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Abstract

Let {£(k)}rez be a 2-color random scenery, that is a random coloration
of Z in two colors, such that the £(k)’s are i.i.d. Bernoulli variables with
parameter 3. Let {S(k)}xen be & symmetric random walk starting at
0 such that P(S(1) € {0,1,—1}) = 1 and P(5(1) = 0) # 1. OQur first
result shows that a.s., £ o S (the sequence £(S(0)),£(S(1)),£(S(2)), ...)
determines £ up to translation and reflection. Thus, this gives a positive
answer to the question of Harry Kesten whether by observing the scenery £
along the random walk path S, we can a.s. reconstruct £ up to translation
and reflection if the random walk is with holding. Our second result shows
that with high probability, one can reconstruct a finite piece of the scenery
£ of length [ located close to the origin if one is given only a power of I
observations of £ along the path of §.

1 Introduction

For the history of the scenery distinguishing problem and the scenery recon-
struction problem we refer the reader to the survey paper [2] by Harry Kesten
as well as to the introduction to [4]. Here we are merely going to give a very
brief and incomplete introduction and mention who posed the two problems
which we solve in this paper. Let us give a definition: A scenery will be
defined to be a function from Z to {0,1}. Let £ and £ be two sceneries. We
say that £ and £ are equivalent iff there exists a € Z and b € {—1,1} such that
for all k£ € Z we have that £(k) = £(a + bk). In this case we write £ ~ £



In other words, two sceneries are equivalent iff they can be obtained from each
other by shift and/or reflection around the origin. The scenery reconstruc-
tion problem can now be described as follows: Let {S(k)}i>o be a recurrent
random walk starting at the origin. Given a scenery £ which is unknown to
us, can we "reconstruct” £ if we are only given the scenery £ seen along one
path-realization of {S(k)}x>0. Thus, does one path realization of the process
{6(S(k))}x>0 uniquely determine £? In other words does one outcome of the
random sequence £(S(0)), £(S(1)),£(5(2)), ... determine £? The answer to the
above question in those general terms is no. First, if £ and £ are equivalent,
we can in general not know whether the observations come from £ or from £.
Second, it is clear that the reconstruction will in the best case work only almost
surely. As a matter of fact, if the random walk {S(k)}x>e would decide to
walk only to the left (which it could do with probability zero), then we would
have no information about the right side of the scenery £ and thus not be able
to reconstruct the scenery £. So the best we can hope for is & reconstruction
algorithm which works almost surely. Eventually, Lindenstrauss in [3 | has been
able to exhibit sceneries which one can not reconstruct. However, in [5] we were
able, in the case where {S(k)}1>0 is a simple random walk, to prove that it is
possible to reconstruct a ot of typical sceneries up to equivalence and almost
surely. For this we took the scenery £ to be itself the outcome of a random
process which is independent of {S(k)}¢>0 in such a way that the £(k)'s are
iid. Bernoulli variables with parameter 4. (As already mentioned we took
{S(k)}x>0 to be a simple random walk starting at the origin.) So the result in
(5] states that, up to equivalence, almost every scenery £ can be reconstructed
a.s., provided we are given the observation of ¢ seen along a path of the sim-
ple random walk{5(k)}x»0. (By almost every scenery we mean almost every
scenery with respect to the measure which makes the £(k)’s i.i.d. Bernoulli
with parameter 1). Now Kesten asked whether one might still be able to re-
construct the scenery £ up to equivalence if instead of being a simple random
walk {S(k)}r>0 would be a simple random walk with holding. One of the two
main theorems in this paper provides a positive answer to that question. Let
us formulate this main theorem in a precise way:

Theorem 1 Let p,q > 0 such that 2p + q = 1 and such that p > 0. Let
{S(k}} k20 be a random walk on Z starting at the origin such that P(S(1) = 1) =
P(8(1) = 1) = p and P(S(1) = 0) = q. Let {£(k)}rez be a random process
living on the same probability space as {S(k)}x>0 and independent of {S(k)}xzo
such that the £(k)’s are i.i.d. Bernoulli variables with parameter 1/2. (We will
denote by £ the path of the process {€(k)}rez- Thus, £ is a scenery which is
the outcome of a random process.) Then, one path realization of the process
{£(S(k))}k>0 a.5. determines § up to equivalence. In other words, there exists
a measurable function A : {0,1}N ~ {0,1}? such that P{(A(€oS) =€) =1. (
Here £ o S, denotes the path of the process {£(S(k))}i>0)-

The function A can be viewed as an algorithm which takes as input the
observations £ o § and produces a.s. as output a scenery which is equivalent to



. Note that the observations £ o S contain an infinite number of bits and thus
our algorithm would take an infinite time to process all the input.

The other problem which we solve in this paper and which was asked first by
?7?2777777 is the problem of reconstructing a finite piece of scenery in polynomial
time. To explain this problem more in detail we need some definitions. A piece
of scenery will be defined to be a function from an integer interval into {0,1}.
By integer interval we mean the intersection of a real interval with Z. We
will write [z, y] for the integer interval consisting of all the integers between the
points z and y, where z < y. Let ¢ : D — {0,1} and ¢ : D — {0,1} be
two pieces of sceneries. We say that 4 and 1 are equivalent iff there exists
@ € Z and b € {-1,1} such that a + D = D and for all ¥ € D we have that
(k) = Y(a + bk). In this case we write 3 ~ ¢. In other words, two pieces of
sceneries are equivalent iff they can be obtained from each other by shift and/or
reflection around the origin. Let z,y be two integers such that z < y and let
¥ : [z,9] — {0,1} be a piece of scenery. Then we call the number y — z the
length of the piece of scenery 1.

Now the question is whether one might reconstruct a piece of the scenery £
in polynomial time. By this we mean whether we might be able to reconstruct
with high probability a piece of £ close to the origin if one would be given only
a finite number of observations from £(S(0)), £(5(1)), £(S(2)), ... (Note, that
the condition that the piece of £ we want to reconstruct be close to the origin
is essential. As a matter of fact, because the scenery £ is i.i.d. each finite piece
of scenery will occur up to shift infinitely often in different places in the scenery
€. Thus if we construct a finite piece of scenery and just say: ”this is a piece of
£ then this kind of statement wouldn’t make much sense. However if we say
instead "this piece of scenery is a piece of £ which is located close to the origin”
then this kind of statement has "more” content.) Let us formulate this in a
more precise way. For this we need the following definitions and conventions:
If f is a function and A a subset of the domain of f then we write f |4 for the
restriction of f to the set A. As already mentioned £ o S denotes the sequence
£(5(0)),£(5(1)),£(8(2)), .... Also, expressions of the type 8™ should be seen
as integers. As a matter of fact simply read floor function of S¢®’ when we
write Be™’.

Theorem 2 There exists a > 0 and B,,0,,8; > 0 such that for each n > 0
there ezists @ function ALGORITHM™, where ALGORITHM™ is a function
from {0, 1}"”‘" to the set of all piece of sceneries, that is to Uk>o{0,1}* such
that if E™ designates the event {there exists an integer interval I (maybe ran-
dom) such that [—€",e"] C I C [—4e™,4e"] and such that ALGORITHM™({ o
51{0, &'%27]) is equivalent to the piece of scenery £|1.} then we have that P(E™) <
ﬂoe"’l“ﬁ’ . (Here, E™® designates the complement of the event E™. )

So the function ALGORITHM™ can be viewed as an algorithm which takes
only the first e!%°™ bits of the observations £ o S in order to reconstruct with
high probability a piece of scenery of length of order €™ which is very likely to
be contained (up to equivalence) in £ somewhere close to the origin (i.e. with



high probability the algorithm ALGORITHM™ produces as output a piece
of scenery which is equivalent to a piece of scenery obtained by restricting the
scenery £ to an interval I, where "I is close to the origin and of length order e™”.
Since the length of the piece of scenery which gets reconstructed is of order
and since we need only e'%** bits of observations £0. for the reconstruction this
means that we only need a number of bits which is equal to a power of the length
of the piece of scenery we want to reconstruct. This is why we call the algorithm
ALGORITHM™, the polynomial reconstruction algorithm at level n. In order
to prove theorem 2, we are going to explicitly define for each n > 0 an algorithm
ALGORITHM™ and then show that ALGORITHM™ satisfies the condition
that P(E"™) < f,e~"""?, Although we won’t prove it, it is easy to check that
the algorithm ALGORITHM?™ uses only a ”polynomial number of elementary
calculation steps in e™”. This implies that the algorithm ALGORITHM™ can
be implemented in the praxis. This is very different from all the previously
known reconstruction algorithms which take exponentially many observations
(in the length of the piece of scenery one wants to reconstruct).
Now theorem 1 is a simple corollary of theorem 2. Let us explain why.

First note that when theorem 2 holds, then, since P(E™*) < ﬁoe‘ﬁl"ﬂz we
have that £,,59P(E™) < co. Thus a.s. E™ holds for all but a finite number of
n's. Let £" designate the piece of scenery which is the outcome of the algorithm
ALGORITHM™. More precisely, let £* be equal to ALGORITHM™( o
S5|[0,e%"}). With this notation we get that theorem 2 implies that for all
but a finite number of n’s, we have that £ is equivalent to the piece of scenery
obtained by restricting £ to an interval I, where [~e”,e"] C I™ C [~4e™, 4eM].
Now, with high probability, we have that ” each piece of scenery of length e
appears at most once in £}[—4e™+1,4e"+1]*, More precisely, let E designate the
event Ef = {if i,iz,43,i4 € [~4e"*),4e" 1] are such that |i; — i3], |iz —i4] = €®
and such that for all k € 0,1,...,e", we have that £(iy + k(ip — i) /liz — i1]) =
E(iz + k(iq ~ ig)/]i.; = ia]), then i; = i3 and i3 == i4.}. It is easy to show that
Ea>oP(EF®) < 0o.( Here Ej€ designates the complement of the event £§. For
the proof of this see [5].) Thus a.s. we have that for all but a finite number of
n’s EF hold. But since we also have that for all but a finite number of n ’s the
event E™ holds, we get that we can ”assemble the pieces of sceneries £" "and a.s.
get as a limit a scenery £ which will be equivalent to £&. This means that a.s.
and up the equivalence we can reconstruct the scenery £. ‘The assembling rule
which we have to use, can be described as follows: take the pieces of sceneries
€" and move them around on Z using shift and reflection until for all but a
finite number of n’s, the moved £" and the moved £"*" coincide on at Jeast an
interval of length e”. Take then £ to be equal to the pointwise limit as n — 00
of the moved £"’s. More precisely, let G designate the subgroup of all bijections
on Z generated by the shifts and the reflection around the origin. Determine
any sequence g, g2, g3, ... of elements of GG such that for all but a finite number
of n’s, one has that the piece of scenery £"t! o gn4q : g5}, (D) — {0,1}
and the piece of scenery £” o g : g;}(D") — {0,1} coincide on (at least) an
interval of length e*. (Here D™ designates the domain of the piece of scenery



€™, Thus, £" o g, corresponds to the "moved piece of scenery £*”.) Take then
the pointwise limit of the pieces of sceneries " 0 gy, : g5 1(D™) —— {0,1} to get
as a limit the scenery £&. That pointwise limit is defined in the following way:
For all natural number , if k is contained in all but a finite number of intervals
g7} (D™), then define £(k) to be equal to the limit limy——oof” © gn(k) (where
the limit is defined by taking those n’s for which £ 0 g, (k) is well defined). Let
us sum up: theorem 2 implies that for all but a finite number of n’s we have
that a.s. E™ holds. We also have that a.s. for all n’s but a finite number the
events EF all hold. However, when for all n’s but a finite number E§ and E
hold, then the above described assemblage procedure produces as output (by
taking the pointwise limit) a piece of scenery which is equivalent to §. This
proves that theorem 2 implies theorem 1. So from now on we are going to only
focus on theorem 2.

2 QGeneral ideas

In this section we are going to describe in an informal way the major ideas
behind the algorithm ALGORITHM™ and theorem 2.

First idea) Let H;, designate the o-algebra o(S(0}, S(1), S(2),..., S(k); £(k)|
k € Z). Let M be the filtration Ur>oHx. The first idea is concerned with how
to reconstruct a piece of £ close to the origin of length order e™ if one is given
on top of the observations £ © S a collection of e®® strictly increasing stopping
times which with high probability all "stop the random watk {S(k)}r>0 in the
interval [—e™,e™]”. At this point we are not going to describe the idea behind
this ”reconstruction when one has stopping times which stop {S(k)}«o in the
interval [—e™,e"]” since there is going to be a whole section dedicated to it,
(section 4). In section 4 we will define an algorithm SUBALGI™ which re-
constructs with high probability a piece of £ close to the origin of length order
e" if it is given on top of the observations £ ¢ § a collection of e*™ strictly in-
creasing stopping times which with high probability all stop the random walk
{S(k)}x>0 in the interval [—e™, e”]”. (Actually, the algorithm also needs as
input a small piece of scenery of length at least n? which is equivalent to a
restriction of £|[—e™,e"].) The algorithm SUBALGI™ will be used in the next
section to define the algorithm ALGORITHM™, and thus SUBALGI" is a
subalgorithm of ALGORITHM"., We will prove that SUBALGI™ "works”
with high probability in section 4. However, let us at this stage already formu-
late the main theorem concerning SUBALGI™. Let 7(1),7(2),....,7{e*"} be
any finite H-adapted sequence of e*" stopping times. We will write T for the
random vector (r(1),7(2),....,7{e*")). Let Ey, designate the event E7, = {
for all k € 1,2,...,e®™ we have that S(r(k)) € [—e",e"]}. Now we will see in
section 4 that SUBALGI™ needs as input three things: a} a collection of e*"
stopping times b) the observations £ o § but only restricted between the first
and last stopping time ( and only up to shift) c¢) a little piece of scenery of
length at least n%. Thus formally the algorithm STUBALGI™ can be described
as & function from N**" x (Uk»o{0,1}¥) x (U»o{0,1}%) into (Ug>0{0,1}*).



Let ET, be the event that the algorithm SUBALGI™ constructs as output a
piece of £ of length order e” close to the origin , when SUBALGI™ is given
as input the stopping times (1), 7(2), ...., 7(e®™) and the observations £ o S re-
stricted to the tu:ne between 7(1) and 7(e®") and any "little” piece of scenery
of length at least n* contained in ¢ |{—e ,€"]. More precisely, E}; = { for each
piece of scenery v of length at least n? such that v is eqmvalent to a piece of
scenery obtained by restricting £|[—e™, "] to an interval contained in [—e™, "],
there exists an interval I such that [—e",e"] C I C [—4e™,4¢e"] and such that
SUBALGI™(t;£ 0 8|{r(1), 7(e*")]; ¥} is equivalent to the piece of scenery £]1}.

Let E7S denote the complement of E}*,. (We will always use the notation E}*
for the complement of an event EP) We are now ready to formulate the main
theorem concerning the a.lgonthm SUBALGI™;

Theorem 3 There exists 33,84 > 0 such that for all n > 0 and all strictly
increasing H-adapted sequences of stopping times.7(1),7(2),...., 7(e®™) we have
that P(ERSNER ) < Bze~Pam. In other words, the pmbabzhty that SUBALGI™
fails in reconstmctmg a piece of £ of length order e close to the origin de-
spite the fact that SUBALGI™ is given the right input, is exponentially small
in n. By "given the right input” we mean that SUBALGI® is given a H-
adapted sequence of strictly increasing stopping limes all stopping the random
walk {S(k)} k>0 in [—€™,e"] as well as a piece of length at least n? of £|[—e", €]
and the obseryations £ o § restricted to the period between the first and the last
stopping time.

The above theorem implies that in order to be able to reconstruct with high
probability a piece of £ of length order e" close to the origin we only need to
be able to construct an H-adapted sequence of e*" strictly increasing stopping
times which are very likely to all stop the random walk {S(k}}i»0 in [—€",€?).
The second idea is due to Kesten and helps constructing stopping times which
all stop {S(k)}«>0 in the same area. To explain the second idea we need a few
definitions:

Definition 4 Let 1 : D — {0,1} be a piece of scenery. (Thus for example,
Y could also be equal to a scemery or v could be egqual to the observations £ o
5110,e3"].) Letz,y € D. Then, we say that {z,y} is a block of ¥ iff |z —y] > 2
and for all integer z strictly between z and y, we have that ¥(z) = ¥(y) # ¥(2).
We call | — y| the length of the block {x,y}. If z < y then we say that z,
resp. y is the right, resp. left end of the block {z,y}. Let {t;,t3} be a block
in the observations £ o S and let {x,y} be a block of £&. Then we say that the
block {t1,t2} was generated by S on the block {x,y} if {z,y} D {5(t1), S(t2)}
and for all t strictly between t, and tp we have that S(t) lies strictly between z
and y. Note that each block of 5 o S' is generated on one and only one block of
£ Let {a7F,z5%} where x +, designate the first block of £ after zero
of length >n., More preczsely {:z:1 ,x2+} is a block of £ such that 0 < z¥
25% — 23 > n and such that there exists no block {:t:,y}off of length > n such
thatx v € [0,z7F +1]. Let {z},25~} where 27~ > x5~ be the first block of



£ before zero of length > n. Let {z},z5} designate the one of the two blocks
{x7*,25%} and {2}, 25"} which {S(k)}xx>o visits first.

Second idea) (due to Kesten) A block of length n? in the observations £0 5
is very unlikely to have been generated on a block of length < n%4, Asa matter
of fact the probability that a given block of £ has length » has probability ( ™.
When {S(k)}x>0 crosses however 8 block of £ of length n, {S(k)}i>0 typlca.lly
produces a block of length order n? in the observations. Thus, the probability
to see a block of length n? in the observations £ o S which has been produced
on a block of length n, is not smaller than order ()". On the other hand, the
probability for {S(k)}»o to produce a bock of E o8 of length n? on a block
of £ of length < n%¢ is smaller than e~#sn"/n"° = ¢=8s7"* where f; > Ois a
constant not depending on n. Now, e~#s"' is much smaller than (})", and
thus when we first observe a block of length order n? in the observatnon (oS
that block is likely to have been generated on a block of € of length > n04.
Now the first thing which ALGORITHM™ tries to achieve is to construct a
stopping time which is likely to stop {S(k)}«>0 at the block {27, 25}. In order
to achieve this, it is not quite enough to just take the first observed block of
length order n? in the observations £ 0 §. Instead, we will take the first n92
blocks of length order n? in £ o § which have the average of their lengths higher
than a certain number. We will prove in the next section that this method
constructs a stopping time v§ which with high probability stops {S{k)}r>0 at
the block {2F,z%}.

Third idea) When one has constructed the stopping time »/§ Whl(’.‘h stops
{S(k)}x>0 at {27,235} with high probability it is easy to construct e="* addi-
tional stopping times which are very likely to all stop {S(k)}x>0 at {«7,z3}.
For this, simply take in the observations £ o § the right ends of the first ean?
blocks of length > n? after the stopping time v§. These right ends are, with
high probability, all times when {S(k)}«»0 is at {z7, 25} for the following rea-
son: wntho lsngh probability there is no block of £ of length longer than n%4 in a
radius e of the points z7, 2%, (other than the block {z7,27} 1tself) Now we
saw that it is "very unlikely” that there is a block of length > n? produced on a
block of £ of length < n%4. However when, S(v) € {z},«}} then for e»*” time
after v7 we have that {S(k)}xpo remains in a radius e of the points z7, 5.
Thus, for ¢® time after 3 the only block of £ of length > n%4 with which
{S(k)}kzo is in contact is {zT,z5}. So, with high probability all the blocks of
€05 of length > n? which we observe within time e®” after v are likely to all
have been generated on the block {«7,23}. Furthermore, is easy to check that
within tlme e after v§ we have that {S(k)}x>o is likely to generate more
tha.n e*""* blocks of length > n? on {z",:c2} This is so because within time

s {S(k)}x>0 comes back order %5 times to {z},27} and every time it
comes back the probability to get a block of order n? is approximately 1/n.

Fourth idea) With those e*** stopping times which are all very likely to

stop {S(k)}x>0 at {zF,2]} we can reconstruct £ in a radius of e of {z%,2%}.



To achieve this goal we will use a slightly modified version of SUBALGI™”.
This modified algorithm will get precisely defined in section 5, where we will
prove the properties of this algorithm. This algorithm will be denoted by
SUBALGII™, Thus, SUBALGII" is the second subalgorithm which we will
use for the construction of ALGORITHM ", Let us mention at this stage
that SUBALGII® takes as input exactly e""* bits. Thus SUBALGII® is &

function from {0,1}¢" ** into Uk>o{0, 1}%.

Fifth idea) As just mentioned before the subalgorithm SUBALGII" is
able to reconstruct with high probability £ in a radius of €™ of {z%,28}.
This is not yet enough since we want to be able to reconstruct a piece of £ of
length order e®. The idea we are going to present next shows how one can

" partial reconstruction” to construct a lot of stopping times which are all
likely to stop the random walk {S(k)}r>0 close to the place where we did the
partial reconstruction. In general the number of stopping times we are able
to construct in this way is roughly speaking of order exponential power of the
length of the piece of scenery constructed in the first partial reconstruction. In
our caseutzh.ls means that since SUBALGII" reconstructs a p(i,eoe of £ of length
order e® ~ we can construct an order exponential power of e" N stopping times
which are likely to all stop {S(k)}r»o close to {z7,253}. However, in order to
be able to reconstruct a piece of £ of length order e” close to the origin we need
only e** stopping times stopping {S(k)}«>0 in the interval [-e",e”]. So this
procedure of using a partial reconstruction to construct more stopping times
provides enough stopping times for the reconstruction of a piece of £ of length
order e” around the origin.

3 The algorithm ALGORITHM™"

In this section we are going to define the algorithm ALGORITHM™ and prove
theorem 2. 'We will use for this theorem 3 about the subalgorithm SUBALGI™
which will be proven in section 4, Also, the description of the subalgorithm
SUBALGII™ as well as the proof of the theorem which goes with it will only be
done in section 5, despite the fact that they will be used here. In what follows
let {S1(k)}xz0 denote any random walk having its increments distributed in
the same way as the increments of {S(k)}«>o and such that {S1(k) — 51(0)}ex0
is independent of {£(k)}xez and such that §,(0) € {z7,23).

Theorem 5 There exists constants B, 04,8s,8 > 0 and a o(¢(k)|k € Z)-
measurable event EY such that for all n > 0 we have that P(Ep©) < fge—fr""

and for each scenery § € ET we have that the conditional pmbabzlzty when con-
ditioned under £ of the event {the pwce of scenery SUBALGII"(EOS; {0,e” n® s])

is not equivalent to £|{min{z}, 23} —e""” ,maz{z}, 23} +e*°)} is smaller than
Bge=fom.

In other words, the above theorem means that with high probability £ is
such that when we take any random walk starting at {z},z}} and we use the

8



first €™ bits of observations by that random walk of the scenery £ as input
for SUBALGII™, then with very high probability the output is going to, be
equivalent to the piece of scenery £||min{z?, 25} — e, maz{x}, 2} + ).

This implies that with high probability, every tnne the random walk {S(k)}r>0
is back visiting {27, 23} and we take the next """ bits in the observations £0 S
as input for SUBALGII™ we get with ]ugh probability as output a piece of
scenery equivalent to £|[min{z},z5} ~ e, maz{z}, 25} e *|. (This fact is
crucial in understanding why we can use SUBALGII™ as a test to try to find
when {S{k)}«>0 is close to {z},z3}.) Next we need a lemma:

Lemma 6 Let T designate the first hitting time of {S(k)}x>0 on {-1,n —
1}. (Recall that the random walk starts at the origin.) Then there exists two
constants g, 8., > 0 such that if we define the number i® = B, n%inn then
there exists ¢ > i™, such that P(T™ > i") > n~P10 and for all m < n we have
that E[T™|T™ > i*;5(T™) = <1, E[T™T™ > i 5(T")=m-1 € " -1
and for n € m £ 2n we have that E[T™|T™ > i*; S(T™) = -1], E[T™|T™ >
i 8(T™) =m—1] > ¢+ 1. Furthermore, for all m such that n%4 < m € 2n
we have that both E[T™|T™ > i*; S(T™) = —1] and E[T™{T™ > i*;S(T™) =
m—1] are smaller by at least one unit from E{T™¥|T™+! > i*; §(T™*1) = ~1]
and E[TH|Tm*1 > i §(T™+1) = m).

Proof. We are going to show that if we take the constant 8, > 0 (not
depending on n) big enough then the above inequalities hold. We use the nota-
tion u(m,0) for the defective distribution P(S(T™) = -1)L(T™|S(T™) = -1)
and p(m,1) for P(S(T™) = -1)L(T™|S(T™) = m — 1). We have that
#(m,0)({r}) is equal to (p/m)Zi; ! (peos(mi/m)+¢)"Lsin?(xi/m) and we have
that u(m,0)({r}) is equal to (p/m) L2 (pcos(mi/m) + q)"~sin(mri/m)sin(mi—
ni/m), (see Feller [1]). Now, we are gomg to show that if we take r bigger than

oninn with 8,, big enough, then in the sum (p/m)Ef;(pcos(ni/m) +

q)""!sin®(wi/m) only the term with i = 1 plays an important role, and thus
the distribution of L(T™ —*|S(T™) = -1,T™ —i"* > 0) and L(T™|S(T™) =
m—1,T™ —i" > () are both approximately equal to the geometric distribution
with parameter pcos(m/m)+gq. However the expectation of a geometric variable
with parameter pcos(w/m) -+ ¢ is equal to (pcos(w/m) + ¢)/p(1 — cos{m/m)).
The last expression is asymptotically equivalent to 2m?/r. By this we mean
that [(pcos(m/m) + q)/p(1 — cos(n/m))]/m?® — 2/% as m — oo. So if the
distributions  L(T™ — i*|S(T™) = ~1,T™ - i* > 0) and  L(T™|S(T™) =
m-1,T™ — " > 0) would be geometric with parameter pcos(w/m) + g, then
the part about the conditional expectations in our lemma would hold. Let us
explain next how in the sum (p/m)ER l(pcos(?i't/m) + q)"‘am’(m/m) the
part (p/m)2f3.21(pcos(1rz/m) + q)'"'lsmg(m/m) is small in comparison to the
leading term in the sum when r is big enough. Note that for i € 2,3, ...,m the
value of pcos(wi/m)+q which comes closest to pcos(w/m)+¢ is pcos(n2/m)+q.
Now, cos(m/m) — cos(72/m) = (x/m)sin{n/m). However, for z € [0,7/2]
we get that sin(z) > 22/x. Thus, peos(n/m)— peos(n2/m) 2> 2xp/m2.
Thus, (peos(72/m) + g)/(pcos(n/m} + q) < 1 — 27p/m?. Recall now that



(1 — 1/k)¥ — e~ as k goes to infinity. So that we get, (at least for
n big enough), that if r is bigger than 8, (Inm)m?/mp then (pcos(m2/m) +
q)"/(pcos(x/m) + g)* is smaller than mPz=, Thus, if we take r is big-
ger than 8, (Inm)m?/mp then (p/m)E05" (peos(ni/m) + q)"~Lsin2(mifm) is
smaller than m—P== x1/sin?(m/r) times (p/m)(pcos(r/m) + qz"‘lsinz(fr/m).
Since we can take 8, as big as we want we get that (p/m)Z25" (pcos(wi/m) +
q)"~1sin?(wi/m) is any negative power of m times smaller than the leading term
(p/m)(pcos(n/m)+q)"~1sin?(x/m) provided we take 5, _ big enough. However,
we have that m > n%4 and thus (p/m)Z725 (peos(mif/m) + ¢)"~1sin?(xi/m) is
any negative power of n times smaller than the leading term (p/m)(pcos(n/m)+
)"~ 1sin?(x/m) provided we take 3, big enough. It only remains to show
that P(T™ > i*) is not smaller than a negative power of n. This is actually
true for any choice of the constant §,, > 0. It is enough to show that the
leading term (p/n)(pcos(x/n) + ¢y Lsin?(n/n) for r = Bn?lnn + 1 is not to
small. Now, pcos(m/n) +q > 1 — prsin(n/n)/n > 1 — pa?/n2. Furthermore
sin®(w/n) > 1/n2.  Thus (p/n)(pcos(m/n) + q)"sin?(x/n) is bigger then
(p/n®) (1 ~ pr?[n?)P==""1"" and thus bigger than (p/n3)n—P=:2P"" (at least for
n big enough). The last expression being a negative power of n we are done.
[ ]

To understand what the last lemma means note that 7™ has the same dis-
tribution than ”the length of a block of £ oS given that this block was generated
on a block of £ of length m. E[T™|T™ > i*; S(T™) = —~1] would then be the
conditional expectation of the length of a block of £ o § given that block was
generated on a block of length m, that its length is longer than i* and that,
when generating the block on ¢, we have that {S(k)}xy0 enters the block on
which it generates the block of £0 S on the same side than it exits it. The above
lemma makes clear why we can use ¢™ as critical value in a test to determine
whether some blocks of £ 0 § with length > i™ have been generated on a block
of £ of length longer than n. The condition P(T™ > i*) > n—Pic is there to
make sure that there are enough blocks of length > i® generated on blocks of £
of length > n. We are now ready to define ALGORITHM™(£ o 5[0, 1%27)):

Algorithm 7 First step) Let 7%.(k), resp. 7™(k) designate the right end,
resp. the left end of the k-th block of { o S of length > i®. Let v} designate the
smallest (k) for which k > ¢ and (I/e"m)E},,c_e,.c..ns kT2 @) —72() 2
c".  Second step) Apply SUBALGII™ to the observations £ o S|[vg,vg +
€*®].  Let Y™ be the piece of scenery SU BALGII™E o S|[v3,v5 + 7))
Third step) Let SETT designate the set of all points k > €™ such that
SUBALGII™(E o S|[k — e**°,k]) is eguivalent to y". Let v™(k) designate
the k-th point of the set SETT. Fourth step) if v*(e®") > e1%" then
let the algorithm ALGORITHM™ break doum. Otherwise, use ¥, " =
(@"(1),v™(2), ..., " (e®™)) and £ o S|[v"™(1),v™(e>")] as input for the subalgo-
rithm SUBALGI™ to get as oufput the output of ALGORITHM"™. Thus,
ALGORITHM®™(£ o 5|[0,€1%%")) is defined to be equal to SUBALGI™(™;£ o
S|[p™(1), v (e*™)); ¥™) (when v (e?™) < ellan),
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Note that step one is supposed to give a stopping time which with high
probability stops {S(k)}+>0 on {zF,z3}, that is with high probability S{+3) €
{=%,z5}. The second step I.S supposed to reconstruct with high probability
the scenery £ in a radius e of {zT,2%}. In the third step, as we will prove
later, with high probability all the stopping times +"(1), v"(2), ..., ¥"(€*") stop
{S5(k)}x20 "close to” {z},23}. However because the proof is simpler we will
only prove that with high probability S(v"(k)) € [z}~ ~e"** —en"?, it +en™? 4
e"”’| for all k € 1,2,...,e*". In step four, the condition that the algorithm
breaks down if ¥"(e°") > e1%%" s there to make sure that the final output of
ALGORITHM™ only depends on the first ¢1%*" bits of the observations ¢ o §.
Next we are going to introduce a couple of events which we will need for the
proof of theorem 2:

Let E7designate the event EP = {27%, 25, 27,25~ € [—e"/2,e"/2]}. Let
E? designate the event that {S(k)}kzo hits on {—e™/2,e"/2 } before time 3",
Let E} dmgnate the event that up to time 2¢3" there is no block of length longer
or equal n? in the observations £ o § which has been generated by {S(k)}s>0
on a bock of £ of length smaller or equal to n%%. Let E} designate the event
that in a vicinity of radius €™ of a7+, 25%, 27,25 the only blocks of £ of
length longer than 'n.°4 are {z7*,25%} or {a77,25”}. Let EP be the event
that within time """ of the ﬁrst visit by {S(k}}x>0 to {xl,:x:z} we have that
{S(k)}xs0 produces at least e blocks of length > ™ on the block {z},23}.
Let EZ be the event that the average of the lengths of the first e blocks of
length > 4" produced by {5(k)}iz0 on the block {z7,z%} is bigger than c®.
Recall that 77 (k), resp. 7" (k) designate the right end, resp. the left end of the
k—th block of £ 0 S of length > i". Let EF be the event that for all k such that

? € k < 26 we have that the average (1/e" )T, __ .02 <ic k'r_,_(l) -7 ()

is smaller than c® whenever all the bocks {7%(1), 7 (1)} with k —e™ "~ <I<k
are generated on blocks of £ which have length strictly smaller than n.

Now all the events we have defined so far are here to make sure that the
stopping times constructed in step one of the algorithm ALGORITHM™ stops
{S(k)}kz() on {x’l‘,ma‘} We have ﬂ,‘el_g___’-(Ei“ C Eg where Eg = {S(V'o") €
{z7,23}}. Next we will need a few more events:

Let EZ be the event that the piece of scenery SUBALGII(¢ o S|[vg,vg +

e""®]) is equivalent to §|imin{z?, 23} — e’ maz{z?, 25} + e”"’]. Let E},
be the event that £ is such that the conditional probability when oond.ttxoned
under £ of the event {the piece of scenery SUBALGII“(§ o 51)[0,e™")) is
not eqmvalent to ¢|[min{a}, 23} — e, maz{z}, 7§} + €|} is smaller than
Bge~P™"" and this is true for any {S1(k)}x>o random walk having its incre-
ments distributed in the same way than the increments of {S(k)}x>0 and such
that {$)(k) — 51(0)}xpo0 is independent of {£(k)}kez and 51(0) € {z},22}. Let
E7}, designate the event that up to time e'%" we have that {S(k)}i>o visits
{z7,z5} at least 2¢®™e™*” times. Let EY, designate the event that for at least
half of the k's such that &k € 1,2,3,. 2e°'“weha.vetha.t1ft1stheke “.th
visit to {z], 25} by {S(k)}x>0 then SUBALGII"(&OSl[t t+e"""]) is equivalent
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to &|[min{z}, 23} — e“o'n,nwz{m?,z’z‘} +e"’]. Let 13 designate the event
that for every ¢ < e!%" such that SUBALGII™(§o S|[t,t+e™"]) is equivalent
to &|[min{z?, zgl ~ e maz{a?, 23} + "] we have that S(t + e} is in
[z~ —en™" —en”, 23t e +e""°]. Let E7, designate the event {the piece of
scenery ¢" constructed in step 2 of the algorithm ALGORITHM™ is equivalent
to a piece of scenery of length at least n? obtained by restricting £|[—e™, e"] to
an interval} N { for all k € 1,2,...,e®" we have that S(v™(k)) € [—e™, e”)} N {
v™(k) < e!%"}. Now when E7y holds, we have that in step five of the algorithm
ALGORITHM?™ the subalgorithm SUBALGI™ gets "correct input”. So, the-
orem 3 implies that P(E™ N EY) < Bze P4 for all n > 0. (Recall that En°
is the complement of the event that the algorithm ALGORITHM™ works, i.e.
the complement of E™ ={there exists an integer interval I (maybe random) such
that [-€",e"] C I C [~4e",4e"] and such that ALGORITHM™(£05)[0, e107])
is equivalent to the piece of scenery £|1.}). Now since P(E™ N E},) < fye~fan
we have that P(E™°) < P(E7f) + f3e~P+". Thus in order to prove theorem 2
it is enough to prove that P(ET{) is exponentially small in a positive power of
n.  Now it is easy to check that Ef N EF N E} NERL N EY C EY,. Thisin
terms implics that P(ET) < P(ET°)+ P(Eg)+ P(E%X)+ P(E3°NEZNER) +
P(ETf) + P(EY N EQ) + P(E}). The last inequality implies that in order
to prove theorem 2 it is enough to prove that each of the quantities: P(ET),
P(E*), P(ET§), P(E§° N Eg N EY,), P(E3Y), P(EjS N Elo)and P(ES) are all
exponentially small in a positive power of n. This is what we are going to do
next. For P(E}®) the proof is simple so we leave it to the reader. Theorem
5 implies that P(ET§) < Bge~P". Thus, P(E]S) is exponentially small in a
positive power of n. (The proof of theorem 5 will be given in section 5.)

Let us now prove that P(E}° N EP N E) is exponentially small in
a positive power of n. By conditioning under ¢ and because of the strong
Markov property of {S(k)}x>0, we get that for £ € E7) we have P(E3¢|¢, EF) <
Bye™Pom"" and thus P(EF® 1 EglE) < Bre~®""". Integrating over £ € EF,
yields P(E§° N E3 N ER) < Bge—Pom"”.

Let us now prove that P(E}) is exponentially small in a positive
power of n. Let ET), be the event that the first visit to {z},23} by {S(k)}x>0
takes place before time 2. Let EJ;, be the event that within time %" after
the first visit to {27, 23} by {8(k)}x>0, we have that {S(k)}kso visits {z?, =]}
at least €2>" times. Since (at least for n big enough and we suppose o > 1)
2e%" . "  e%am gnd €3 4 gfon < ellam o get that EYy, N ER, C EV,.
Thus, P(EYY) < P(Bf5) + P(EYf,). Now, EP N Ep C Ey;. Thus, we
get that P(ETY) < P(E(®) + P(E3°) + P(E},). We already mentioned that
P(ET*) is exponentially small in a positive power of n. Furthermore we will
prove in a subsequent proof that the same thing is true for P(EF®). So it
only remains to prove that P(ETf,) is exponentially small in a positive power
of n. This is done as follows: let X(1), X(2),... denote a sequence of i.i.d.
random variables which have the same distribution as the first return time of
{S(k)}x20 to the origin. (Recall that {S(k)}x>0 starts at the origin.} For the
sake of this proof , let us use the following notations: z = %" and y = e2e",
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Then, we have that P(EPS) < P(X(1) + X(2) + ... + X{¥) > z). For any
set of positive numbers {a,b,s,d,e,...} we have that (a +b+c+d+...)%3 >
a®+ b5+ +... Thus, X()P2 4+ X213 +.. + X3 > (XQ) + X(2) +
o+ X (¥))!/3. This implies, that P(X (1) + X(2) + ... + X (1)) > z) is smaller
than P(X(1)Y/3 + X(2)/3 + ... + X(y)}/® > (z)V/3). By Chebichev, we get
that P(X(1)'/3 + X(2)/3 + ... + X()!/3 > 2!/3) is smaller or equal than
EX(1)V3y/((z)/3). Thus, P(ETR) < E[X(1)/3]e=o". Since it is well
known that E[X(1)!/3] is finite, we get that P(ETf,) is exponentially small in
n and this finishes this proof.

Let us now prove that P(EJ N E},) is exponentially small in a pos-
itive power of n. Let Y (k) denote the Bernoulli variable which is equal to
one when SUBALGII™( o 8|[tx,t + € ")) is equivalent to &|[min{z},23} —
e ,maz{z?, 25} + ™| ,where t; designates the ke™*-th visit to {z¥, 27}
by {S(k)}x>0. Then, EYf = {Zre1,2,..,20an Y (k)/2e°™ < %}. When we condi-
tion under £, we have for each £ € E}y that Tpey 2, 2eanY (k) is stochastically
bounded below by a binomial variable with parameters 2¢*" and 1— ;388"39"0'2.
Let us assume that for example 1 — Bge—Pn"? > £, (which is true for n big
enough.) Then, it is well known by a large deviation principle that the proba-
bility for & binomial variable with parameters 2¢®® and 1 — ﬁse“ﬁ*’"o'n to have a
value smaller than 3(2e*") is exponentially small in e*®. This is much smaller
than exponentially small in n. Thus, if we condition under ¢, we get for each
£ € E%, that P(EX|¢) is smaller than an expression of the type e~Fine™",
(where 315, > 0 is a constant not depending on n nor on £ € Ey). Integrating
over £ € Ey yields P(ET N Efy) € e P,

Let us now prove that P(ET{) is exponentially small in a positive
power of n. Let for any z € N, £;5(z) be equal to £(z + z§+ + e~ +1)
and let for each = < 0, £15(x) be equal to £(z + 2§~ ~ ™). Then it is
easy to check that {£;5(2)}zez is an i.id. scenery with parameter } which
is independent of £|[z5~ ~ e“c"g,.'ttal+ + e"”]. Nowfor k > 0and z € Z
let Efy,, designate the event that SUBALGII™(¢ o S|[tzk, tex + ™)) is not
equivalent to £|[min{z}, 23} — """, maz{z}, 2]} + €™ | where t,; designates
the k-th visit by {S(k)}x»0 to the point = + 25+ + €~ +1 when = > 0 and
the k-th visit by {S(k)}e>0 to the point = + 2§~ — e* "when z < 0. Now
for = such that |z| > e we have that £ o S|[terster + e"o's] is independent
of £|[z8~ — ™%, apt + €""’]. Thus, in the case that |z| > "™ we have
that SUBALGII™(§ o S|[tzk,tzk + €™ )) is independent of £|[min{z},z3} -
e"o'z,maa:{m’l‘,:c’z‘} + ¢""’| Furthermore, all the bits of £ outside [z3~,251] are
iid. so that the piece of scenery ¢|[min{z}, 23} —e™” , maz{z?, 23} +€" | has
at least e"*” i.i.d. bits. Thus, we get for 2 such that |z} > e that P(ETS,,) <

0.2

()" . Now because, the random walk {S(k)}«>o starts at the origin and
because up to time €19 it can not visit any point more than ¢1%°" times or
any point outside [—e!%™, €102%], we get that M,i0anp(z(>en%3 0¢ kg ct0an Elsr C
Ei‘3’ Thus, P(Eil:f) < 2810"“2‘2|2¢"0'8;0€k€210°“P (Ei‘;zk)- This imp]i&s that
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P(E$) < 2¢20%7(3) **. The expression on the right side of the last inequality
being much sma]ler tha.n exponentially small in a positive power of n we are
done with the proof that P(E7Y) is exponentially small in & positive power of
n.

Let us now prove that P(E}¢) is exponentially small in a positive
power of n. Note that EP N Ef N EF NEF N Eg NEFNEF C EF. Thus,
P(EF) € Bie1,2,...,7P(E?). So we only need to show that forali i € 1,2,...,7
, P(EP®) is exponentially small in a positive power of n. This is what we are
going to do next. We already mentioned that we will leave it to the reader to
prove that P(ET¢) is exponentially small in n. So let us start with:

Proof that P(E}*) is exponentially small in a positive power of =n.
It is a well known fact that there exists constants 3,,, 8,2 > 0 not depending on
k or I such that for each k,I >0 we have that the probability for the random
walk {S(k)}x>0 to stay in the interval [—k, k] up to time ! is smaller than
By, P12t/ Thus, we have that P(EFc) < By,6*%12¢". The expression on
the right side of the last inequality is obviously much smaller than exponentially
small in a positive power of n.

Proof that P(E}c) is exponentially small in a positive power of
n. Note that from what we said about the probability for the random walk
{S(k)}ix>o to stay in the interval [—k, k] up to time ! it follows that the condi-
tional probability for a block of £05 given that it was generated on a block of £ of
length k, to be longer than [ is smaller than 8;,e~#1!/¥, Let E“(k) designate
the event that the k-th block of £0.5 has length stnctly shorter than n? whenever
it has been generated on a block of £ of length shorter than n%4, Then, we have
that P(EZ°(k)) € B e~Pr™”. However, Mkcya,. 23 ES(k) C EF. Thus,
P(EE®) < Dugng,..aim PEE<(H) and P(EF") < 36 (Byye-Pm"). The ex-
pression on the right side of the last inequality is smaller than exponentially
small in n and thus we are done with this proof.

Proof that P(E}€) is exponentially small in a positive power of n.
Let for this proof only, X (k) designate the time of the k-th visit by {S(k)}x>0
to {z7,z5} and Y (k) designate the Bernoulli variables which is equal to 1 iff
X (k) is the left end of a block of £ o § which has been generated by {S(k)}x>0
on {z},z3} and whjch is longer or equal to i®. Let Ef, designate the event
that within time " of the first visit by {S(k)}k?_o to {z}, 25} we have that
{8(k)}ezo visits {z} ,552} more than e/6n"* times. Let EJ, be the event that
among the first e(1/6"° visits by {S(k)} x>0 to {«7, 2]} more than e" ? happen
to be left ends of blocks of £ 0§ which were generated by {S(k)}x>o0 on {zT, 23}
and which are longer or equal to i®. Then, we have that EJ; N Eg, C EF
and thus P(EZ) < P(EEF) + P(EZ). Now one can prove in a sumla.r
manner to the proof for P(ETf), that P(Eg'f) is exponentially small in e
So it only remains to prove that P(EDf) is small enough. Now P(ELS) <
P(E crcermmosY (k) < e"”). However by the strong Markov property of
{8(k)}x>0 and by lemma 6 we have that I, . . .a/eamo2 Y (k) is stochastically

bounded below by the sum of e(~/6)*** j i.d. Bernoulli variables with parameter
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in=Pio. For k such that 0 < k < /6" /(2nB10e""*) et us define the vari-
able Y1(k) to be equal t0 Ty 9,010 02y ¢ (k1) (20810 en® 4yY (). Then because of
the Poisson convergence theorem, we have that there exists a constant 3,3 > 0
not depending on n or & such that P(Yj(k) < &) <1~ B,3. Now, we have
that P(Z, e asmmosY (k) < en"-'-') € P(Ngergetirom®s anproeony {Ya(k) <
e’ }) Now the express;on on the right slde of the last inequality is equal
to P(Yi(k) < e" "} to the power [eQ1/8)n°2 f(2pBrogn®? )] Thus P(EZ) <
(1 — Byl 120" g P(Egs) < e~PuskO™ 102106 %) e
expr&ssxon on the right side of the last inequality is much smaller than expo-
nentially small in » and so we are done.

Proof that P(Eg°) is exponentially small in a positive power of
n. Condition under the information which among the first e"” blocks of
length > i" produced by {S(k)}x»o on the block {z7,xz%} are produced by
{S(k)}rzo crossing {z},z3} and which are obtained by {S(k)}x>0 entering
{z},z3} on the same side then it leaves it. When we condition under this
information, the lengths of the first e""” blocks of length > i® produced by
{S(k)}x>0 on the block {zT,z3} become independent and their distributions
are equal to L[T™|T™ > i*; 8(T™) = —1] or L[T™|T™ > i*;S(T™)=m - 1],
where m designates the length of the block {zT,2%}. (For the definition of
the random variable T™ see lemma 6.) We assume that m < 2n (this holds
anyhow up to an exponentially small quantity in n.) Then it is easy to check
that the variables having their law equal to L[T™|T™ > i"; S(T™) = —1] or
LIT™T™ > i" S(T™) = m — 1] have their tails exponentially bounded in n2.
Using lemma 6 one can then applg a large deviation principle and find that
P(EE*) is exponentially small in e .

Proof that P(ET°) is exponentially small in a positive power of n.
Let 75, (k), resp. 7%_(k) designate the right end, resp. the left end of the
k-th block of £ o § of length > ¢" which has been generated by {S(k)}x>0 on
a block of £ of length strictly shorter than n. Let EF(k) be the event that
the average (1 /e"o'z)Ek_e,,o.zs,s RTH() — (1} is smaller than ¢*. Then, we
have that 1,103 ¢ cg,an R (K) C B. Thus, P(ED?) < 50 ¢ geon POEE(R)).
However, using similar arguments than the one used for the proof for P(E?€)
one gets that P(EFe(k) is exponentially small in e”*. Since in the sum
L0023 c00n P(EF¢(k)) there are only exponentially many terms in n, we have
that thesum T 024, o ean P(E7¢(k)) and thus P(EF°(k) are both much smaller
than exponentially small in n.

4 The subalgorithm SUBALGI™

The goal of this section is to define the subalgorithm SUBALGI™ and to prove
theorem 3. Now recall that theorem 3 says that whenever SUBALGI™ is
given right input, then with probability close to one SUBALGI™® gives as out-~
put a piece of scenery for which there exists a {(random) interval I such that
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[—e"e?] € I C [—4e™,4e”] and such that &|I is equivalent to that piece of
scenery. By "given the right input” we mean that SUBALGI™ is given a
‘H-adapted sequence of strictly increasing stopping times all stopping the ran-
dom walk {S(k)}>0 in [—e",e"] as well as a piece of length at least n2 of
£{[—e",e"] and the observations £ o S restricted to the period between the first
and the last stopping time. By close to one, we mean close to one up to a
negatively exponentially small quantity in n. Next we need a definition: let
¢ : D — {0,1} be a piece of scenery. Let I be an integer interval such
that 7 C D. Let ¢ be a piece of scenery which is equivalent to ¢|I. Then
we say that  is contained in ¢. Now let Ef, be the event that the piece of
scenery £|{—e®", ¢*"| contains every piece of scenery of length n13/(In2) at most
once. More precisely, Egy = {if i1,i2,i3,44 € [—€%",€3"] are such that |i; — iy,
lis — i4] = n13/(In2) and such that for all k € 0,1,...,713/(in2), we have that
&(iy +k(i2—i1)/!52 —ill) = E(i3+k(i4—i3)/|‘i4 —-i3|), then #; =iz and iy = ‘i4.}.
Now one can prove that EJ, holds with high probability. More precisely, there
exists B4, 815 > 0 such that P(EZ) € By, ?1s™ for all n > 0. (The proof of
this fact is very similar to the proof given in and thus we leave this proof to the
reader.) Let SET be a set of pieces of scenery. Then we say that the set SET
has property P iff each element of SET is a piece of scenery which is contained
in £){—e3", €3] and if for each interval I C [—3e™, 3¢™] of length n(13/(In2)) +1
there is at least one piece of scenery which is & member of SET which contains
the piece of scenery £[I. Now, if we would be given a piece of scenery ¥ of
length n? which is contained in £|{—e”, €] and a set SET which has property
P and if on top of all that Ef; would hold, then we could construct a piece of
scenery £" for which there would exist an interval I such that £ is equivalent
to {|I and [—e*,e") C I C [-4e™,4¢e"]. The way to construct such a piece of
scenery £” can be described as follows:

Algorithm 8 step a} Place ¢ at the origin. i.e. let ¢’ be any piece of scenery
equivalent to Y containing zero in its domain., step b) find any sequence of
pieces of sceneries g, P15 P00, ey Pis<rer ¢; such that py = Y’ and such that for all
t € 1,2,..., 5 we have that ¢, is equivalent fo a piece of scenery which belongs to
SET and the domain of p; intersects the domain of at least one piece of scenery
Jrom @y, 01,92, ...,;_1 n an integer interval of length at least 13/(In2) and for
all ix,i € 1,2,...,j we have that ¢; and @;, coincide on the intersection of
their respective domains. Eventually we also ask that the union of the domains
of 00,142 -y Piy ey P COVEr [~2e™,2¢%].  Once you found such a sequence
let £ be the piece of scenery with domain [—2e™,2e"] which coincides with
all the pieces @y, 01,9, Vi . p; on the intersection of their domains and
[—2e™,2e"]. €™ designates then the output of the here described procedure.

In other words the above algorithm works as follows: we put ¢ at the origin
and then from there on take pieces from SET one after another and ”place them
on Z" by shifting them around and turning them around so that each piece we
place on Z coincides with at least one previously placed piece on an interval of
length at least 13/(In2). We also ask that all the pieces picked and placed
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on Z coincide pair-wise on the intersection of their domains. We try to cover
at least the interval [—2e”,2¢"]. The final output will be the piece of scenery
with domain [—2e™, 2¢™] which coincides with all the pieces placed on Z on their
respective domains. Now the important fact is that the above method works,
that is the above method produces a piece of scenery £™ such that there exist an
interval I such that £ is equivalent to £|I and [—e",e"] C I C [~4e™,4e"] as
soon as the following conditions are satisfied: the piece of scenery  is of length
at least n? and is equivalent to a restriction of £|[—e™, "] whilst the set SET
has property F{* and Ef; holds. To check this, note the following: first when v
is & piece of scenery of length n? which is contained in £|[—e™, "] and SET has
property P and Eg, holds, then if two pieces of scenery ;, and y;, which are
both contained in £|[—e®", 3"] coincide on an interval of length at least 13/(in2),
then the two pieces p;, and ¢,, have same relative position to each other then
the two pieces of sceneries which are restrictions of £|[—e®",€%"] and which are
equivalent to ¢; and ;. This implies that when the piece of scenery 9 of
length n? is contained in £|[—e®", €3"] and SET has property PP and E, holds,
then all the pieces of sceneries g, @1, @2, ---, ;) ---, @7 have same relative position
to each other then the corresponding pieces of sceneries &g, P, Pa, -y @) - P;-
(Here, ; denotes the only piece of scenery which is obtained by restriction from
£|[—€®*,€%"] and which is equivalent to ;.) Now this implies that if we take
the piece of scenery with domain being equal to the unions of the domains of the
pieces of sceneries g, ¥y,2, .- ¥;, -, ; and which coincides with each ¢; on
their respective domain, then that piece of scenery is equivalent to the restriction
of £|[—e®", €37] to an integer interval. { Of course assuming that the conditions
which we assumed for ¢ and SET hold as well as Ef,.} Now the "placed "pieces
of sceneries g, ;1,2 ey P4y ---» 9 are mot further than 2e” from the piece of
scenery 9’ since 1’ corresponds to a piece of scenery which can be obtained by
restriction from £|[—e", €”]. This implies that the pieces @g, &1, P2, +rr, Bys -or @;
are not further than e™+2e™ from the origin. This already implies that the piece
of scenery £" is equivalent to a restriction £|I where I C [—3e®,3¢™]. It remains
to prove that [~e®,e”] C I. Now, the question is can we find enough ¢; 's such
that the union of all the domains of the pieces of sceneries @g, 01, Pz, vt Piy ooy P4
covers the interval [—2e",2e"]. As a matter of fact, if they do cover [—2¢", 2¢"}
then we have covered an area with radius 2e™ left and right from ¢'. However,
v’ is equivalent to a restriction of £|[—e",e"] denoted by @,. Because of what
we said about the same relative positions to each other, the fact that the union
of the domains of y, ®1,¥2, .19 .., p; covers the interval [—2¢”,2e"] ,(ie.
covers the domain with radius 2™ left and right from ¢,) implies that the
union of the domains of @y, $1, P2, ..., Bjy -, P; covers the domain with radius
2e™ left and right from @,. Since @, has its domain located in the interval
[—e®,e"] this means that the union of the domains of g, Py, P2, e Py - P;
covers at least [—e”, "] and thus in this case we would have that {—e®,e”| C I.
So it only remains to prove that in SET there are enough pieces of sceneries
to ensure that the union of all the domains of @y, @1, @2, s Wiy -y ; COVers the
interval [—2e",2e"]. Now, P guarantees that we have "enough” pieces of
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sceneries in the set SET which are equivalent to a restriction of £|[—3e™, 3¢™].
Since @, is equivalent to a restriction of £|{—e", ¢*| this implies that in a radius
2e™ of @y we have enough restrictions of £ which are equivalent to a piece
of SET. 'This implies that in a radius of 2e” of y; we have enough pieces
of sceneries g, 91,%2) - Pis - ; d0d thus the union of all the domains of
0y P11 P2y -y Py -y P COvErs the interval [—2e”,2¢"]. And so we are done
with proving that the above method produces a piece of scenery " such that
there exist an interval I (may be random) such that £” is equivalent to £|7 and
[—e™,e"] C I C [—4e™, 4e"] as soon as the above mentioned conditions for v,
SET and Ef, hold.

‘We have thus reduced the problem of constructing & piece of scenery which
is equivalent to a restriction £[I such that [—e,e"] C I C [—4e",4e™] to the
problem of constructing a set of pieces of sceneries SET satisfying the condition
PP, Thus, in order to prove theorem 3, it remains to prove that there exists an
algorithm for each n > 0 which is capable with high probability to construct
a collection of pieces of sceneries SET satisfying the condition P{*. Now in
the formulation which we choose for theorem 3, we did not assume that the
stopping times (1), 7(2), ..., 7(e®®) all stop {S(k)}«>0 in the interval [—e™, e"].
We rather give an upper bound for the event that " SUBALGI™ does not work
intersected with the event that all the stopping times 7(1), 7(2), ...., 7(e*") stop
{5(k)}x>0 in the interval [—e™,e”]. It would be equivalent to prove theorem 3
only for those stopping times 7(1), 7(2),...., 7{e*") which all stop {S(k)}«>0 in
the interval [—e™, e™|. As a matter of fact, if 7 = (7(1), 7(2), ..., 7(e®™)) denotes
a H-adapted sequence of strictly increasing of stopping times which do not all
stop {S(k)}x>0 in the interval [—e®, e}, then we can define another H-adapted
sequence of strictly increasing stopping times.7 = (7(1), ¥(2), ..., 7(e*"}) which
do all stop {S(k)}rz0 in the interval {~e”, "] and which is such that when E7q
holds 7 = 7. (To define such a 7 simply put 7 = ¥ when eall the stopping times
of 7 stop {S(k)}x>0 in the interval [—e™,e”] and otherwise if 7(¢) is the first
stopping time of 7 for which S(7(2)) ¢ [—e",e®|, define F{§) = 7(j) forall j < ¢
and for all ¢ < j < e*” let 7(j) be the (j — i + 1)-th visit by {S(k)}r>0 at the
origin after 7(i). Now, obviously an upper bound for P(E}¢) is also an upper
bound for P(E}q N E}g). This proves that if we can prove theorem 3 just for
those H-adapted sequences of =™ strictly increasing stopping times which do all
stop {S5(k)}x>0 in the interval {—e", "] then theorem 3 holds. Thus from now
on we will assume until the end of this section that r = (7(1), 7(2), ...., 7(e**)}
denotes a H-adapted sequence of strictly increasing stopping times which do all
stop {S(k)}x>0 in the interval {—e",e"]. Witk this and the previous remark
we can now formulate what remains to be done in this section:

We need to prove that for each n > 0 there exists an algorithm SUBALGIII™
(producing as output a collection of pieces of sceneries) and constants B, 517 >
0 such that for all n > 0 and all H-adapted sequence of strictly increasing
stopping times.r = (7(1),7(2), ...., 7(e®™)) which do all stop {S(k)}x>0 in the
interval [—e™, e"] we have that P{for every piece of scenery 9 of length longer
than n? and which is contained in £|{—e", e"] the collection of pieces of sceneries
SUBALGIII™{t,€08|[r(1), 7(e*™)), %) satisfies condition PP} > 1— B ge~ 51
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Next we are going to give a rough description of how we are going to define the
algorithm SUBALGIII™. For this we will need the following definitions:

Definition 9 Let x denote a binary sequence of length €. Thus, x €
{0, 1}‘3" . In what follows ¢; > 0 will designates a constant not depending on n,
(for the definition see at the beginning of subsection 4.8). Let h be the "truncat-
ing”function from N to {1,2,3,4,5,6} such that for alli > 6 we have h(i) =6,
and h(1) = 1, h(2) = 2, k(3) = 3, h(4) = 4, h(5) =5. Now, letd > 0 and let
B™(x), OBS™(d)(x), F*(d)(x), t"(x), f*(d)(x) denote the following things: let
B™(x) denote the cin -component vector who’s i-th entry for i € cin is equal
to the value of the function h at the length of the i-th block of x after €*, (if
it erists,). In other words the cyn components of the measurable vector B™(x)
are made out of the truncated lengths of the first cyn blocks of x. Let b™(x)
designate the right end of the cyn-th block of x, (if it exists). Let f*(d}(x) des-
ignate the left end of the first block of x|[b"(x) + d,e®*[. Let OBS™(d)(x)
designate the binary word which are the observations x between b"(x) and
fM(@)(x). More precisely, OBS™(d)(x) = (x(b"(x)), x(6"(x) + 1), x(8* (x) +
2), ., x(f™(d}x))). Let F*{d)(x) be the cyn -component vector made out of the
truncated lengths of the first cyn blocks of x|[f™(d)(x),€°"). (when the defini-
tions above don’t make sense because there are not enough blocks in x then define
B"(x),0BS™d)(x), F*(d)(x), " (x), f*(d)(x) in any way you want, but de-
pending only on x.) Let ET(d) denote the event that x(b™(x}+d) # x(b"(x)+d+
1). Let0<dy < dp then it is easy to check that B™, OBS™(dp), F™, b", f*(dp)
uniguely determines B®,OBS™(d;), F",b", f*(d1). Thus,

o(B",0BS™(d1), F", f"(d1) — b") C 0(B™,0BS"(dy), F™, f*(d2) — b")

(on {0, 1}’3" ). Next we are going to define a couple of measures on the
o—algebra o{B", OBS™(d}, F*, f*(d) — b") for d = 1Tn/in2. Let {S:(k)}x>0
be a random walk starting at the point x which is independent of {£(k)}rez,
having same transition distribution as the process {Sz(k)}x»o. Now let L.(.|€)
be the (random) probability measure induced on o(B™, OBS™(d), F", f*(d)—b")
Jor d = 17Tn/In2, by the measure for o(x) obtained by putting x = £ 0 5;|[0, %"
and conditioning under £. So whenever we write Pr(...) or Lz(...) we will see
B™, OBS™(d), F*(d}, f*(d)—b" as random variables living on the same space as
€ and Sy which are equal to the function B®,0BS™(d), F*(d), f*{d)—b" at x =
£05:]{0,€3"). For all integer x € (—e™, €] let a(z) be equal to the proportion of
K’sink €1,2,..,e°"/e%" — 1 such that S(1(ke’™) = z). (lLe. we only take ev-
ery e**-th stopping times from 1 = (1(1), 7(2), ...., 7(€®")) and we look at which
percentage of theses stopping times stop {S(k)}k>0 ot the point z.) Since we as-
sumed that a.s. all stopping times in 1 = (7(1), 7(2), ..., (")) stop {S(k)}x>0
in [-e",e"] we get that the collection of coefficients a(x), with = an integer of
[~e™, e, forms a.s. the coefficients for a conver combination. Let p designate
the random measure on o(B"™,OBS™(17nfIn2), F*, f*(17Tn/In2)—b") defined by
o= Exe[—ezp(n),ezp(n)] a(ﬂf)ﬁz(.Iﬁ). Let ﬂ designate the empi‘r‘iml distribution
of (B™,OBS™(1Tn/In2), F™, f*(17n/In2) — b") obtained by taking the observa-
tions £ o S after every e3"-th stopping time T = (7(1), 7(2), ...., T(e*™). More
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precisely, for alli such that1 < i € e®™/e®™ —1 let x* denote the finite sequence
£(S(r(@e®)), £(S(r(ie3™) + 1)), £(S(7(ie¥") + 2)), ..£(S(7(ie®") + €3)). Let

denote the empirical distribution on o(B™, OBS™(17n/In2), F*, f*(1Tn/in2) —
b™) based on the variables x*,1 € i < e /e ~ 1. Let £ be the signed measure
on o(B", OBS™*(1Tn/In2), F", f*(17n/In2) — b™) which is equal to £ = ji — p.
If O designates a finite set containing i elements, then any probability measure
on the o-algebra of all the subsets of O, i.e. onP(Q), will be viewed as a vector
of R®. As a matter of fact, if for each element | € © we know the value of
the probability measure on {i} then that probability measure is uniquely defined.
Thus if v is @ measure on P(Q), we will represent v as the i-dimensional vector
having its j-th coordinate for j < i equal to v({li;}) where li; is the j-th element
of the set Q. Let @ be a set with k elements. Let vo be a probability measure
on P(#). Then the product of the two measures v and v3, i.e. v @ vy, will be
seen as the i X k dimensional vector in the tensor product space R'@.R?. Fol-
lowing our way of representing probability measure on finite spaces as vectors of
z-dimensional real vector space, we get that the vector representing v ® vs is
equal to the tensor product of the vector representing . multiplied with the vector
representing v. (For those not familiar with tensor products, simply see u® v
as a i X k matriz having its (j,1)-th entry equal to the product of the two real
numbers p({h;}) x v({#i}) where l; is the j-th element of the set © and §; is the
l-th element of the set 4.} Now B™ takes values in a set with 5™ elements.
Thus the law Lo(B™|£) can thus be viewed as a 51" dimensional vector. Recall
that T" designate the first hitting time of {S(k)}x>o0 on {—1,n — 1}. Define
then the defective distributions p(n,0) = P(S(T™) = -1)L(T™|S(T") = -1)
and p(n,1) = P(S(T™) = n—1)L(T"|S(T") =n—1). Now a linear functional
J:RO@R®®..® R® — R which has as domain the m-times tensor prod-
uct of RS with itself, is called positive iff for each sequence of natural numbers
N1,M2,...,m > 1 and each sequence of 0 s and 1 s &, 15, ..., 1, we have that
flu(ni)) @p(n2l)®...0 p(nmlnm)) = 0. Let zy be an integer in [~e3", €3] such
that £(x1) # €(z1 —1). Then, we call a linear functional f a limiting functional
of € to the left at the point x; iff f is a positive functional such that for all
xg > x4 with zg € [~€3" — ™, &3 + &7] and not(€(z2) = E(zo — 1) = £(z2 + 1))
we have that f(L (B")|€,5:(b") = z2)) = 0 whenever P(S;(b") = z3) > 0
whilst f(Lo(B")|E,5:(b") = z1) #0. Let yy be an integer in [—e*",e*] such
that £(y1) # £(y1 + 1) and such that P(S.(e?) = y1) > 0 for all z € [—e™,€"].
Then, we call a linear functional g a limiting functional to the right of the point
¥ iff g is a positive functional such that for all yo < 11 with y2 € [—€3", %] we
have that g(Lo(F™)E, Sz(f™) = y2) = 0 whenever P(S.(f™) = y2) > 0 whilst
9(L(F™)IE, S2(F") =w1) #0.

We are now ready at this stage to explain informally how SUBALGIII" is
able to construct pieces of sceneries contained in ¢|{[—e®",e3"]. Now we will
always assume that the right end of the ¢;n-th block of £ o §|[f™(17n/In2), co|
is smaller than 7(ie>") + €3". (The probability that the last statement would
not hold would be negatively exponentially small in an exponential function of
n, and thus would be negligeable since the other events we are dealing with are
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only exponentially small in n.) Now, when calculating our empirical distribu-
tion /i we only take every e3" —th stopping time from 7 = (1(1}, 7(2), ..., T(e®™)).
Since the sequence of stopping times 7(1), 7(2), ..., 7(e®"} is strictly increasing,
the 73" — th such stopping times are at least 3" away from each other. Thus
he different intervals [7(ie"),7(ie**) + €3"] don’t overlap. Because of the
strong Markov property of {S;(k)}k>0, if X% designates the i-th x? such that
S(r(je®**)) = z then the collection (B™, OBS"(17n/In2), F*(1Tn/In2), f*(1Tn/In2)—
b}(xi),1 € i € a(z) becomes i.id. (provided we condition under £). So if
instead of taking our empirical distribution based on x*,1 < i € €*® /&3 -1 we
would take an empirical distribution based on x%,1 < i € a(z) then this empir-
ical distribution would be an approximation of £.(.{§). (Actually we will show
in the second subsection of this section that with high probability the difference
between this approximation and £.(.|£) is negatively exponentially small in n
and the coefficient in that upper bound which stand next to n can be made
as small as we want by just taking the constant « to be big enough.) As al-
ready mentioned ji is the empirical distributicn base on the collection of variables
(B",0BS™(17n/In2), F*(1Tn/In2), f*(1Tn/In2) —b")(x*),1 i < e**fe3n —1.
So be regrouping these variables according to z in x% we get that i is an ap-
proximation of £ = 3", 1 oui(n),eap(n)] 4(F)La(.I§). Now if we are given the ob-
servations £ o S|[7(1), 7(e*")] as well as the stopping times 7(1), 7(2), ..., 7(e*")
then we can compute . However our algorithm SUBALGIII™ gets as in-
put § o S{[r(1),7(e*")] as well as 7(1), 7(2),...,7(¢*"). Thus the first step of
the algorithm SUBALGIII™ will be to compute jz. It will then analyze fi
and this will allow the algorithm SUBALGIII™ to construct pieces of sceneries
contained in £|[—e®,e3"]. However, to explain in a rough way the general
idea behind SUBALGIII™ it is best to explain how one can construct pieces
of sceneries contained in £|{—e%",e3"] if one would be given u. (Note that u
is not observable from £ o §, and thus SUBALGIII™ does not know p. As a
matter of fact, since SUBALGIII™ does not know £ it doesn’t know the dif-
ferent £.(.{€)’s for the different z’s in [—e®, e™]; nor does it know the different
a(x)’s.) Now let us explain how one can construct pieces of sceneries contained
in £|{—e3", €3] if one would be given p.  Let w be a binary word of length
d+1 < 17Tn/in2. (Thus w can also be seen as a piece of scenery of length d+1.)
We saw that any distribution of the measurable object OBS™(d) can be viewed
8s a vector in a 2¢*! dimensional real space. Let {e,|v € {0,1}9+1} denote
the canonical basis in that vector space. Thus, e, is the vector which would
represent the probability measure which would be a singleton at the point v.
Let {e,v € {0,1}9*1} represent the dual basis of {e,|v € {0,1}4*!}. In what
follows we will denote by 1,, the linear functional e],. Let 14 denote the sum
Zyevlywhere V = {v = (v(1),v(2),...,v(d + 1}) € {0,1}*|v(d) # v(d + 1)}.
Let 2; < x2 be two integers such that d = x5 — x; and such that g is a left
limiting functional of £ at x; whilst g, is a right limiting functional of £ at
z2. Let as furthermore assume that when we read the bits of £ when starting
from z; and going to z2 we read the word w. In other words we assume that
€|[z1, z2] is equivalent up to shift with w. Then it is easy to check (by condition-
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ing under S(b") and S(f")) that g1 ® 1w ® g2(Lu(B", OBS™(d), F*(d)|¢) > 0
whilst ) ® 14-1 ® g2(L.(B",0BS™d - 1), F*(d —1)|¢) = 0. (Here in the last
equality 14._; is here to make sure that f» = b" +d — 1.} On the other hand
one can show that the converse is also true. By this we mean that if there
is a binary word w of length d < 17n/in2 for which there exists two positive
functional g; and gs such that g; ® 1, ® g2(L.(B™, OBS™(d), F*(d)|€) > 0
and ¢y ® 14—y ® g2(L,.(B",OBS™(d — 1), F*{d — 1)}¢) = 0 then the word w
(seen as a piece of scenery) is contained in £|{—e%",e®}]. Thus if we would
be given u we have a very simple method to find some pieces of sceneries con-
tained in £|[-e®,e®]. Now, when we have j instead of p then in general
91 ®@La—1 @g2(Ls(B™, OBS™(d~1), F*(d—1)|¢) is no longer equal to zero, but
instead is much smaller than g; ® 1., @ g2(L£,,(B™, OBS™(d), F*(d}|¢) in the case
that w is a word contained in £|[—€3",€%"]. So our method for reconstruction
of pieces of sceneries contained in £|{—e®",e%"] can roughly be described as fol-
lows: take the binary words (=piece of sceneries) w of length d having its two
last bits different from each other and such that there exists positive functionals
g1 and gs,such that g3 ® 153 ® g2(L:(B", OBS™(d — 1), F*(d — 1)|¢) is much
smaller than g ® 1y ® g2(L£,(B", OBS™(d}, F*(d)|¢). Those words w will be
our guesses for pieces of sceneries which are contained in £{[—e®",e3"]. In the
next subsection we are going to prove a theorem which shows that this method
works if the total variation norm of £ = i — u is small enough and there exists
enough limiting functional. In subsection 4.2 we will than prove that, with
high probability, the norm of ¢ is small enough. In subsection 4.3 we will show
that there exists enough limiting functionals and give a precise description of
SUBALGIII™.

4.1 Case with error

For a vector = (z(1), 2(2),...,2(i}) of R* we will use the two following norms:
2| = [#(D)] +12@)| + ... + |2()] and |2f2 = ()P + =@ + ... + [z()P.
Note that |.| > |.l2. Recall that p designated the number p = P(S(i+1)-S(i) =
1) = P(8(i+1)—S(i) = —1) whilst g = P(S(i+1)~S(s) = 0) and that 2p+q = 1.
Next we will need a lemma.

Lemma 10 There exists ng > 0 such that for all n > ng we have that ; Let
2<d<1Tn/In2 andlet0 < z < d. If g +#0 we have P(S(d) = x)/P(S(d—1) =
z) < 4n?. If ¢ =0 and P(S(d) = z) > 0 then P(S(d) = z)/P(S(d—2) = z)
4n2,

Proof. We will leave the proof in the case where g = 0 to the reader since
it is very similar to the case where g # 0. So let us assume that ¢ £ 0. Let
PATH(d, z) denote the set of all the paths with d step starting at time 0 at
the origin, ending at the point = and which at each step go one to the right
or one to the left or stay in the same position. For path € PATH(d,x) let
the probability of path be the probability that {S(k)}r>o follows during its
first d steps the path path. We will denote that probability by P(path) and
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thus P(path) = P(S|[0,d] = path). If the path path has I, steps to the right
and [ steps to the left and lp which are holdings (thus I, + & + lp = d) then
P(path) = plr*hglo. Now let funct : PATH(d,z) ~ PATH(d—1,z) be a
map which is defined in the following way: for each path € PATH(d, =) which
contains at least one holding let funci(path) be equal to the path obtained by
cutting out the first holding from path. For path € PATH(d,z) which con-
tains no holding , because z < d exists in the path path at least one left step
followed immediately by a step to the right or a step the right followed by a
step to the left. So, in case that path path € PATH(d, z) contains no holding
define funct(path) to be equal to the path obtained by replacing in the first two
consecutive left-right or right-left steps (take what ever comes first) by a hold-
ing. It is easy to see that for all path € PATH(d, ) we have that P(path) <
PP(funct(path)) where  designates the constant which is equal to the maxi-
mum between 1 and ';i. Furthermore it is also easy to see that in each class
of elements of PATH(d,z) which have same image under the function funct
there are at most 3d elements. this implies that Tpqnepar H{d—1,z) P(path) is at
least as big as ZpathePATH(d,z)P(Path) divided by 3dﬁ. NOW, P(S(d) == m) =
Dpathe PATH(d,2) Plpath) and P(S(d — 1) = 1) = Tpauneparnia—1,2) Ppath).
Thus, we get that P(S(d) = z)/P(S(d ~ 1) = z) € 3dp. Now we assumed
that d < 17n/in2d. So at least for n big enough we have 3dp < 4n? and thus
P(Sd)=z)/P(Sd-1)=2)<4n’. =
Next we are going to formulate a theorem:

Theorem 11 Case where g # 0) Let 2 < d < 17n/In2 and let w designate
a binary word of length d + 1 having its two last bits different from each other.
Let us furthermore assume that there erists to positive functionals g1 and go
such that the following three conditions all hold:

¢} 91® L, ® 92(Po(EZ)Cp(B", 0BS™(d), FM(d)l¢, EF) > 1

b) 91 ® g2(Pu(EZ_1)La(B", F™(d - 1)I¢, E3_,) < 1/(9n?)
and
1, 2
¢) 1 ®gpl2®leh < 5/n
- Then the word w ( seen as o piece of scenery) is contained in £|[—e®", €.
Case where g = 0) Same thing as for g # 0 but simply replace condition b by
condition b’ which is:
b) 91 ® 92(Pu(EG_2)Lu(B", 0BS™d — 2), F™(d — 2)|¢, B3 _5) < 1/(9n?)
Proof. The case where g = () is similar to the case where g # 0 and thus

we will leave the proof in the case q = 0 to the reader. So let us assume that
g #0. We are going to do the proof by the absurd. We assume that there exists
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no interval I C [~€®", €3] such that £|I is equivalent to w and show that this
the three conditions a,b,c in our theorem.. We call inadmissible path a finite
path which at each step goes at most one to the right or one to the left or stays
at the same spot. So a map R: J = [j1,j2] — Z where J denotes an integer
interval, is called an admissible path iff for all j € [j1,j2 — 1] we have that
R(j +1) - R(j) € {-1,1,0}. We say that the R has jo — j, steps and that it
starts at R(j,) and ends at R(j2). For the interval Jp we say that R is a path
in Jy iff R(J) C J2. The binary sequence £(R(51)),£(R(j1 + 1)}, ...,£(R(j2))
is called the observations generated by R on £. In the case that there exists no
interval I C [—e3",e®"] such that £|I is equivalent to w , whenever we have an
admissible path in {~€%", e3"| going from a point y to a point z in ezactly d steps
and generating the observations w on &, then |y — z| < d. This implies that
{OBS™Md)(€ © 8;|[0,e™]) = w} C {|S=(F™(d)) — S=(b")| < d}. Since

9 8 1w @ g2(P=(E)Ls(B™, OBS™(d), F*(d)I¢, E7) > 1
and since |g1 ® golz X |e]1 < 1/n? we get that
9181lu®gn( > a(@)P(E})L.(B",0BS™(d), F*(d)l¢, E3)
#€[~ezp(n),ezp(n)|
is bigger than 1 — % /n®, Thus,
>.  a@)01 81w 0:(P(EDL(B", OBS™(d), F*(d)l¢, EF))

z€l—exp(n),ezp(r}]

is bigger than 3. Let us now have a closer look at

91 @ 1w ® 92(P(EF)L(B", OBS™(d), F*(d)}¢, EF)).

By law of total probability after conditioning under Sy(f"(d)), Sx(b") and be-
cause of the strong Markov property of {Sz(k)}x>0 we get

P(EZ|§)L(B", OBS™d), F"(d)I¢, Eq)

is equal to
By, Pe(Sz(0") = yl)La(B7IE, S0 =y)®.
Fo(8:(6" +d) = 2|8:(b") =,£)L(0OBS™(d)|§, S:(b") =y, S:(b" +d) = 2) ®

Lo(FMA)E, 5(f(d)) = 2}

where for the summation we take y,z integers in [—e3",e3"] and such that
there ezists an admissible path with d steps going from y to z and gener-
ating the observations w on £.  Because of our remark that {OBS™(d)(¢ o
5:10,€™]) = w} N EF.C {|Sa(f") — Su(b™)] < d} we get that in the last sum-
mation we only need to consider y,z such that |y — 2| < d. This implies that
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91 ® 1, ®@g2(P(E})Lo(B™, OBS™d)}, F*(d)|€, ET)) is equal to the sum over y, 2
as discussed before of the product with the three terms

91{Pe(S:(6") = yl§) L (B"€, 5-(b") = 1))

E

1o (Pa(S2(6" + d) = 2|8:(67) = 4,{)L(OBS™(d)|¢, S (b") = v, S(b" + d) = 2))

and

92(L2(F™(d)|€, S=(f*(d)} = 2)).
Now we get that the term
Lo(Po(8z(8" +d) = 21S:(b") = 4, ) L(OBS™ ()¢, Sz (b") = ¥, 8- (b" + d) = 2))

is smaller than P(S;(b™ +d) = 2)[Sz(b") =y). By the strong Markov property
of {Sz(k)}xn0 we get that P(S;(b" +d) = 2)|S.(b") = y) is equal to P( S(d) =
z—y). Thus, by lemma 10, P(S:(b" + d) = z)|5,(b") = y) is smaller or equal
to dn?2P(S.(b" +d — 1) = 2)|S:(b") = y). Furthermore it easy to see that
Lo(FP(A)lE, Sa(F(d)) = 2) is equal to Lo(F™Md - 1)¢, So(f™(d — 1)) = 2).
This then implies that

91 ® 1w ® g2(P:(EF)L:(B", OBS"(d), F"(d)[€, E7))

is smaller than the sum over y,z € [—e3", €3] where |y — z| < d of the product
with the three terms

Ql(Pz(Sz(bn) = yI{)Em(B“lﬁ, Sx(bn) = y))

4P P(S, (0" +d - 1) = 2)|S.(b") =)
and

92(Cz(Fn(d - 1)[E, 8(f*(d - 1)) = z))

Summing up over y, z by law of total probability we get that the last expression
is smaller than 4n? times g ® go(Pr{E}_|)L.(B™, F™(d — 1)|¢, E}_,). Since
the coefficients a(z),where = is an integer in {—e™, e are the coefficients of a
conver combination and are thus positive, we get that

a®lu®g( Y a@)P(E})L(B",0BS™(d), F*{(d)l¢, E}))
z€[—exp(n),ezp(n)]

is smaller than 4n? Zirel—en,enja{T)01 ® go{ Po(EG_ ) Lo(B™, F*(d - 1), EZ_;).
Thus, g1 ®@92(Py (Ej._1)Lu(B™, F*{d—1)[¢, E_,) is bigger than 1/(8n?), which
contradicls the assumptions in the theorem. ®

25



4.2 Keeping the error small

In this subsection we are going to prove that we can get the error (that is |¢];)
exponentially small in n with high probability. For this we just need to take
a > 0 big enough, and then the constant next to n in the expression for the
exponential upper bound for [e|;can be made as small as one wants. Let us
formulate this in 2 lemma:

Lemma 12 For each B > 0, there exists ag > 0 such that if @ > ag we have
that there exists §' > 0 such that for alln > 0 we have P(jg|y > e=#") < e=F',

Proof. Let 315 designate the constant equal to 2In5c¢; + In2(17/In2) + 1.
We are going to make the assumption that the variable f*(17/In2) — b" al-
ways is smaller than e™.  (This assumption of course is a small imprecision
but the probability that the variable f™(17/In2) — b is bigger than e™ is so
small that there is no harm.) Now under that assumption, we have that the
variable (B™, OBS™(17/In2), F*(17/In2), f*(17/In2) — b") has at most eP1s™
possible states. Let apg = 78 + 20,5 + 4, so that &« > T3+ 26,3 +4. Re-
call that for i such that 1 € 1 £ e“"/e3" — 1 we have that x* designates
£oSl{r(ie®), T(ie®™)+e%]. Forz € [~e™,e™] let ji, designate the empirical dis-
tribution based on the variables (B",0BS™(17/In2), F*, f*(17/In2) — b™)(x*)
Jor which 1 i e®™ /e’ —1 and S{r(ie®") = x. By definition, we have that
e = Sact-en (2 ~ L2(16)).  Thus, le] < Tacioen ena@)li — La(IO).
From which it follows that |e| is smaller than

[EIE[-—e",e"I;a(x}e(ﬂ-3)'123(55'4'2518)“0(3:) lﬁa: = Ez(-!g))” + 2e~20m,

(The last inequality follows from o > 78 + 28,3 +4.) Now let EV™ denote
the event {|¢|y < e=P"}. For all integer x € [—e",e”], let end(x} designate the
number of variables x?,1 € j < /e’ — 1 for which S(r(je**) = z and for
i € end(z) lety’ designate the i-th such variable. When we condition under
£ the finite collection of variables x}c,x';’,...,x;“d(m) becomes i.id.. Thus we
can embed that finite sequence in an infinite sequence X2, x2, ..., X%, ... which is
ii.d. (when we condition under £). Let EV] denote the event that for all
§ > elB8+28e)n the empirical distribution based on the variables

(B™,0BS™(17/in2), F", f*(17/In2) - b™)(x%),1 € i < j

is less away in the norm |.| than e™2P™ from £.(.|€)). Now, when for all z €
[—e™, e”} we have that EV. holds than Ezel_en’en];a(z)e(q—s)nges(ﬁ-}ﬁ;g)n a(z)|p,—
Lo(.|€))| is smaller than e~ 2" and thus |g| < 2" + 2¢~2P%,  We will as-
sume that e=26" 4 2e=20n  ~Bn (which is true for n big enough). Thus,
Nzg[en,en) EVE C EV™,  Let ﬁz'j denote the empirical distribution based on
the variables
(B",0BS™(17/In2), F™, f"(17/In2) - b")(x), 1 < i < 4.

For any possible state 2 for the variable

(B",0BS™(17/In2), F™, f*(17/in2) ~ b*)

26



, let EV;?, denote the event that for all j > e(B8+281)n ye have that (fg 5 =
Lz(|ENN{2}) € e=%n—Frsn, Since there are less than P13 possible states for
the variable (B™,OBS™(17/in2), F*, f*(17/In2) — b"), we get that N EV}, C
EVE, where z must be taken in the set of all possible states of the variable

(B",0BS"(17/In2), F™, f*(17/in2) — b").

Thus, we get P(EV™) € Dsefmen en);P(EVE). Now there exists constants
B19:820 > 0, such that if X(1),X(2),...,X(%),... are i.i.d. Bernoulli vari-
ables then P(IX(1)+X(2}+...+X(3') - E[X(1)]| € A for all j > m) is bigger than
1- ﬁ19€"620"“32. The constants Bg, 8a9 > O do not depend on m,A or the
parameter E[X(1)]. By conditioning on £ we thus get that P(EV]') is smaller
than Bige~P20mA" with m = ¢B+201)n gnd A = e~2Pr—Bism,  thys P(EV:
is smaller than ﬁlge“ﬁzo‘sn. Now there are less than 2e(3+P18)" ordered pairs
(z, z} such that z is an integer with x € [—e™,e™] and z is in the set of all possi-
ble states of the variable (B™, OBS™(17/in2), F™, f*(n17/In2) - b*). Thus, we
get that P(EV™®) € 2e0+PeIng, je=Br0¢"" | The expression on the right side of
the last inequality is much smaller than e=#"" for every n for B’ > 0 carefully
chosen. (And that inequality is true for any constant §’ > 0 not depending on
n, as long as n is big enough.) Thus, we are done with our proof. m

4.3 Conclusion

In this subsection we are going to define SUBALGIII™ in a precise way and
prove that it works with high probability. The constants ¢;,¢z,¢e3 > 0 are
going to be any three positive constants not depending on n and satisfying the
five following inequalities: c3 > ¢ + 3, ¢2 > 2/(In153 — In128), c1 > 2/8,,,
cq4 2 4+ 1Tinp[In2 4 2¢) (max{In|E(i)"|2[i € 2,3,4,5,6}) + 2c3, ¢z = ¢;/5 where
the functionals #(z)* will get defined on the next page. It is easy to check that
the system of last three equations always has a solution. Let us next define
SUBALGIII™.

Algorithm 13 First step) Compute i. Second step) Construct the set
SET™. For this put all the words, (or pieces of sceneries) w of length d where
d < 1TnfIn2 for which there exists two positive functionals gy and gy such that:
Case where g # 0) g1 ® 1, ® g2(Pa(ED)Ln(B", OBS™(d), F*(d)|¢, E}) > 1
and 1 ® 02(Pa(E3_,)Ca(B™, F™(d— 1)I€, B3,) < 1/(9n) and c) lo1 @ galz <
e“", Case where q = 0) Same thing as for ¢ # 0 but simply replace the
second inequlity by 1®(Fo(B_5) (B, OBS™(d~2), Fd=2) Fi-o) <
1/(9n*).

Next we are going to prove that the above algorithm works with high prob-
ability. For this we are going to introduce a couple of events and show that
if they all hold then the above algorithm works. Then we will prove that all
these events hold with high probability. In general, E7;; ; will designate the
i-th event related to the algorithm SUBALGIII™, and E7f; ; the complement
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of the event ETy; .. E7;; will designate the event that SUBALGIII™ works.
More precisely,

E7;p = { the collection of pieces of sceneries SUBALGIIT™(r; £0S|{r(1), 7{e*™)])
satisfies property P['}. Inother words, EF,; means that if we feed to SUBALGIII™
the collection of stopping times r = (7(1), 7(2), ..., 7(e®™)) and the observations
§0§ during the time [(1), 7(e®")] then we get as output a collection of pieces of
sceneries satisfying condition Pf, that is all the pieces of sceneries constructed
by SUBALGIII™ are contained in £]{—e",e3"] and all the pieces of length
< 17n/In2 which are contained in £[—3e",3¢"] are contained in a piece of
scenery of that set. (We say that a piece of scenery 3, is contained in an-
other piece of scenery 1, iff 4, is equivalent to a restriction of ¥y to an integer
interval.)

Recall that T™ designates the first hitting time of the random walk {S(k)}x»0
(which starts at the origin} on the set {~1,m — 1}. Thus, T™ + 1 has the
same distribution than the distribution of the length of a block in the obser-
vations { o § conditioned under that block was generated on a block of £ of
length m. Now we write p(m, 1), resp. u(m,0) for the defective distribu-
tion obtained by taking T™ + 1 and asking that S(T™) = m — 1, resp. that
$(T™) = -1. We will write p(m,1)(. > j) for p(m,1)({z]z > J}). Next
we need the following definition: Let #(2) = (p,pg, pg?, pg®, pg®) and #(3) =
(0.7, 2070, p* + 39, u(3,1)({. > 5})) and (4) = (0,0,5° 3p%, p° + 6p°¢%)
and Z(5) = (0,0,0,p%, u(5,1)({. > 5}) and #(6) = (0,0,0,0,1) € R5. Now,
we have that u(2,1) = (p, pg, pg° pg®, pa*, ...); 1(3,0) = (p,pg,P® + pg?,pg® +
3p%,0° + 69°¢% + pgt, ..} (3,1) = (0,%, 2%, 5% + 3p°¢%,...); p(4,1)
(0,0,p° 3p%, 29° + 6p°¢,...); u(5,1) = (0,0,0,p%,...). Then p(2,1) 0 A~
#(2,0) o 7! = £(2) + (#(2,1)(. > 6))Z(6).  Furthermore, #(3,0) o A2
#(2) + £(4) + (u(3,0)(. > 6))£(6) and p(3,1) 0 h~! = #(3) and u(5, 1)oh™l =
#(5). Now by a symmetry principle we have that 1(4,0) = u(2,0) + pu(4,1).
Thus, 4(4,0) 0 A~ = p(2,0) 0 h~1 + p(4,1) o A~ and thus, p(4,0) o A~1 =
Z(2) + 2(4) + ((1(2, 1)(. > 6)) +p° + p(4,1)(. > 6)))#(6). Now, for all m > 5,
we have that u(m,0) coincides on its first 6 coordinates with (4, 0). Thisis
so because all the admissible paths which start at 0 hit on +3 and then come
back to —1 are at least seven steps long. Thus we get that for all m =5
we have that u(m,0) o k™1 is equal to #(2) + #(4) plus a positive coefficient
times Z(6). For m > 5 we have that u(m,1) o h~! is equal to #(6) times
wm, ). > 5) = 1/m. Let (£(2)*,#(3)*,2(4)*, Z(5)", £(6)*) designate the
dual basis of (%(2),%(3),7(4),#(5), Z(6)). Let z € [~3¢",3¢"] be such that
§(z) # €(z+1). Let I;, designate the length of the i-th block of ¢ [, 00
Then, we call the linear functional g2, = ®ith (42 E(h(l; 2 ))*) the functional
of { to the right of z. (Here h designates the truncating function which was
defined in definition 9.) Let y € [—3e™,3e™] be such that £(y) # £(y — 1).
Let I,y designate the length of the i-th last block of &[] — oo, y] when we start
counting from y and go in the direction of —co. Let gy be the linear functional
g1 = &y (liyZ(h(liy ))%). Let gp) = (2e3p17/in2+2)gn - We will call g2,
the functional of ¢ to the left of y. Next we are going to define some more
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events:

Efyr1 = { for eny integer interval I C [—3e™,3¢"] of length n13/(in2) we
have that there exists two points y < 2z such that I C [y, 2] and £(y — 1) # £(y)
and {(z) # £(z + 1) and y ~ 2 < n17/(In2)}. EP;, = { the product of the
lengths of any c;n consecutive blocks of the scenery ¢ ][—38", 3e™| is smaller than
es™}. Efyrs={le| Se"2"}. Ep;, = {for any integer y € [-3¢",3¢"] such
that £(y) # &(y — 1) the left functional of £ at y is also a left limiting functional
of £ at y} N {for any integers z € [-3e™, 3¢"] such that £(z) # £(z+1) the right
functional of £ at z is also a right limiting functional of £ at z}.

Next we are going to prove that whenever all the events Ef;; ,, Efy; 2,ET;; 5
and EY;; , all hold, then E7y; also holds. In other words, we are going to
prove that: Ef;; N Efj;o 0 Efyy 3N Efypy C Efyp. For this purpose let
SET™ designate the collection of pieces of sceneries produced by SUBALGIIT™,
in other words SET™ = SUBALGIII™(r,£08|[7(1), 7(e*")]). We are first go-
ing to prove that the collection of pieces of sceneries SET" are all pieces
of sceneries contained in £|[-e®,e°"]. Note that when E};; s holds we
have {¢| < e~2", Furthermore, when we pick a word w for SET" according
to algorithm 13, we have two positive functionals g;, g0 satisfying jointly with
w three conditions, the third condition to get picked by the algorithm being
|91 ® g2|2 < €™, Thus, when Ef;; 5 holds we have that |g, ® ga]a- J¢] < e™%4",
The expression on the right side of the last inequality is (at least for n big
enough) smaller than /n? and thus w,g;, g2 satisfy jointly all the conditions
for theorem 11. It follows that w is contained in £|[—e*,¢%"]. Next we
are going to show that we have enough pieces of sceneries in the set
SET™. Let I be an integer interval of length 13n/In2 contained in [—3e", 3¢™].
Then by ETy;, there exists y < z such that I C [y,2] and £(y — 1) # &(x1)
and £(z) # £(z+1) and z —y < nl7/(in2). Let d = z —y and let g, ,
resp. ¢, designate the functional of £ to the left of y, resp. to the right of
2. Let w denote the word of length d, w = (£(y),&(y + 1),...,€(2)). Next
we are going to prove that the triple (w, g, 1,9.,) satisfies all the criteria in
order to get selected by SUBALGIII™ which then finishes this proof. First
note that both gy, , resp. g., are positive functionals: when we express
the defective distribution p(m,i) o h™! for any m > 1 and any i € {0, 1}
as linear combination of the basis (#(2), #(3), £(4), £(5), #(6)) then no coeffi-
cients are negative. Thus for all § € {2,3,4,5,6} and all i > 1 we get that
(#(5)"((m,i)oh™1) > 0. Since however, g,; and g; . are tensor products of ele-
ments of {Z(2)*, #(3)*, #(4)*, £(5)*, £(6)*} we get that both g, ; and g, , are pos-
itive. Now note that the |.|2-norm has the property that the |.J2-norm of the ten-
sor product is equal to the product of the |.|;-norm. Applying this, we get that
|93 ® gz.r2 is smaller than 2ep™!7/in3+2(maz{|F(i)*|2|i € 2,3,4,5,6})%"
times the product of the lengths of two sequences of ¢;n consecutive blocks
in [~3e",3¢"]. By Efy12 we get that the product of the lengths of ¢yn
consecutive blocks in [—3e“,33"g is smaller than ", Thus, |g,1 ® g: ]2 is
smaller than 2en(8+17inp/in2+2c, ma:c{lnli‘(i)'|g|i62,3,4,5,6})+2ca). By our defini-
tions of cyn this is much smaller (at least for n big enough) than e%". So
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the third condition for the triple w, g,,1,9;r to get selected in SUBALGIII"
is satisfied. (The next condition we are only going to prove to hold for the
case ¢ # 0. The other case is similar and left to the reader.) So assume
that ¢ # 0 until the end of the proof. Next note that when E7}_; holds then
fMd) — b = d -1 and thus S(f*(d — 1)) ~ S(b") < d ~ 1. Thus, when
E7;_,holds we have that either S(b") is strictly to the right of y or S(f*(d 1))
is strictly to the left of 2. When EF;; , holds we have that g,,, resp. g..
is a left limiting functional of £ at y, resp. a right limiting functional of
§ at 2.  Thus by conditioning under S(f"(d — 1)) and S(3"), we get that
9 ® gz,r(P#(Eg—l)cn(Bna Fn(d - 1)15,5'3_1) =0. Now i = u+e. Thus,
ne W(Pﬁ(E"_l)Eﬂ(Bn’ Fn(d - l)lf’ 5'3_1) < ‘Qy,l ® gz,r|2 X IEI However,
we saw that when Efy; o holds than |g,¢ ® g.,r|2 is smaller e®". When Efy; 5
holds, then |¢] < e=2¢4". Thus, ¢,:®9. »(Pa(E%L ) La(B™, F(d-1)[¢, Ep )<
e~%", Since (at least for n big enough) e~*" is much smaller than 1/n? we
have that the second condition for getting selected by SUBALGIII™ holds.
Because |gy: @ g:r|2 X || € €7 and because & = p + e, we get that
Gy © 1w ® ., ~(Fa(EF)Li(B™, OBS™(d), F*(d)|¢, E7) is bigger than g,;®1,,®
g+ (Pu(EFYCu(B™, OBS™(d), F*(d)|¢, ES) — e~*™. Let yo , resp. zp des-
ignate the left end, resp. right end of the ¢in-th block in £ before ¥, resp.
after z. Let bF, resp. f§ designate the left end, resp. the right end of the
cin-th block in x before &, resp. after f*(d). Let E7, ., designate the
measurable event that S:(bf) = yo and S;(b*) = y and S.(f*) = z and
Sc(f§’) = z0. Now because g, ® g., is positive we have that g,; ® 1, ®
9:+(P=(E3)L2(B", OBS™(d), F™(d)|¢, E7) is bigger than g, 1®1,®g; »(P=(EFN
E7 ,..)L(B",0BS™(d), F*(d)|¢, E3, B2, ). Letl;,,tesp. l;, designate the
length of the i-th block of £|[z, 00|, resp. the length of the last i-th bock of
&l] — co,y]. Then, the defective distribution

P-(E3 N Ez,,.)L:(B", OBS™(d), F"(d)I¢, B}, EZ,,.)
is equal to

PP:(S2(83) = v0) - ([ 1(liy , 1) 0 27 ® [pP6.) ® (@55 pe(li 2 , 1) 0 BTY)).

{Here 6,, designate the probability distribution for OBS™(d) with exactly one
atom with mass one at w.) Now, remember that by definition for all { > 2, we
always have (h{1)}*(x(l,1)) 2 1/I. Thus we get that

g;.l ® lw ® gz."(‘Pﬂ?("I-T’?z'.'l n E:,y,z)ﬁz(Bni OBS"(d), F"'(d)lg, E:;, E:,y,z)

is bigger than p+! P(S,,(b%) = o). However, P, (S.(83) = vo) > Po(Sz{e?") =
Y0, 52(€?" + 1) = yo + 1) = pP.(Sz(e*™) = 1), (here we assumed that g #
0 so that there are no parity problems, the other case is left to the reader.)
Now by the local central limit theorem we get (at least for n big enough) that
P:(Sz(¢2") = o) > €~3". Combining all this we get

9.1 ® lu ® 0., (P=(EG N E7, ) Lo(B", 0BS™(d), F*(d)|¢, B}, EL,,.)
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is bigger than p?*2e—3n(2e3np™17/n242) — 9 Since 4 is a convex combination
of the £:(.[¢) we get that

Gyt ®ly® gz,f(P#(E:l‘ n E:,y,z)ﬁﬁ(an OBS"(d)v F"(d)lﬁ, E:;; E:,y,;)
is bigger than 2. Thus, we get that
9ut ® Lu ® 9:,(Pa(EF)La(B", OBS™(d), F*(d)|¢, EF)

is bigger or equal than 2—e™%" > 1. (At least for n big enough.) This implies,
that the first condition in the algorithm SUBALGIII™ for getting picked is also
meet by the triple (w, g1, g:.») and so we are done with this proof.

Proof that P(ETf; ) is negatively exponentially small in n; Let
E7;y,5 denote the event { the longest block of £{[—3e™, 3¢™] is not longer than
2n/in2.}. Then, Efyy 5 C Efypy. Thus,P(EJf ) < P(Eff; ). However, it is
easy to check (and we thus leave it to the reader) that P(E}f; ) is exponentially
small in =,

Proof that P(ETf;,) is negatively exponentially small in n. Note
that the lengths of the blocks of £ are i.i.d. (Except may be for the block
at the origin, but we will not care about that detail.) Let I; designate the
length of the i-th block of £&. Then by Chebycheff we get that PITS Ly >
e®") < B[N Liy;)/e®™. Because the lengths of the blocks are i.i.d. we get
P(II;;’;!H.J- > e®™) < E[lh]%" fe®s”, Since there are at most 6e® blocks in
€|[—3e", 3e"] we get that P(ETf14) < 6e"E[l1]%"fe®s™. Now, E[l;] = 2 and
thus E[l}%" fe"s"  e™(e1-3), Because of how we defined ¢; and ¢s , we get
that Ge™E[l;]°" fe®*" is smaller than 6e~" and so is P(ETfr 2)-

Proof that P(E}f, ;) is negatively exponentially small in n. Ac-
cording to lemma we can choose an o > 0 such that there exists ' > 0 not
depending on n, such that P({le| < e~2%4"}) € e=#'™. Choose the a to be such
and then P(E7f; ;) < e~P'". (Note that one can choose a as big as one wants,
as long as it does not depend on n, our proof that ALGORITHM™ works is
not affected.)

Proof that P(ETf; ,) is negatively exponentially small in n. We
are first going to define two events Efy, ¢ and Ef1;7 » show that Efp; e 0
Efri7 C Efyp, and show that Efy; 4 and Efy 1,7 both hold with high prob-
ability. Let E7y; ¢ be the event that in each consecutive sequence of ¢;n blocks
of £|[-3¢™,3e"] there are at least con blocks of length 3 or 5. Now the proba-
bility for a block of £ to be of length 3 or 5 is equal to 1%. By a large deviation
principle, there exists a constant §,, > 0 not depending on j, such that the
probability for j i.id. Bernoulli variables with parameter 3 to not contain at
least i of them equal to one is smaller than e~#27, Thus, the probability for
a sequence of c;n consecutive blocks of € to not contain at least con = cn/s
blocks of length 3 or 5 is smaller than e~#21"_ There are at most 6e™ blocks
in £[-3e™,3¢™]. Thus, P(E}f;¢) < 6e™e~Puc1m, Because of our definition
of ¢; the expression on the right side of the last inequality is exponentially
small in n. Next we need a few definitions: let ¢ be a piece of scenery and
{b1,b2} a block of ¢. Then, we call #(b) color of the block {b;,be}, where b
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is any integer strictly between b; and by, Let r designate the number of blocks
of length 3 or 5 of £|[—3e™,3e"”]. For i € 1,2,...,r let I3° and s designate
the length and the color of the i-th block of length 3 or 5 of £|[—3e”,3e"].
If sequ is a sequence of elements in {30,50,31,51}, then we write sequ” for
the sequence obtained by taking sequ and exchanging 30 with 31, 31 with 30,
50 with 51 and 51 with 50. Let ¥ be the following coloring of the integer
unit intervals of {0,7], (where @ < b are two integers) be defined as follows:
U {{i - 1,i}}i € 1,2,..,r } — {30,50,31,51} where ¥({s - 1,i}) = Us,.
Let [jo, /1] be an integer interval. We call a function R : [fp,51] — [a,}]
a nearest neighbor walk on {a,b], (where a < b are two integers) iff for all j
such that jo < j < j; we have that |R(j) — R(F + 1)] = 1. We call R(jo)
the starting point of R and j; — jo the length of R and we call the sequence
P({R(0), R(1)}), ¥({R(1), R(2)}), ¥({R(2), R(3)}), ..., *({R(r — 1), R(r)}) the
sequence generated by R on ¥. Let E} , be the event {for all integer
z € [con,r] we have that for any nearest neighbor walk R on [0,r] starting
strictly to the right of z, the sequence generated by R on ¥ is different from
(1253251125-1325—1’522233‘12y ey tgic nsgic n) and from

(12053,135 535 | 135 535, 135 5% )T} {for all integer = € 0,7 —
can] we have that for any nearest neighbor walk R on [0, 7] starting strictly to
the left of x, the sequence generated by R on ¥ is different from

(&5325’ liilsgilt '!2123212’ OO0 Iii—c;nsgicgﬂ)
and from (t25825, tg?l—l 33?[..1, t22-2s‘3:121 ey lgic;nsgicgn)'r}‘

Let us prove that P(E}f;,) is exponentially small in n. Let I
and s¥® designate the length and the color of the i-th block of length 3 or 5
of £l[~3e™,00]. Then, the sequence I§%s35,3535, ... is a Markov chain with
stationary transition probabilities. Furthermore, {{f*}x>¢ is independent of
{s2®}r>0 and the I3%’s are i.i.d.. The probability for a block of £ given that
it is of length 3 or 5 to have length 3 is equal to §. Furthermore, let pss
designate the probability that a block of £ has length 3 or 5. We get that
P3s = §+ 15 = 15- Let g5 = 1 — pss. Now the probability P(s}3, # s3°
is equal to pas + pas(gas)® + pas(gss)? + ... = pas/(1 — (g35)?) = 1/(1 + gas) =
1/(1+ 11) = 35. This implies that the maximum transition probability for
the Markov process {If®sfP}izois 35 X § = &t < 1. Let z € [eon,7] and
let R be a nearest neighbor walk (non random) on [0,r] starting strictly to
the right of = and of length con.  Then the probability that the sequence
generated by R on ¥ is equal to (I3%s3°, 3% 525 , 135 /635, .., 135 38 .)or
to (I3%s35,13% 635 |, 135 5638 5, .., 132,835 )7 is smaller than 2(£&)%". (To
see this, note that because the nearest neighbor walk can move at most one unit
to the left at each step and because it starts strictly to the right of = we have that
the first i-steps of R are strictly to the right of those unit intervals mapped by ¥
onto I8z, lr_18z-1,1x-28:_2,...,ls—i8z—;.}) There are at most 2-2°"¢™ nearest
neighbor walk on [0, r] of length con. Thus, the probability that there exists a
nearest neighbor walk on [0, »] starting strictly to the right of  and of length con
and generating on ¥ the sequence (I;5;,lz—157-1,02-262-2, -y le—cn82-can) OF
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(lo82ydz—182-1, 122522, ey lz—czn82—cyn) T is smaller than 2 - 2“"3“2(%)"“"
= 4(]8)2"e”. Because of how we defined ¢; the last expression is negatively
exponentially small in n. A symmetric argument can be used for when R is a
nearest neighbor walk starting strictly to the left of x, so that eventually one
gets that P(ETf; ;) < 8(128)cmen,

The only thing which remains to be proven is that E}, ;N Efrrr C
Ef1,4- This is what we are going to do next: we are going to do a proof by
the absurd. Thus we assume that there exist z € [—e",e"] and zp € [—e™, 2|
such that £(z} # £(z+ 1) and not(€(20) = £(z0 +1) = £(20 — 1)) if g, designates
the right functional at z of £ then g (L (F"|S:(f"} = 2,£) # 0. (Let us
use the following notation: F™, resp. f" stands for F*(0), resp. for f(0).
Because of the strong Markov property of {Sz(k)}x>0 it does not matter how
we choose d in F™(d) and f*(d).) We will only do the proof with g, and
leave the case with g; to the reader. We need first the following definition:
let R : D — Z be an admissible piece of path. Then we write £ for the
length of the block of £ on with the i-th block of £ o R was generated. Let
a;, resp. b; be the left end, resp. right end of the i-th block of £ o R . Then,
we define sf = 1 one if R(a;) # R(b;) and s® = 0 otherwise. Thus, s&
determines whether R crossed a block of £ or merely entered and exited a block
of £ from the same side whilst generating the i-th block of £ 0 B. We call
R(a) the starting point of R on €. We say that (Iftsf,iftsF, .. 1R o2 )
is a possible sequence with starting point R(a;). We say that R generates j
blocks iff there are j blocks in £ o R. Now, with this definition the defective
distribution P(S(f") = 2)L (F"|S(f*) = 20,£) can be written as the sum
B(!;a; d282slc ntc n}p(lls 31) oh™1 ®ﬂ(t21 32)°h—1 ® '"®I‘(lclm scln) oh~1 where
the last swm is taken over all (l131, 1252, ..., lc,n3c,n) possible sequences of length
cin with starting point 2o. Now because, g.(L.(F*|S(f*) = z0,£) # 0 and by
positivity of g, we have that g, must be different form zero on at least one of the
terms of the last sum. Thus there exist an admissible path R which generates
cin blocks and with starting point zp such that g,(u(f,s1) o k™1 @ u(ls, s2) ©
A1 @ ... ® plliyn, 8egn) 0 h™1) 3 0. Thus, IETE(R(1L,q))* (IR, s7) 0 1) #0,
Thus, for all i = 1,2,...,c1n we have that £(h(l,;))"(u(lF,s) o 1) > 0.
(Here I, ; designates the length of the i-th block of £|{z,c0[.) Now, recall that
F(k)* (1(3,1) o 1) # 0 iff k = 3, and F(k)*(u(5,1) o h~1) #£0if k = 5. For
! >2and s €0,1, we have F(3)*(u(l,s)oh ) #0iff =3 and s =1 and
Z(5)*(u(l,s)oh" 1) #0iff l=5and s =1. Thus, L,;€3,5iff {8 €3,5 and
sf =1 and then IR = l;,;. This then implies that for i €1,2,3,...,c1n the i-th
block of £|[z, 00 has length 3, resp.5 iff the i-th block of £ o R corresponds to
a crossing (i.e. not just entering a block and leaving it on the same side but
leaving it on the other side) by R of 2 block of length 3, resp. 5. Note that in
any scenery, or piece of scenery or observations the color of the blocks alternate
between 0 and 1. This then implies that (assume that there r designates the
number of blocks of length 3 or 5 in the first ¢;n blocks of £{[2, 0o}, then either:

for each ¢ < r the color of the i-th block of length 3 or 5 of ¢||z, cof is equal
to the color of the i-th block of £ of length 3 or 5 crossed by R

or



for each i < r the color of the i-th block of length 3 or 5 of £|[z, oo] is opposite
of the color of the i-th block of length 3 or 5 crossed by R

(Now let i3 be any function from Z to Z mapping the closed integer interval
between the right end of the i-th block and the left end of the i + i-th block of
length 3 or 5 of £][—3e", 3e™] onto %, for each ¢ smaller or equal then the total
number of blocks £|[—3¢",3e"]. Then k3o R is an admissible path (but not yet
an nearest neighbor walk). However, we can take out the holdings from hs o R
and make it a nearest neighbor walk. This nearest neighbor walk will then be
called the nearest neighbor walk induced by R on ¥, and we will write for it
b3 o Rmodulo hold.) What we said before about the color of the blocks of length
3 or 5 crossed by R then implies that the nearest ne1ghbor walk mduoed by R
on ¥ generates on ¥ a sequence equal to either (123,53%,,13%,433,, ..., 135s3%)
or (13315331, 13528%%,, ..., 13%s25)7.  Because of Ejy; ¢ we have that r > con.
Now because zp < z we get that after the first step hy o Rmodulo hold is
strictly to the left of ha(2). Thus if we take away the first step only of the
nearest neighbor walk 30 Rmodulo hold we get a nearest neighbor walk starting
strictly to the left of h3(z) of length at least con — 1 which generates on ¥
the sequence (135,8331,12%,5%%,, ..., 1255%%) or (133,535,,135,535,,, ..., 135535)T
This contradicts ETy; , and so we are done with our proof.

5 The algorithm SUBALGII®

This section is dedicated to defining SUBALGII" and proving theorem 9. In
principle SUBALGII® is a slightly modified version of SU BALGI™?®. The
main differences between SUBALGII™ and SUBALGI™" are the following:
a) SUBALGII™ is not given in his input stopping times. Thus it has to
construct stopping time itself. b} SUBALGII™ is not given a little piece of
scenery in its input: it has to construct that little piece of scenery itself. ¢)
SUBALGII" is not trying to reconstruct an ii.d. piece of scene zbut the
piece of scenery obtained by restricting £ in an interval of radius e” = around
{z1,25}. Now, we will see that except for the block {z},z}} the rest of the
bits of that scenery is very close in distribution to an i.i.d. piece of scenery. d)
We proved that SUBALGI™ works with high probability. Here however we
need to show a little bit more: we need to show that with high probability
£ is such that conditioned under £, SUBALGII™ works with high probability
(if it is given as input the """ first observations of a random walk starting at
{zl » L2 })

Let us now define the algorxthm SUBALGII™. Let us recall that as en-
try SUBALGII" is only given " bits. So, SUBALGII" is a map from

{0,13""" to Ue{0,1}*. Let A be an element of {0,1}*""" and let us define
next what SUBALGII™(A) would be. We need the following definition: let

X Tepresent 37 observatlons that is x € {0 1} " We already defined
the functions X B~ OBS" ‘@), P d), £ (d) - 5" (x).  Let us
now defined F*"”(d)*(x). F*" *(d)*(x) is defined to be the (non-truncated)
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length of the first block of x][b"o'2 (x),e®°*]. (WE will however always as-
sume that length is € n%) Let v(k) designate the right end of the k-th
block of A of length > n? (if that block exists). Let x; € {0,1}" be
equal to Alfu(ie®"*), v(ie3"") + €3”]. Then, let ji designate the empiri-
cal distribution based on the variables (B™"*, 0BS""*(d), F""*(d), f*"*(d) —
5% F°% (dy*) (x;) where i € 1,2,3,...,e®®"”, Let 1,2 designate the linear
functional on RN defined in the following way: 15,2 = eX; +e’, stea e
(Here €] for all i > 0 designates the i-th canonical eoordinate of RY.) We are
now ready to define SUBALGII™(A):

Algorithm 14 step a) IfA contains less than e®™” blocks of length > n? then
have SUBALGII™ break down (or alternatively define then SUBALGII™(A)
to be the irivial piece of scenery 0 — 0). Step b) If you have not been
breaking doum in step a, then for each k € 1,2,3,...,e*™"" let v (k) designate
the right end of the k-th block of A of length longer than n?. We will write v
for (V3 (1), v3(2), -, 3y (€2 7). Step ¢) Apply the algorithm SUBALGIII
=*? to the input v}y and Al (1), v7,(e2""")] and get as output the collection
of pieces of sceneries denoted by SET};. Step d) Take the color of the first
block of A of length longer than n® call it s. Step e) Take the average of the
lengths of the first e®™” blocks of A of length longer than i, and call it I. Use
it to estimale the length of the block {z},z8}. (See lemma 10.) Step-f} Se-
lect any couple g, w where g is a positive functional and w is a word of length
d such that 13n%2/In2 < d < 17n%2/In2 and such that: Case where g #
0) 9@ 1y ® Lyna(Pa(EY " )La(B™*, 0B85 (d), F*** (d)*I¢, EF"") > 1 and
1@ L>m2 (PU(E5) La(B™, F** (d - 1)°[¢, EE7) < 1/(9n%4) and ¢) |gsla <
en"? Case where g =0) Same thing as for g # 0 but simply replace the sec-
ond inequality by 1®L >na(Pu(E5)La(B™*, 0BS™(d), F*"* (d)*|¢, B 3) <
1/(9n%4). Step g) Find a couple g,, w, satisfying the same conditions than in
[, but such that on top w, is different from w it its last 13n%2/In2 bits. Step
h) Let o be the piece of scenery which starts with the word w and ends with w,
and such that in-between there is ezactly a block of length corresponding to our
estimate of the length of the block {x7,23}. end of color s. Step i} Assemble
the piece of sceneries from the set SET}, together with 1 to get the piece of
scenery which is going to be the final output of this algorithm. That is place
Y at the origin and then select one after another pieces from SET}; which you
move around on Z until they coincide on an interval of at least 13n°2/In2 with
an already placed piece. (For precise instruction on this point simply follow
algorithm with n%2.)

We are now going to prove theorem 5. For this let {SF (k)}k20, resp.
{SZ,(k)}x>0 be a random walk starting at =7, resp. at z but having its incre-
ments independent of {£(k)}xez. Let EFy it be the event that SUBALGII"(£o
Stio, e"*]) is a piece of scenery equivalent to Ellef — e’ 2f + ). We
are going to prove that up to an exponentially small probability in 2%2 we have
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that £ is such that conditioned under £, }‘,,zf holds with probability which up
to an exponentially small probability in n%2 is close to one. A similar thing can
be proven for x§, z; and z7. (We will leave those proofs to the reader since
they are similar.) This then implies theorem 5. So in what follows we will
write ET; for the event 7y, +. Let £1(.|€) designate the conditional distribu-
tion of (Bno.z’ OBS"O.Q(d), Fuo.'.' (d)’ fno.‘z (d)_bn0.2, Fno.? (d)*)(&os:; I[O’ 83“0.2])
if we condition under £, Let L2(.|¢) designate the conditional distribution
Of (BnQ.Z,OBSnO.z (d),Fno.ﬂ(d)’fno.Q(d) _ an.Q’FnO. ((i)*)(£ . S;;][O’ e3n0.2]) if
we condition under £. Let a(1) designate the proportion of i’s where i €
1,2,3,...,e°™"" /e37"? such that the right end of the ie3""”-th block of £ o S+
of length longer than n? stops S} at z7, let a(2) designate those for which
St is stopped at z3. Let g7 designate the signed measure ji — a(1)L;(.[¢) —
a(2)La(.[€). Define the following events:

E}y , = { for any integer interval I C [-3¢""” +z¥, 2] U [z, 23 + 3en*”]
of length n%213/(In2) we have that there exists two points ¥ < z such that
1¢ [y2] and £y — 1) # €(y) and €(z) # £(z + 1) and z — y < nO217/(In2)}.
E?; 2 = { the product of the lengths of any ¢;n%? consecutive blocks of the
scenery £|{~3e™” +zf,2F + 3¢™”] is smaller than e"**}. Epy 4 = {lers| €
e~2n**}  Ep, , = {for any integers y € [-3¢"”” + =}, 53 + 3¢"""] such that
&(y) # €(y — 1) the left functional of £ at y is also a left limiting functional of
¢ at y}n {for any integers z € [-3¢""” + zf,xF + 3e™"”] such that £(z) #
£(z + 1) the right functional of £ at z is also a right limiting functional of
€ at z}. Let Ef; ¢ be the event that in each consecutive sequence of ¢;n%2
blocks of &|[~3e™" + 2, 2 + 3¢""”] there are at least cpn®? blocks of length
3 or 5. Let E};; be the event that in the four color unit interval coloring

associated with £|[~3¢""” + &7, 27 +3¢™"”] no nearest neighbor walk of length

c2n%2 can generate the same sequence then a sequence in the four unit interval

coloring located strictly to the left or the right from where the nearest neighbor
walk starts. Let E};q be the event that except of the block {zT,z}} there

is no other block of length > n%* in £|[-e™"" + o}, 2} + €*°]. Let Efyq
be the event that all the blocks of £ o 57 |[0, €"""] of length longer than n®
are generated by £ o S} on.{z],z$} and there are more than e®™" blocks
of £ o St{[0, €""®] of length longer then i" (see lemma 6). Let EFp 10 be
the event that z§ —z} < 2n. Let EJy,, be the event that the average of
the lengths of the first ™ blocks of £ o S} which have been generated on
{z¥,2F} and which are longer than i" is less away than 0.5 from the value
E[T*—=1|T*¢ -2 > " = §_,n?nn] . Let E}y,, be the event that for each
interval I in (—3¢""* +z¥,z}) orin [zF, 2§ +3¢"""] and of length In13n%2/In2,
there exist an interval J such that I C J and £]J is equivalent to a piece of
scenery in the collection SETT; and all the pieces of sceneries which are elements
of SET}; are also contained in £[[-e*"" + zf,z3 + 3"°°]. Let E}; ;5 be
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the event that in £|[-3¢™” + zf,z}] and in £|[~3e"2 + zi,z]] each piece
of scenery of length in13n%2/In2 — 1 is contained at most once. Let E7 14
be the event that there exists two points a and b (may be random) such that
the piece of scenery ¥ constructed in step b of our algorithm SUBALGII™
is equivalent to {l[a,b] and a € [z} ~ In1Tn%2/In2, 2} — In13n"?/In2] and
b€ [zf + In13n%2/In2, 23 + In1Tn%2/in2).

Wehave E7; ,NET; 13NE}; 14 C Ey. Furthermore, in a very similar way to
what we did for the algorithm SUBALGIII", one can prove that E71NEf;,N
E13 C Efy o and By NEFy ,NE}y 3 NEFy gNEYy 1) C Efy 14 2ud eventually
Elre N Efp7 C Bfy . Weget that (EFy \NE}y oNEF; 6 N EFy )NER sNER oN
Ef1,11 C Ejy. Thus, EFf C EFf, UERF, UER gUETE , UET s UETS g UERS | .
Furthermore, E7f is contained in (Eff | UETf o UE}fgU Eff, UERf s UETS 10} U
(Efrs O Effo) U (B9 N Efy 5) U (Efy 10 N EFfy ). Now define Efp¢ to be
equal to By NEf , NEYy o N Ef 7 N Efy g0 ETi10- Then first note that
ETr ¢ only depends on &, i.e. is o(¢(k)|k € Z) measurable. Now, when E7;,
holds (or alternatively when we condition under ¢ where § € Ef; ;) we get that
Eff C EffgU(Ef; 9N EY; 3) UESf,,. Now when we condition under £ and
we have a § € E7; . we get that E7fo has exponentially small probability in
n%3,  More precisely there exist Ba5,Pa2g > 0 not depending on n and £ such
that P(E7fgl€) < Byse#" for all € € Efy,. (To see that this is true
see the proof in section 2 that E} and EF both hold with high probability.)
Next note that when we condition under £ and we have a £ € ET; ¢ we get
that (Effg 0 E}; ) has exponentially small probability in n%2, To see this
note in our proof that P(E}f ;) is negatively exponentially small in n we did
not use any assumptions on £. We only needed the fact that the stopping
times all stop the random walk in the interval [—e",e"]. Thus, the same
upper bound which holds for P(ETf; 5) holds also for P(ETf; 3|€) no matter
what £, Thus the same upper bound but with n®2 instead of 7 holds also
for P(ETfq N E7; 31€) no matter what §&. Eventually, by a large deviation
principle it is easy to get an exponentially small upper bound in n%2? which
does not depend on n or ¢ for P( 71,11|€) where £ € ET; ¢. This then implies
(since we saw that when £ € ET sthen EFf C Effo U(ET 9 N EY 5) U Eff11)
that there exists 8,6, B3; > 0 not depending on n or on &, such that for all
§ € Efp e we have P(ETFlE) < fage™P#"". Now, P(EJS,) is exponentially
small in n%2.  Since the same kind of result can be proven if we take x7,xg
or x7 instead of xJ, we have that theorem 5 holds. Now, let us give us a few
more details about why P(EFf,) is exponentially small in %2, Note first that
P(EJfs) < P(EJS,) + P(Efs 3) + P(ERfg) + P(EfE,) + P ) + P(E}S 10).
Now let ET; ;, be the event that {z7 > ¢3*°"). Note that the lengths of the
blocks of £]{0, 7] are i.i.d. with each one of them having the distribution of a
block of £ conditioned under the event that block has length < n. It foliows,
that when we condition under the event {z} > e} then the distribution of
&l — %%, 27 is the same as the distribution of £|[0, 7] conditioned under
the event {z} > e¥*"”}. Tt follows that in total variation the distribution of

37



E|lef — €37°, 2} is different from the i.i.d. scenery distribution by a quantity
which in absolute value is smaller or equal to P(ETf,). It is easy to check that
P(E}§,) is exponentially small in n. Now if £z —e3"?, 2}] would have the
iid. distribution, then P(ETf;), P(E}f ), resp. P(EJf ) would have the same
upper bound as P(E}f; 1), P(ETf; ¢), resp. P(E7f; ;) but with n®2 instead of .
Thus, P(E75,), P(EF, 6), reﬁp P(EFf ;) would be exponentially small in 92,
Since, however £|{z} — €%* ,x"‘] is not i.i.d. we need to add to these upper
bounds the value P(E7f ;,). Since P(ET{,,).is exponentially small in n, we get
that P(ETf,), P(ETf¢), tesp. P(ETf,) would be exporentially small in n®2,
It is easy to check that P(EJf,) is eucponentmlly small in n%4, whilst P(E}f,)
is exponentially small in n. For P(E} 7f,2) consider the followmg thing: let E", 2
be the event { the product of the lengths of any ¢;n%% — 1 consecutwe blocks
, where we take out the block {z},z}}, of the scenery £|[—3¢""" z3 ,a:2 +
3e”] is smaller than -e®™.} Now it is easy to see that if &}[z] — e3" z})
would be ii.d. then we could an get an exponential upper bound in 'no2 for
P(ETS)- (Thls can be done in almost the same way, then we found the upper
bound for P(ETf, o) since the quantity 5= has little effect in compa.nson to the
exponentially quantities we are dealing with.) Thus, P(E7%) can be bound
from above by an exponentially small quantity in %2 plus P(E", 12)- Thus,

P(E}%) is exponentially small in no 2, Now we have that Ei2NEf} g C Efy g,
Thus, P(E}‘, 2} < P(E}fS) + P(E}S). Thus, P(ETf,) is exponentially small
in n%2,
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