivative of X if the distribution of

Xg denoted by g has an n* order weak derivative, and Xgn"” is distributed according to ug"'ﬂ,

and X g""") according to ,uf,"""), respectively. Hence, the n*# order weak derivative satisfies
dﬂ
R — (") (n!+) _ ) (nr—)
S Ela(Xe)] = o (E[g(x{" )] - E[a(x*7)]), (10)

for all g € C',,(]R:XI). If the n*? order weak derivative of uj, is not significant, we take (0, Xg, Xp)
as the n*? order weak derivative of X,. We set s(Xp) = s(ug).

11



Example 3

1. Let Xp be exponentially distributed with Lebesgue density f(z) = @e%% for z > 0 and
¢ €0 =[0,0-] C(0,00) Then Xy is 0o times weakly differentiable with respect to Cp(IR¢)
for all p. Moreover, the Lipschitz constants are

-4z

K?(a:) =e
and for n >0
K} (z) = (frz+n) 2" Te 7.

for n > 1. For the normalisation constant of the n** derivative of Xy we obtain

(7) — (1) "
¢ )
All higher-order weak derivatives ave significant, that is, s(Xy) = co.

2. Let Xy be Bernoulli distributed on & = {D1; Dy} ¢ )™ with P(Xs = D) = 6 =
1~ P(Xg = Do) Let v be the uniform distribution on ¥ and denote the Radon-Nikodyn
derivative of PXe(-) with respect to v by

P(Xy = z)
v({z})

then Xy is co times Lipschitz differentiable on [0, 1] with respect to Cp(S) for all p. Moreover,
the Lipschitz constants are

Jo(z) = flus,v) = = 11),(1:)29 + lDe(x) 2(1-9),

Ki(z)=2
for n = 0,1 and the normalisation constant of the first-order weak derivative of Xg 15 1.

Since the second-order and all higher-order weak derivatives of Xy are not significant, we
obtain ¢ = 0 for n > 1 and 5(Xp) = 1. Moreover, we obtain X} = (1, Dy, D»).

In what follows we reat random vectors and random matrices. The n'? weak derivative of a
random matrix A € IR, is a triple (c(n), A(™*), A(*:=)) Matrices as a whole can be viewed as
random variables, like in Example 2, or they can be viewed as constituted out of more elemen-
tary random variahles, like matrix A(k) in Example 1, which is determined through the (random)

. . . = JIxd .
service times. We call Xy,..., X € IR, the input of A € ]IF{Ex if the entries of A are mea-
surable mappings of (Xi1,...,Xm). For example, the input of the transition matrix A(k) of a
J-dimensional (max,+}-linear stochastic system, as described in Section 2, is the vector of service
. . . - JxT . :
times (o;(k) : j < J). Let the matrix A € IR, * depend on 8 only through an input variable
X € IR, and let Xy be stochastically independent of all other input variables of A, then the n

. : Ly . s Ixf . . .
times weak differentiability of Xp with respect to C,(IR, ) ) implies that A is n times weakly

differentiable on © with respect to Cp(]R:XI).

5 The Extended State—Space M7*/

. . . . . . = JIxd
The basic property of weakly differentiable random variables is that if A, B € IR, * are stochas-
tically independent and n times weakly differentiable, then A @ B and A& B are n times weakly
differentiable. Unfortunately, the state-space of the weak derivative of A® B is different from the

_ JxT
state-space of A and B. Therefore, we extend the space IR, *toa space, called M7/ in such a

way that higher-order weak derivatives of general (max, +) expressions are elements of M7*/.
. . . . - Jxi
The set M7*1 is the set of all finite sequences of triples (¢, A, B) withc € IR and A, B € IR, *

A generic element o € M?*7 is therefore given by

o = ((C]_,Al, Bl)) (c21A21 B?): SN (Cna)Aﬂ-a]Bﬂa)) ]

12



where n, < o0 is called the length of o, If « is of length one, that is, n, = 1, « is called elementary.
Observe that the nt* weak derivative (c{"), A(™+) A(.=)) of a matrix A is an elementary element

of M%7 We embed ]R,:XI via a monomorphism 7 into M7*! through r(4) = (1, A, A) for all
Ae IR:XI. On M*7 we introduce the binary operation “4+” as the concatenation of strings: for

a,B € M™%/ application of the “+” operator yields

a+f = (..., 00,01, ,0n,).
For a = (¢®, A%, B%) and B = (c?, A?, B?) elementary we set

a® B = (c*-f, A% ® A?, B* & BP)
and

e®f = (c*-f, A% 0 4%, B* @ BF),

where x -y denotes the conventional multiplication in IR. These definitions are extended to general
a=(ay,...an,)}, B=(B1,---Bn,), with a;, §; elementary, as follows. The &-sum is given by

a®f =3 ) wdf,

i=1 j=1
for a, 3 € MT*/ that is, a & § is the concatenation of all elementary @-sums, which implies
Na@s = Mo - Rg. For the @—product we set

Na 18

a@f = ZZC\’,‘ @ 6,

i=1j=1

for « € MT*7 and g € M7*X | that is, a @ f is the concatenation of all elementary &-products,
which implies nagp = no-ng. In particular, for « € M7*J and z € MY := M7**! the matrix-vector

product e & z is defined.
. _IxJ
The performance functions g : IB,EX — IR are extended to M7*! as follows. For a =

((cl,AI:Bl)l--- )(cna;Ana;BnG)) S MIXJ we set

Na

g"(a) = Y a4 - 9(B) . (1)

i=1

The mapping g7 (-) is called the 7-projection of o with respect to g onto IR U {—oc}, or the (7, g)
projection for short.
The definition of g7 resembles the structure of the formula on the left-hand side of (9). More

precisely, let A(") € M7*I be a nt* derivative of A € IR:XI, then evaluating g7 for A" yields
gT(AM) = c(“:'(g (A(”"”) —g (Aiﬂ-—))) .

On the other hand, every triple (¢, B, C') with d" E[g(A)])/dé" = c¢(E[g(B)] — E[g(C)]) for all
g€ C',,(IR:XI) is an n'* order weak derivative of A. We now say that o, 8 € M7*! are weakly
equal (with respect to CP(IREJXI)) if

Vg€ Cp(R, ) : Elg"(e)) = Elg"(8)],

in symbols: & = 3. Hence, we obtain
Alr) = (™), Aln4) 4r=)y
For ease of notation, we suppress the superscript  where this causes no confusion and write, for

example, g{-) instead of g7 (-).

13



6 The “Halted” (max,+) System

The Lyapunov exponent can be represented by the difference between two products of matrices,
where the number of matrices for each product is given by the stopping time 7, see Section
3.2. Hence, the analyticity of the Lyapunov exponent can be deduced from the analyt1c1ty of the
product E[@L— A(k)@zg). In [7], sufficient conditions for the analyticity of E[®k=_m (k)@ zo]
were given, for m € IN. Unfortunately, the situation we are faced with here is more complicated,
since 7 is random and depends on 0. To deal with the situation, we borrow an idea from the theory
of Markov chains. There, the expectation over a random number of transitions of a Markov chain
15 analysed by introducing an absorbing state, More precisely, a new Markov kernel is defined, such
that, once the chain reaches a specified criterion, like entering a certain set, the chain is forced
to go to the absorbing state and remains there forever. Following a similar train of thoughts,
we introduce in this section a “halted” version of A(k), denoted by Az(k), where Az(k) will be
constructed in such a way that it equals A(k) as long as the pattern a, defined in Section 3.2,
has not occurred in the sequence A(0), A(-1),..., A(—#). Once the pattern & has occurred, the
operator Az(k) is set to E, the identity matrix. In other words, Az(k) “halts” the backward
evolution of the system dynamics as soon as the sequence & occurs.

In what follows we describe the construction of A;(k) in more detail. Let y(—k) = 0 if & hasn’t
occurred in A(D), A(—1),...,A(—k) and y(—k) = 1 otherwise.

For k& < 0, we now set Az(k) as follows

s = {10 120 8

Analogously to 22, we now consider the backward evolution of a system driven by Az (k) {instead
of A(E)). More precisely, we set

]
&, = ® Az(k) @ 2o,

k=—m

with £) := 2. The value of y(k) changes at —p, because at this time we observe the pattern &
for the first time. Going backwards in time beyond —n, the matrix Az (k) equals E, that is, the
variable £2,,, doesn’t change its value after —g, or, more formally

0
0 o, m<y
= 1
§-m {z?_q,m>q, (13)

and
o
Jm @ Ahoz= @) ko
k=—m k=-00
0
= (X) Ak)@ 2o
k=-—n

If A(k) has an n*? order weak derivative, then we define for i € {+1,—1}

iy . JATI(R)  y(k) = 0 (that is, k < n)
(4a) (k) = { E.y(k) = 1 (that is, & > 7) | (14)
with A(™O(k) := A(k), and
(n)
(n) Jy(k) =0 {that is, £ < 7)
Caat) = {CAO ,g( k) = (th:t is, k> n). (15)



In what follows we establish a Leibniz rule for higher-order Lipschitz differentiation which resem

bles the classical Leibniz rule of higher-order differentiation of products of real-valued functions.
However, before we can state the Leibniz rule we have to introduce the following multi-indices.
In order to mimic the backward evolution in time we number the multi-indices by indices out of
{k : k < 0}. For n,m € IN and measures p, € M (0 > k > —m), we set

L(m, n) = E[#o--- Fm:'(m’ n)

0
I < s(pe) and Z lkzn} ,

k=-m

5={(10J-1,--. Aom) €10,... n}mH!

and for [ € L(m, n) we introduce the set
Z(m, 1) =

{(io,z’_l,...,i_m)e{—1,0,+1}"‘+1 e=0iff  =0and ] ik:+1}.

(TR JEP
1 #0D

Moreover, we introduce for i € I(m,!), with m,n > 0 and [ € L({m, n), the multi-index i~ as
follows. Let &* = k*({) be the last position of a non-zero entry in i, that is, i, = 0 for all || < |&*],
and set

= (iOy—l POOC )i—k)— = (iOa e "i—k'+1| i k'si—k'—ll oo si—m) 3
S e’ S’
=0 =0

that is, the multi-index i~ is generated out of i be changing the sign of the last non-zero entry of
1.

Theorem 5 Let A(k), for 0 > k > —m, be mutually stochastically independent and n times
Lipschit: differentiable, then it holds that

5 (n) 0 (t44)
(® Aa(k)) S ) (@Aﬁ("))

T
h=—m teL(m,n) lo'l‘l""l‘m'iez(m,t) k=mm

with

0 (Ili) 0 0 - 0 =
(® A&(k)) = ( H elt) ® Agk,u)(k) ® Agk,:,‘)(k)) )

k=—m k=—m k=-m k=-m

o0 oSS . .
Proof: Let v be a probability measure on IREX , such that the v-density fp of A exist.

Furthermore, let fém’i) denote the v—density of A(™% for all m < n and i € {~1,0,+1}. Recall
that M denotes the length of @. For M — 1 < —j < m, let A(j) be the set of all (m + 1) tuples of

. . JxJ . . . -
matrices in IR, X , such that the entries —j + M — 1 to —j equal &, or, more formally
- JIxJd .
A(j) = {(ag,a_l,... acm) €I j=minfk:acg_;=aM for 0<i< M - 1}},

and set A(j) :=0 for —j > —M. The set A(m) is defined as follows

A = @) U A,

j=={m-1)
Then for all g € CP(IR:XJ)
0
E g( QX Aalk) e mg)l
k=—=m
0 0 0
=> f 9| @ aw@ze| [] folar)v(dao, ... da_;) (16)
j=—m Alf) k=—j k=—j
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We prove the theorem in three steps: (a) we show that we may interchange the order of integration
and n-fold differentiation for {16), (b) we calculate the n'* order derivative of the product of the
densities and split up the derivatives in their positive and negative parts, and (c) we show that
the resulting integral can be written as the expected value of the random variable given in the
statement of the theorem.

Step (a): Under the conditions of the theorem, it follows from Lemma 5 in 7] that we may

interchange n-fold differentiation and integration over the set (II?’J:”)Ji +1, Since A(j) is a measur-
able subset of this set, we may interchange the order of integration over the set A(j) and n—fold
differentiation, as well.

Step (b): In order to calculate the positive and negative part of the n-fold derivative of the
product density, we proceed as for the proof of Lemma 5 in [7]: (i) we calculate the derivative of
the product of the densities via the Leibniz rule of classical analysis, (i) we split up the individual
derivatives into their positive and negative parts, and (iii} we regroup these terms. This procedure
is independent of the particular set A(j) and we refer to the proof of Lemma 5 in [7] for details.

Step (c}: We have already shown that for all g € CP(IR:)

0 0
dgn Z L(J)g (® ag f:?a::.) H Jolar)v(da, ... da_j)

j=-m k=—j k=—j
-y D e T
J—-mlEC(J,n) &) 161(_; N k=—j
7
f g (®Gk & :cu) H f(“‘"") (ar) v(dag, ... da_;)
AlF) k=0 k=—j
(e 'k) .
f ® a; H (ax) v(dag, ... da_;) | .
AG) N\kz—j k=—j

Let 6g(x) be equal to one if £ = E and zero otherwise. The measure dg(-) is independent of §
which implies Jg")(-) = Jdg(-) for all{ > 0 and i € {+1,0,—1}. We now “fill up” the missing
densities with dg(-) in order to obtain an (m + 1)-fold product on the sets A(j) x (R:XJ)"‘+j,

for j < 0. More precisely, we write

0

j=-m k=—j -
0
d ] e
Z Z lo 1! —j ! Z H ¢! k)/. ) m+JQ ® ay @ BT @ oxg

j=-mieL(in) T () kh=mi A()x (R, Rl

0 . _(J+1) , —(+1)
) i

H f(hk) H dg (ax) = H f(k ) H de(ax)

k==i k=—j L—-m

v{dag,... ,da_j)da_;_---da_y, .

Using our definition of Ag" 'i")(k), see (14}, we obtain

0
- Y i £ T el (@ aten) <o @ A Pem)|
k=w~m k==m

teL{mmn) i€Z({mt) k=—m
16
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Remark 2 If A € IR, *" is n times weakly differentiable and xo € IR, is independent of #, then
(A® a:o)(“') = A®) @ g, Under the conditions of the above theorem this implies the following rule
of computation

0 (n}) 0 (n)
( Q) Aalk) e xg) = ( X A&(k)) @ g -
k=—m k=—m

The intuitive explanation for the above formula is that, since 2o does not depend on 8, all {higher-

order) weak dertvatives of xo are "zero”.

We now turn to the pathwise derivatives. From the above theorem it follows for the first-order
weak derivative that

0 m 0 0 ) i-1
(® Aa(k) ® wo) = Y @ akes’e K k) ez
k=-—m J==mk=j+1 k=—m

In accordance with (15}, the summands on the right-hand side of the above equation are equal to

zero for |j] > n (this follows from the fact that Agl)(k) = (0, E, E) for |j| > 7). Hence, taking the
limit for m towards infinity yields

0 (£)] 0 0 i=1
S ( g aalbye ""’) dim Q) A @40 () Aa(k) @ o

k=—m j=—n k=741 k=—-m

0 0 -l
Y ® akedlie @ k) o

j=—mk=j+1 k=—o00

The above formula actually describes the difference between two processes, where for one process
we replace Agl) by Af-ll‘-") and for the other version by Af-ll'_). Following the same line of thought
as in Section 3.2, we see that the sequence {A;(k) : & < —j — 1} only contributes as long as
the pattern @ hasn’t been observed. Put another way, we can cut off the backward recursion after
having observed &. Let n{!} be the number of transitions in {A(k) : k < —»} until we have observed
the pattern again, and to unify notation set 7(°) := 5. Then the expression on the right-hand side
of the above equivalence reads

o 0 j=-1 -
=Y Q@ amesllie @ abe @ Ak ez
j=—n@ k=j+1 k=—nt®) k=—g(1)
(il o
n! L gl _
= D il Q Ak o Q Aik)@w.
LeL(nt 1) T ieZ(n(®) ) \k==plt} Jim= i

The above formula illustrates an important phenomena: the range of the product changes with
the order of differentiation. More precisely, suppose we want to weakly differentiate the above
expression in order to calculate iteratively the second-order weak derivative of the () product
of A(k). This procedure has two steps. First, we take the first-order weak derivative of the n{®)
products, which yields the above product of (') matrices, with #(!) > 5(®). Secondly, we weakly
differentiate this product again. However, by taking the first—order weak derivative, we increased

the product by the term
My

Q) Aalk).

k=—gn(n)
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Using finite induction, we see that taking the sample limit of the n*® order weak derivative yields

0 (n]
mh_?go ( ® Az(k) @ :cu)

k=—m

8 (1.4) _gln=1_q
= ¥ nt -y ( R Ag,(k)) 2 X Aslk) @2

Tl 11 ]
tecnn=n my 0Tt ez mn gy \k=—atamn)

o (n) _n:n—li_l
s( & Aa(k)) e K Aslk)@. (17)

k=—pla-1) h==nin)

The following lemma shows that the above expression is indeed an unbiased estimator for the nt”
order derivative of E [®f‘=—n A(k) @ zo]. To abbreviate the notation, we set

M TTo o (amy max(c®), 1)
B(q,n): z k n 1 Z

o'l Iy
teL(ptn-npy 0T Eeatnmy i€T{nin—1),1)

0 _,.,,l.n-lil_l
> (AR + AR @) + Y Al
k=—p(n-1) k=—nginh

Lemma 2 Under assumption (C4), lef A(k) (0 > k) be mutually stochastically independent and

n times Lipschitz differentiable with respect to Cp(]Rj). Then it holds for all g € CP(IR:) such
that g is non-expansive and for all m with probability one that

0 (n)
g (( ® Aa(k)) & :r:o) < B(n,n).
k=—m

Moreover, if E[B(n,n)] < oo, then

" 0
E |9 k(:gi)nAa(k) @ 2o

0 (n) -1?(" t_y
=FE|g ( ® Aa(k}) @ ® Aalk) @ zo

k=—pla=-1) k=—nin)

Proof: We prove the first part of the lemma. For m > 1, let { € £L(m,n) and ¢ € Z(m,!},

then
0 (L)
g (( % A&(k)) ® a:g)
k=—m

0 0 0 .
= [I s ( & Al g @ :co) -9 ( (63 Ak e zn)

k=—m h=-m k=—m
0 o . o i -
< II c(’k)a(@) Al ik @z, Q) AL (k) -::-a:._.) ,
k==m k=—m k=-m

where the inequality follows from the non-expansiveness of g. Applying Lemma 1 yields that the
last formula is smaller than or equal to

0

0 " —
T ™ 37 a(Af™ ), A8 k) .

k=-m k==m
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Using the fact that for matrices A, B of the same size it holds that
0 <d(A,B) <||All + [IBIl

we obtain

k=—-m k==m h==m

il {:4)
g (( 0% Aa(k)) wo) <TI e 3 s(alesnip), al )

For the n'* order weak derivative we have
Al (ky = AUy = Az k), for [k > ptm ),
where Az(k) is either equal to A(k) or to E, that is, for |&| > #(*~1) it holds that
SCALE™ (), AL () < AR

For |k| > 7"}, we have A;(k) = E with probability one. This yields

0 i)
g (( (054 Aa(k)) @ ﬂ:o)
k=—m

0 0
5 L ,is
< IT e 3 (Al + Al )
k=—min(m,np{==1)) k=—min{m,p(nr—1))

—min(m,n{* =1

+ > 1A

k=— min{m,n{»))

0 0 —plr-D_3
bii (ki)
< I maxe,n 30 (BAf W@+ 1af P wl) + 3 4G
hk=—pn=-1} ku=—pin=1) k=—p(n}

Taking the sum over all! € £(m, n) and 7 € Z(l, n) and extending m to 7" ~!} concludes the proof
of the first part of the lemma.

We now turn to the proof of the second part of the lemma. Theorem 5 (the Leibniz rule for
the operator A;) implies

N m m {n}
Jim B‘%;E [g (®A&(k) ® :Eu)l = lim E [g ((®A&(k)) ® xu)] .
k=0 g k=0

In accordance with the first part of the lemma, B(#,n) is a dominating function for the sample
weak derivatives of the m—fold product. Furthermore, the sample limit of the weak derivative, see
(17), exists and is bounded by B(#, n) as well. Hence, the dominated convergence theorem applies,
which concludes the proof of the lemma. O

Example 4 Let {A(k)} be a sequence of i.i.d. Bernoulli distributed matrices with state space
{D1, D} C IR;,’X‘T with parameter 8, cf. Fxample 2. We assume that assumptions (C1) to (C4)
hold and that Dy is the matriz associated with the pattern of {A(k)} (indeed, Do 15 a scsl-cyel
matriz); we denote the coupling time of Dy by ¢ = ¢(Dg). We split up the sequence {A(k)} into
blocks of length c. The probability that all elements of such a block equal Dy is 0 = 8°. We denote
the number of ¢ blocks untidl we observe the first block that i1s completely constiluted out of Da
matrices by 0, that is, P(n, = m) = (§)™~1(1 — #). Note that n < cn. with probability one.
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Only the first-order weak derivative of A(k) is significant with ALk} = Dy, AL-1)(k) =
Dy and V) = 1. Applying Lemma 2 yields for any non-ezpansive g and zo € IR’

Bnm< > nt S o™(IDy|+ iDal]) -

leL(nin=1 n)y igI(p(»-D)N)

The set £{n"*~1,n) has
n(n—l)! < (n(n-—l))n

nl(pln=1) —p)t = n!

elements. Forl € L{n"~1),n), the set Z(n"~V) 1} has 2*~" elements, which stems from the fact
that we place either @ “+1” or a“~1" on one of the n places except for the last place, here we
have to chose a value such that the overall product 15 positive. This yields

E[B(n,n)1< 2" (|| D1]| + || D=A) E [,,(n) (n(n—l))n]
52"‘1(I|D1|l + ||D2||) [ n(n )n+1]

<2 (ID|+ D2 [(en™) !

p n+l
=c*(2¢)"! (m) (1Dl + [1D=11)

which s finite for all § = 8¢ € [0,1).

7 Weak Analyticity of Random Matrices

We now introduce the concept of weak analyticity.

Definition 2 We call A € [R:X weakly analytical on © with respect to Cp(IR, JXI) if

. L . . o I T
¢ all higher-order weak derivatives of A exist on © with respect to Cp(IR, ) ), and

IxI
e there erists a measure v € M, (IR, * ) such that the v—density of A, say fa, is analytical on
© ( that is, for all 8y € O there exists an wnterval Dy,, with 0y € Dy,, such that the Taylor
series of fg(x) developed at 8y converges v-almost-surely to fo(z)}, and in addition to that

o for all §y € ©, there exists fé’i(r) such that the v-density of A satisfies for all 0 € Dy,

vr e i

4"
o fe(

T <fia(=)

1
—I(H - B)"
a=a° ek

with
/||1:||kf£(w)y(d:c) < 0.

IfAe IRJXJr is weakly analytical on © with respect to Cy(IR, JXI) then E[g(A)] is analytical

on © for all Cp (IR, ) In particular, if, for 8y € ©, the domain of convergence of the Taylor series
of A is Dy, then the domain of convergence of the Taylor series of Efg(A)] is also Dy,.

Example 5 1. Let A be exponéntially distributed with Lebesgue density fo(z) = 8 exp(—68z)
and let © = (0,00), so that A is weakly analytical on © with respect to CP(IRjX ) forall p.

For 8y € (0,00), set Do (8) = [6,204 — 8] for 8y > & > 0. Then it can be shoun that the
Taylor series of E[g(A)] developed at 09 has at least Dy, (8) as domain of convergence.
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2. Let A be Bernoulli distributed on { D1, D2} C IR:XI. Then pg 15 co times weakly differentiable

and the derivative of the density of ug with respect to a uniform distribution is uniformly
. IxI
bounded in 8 by 1. Therefore, A ts weakly analytical on [0,1] on Cp(IR, * ).

Let A € ]].:I,EJX‘r depend on & only through an input variable Xy € IR, and let X; be stochastically
independent of all other input variables of A. If Xy is analytical on © with respect to CP(IR:XI),

then A is weakly analytical on © with respect to CP(IB,;IXI) and the domains of convergence of
the Taylor series coincide.

The most important property of weak analyticity is that it is preserved under the {max,+)
operations.

Theorem 6 If A|B € IR:XJ are stochastically independent and weakly analytical on O, then
A B and A& B are weakly analytical on ©. In particular, if, for 8, € ©, the Taylor series of A
has domain of convergence D;L and the Taylor series of B Dﬁ , then the domain of convergence
of the Taylor series of A ® B, respectively A & B, s D;‘; n Dﬂ.

Moreover, weak analyticity of A and B implies that of Az @ Bz and A; @ B;.

Proof: The first part of the theorem is Theorem 2 in [7] and we omit the proof.
We now turn to the proof of the second part of the theorem. Let gy denote the distribution
function of A and vy the distribution function of Bs. The weak analyticity of the product measure

IxJ IxJ
fte % Vg over the set IR, % IR, *” was established in Theorem 2 in [7]. All arguments used in this

proof remain valid when we integrate over a measurable subset of the state space. Hence, if we
split up the state space in disjunct set representing the possible outcomes of Az @ Bj (cf. equation
(18) in the proof of Theorem 5), then the proof of the second part of the theorem reduces to that
of the first part. O

. . . . IxJ aa
An immediate consequence of Theorem 6 is that if A(k) € IR, ““isani.id. sequence of random
matrices weakly analytical on ©, then

ek+1) = A(h) @ z(k), k>0,

with 2{0) = zo is weakly analytical on © for all k. In particular, E[g{z(k + 1)] is analytical on ©

for all g € Cm(IR:) and m € IN.
If, for 6y € ©, A(0) has domain of convergence Dj!, then 2(k + 1) has domain of convergence

Dg.
Example 6
1. Consider the situation of Ezample | (1). In accordance with Ezample 5 (1), the transition
matriz A(k) ts analytical on (0,00). Moreover, z(k + 1), with x(k + 1} = A(k) @ (k) for

k > 0, s analytical on (0,00) and for g € C,,(IR:) the term E[g(x(k + 1))] can be developed
at any 8 € (0,00) into a Taylor series which has Dy (d), with 8 > § > 0, as domain of
convergence.

2. In the Bernoulli case, A(k) s weakly analytical on [0,1] for k € IN. Moreover, z(k+1), with
z(k+1) = A{k)@x(k) for k > 0, is analytical on [0, 1] and for g € C,,([Rf), p € IN, the term
Elg(2(k+1))] can be developed at any 6 € [0, 1] into a Taylor series which has Dy, = [0,1]
as domain of convergence,

8 Analytic Expansions
In this section we develop the Lyapunov exponents of (max,+)-linear systems into a Taylor series.

More specifically, we study sequences {A(k)} = {As(k)} with # € O, see Section 3.3, and the
assumptions (C1) to (C4) have to be understood to hold for {Ag(k)} for all # € ©.
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The Lyapunov exponent can be represented through products of a random number of matrices,
see Section 3.2. Combining this representation with the above results, we obtain the following
theorem.

Theorem 7 Under assumptions (C1) to (C4). If A(0) is weakly analytical on @ with respect to
C'l(]R:XJ) with domain of convergence D(8y), for 6y € @, and if E[B(n, n)] is finite for all n and

Z E{Bn,n)](e Bo)" < 0,

n—0

then
klingo Elz(k + 1) — z(&)] = A(6)

ezists and is analytical on ©. For 8y € ©, the domain of convergence is D(8y). Moreover, the n*h
derivative of the Lyapunov exponent 1s given by

& 0 (n) _n(n—l]_]
df)"’\=E (A(l):@@A(k)) @ @ Alk) @ »o

k=—n k==nin)

o (n) —n(“_')—l
(® A(k)) e Q) Ak)@z

k=-7q k=—nim)

Proof: Theorem 4 implies

0 0
A=F [A(l)-_:- ® Alk)y @ zo — ® Alky @ a:g]

k=-n k=—n
0
=E |A)@ Q) Aalk) @ o ® Aa( »x;.] .
k=—o00o k==co

Hence, for the proof it suffices to show the analyticity of

0 0
E [@ Alk) @ :col =E L@ Aslk) @ :r:g]
k==q o=
e[ & awwo]

hk=—m
= lim E k@ Az A)Aa:o] :
=—m

where the last equality follows from the monotone convergence theorem. In accordance with The-

orem 7, the finite products on the right-hand side of the above formula are analytical and we
obtain

2 8 — bo)"
®A(L)rml(—n!°)——

k=-m

0 (n) "
e 5o (& o) ou] 05 a

k==~n n=0

0 (o]
E[@ A(k):f;:vg] = n}i_mozfi—ﬁ:



We now show that we may interchange the order of limit and summation. As a first step, we

calculate the limit of -
i] i3
E !( X A&(k)) ® :!:0]
k=-—m

. - J s J .
for m towards co. Take g as the projection of IR, onto IR’, then g € C3(IR,). Moreover, g is
non-expansive and it follows from Lemma 2 that for all m

(n)
(@ Ak ) @ zo| < B(m,m) . (19)

k=—m

-

=.h(m)

Furthermore, the sample limit of A(m) exists, see Equation (17), and is bounded by B(sn, n) (for a
proof use Lemma 1). Under the conditions of the theorem, B(5, n) has a finite mean and we may
apply the dominated convergence theorem. This yields

(n) r (n)
lim E [( (gog) A(k)) 2:0] =FE n}l_?;o ( & A L)) ® 30]
k=-m

k=—m

o (n) pln- 1 _
g (@ A(k)) C ® Aab)@we| . (20)

k==n k=—gqin}

We now show that we may interchange limit and summation in (18). By Inequality {19) it

holds for all m that
0 (n)
E [( & A(k)) ® wg]
k=—m

and from (20) we get that the limit on the left-hand side of the above inequality exists. Under the
conditions of the theorem it holds that

Z E[B(y (9 t90)

< E[B(n, n)]

Hence, we may apply the dominated convergence theorem to obtain the following

€9 0 (n)
rr}l_rp.réazE [( ® Aa(k)) & Il %
n=0

k=-m
oo 0 (n)
Z . (0 —65)"
- n=0 mh_{l;cE {(k@m Aa(k)) o ] n—'o

(n] (m—1) _4
20) v : ! 0 — 6o)"
=YY (®A&(k) © R Ak oz %
n=0

k=—n k=—pln

We have calculated the right-hand side of (18), which concludes the proof of the theorem. O
In the following subsection we illustrate the above theorem with a simple example.
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8.1 The Bernoulli Scheme

We revisit the situation in Example 2. We have already shown that

g

n+l
1—_~§) (1D + (12211,

|E [B{n,n)]| < ¢*(2¢)" (
for 8 € [0,1). Choose 8 € [0,8) and take Dg, = {# < 8 : |# — ) < £} n[0,1). This implies that
= - 2
(2¢)"~1(6 — 6o)" < 1

and we obtain

- B . o net : n ¥ n+1
> Lot gy mic oy G200 (1?3) (Pl 121D

n=0 n=0 n!
=1f ¢\
2
<ec n§=om (_l — 9) (1Dl + D21

=c? (ﬁ) (I|D1“ + ”.Dg }el%f‘ < 0.
This means that the Lyapunov exponent of the Bernoulli scheme can be developed into a Taylor
series at any point fy on [0,1) and that the domain of convergence of the Taylor series of the
Lyapunov exponent developed at 8y € [0,1) is at least {6 : |# — 69| < 5=} N [0, 1). Hence, the
Lyapunov exponent of the Bernoulli experiment can be exiended to a complex function that is
analytical on the strip of width 1/2¢ around the interval [0, 1).

Conclusion

We developed the Lyapunov exponent of (max,+)-linear stochastic systems into a Taylor series.
Moreover, we established lower bounds for the radius of convergence of the Taylor series. The two
main ingredients were: (1) the radius of convergence of the Taylor series of the matrix A(k), and
(2) coupling time of the system. We applied our results to a simple system and showed that we
could improve the results known so far on the domain of analyticity of the Lyapunov exponent.
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Appendix

The coefficients of the Taylor series are combinatorially complex and can be represented in various
ways; see for example the representations in [Z]. Our analysis leads to yet another way of repre-
senting the coefficients of the Taylor series and in what follows we illustrate for the first-order
derivative of the Lyapunov exponent of the Bernoulli system that the expression in Theorem 7
can indeed be algebraically manipulated in order to resemble the coefficients in Theorem 1 in [2].

We calculate the first-order derivative of A at 8¢ = (. This implies that A(k) = D, for all k.
Furthermore, the coupling time of Dy equals ¢ and since at 8y the sequence {A(k)} is deterministic,
we obtain n = ¢ — 1. In accordance with Theorem 7, we obtain

. (49 e
d
A =E [;Z > (@ A(k)) o @ A(k):»s‘-m]

€L(e,1}iel(ed) Ne=—c+l k=—2c41
1] Uri] -
P> > (® A(k)) ® R Ak) o
{€L(c=1,1)i€X(e—1,!) Nk=—c+l] k==2c41

The first—order weak derivative of A(k) is (1, Dy, Ds) and all higher—order weak derivatives are
not significant, see Example 4. Furthermore, let ! € £(m, 1), then { is a vector of length m that
has one component, say &*, equal to one and all others equal to zero, and Z{{, 1) contains only one
element i, with i = 0 for & # k* and i;» = +1. From this it follows that

0 (.4) 0 Ao
( ® A(k)) :(1, ® Dy @ Dy @ ® Dg,D‘é).

k=—c+1 k=—k*+1 k==c+1

In accordance with Theorem 7, we obtain

d ° - . c
=2 DiieDieDieDies - Y. D5t @ Dj@
Jj=0 =0
c-1 i ) e—1
-y D eDieDio Dion + Y D Dio.
J=0 =0

We set Xo = D§ @ zp and, since ¢ is the coupling time of Da, it follows that Xy is an eigenvector
of Dy. In accordance with (6), the Dy terms cancel out and we obtain

¢
;;BA :;( g—j @D @ Xe — Dg-H_j & Xg)
c—1

-3 (D' @DieXo - DS @ Xo) .
=0
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Rearranging terms yields

d < . = L

7 =D5eD1e Xo + NoDiPeDieXe- Y Dy eDie X
=1 i=0

[ . c—1 .
-y DM e Xe + Y D5 9 X
i=0 3=0
[ . e—1 )
=D5@D1®Xe — 3 D5 e Xe + > D5 X0

j:O i=0

Recall that
A0y =Dy 2 DT & Xo — DT @ Xy

for all m > 0. This implies for the summations in (21}

c ’ c=1
-~y D5 e Xo + ) D5 @ X
i=0 j=0

c=1 c—1
=-Dy®Xo— ) DM e X+ Y DsV 0 X,
J=0 3=0

= —Dy @& Xp — A0} .

Inserting the above equality into (21) we obtain

s
E(EA =D5® D, ® Xo — Da® Xo — cA(0) .
Using the fact that Ds @ X = —A(0) — Xg, we obtain
d

@A :Dg oD e Xe — Xog — ((.‘-l- 1)/\(0) .

(21)

which is the explicit form of the first—order derivative of the Lyapunov exponents at fy = 0 as

given in {2).
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