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Abstract

Let {{(n)}nez be a 2-color random scenery, that is a random coloration
of in two colors, such that the £(i)’s are i.i.d. Bernoulli variables with
parameter 3. Let {S(n)}nen be a symmetric random walk starting at 0.
Our main result shows that as., £ o S (the composition of £ and S) de-
termines £ up to translation and reflection. In other words, by observing
the scenery £ along the random walk path S, we can as. reconstruct £
up to translation and reflection. This result allows us to give a positive
answer to the question of H. Kesten of whether one can a.s. detect a single
defect in almost any 2-color random scenery by observing it only along a

random walk path.

1 Introduction

A scenery will be defined to be a function from Z to {0,1}. Let £ and £ be
two sceneries. We say that £ and £ are equivalent iff there exists a € Z and
b € {—1,1} such that for all x € Z we have that £(z) = é(a + bx). In this
case we write £ 2 £, In other words, two sceneries are equivalent iff they can
be obtained from each other by shift and/or reflection around the origin. In
everything that follows {S(k)}x>¢ will be a simple random walk on Z starting at
the origin. The question we are interested in is the following: given a scenery £
which is unknown to us, can we "reconstruct” £ if we are only given the scenery
£ seen along one path-realization of {S(k)}x>0. Thus, does one path realization
of the process {£(S{k))}x>0 uniquely determine £? The answer to the above
question in those general terms is no. First, if £ and £ are equivalent, we can in
general not know whether the observations come from ¢ or from £. Second, it is



clear that the reconstruction will in the best case work ornly almost surely. As
a matter of fact, if the random walk {S(k)} x>0 would decide to walk only to the
left (which it could do with probability zero), then we would have no information
about the right side of the scenery £ and thus not be able to reconstruct the
scenery £. So the best we can hope for is a reconstruction algorithm which
works almost surely. Eventually, Lindenstrauss in [12 ] has been able to exhibit
sceneries which one can not reconstruct. However, it is possible to prove that
a lot of typical sceneries can be reconstructed up to equivalence and almost
surely. For this we take the scenery £ to be itself the outcome of a random
process which is independent of {S(k)} x>0 in such a way that the £(k)'s arei.i.d.
Bernoulli with parameter -%. Our main result states that, up to equivalence,
almost every scenery £ can be reconstructed a.s. (provided we are given the
observation of £ seen along a path of {S{k)}x>¢ to do the reconstruction. By
almost every scenery we mean almost every scenery with respect to the measure
which makes the £(k)’s 1.i.d. Bernoulli with parameter ). Let us now state
our main theorem:

Theorem 1 Let {S(k)}r>0 and {£(k)}xez be two processes independent of each
other such that {S(k)}r>o is a simple random walk starting at the origin and
such that the £(k)’s are i.i.d. Bernoulli variables with parameter 1/2. Then, one
path realization of the process {£(S(k))}rz0 6.5. determines £ up to equivalence.
In other words, there exists ¢ measurable function A : {0,1}N — {0,1}% such
that P(A(oS) ~ &) = 1. ( Here £ o8, designates the path of the process
{£(5(k))}x>o that is, the scenery £ observed along a path of {S(k)}x>0. By
measurable, we mean, measurable with respect to the o-algebras induced by the
canonical coordinates on {0,1}N and on {0,1}%).

This paper was motivated by Kesten’s question to me of whether one can
a.s. distinguish a single defect in almost any two color scenery. Let us ex-
plain what the scenery distinguishing problem is . Let £,5: Z — {0,1} and let
{8(%)}1cn be a symmetric random walk on Z. Let the process {x(k)}ren be
equal to either {£ (5(k))},cn or {7(5(k))}ien. Is it possible by observing only
one path realization of {x (k)},cy to say to which one of the two {£ (S(k))},.en
or {7 (S(k)}rens {X (k)}ren i equal to? (We assume that we know £ and 7.)
If yes, we say that it is possible to distinguish between the sceneries £ and 9 by
observing them along a path of {S(k)},cy - Otherwise, when it is not possible
to figure out almost surely by observing {X (k)},cx alone whether {x (F)}ren is
generated on £ or on 7, we say that £ and 7 are indistinguishable. The problem
of distinguishing two sceneries was raised independently by I. Benjamini and by
den Hollander and Keane. The motivation came from problems in ergodic the-
ory, such as the T, T~problem (see Kalikow [7]) and from the study of various
aspects of {£ (S(k))},en, where {£(k)},cz is random. ( See Kesten and Spitzer
in [9], Keane and den Hollander in [8], den Hollander in [3]). Benjamini and
Kesten showed in [1] that one can distinguish almost any two random sceneries
even when the random walk is in Z2. (They assumed the sceneries to be ran-
dom themselves, so that the £(k)’s and the p(n)’s are i.i.d. Bernoulli.) Kesten



in [10] proved that when the random sceneries are i.i.d. and have four colors,
ie, £ and : Z — {0,1,2,3}, and differ only in one point, they can be a.s.
distinguished. He asked whether this result might still hold with fewer colors.
The main result of this paper directly implies that one can distinguish single
defects in almost any scenery. In [14 ], we proved for the three color case that
one can a.8. reconstruct almost every three color scenery. We also established
that this implies, that one can distinguish single defects for almost all three
color sceneries. In the two color case, i.e. in the case we consider in this paper,
the same thing is true. This means that our result for scenery reconstruction
implies that one can distinguish single defects in almost all sceneries. We state
the following corollary to our main result without giving a proof. (The proof
that our main result implies the following corollary is very similar to the one
given in [14] for the three color case.)

Corollary 2 Let B designate the set of all two color sceneries. B={f :
Z — {0,1}} = {0,1}2. Let (B,o(B)) denote the measurable space, where o(B)
is the o-algebra induced by the canonical coordinates on B. Let P denote the
probability measure on (B,o(B)) obtained by assuming that the £(i)’s are i.i.d.
Bernoulli variables with parameter L. Then there ezist a o(B)-measurable set
S, such that P(8) = 1 and such that for ever scenery £ € 8 and every scenery
7 which is equal to £ everywhere ezcept in one point, we have that £ and 7 are
distinguishable.

The above corollary says that there are many sceneries which one can distin-
guish or, in other words, that sceneries which are typical in a certain sense can
be distinguished. However the above result becomes false if one tries to extend
it to all pairs of sceneries which are not equivalent. Recently, Lindenstrauss
[12] exhibited a non denumerable set of pairs of non-equivalent sceneries on Z
which he proved to be indistinguishable. Before that, Howard proved in [4], [5]
and [6] that any two periodical sceneries of Z which are not equivalent modulo
translation and reflection are distinguishable and that one can a.s. distinguish
single defects in periodical sceneries. Kesten asked in [11] whether this result
would still hold when the random walk would be allowed to jump. He also asked
what would happen in the two dimensional case. Loewe and Matzinger in [13]
have been able to prove that one can a.s. reconstruct almost every scenery up to
equivalence in two dimensions, provided the scenery has a lot of colors. How-
ever the problem of the reconstruction of two color sceneries in Z seen along the
random walk path of a recurrent random walk which is allowed to jump remains
open. In our opinion, this is a central open problem at present. Eventually
we should also mention that the two color scenery reconstruction problem for a
scenery which is i.i.d. is equivalent to the following problem: let {R(k)}xcz and
{8(k)}x>0 be two independent simple random walks on Z both starting at the
origin and living on the same probability space. (Here we mean that {R(k)}x>0
and {R(—k)}k>oare two independant simple random walks both starting at the
origin.) Does one path realization of the iterated random walk {R(S(k))}x>0
uniquely determines the path of {R(k}}rez up to shift and reflection around the



origin? If one takes the representation of the scenery £ as a nearest neighbor
walk (which we will define later) for {R(k)}rez then it becomes immediately
clear that the two problems are equivalent. We leave it to the reader to check
the details. So the main result of this paper is equivalent to the following result
for iterated nearest neighbor walks: one path realization of the iterated random
walk {R(S(k))}x>0 a.8. uniquely determines the path of {R(k)}xrez up to shift
and reflection around the origin. This is a discrete analogous of the result of
Burdzy [2] concerning the path of iterated Browniar motion.

2 The reconstruction

We are going to prove our main theorem by explicitly describing a reconstruction
algorithm. This means that the measurable function A4 : {0.1}N — {0.1}2
from our main theorem will be described in terms of an algorithm, the so-
called reconstruction algorithm. Thus, A(£ 0 §) will denote the outcome of our
reconstruction algorithm if we give it the observations £ 0 §. Of course the
input, {05 is infinite. So one may ask how an algorithm can process an infinite
amount of data. We will see that our algorithm processes at each step only a
finite amount of the data £ 0 5, but as a limit when we let the algorithm work
an infinite amount of time we get as output the infinite scenery A{£ o §).

Our reconstruction algorithm works in two phases. First it reconstructs finite
pieces of the scenery £. (Here £ designates the path of the process {£(k)}xez,
ie. £€: N — {0,1} is the scenery which we try to reconstruct). For each
n € N the reconstruction algorithm reconstructs a finite piece of scenery. The
?partial reconstruction algorithm at level n” will take care of reconstructing
that finite piece of scenery. Once we have constructed this sequence of finite
pieces of sceneries, the second phase of cur reconstruction algorithm begins: we
assemble our pieces. We use an assemblage rule to do this. We will show, that
when we assemble all our pieces following our assemblage rule, we get almost
surely a scenery which is equivalent to £. Let us now first start by describing
the second phase of our algorithm, that is the assemblage phase.

3 Assembling pieces of sceneries

We first need some definitions. We define a piece of scenery to be a function from
an integer interval to Z. By integer interval we mean the intersection between
a real interval and Z. We say that two pieces of sceneries ¢ : D — {0,1} and
@ : D — {0,1} are equivalent iff there exists a € Z and b € {—1,1} such that
a+bD = D and for all k € D, we have that ¢{k) = @(a+bk). In other words, two
pieces of sceneries are equivalent iff they can be obtained from one another by
shift and/or reflection. For the assemblage rule, we suppose that we are given
a sequence of pieces of sceneries whichk we denote by &' : D* — {0,1},€2 :
D? — {0,1},...,£" : D* — {0,1},.... Our assemblage will produce another
sequence of sceneries £',£%,...,&" : D — {0,1},... obtained by shifting and



reflecting the pieces of sceneries £*. Thus for each n, £” is obtained from
£ by shift and reflection, which means that £” and £™ are equivalent. The end
product of our assemblage is the scenery obtained by taking the pointwise limit
of the pieces of sceneries £*. We will denote this limit if it exists by £&. (By
pointwise limit of the £ ’s, we mean £(k) : = limn_oo£™(k) for all k € Z if
this limit is well defined. For this limit to be well defined, we require that for
each given k € Z we have that for all but a finite number of n’s, ¥ € D™ and
limn,_.o£"(k) exists when we take the sequence n — £™(k) for those n’s for
which £7(k) is well defined.} If the pointwise limit is not well defined, then we
let the assemblage algorithm break down. In the case of a break down, it is
not important how £ gets defined. The rule for the assemblage goes as follows:
proceed inductively on n. Once £" is well defined, choose any piece of scenery
which coincides on an interval of length n with £” and which is equivalent to
£7t1. Call that piece of scenery £7t!. If this is not possible, that is if there
exists no piece of scenery which is equivalent to £*+! and coincides with £* on
an interval of length n, then define £**! to be equal to £**!. Let us at this
stage describe this assemblage algorithm in a more formal way:

Algorithm 3 Proceed inductively on n. Put€! =£'. Oncef™: D™ — {0,1}
has been obtained, choose any integer interval J™ C D™ 1of length n, for which
there exists a € Z and b € {-1,1} such that a + bJ™ C D™ and such that
for all k € J", we have £*{a + bk) = £"1(k). Put D™ = g 4+ bD"*! gnd
put for oll k € D™ | (k) = ¢7H1(b(k — @)). If there is no interval J™
satisfying all the above conditions, then put £*t! = ¢"t1. For all k € Z, define
£(k) = limn— oo &™(k) if this limit is well defined. Otherwise let the assemblage
algorithm break down.

The next step is to show that our assemblage rule works when it is given
the right input. For this purpose let us assume that the sequence of pieces
of sceneries £1,£2, ..., €™, ... which we will give to the assemblage algorithm as
input, is such that all the pieces of sceneries £™ live on the same probability
space as { (and thus these pieces of sceneries are random pieces of sceneries.)
Let E™ be the event that there exists an interval I™ (may be random) such
that £" is equivalent to £|I™ and such that [-n,n] C I" C [-n®,n®%] . (Here,
£|I™designates the restriction of £ to I®. This means that £|I" designates
a piece of scenery. From now on, we will write f|A4 for the restriction of
the function f to the set A. Also [a,b] will denote an integer interval, i.e.
the intersection between the real interval [a,b] and Z.) By saying that the
assemblage algorithm gets right input, we mean that E™ holds for all but a finite
number of n’s for the input of the assemblage algorithm. Let EF designate the
event that within the integer interval [—(n + 1)3,(n + 1)%], there are no two
different pieces of £ of length n which are equivalent to each other. More
precisely EF is defined as follows: E§ = {if 41, 2,13,44 € [-(n + 1)3,(n + 1)]
are such that |i; — 43|, [{3 — #4] = n and such that for all k¥ € 0,1, ...,n, we have
that &(il + k(is — il)lliz = %1[) = 6(23 + k(iqg — is)/[i4 = ‘isl), then {; = i3 and
iz =1i4.}. It is clear, that if for all n but a finite number, E* an EJ both hold,



then the assemblage rule will produce a scerery equivalent to £ (in case it is
given £1,£2,...,£", ... as input.). As a matter of fact since £ is defined as a
limit, it does not depend on a finite number of £*’s. Furthermore for those n’s
for which both E™ and EJ hold, our assemblage rule puts £*and £°*! in the
"right relative position to each other”. We leave it to the reader to check this
more in detail. Next we are going to show that almost surely EJ holds for all
n but a finite number of n’s. This proves then, that our assemblage algorithm
produces a.s. a piece of scenery equivalent to £, as long as it is given correct
input, i.e. as long as E™ holds for all but a finite number of n’s.

Lemma 4 The probability of the complement of Ef is finitely summable over n.
In other words: if Eg° designates the complement of EF, then 3 .- P(E}°) <
0. Thus, a.5., Ef holds for all but a finite number of n’s.

Proof. Let i) ,ia,i3,44 € [—(n+1)3,(n+1)%] be non-random integer numbers
such that |iy — io] = n and |ig — 4| = n and such that (i1,42) # (i3,44). Then
there erists a set K C {0,1,..,n} of cardinality |n/2] such that such that
(6 + K(ia — 61)/li2 = 21]) 0 (83 + K(ia — i3)/|ia — i3]) = 8. Thus, P(£(i, +
k(%z - h)/l'&g - 'ill) = f(ia + k(u - is)/|i4 - 33') fOf‘ aell ke K) =0.5 |_n/2j‘
Thus, P(f(‘ﬁ + k(tz == %1)/|i2 - %1[) = f(ta + k(‘i4 o 23)/"54 - 33') fOT all k €
{0,1,..,n}) < 0.5 "/l However, there are at most (2n + 3)'2gquadruples
(31,92,%a,%4) such that 41,is,i5,34 € [—(n + 1)3,(n + 1)3]. This implies that
P(EF) € (2n +3)12 x 0.5 /2] | The expression on the right side of the

previous ineguality is finitely summable over n and thus 3 P(E3°) < o0 .
[

Since, Ef holds a.s. for all but a finite number of n’s, we have reduced the
problem of reconstructing £ to the problem of constructing a sequence of pieces
of sceneries £!,£2,...,£7, ... for which E™ holds for all n but a finite number. In
the next section we are going to define for each n, the so called, partial recon-
struction algorithm at level n. The partial reconstruction algorithm at level n
produces as output the piece of scenery £"*. With the partial reconstruction
algorithms at the different levels we will construct the sequence of pieces of
sceneries £1,£2, ...,£7,... which we will then assemble in order to get a scenery
equivalent to £. Thus, £™ will denote the piece of scenery, which is the outcome
of the partial reconstruction algorithm at level n. The scenery which we obtain
as a limit by applying the assemblage algorithm to the sequence of pieces of
sceneries £" will be denoted by £. To prove that one can reconstruct £ a.s.
and up to equivalence, that to prove our main theorem it remains to define the
partial reconstruction algorithm at level n and to prove that for ail but a finite
number of n’s, there exists an integer interval (maybe random) I™ such that &
is equivalent to £|I™ where [-n,n] C I™ C [-n3,nY)].

4 Partial reconstruction algorithm at level n

We are now going to explain the partial reconstruction algorithm at level n. As
mentioned already, the outcome of the partial reconstruction algorithm at level
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n is a piece of scenery denoted by £”. The goal of the reconstruction algorithm
at level n is, by using only the observations £ 0 S : k — £(S5(k)) N — {0,1}
as input, to construct a piece of scenery which, with high probability, is going
to be equivalent to the restriction of £ to an interval of length order n around
the origin. More precisely, let E™ be the event that there exists an interval I™
(may be random) such that £" is equivalent to £|J™ and such that [-n,n] C
I C [-n3,n®%. We are going to prove that the probability of the event of
E™ ia close to 1, in the sense that the probability of the complements of E® is
finitely summable over n. Let us first explain in a informal way the main ideas
behind the partial reconstruction algorithm at level n. Assume for a moment
that the scenery §, instead of being a two color scenery, would be a four color
scenery, i.e. §:Z — {0,1,2,3}. Let us imagine furthermore, that for two
integers z, y we have £(z) = 2 and £{(y) = 3, but outside z and y the scenery has
everywhere color 0 or 1. Then, we could reconstruct the portion of the scenery ¢
lying between = and y. As a matter of fact, since the random walk {S(k)}x>0
is recurrent it would a.s. go at least once, (and hence infinitely often,) in the
shortest possible way from the point z to the point y. Since we are given the
"infinite observations” £ o S we can know what the distance between z and y is.
As a matter of fact the distance between z and y is the shortest time laps that
a 3 will ever appear in the observations £ o § after a 2. Thus, we can observe
all these shortest passages by {S(k)}x>o from z to ¥ because they correspond
exactly to the times in the observations where the color 3 appears shortest after
color 2. But when the random walk {S(k)}x>0 goes in a shortest possible way
from z to y it goes in a straight way which means that between the time it is at
z and until it reaches color y it only moves in one direction (when it performs
a straight crossing). During that time, the random walk {S(k)}x>0 reveals the
portion of £ lying between z and y. More precisely, if the couple of integers ¢, ,¢»
;where £(S(t1)) = 2 and &(S(f2)) = 3 with ¢2 > {; , minimizes |t — ¢;]| under
the condition that £(5(¢,)) = 2 and £(S{t3)) = 3, then the piece of scenery
obtained by restricting the scenery £ to the interval [min{z,y}, maz{z,y}) is
equivalent to the observations £ o S restricted to the integer interval [t;,£;).
(Recall that we observe £ 0 5 : k +— £(S(k)) N— {0,1}).

The main difficulty we have to deal with is that the scenery £ does not have
two extra colors but has only the colors 0 and 1. So instead of the two colors 2
and 3, we will have to use certain patterns in the observations which are likely to
appear when the random walk {S(k)}r>0 is in one specific place in the scenery.
We will then look for a shortest time for a pattern A to appear after a pattern
B in the observations. During such a shortest time interval, we will assume that
the observations £ o S are a copy of a piece of the scenery £ between the point
where the random walk reads the pattern A and the place where it reads the
pattern B. There will mainly be four difficulties:

a) if x and y designate the approximate locations in the scenery which gen-
erate the patterns A and B, then we want 2 and y to be on opposite sides of
0. As a matter of fact, for E” to hold, we need to reconstruct the scenery &
on a interval containing [-n,n]. (Note, that since the scenery is assumed to be
ii.d., saying that we reconstruct a finite piece of £ without mentioning where



that finite piece is located doesn’t make sense: every finite piece occurs a.s.
up to translation infinitely often in the scenery £&. Thus, it is essential to have
some control over where that reconstructed piece is located.)

b} |z| and |y| must both be between n and ns.

c¢) Because the £(k)’s are i.i.d., every finite piece of £ will appear infinitely
often up to translation in £. Thus, if at a point x, £ is likely to generate a
certain pattern in the observations (when{S(k)}x>o i3 at z), then there will be
infinitely many places in the scenery likely to produce that same finite pattern.
Thus, we need the other places in the scenery which are likely to generate the
patterns A and B, to be really far away, so that we first get a straight crossing
between x an y before {S(k)}r>0 goes to an other spot likely to generate the
same pattern in the observations. This will in general not succeed, so we will
use a third pattern C, and only lock at when the patterns A and B occur not
to long after we observed C. C will be taken such that the next time a spot in
the scenery occurs likely to generate the pattern C in the observations is really
far away from the points z and y. Furthermore in a certain vicinity of C there
will only be the places 2 and y which are likely to generate the patterns A and
B.

Let us now explain what these patterns are. We first need the following
definitions. Let D be an integer interval. Then we call a function T from D
to Z a nearest neighbor walk, iff for each z,y € D with |z — y| = 1, we have
that |T(z) — T(y)] = 1. In other words, a nearest neighbor walk represents a
movement in integer time on the integers, such that each time unit, it crosses an
unit interval, i.e. each unit time interval we go one unit to the left or one unit
to the right. {For example, the path S of {S(k)}x>p is a.8. a nearest neighbor
walk.) Let ¢ : Z —+ {0,1} be one of the four possible 4-periodic sceneries,
where the period is 0011. Then, this scenery ¢ has a very particular property.
Each point in the scenery ¢ has its two neighboring points (to the left and to
the right at distance one), such that one of the neighboring points has color 1
and the other has color 0. This has some very important consequences: Let
D = {d;,d;] be an integer interval, then for each color record x : D — {0, 1},
there exists one and only one nearest neighbor walk T generating the sequence
x on ¢, i.e. such that ¢ oI = x and starting in a specific point, i.e. such
that T'(d;) is given.. { We also need to make sure that the nearest neighbor
walk starts at a point with the right color, i.e. the point T'(d;) where T starts
must be chosen such that ¢ o T{d;) = x(d;)}. Furthermore, very much unlike
other sceneries, ¢ has the property, that once we know the position of a nearest
neighbor walk T at one point in time and the observations ¢ o T' the nearest
neighbor walk produces on the scenery ¢, we can immediately reconstruct the
nearest neighbor walk T. As a matter of fact, we can proceed inductively on
the time: If at time ¢ we know where the nearest neighbor walk T is, then at
time ¢ -1 it must be either one to the right or one to the left from where it was
at time . Among thege to possible points for the position of T at time £+ 1 one
has color 1 and one has color 0. Thus, by looking at the color record produced
by T on ¢, we see the color observed at time ¢ + 1 and thus known on which
of the two possible points T is at time £+ 1. We are now going to define the



representation of the scenery £ as a nearest neighbor walk R using what we have
explained above about the four periodic sceneries with period 0011. Basically
the nearest neighbor walk R which represents the scenery £ is simply the only
nearest neighbor walk generating £ on the periodic scenery ¢ and starting at the
origin. However if R is to start at the origin we need ¢(0) = £(0). We will thus
define two periodical sceneries ©° and ¢! having both same period 0011, but one
of them being for the case £(0) = 0 and the other being for the case £(0) = 1.
This is done in the following way: Let % , ¢! : Z — {0,1} be two sceneries
both with period 0011 and such that (¢°(0), ¢"(1),%%(2),4%(3)) = (0,0,1,1)
and (¢'(0), ¢* (1), (2),¢'(3)) = (1,1,0,0). Let ¢ be the random scenery
which is equal to ® when £(0) = O and equal to ¢! when £(0) = 1. Note
at this stage, that ¢ is only random to the extent that £(0) is. However,
when we know the observations £ o § we also know £(0). (This is s0, because
£(0) = £(S(0)), since the random walk {S(k)}x>o starts at the origin.) Thus,
when we have the observations £ o §, we also know whether ¢ = ¢® or ¢ = ¢!.
Let R: Z — Z be defined to be the only nearest neighbor walk starting at the
origin and generating £ on . This means that we request that R(0) = 0 and
that for all k € Z we have p{R(k)) = £(k).

How can we now use the just defined representation of the scenery € as a
nearest neighbor walk to reconstruct £ When we are given the observations
£ 08 we don’t know R a priori. However, the iterated nearest random walk
RoS:k+— R{(S(k)) N— Z i3 well known to us if we have the observations
£0S5. (We leave it to the reader to check that Ro S is indeed a nearest neighbor
walk.) As a matter of fact, since composition of functions is associative, we get
po(RoS8)=(poR)oS =£085. Now, the expression on the left side of the
previous equation is the observations produced by the nearest neighbor walk
R o S on the scenery ¢, whilst the expression on the left are the observations
we are given as input to reconstruct the scenery £ and which are thus known
to us. Thus the previous equation means that the nearest neighbor walk Ro §
generates the observations £ o § on the scenery . Now the nearest neighbor
walk R o S starts at the origin and we also know whether ¢ = % or p = .
But, we saw that a nearest neighbor walk is uniquely determined once we know
where it starts and the observations it produces on the periodic scenery ¢° or ¢!.
Thus, since we know £ o S, we also know Ro 5. So we can from now on assume
that Ro.5 is known to us and use RoS for our partial reconstruction algorithms.
To explain how we can use R o § for our partial reconstruction algorithms we
will need a few definitions. Let T': D — Z be a nearest neighbor walk. Let
ti, t2 € D be two integer numbers and let z;, 2 € Z be two integer numbers
different from each other . Then, we call (i, 2) a crossing by T of (z1, z2) iff
(T(t1),T(¢2)) = (21, 22) and for all integer ¢ strictly between {; an {2, we have
that T'(t) is strictly between z; and z,. If {2 > #; we say that the crossing
(t1,%2) is positive, otherwise we say that it is negative. If [t — f2] = |21 — 22|
we say that the crossing (f:, {2) is straight. Note that a crossing corresponds to
going from a point z; to a point z2 such that we leave the point 2, immediately
after we were there and then don’t go back to z; before we haven’t arrived in z5.
The straight crossing corresponds to the idea of going from a point z; to a point



T2 in a shortest possible way, i.e. going from a point z; to a point s without
going back and forth but walking only in one direction between z; and x5. Let
(21, t2) be a crossing by T of (%1, z2) and (I3, t2) be a crossing by T of (z3,24).
Then, we say that (ta, £4) is the first crossing by T of (z3,2z4) during (¢, ¢3) iff
ts, t4 € [min{tl,tg},maz{tl,tg}] and (£3, &) is the crossing by T of (23, Z4)
which lies in [min{ti, 2}, maz{ti,t2}] (i.e. ts, ts € [min{t, 12}, maz{t1,t2}])
and i3 closest to ¢;. (Note, that this definition makes sense, because the different
crossings (isi, £4;) by a nearest random walk T of an interval (z3,%4) have their
intervals [min(£s:, ta:), maz(ts;, t4;)] mutually disjoint. Thus it makes sense to
speak of the crossing by T of (23, x4) which lies in [min{t;, 2}, maz{#,¢2}] and
is closest to ¢;.) The idea behind the first crossing is simple. When we follow
the path of T from ¢, to {2 and by doing so cross for the first time from z3 to
x4, then we are at the so called first crossing by T of (x3,4) during (1, t2).
Next we are going to state the main properties about iterated nearest neighbor
walks . We leave the proof to the reader.

Lemma 5 LetT, : D, — D} and T}, : D, — Z be two nearest neighbor walks.
Then, the composition Ty 0T, : D, — Z k — Ty(T,(k)) is itself a nearest
neighbor walk. Furthermore, (t,t2) i3 a crossing by TooT. of (11, ¥2) iff (t1,12)
is a crossing by T, of a crossing by Ty of (y1,y2). In other words (t),%2) is a
crossing by T, o Ty of (31, ¥2), iff (81,22) is a crossing by T, and (Tu(t1), Ta(¢2))
is a crossing by Ty of (1,y2). Furthermore, (i1,%2) is a straight crossing by
Ty o Ty of (n,y2) iff (t1,t2) 43 a straight crossing by T, and (Tu(t1), Tu(t2))
15 a straight crossing by Ty of (y1,y2). Bventually, let (ys,y4) be a couple of
integer numbers, then (t3,t4) is the first crossing by Ty o T, of (y3,y4) during
(t1,t2) iff (t3,%4) is the first crossing by T, of (Tu(ts), Ta(ta)) during (b1, t2)
and (To(t3), Ta(ta)) is the first crossing by Ty of (y3,y4) during (Ta(t1), Ta(t2)).

How can we now use this lemma for our reconstruction purposes? Let
us imagine that (y1,y2) and (ys3,y4) are both such that R crosses each one
of them only once and that y, and y3 lie between y; and y,, that is yz,y3 €
[min{y1, ya}, maz{y1,¥4}]. (Thisis a.s. never going to be the case, because R is
recurrent. We just use this assumption for pedagogical purposes at this stage.)
Let (z;, x2) designate the only crossing by R of (y1,¥2) and let (x3, z4) be the
only crossing by R of (y3,%4). Then, we could reconstruct almost surely and up
to equivalence the piece of scenery obtained by restricting the scenery £ to the
interval between y; and g4, i.e. we could reconstruct up to equivalence the piece
of scenery &|[min {y1, ¥4}, max {y1,¥2}]. As a matter of fact, by lemma 5, when
we observe a crossing (¢1,22) by Ro S of (y1,¥:2), we know that this crossing
is also a crossing by S of a crossing by R of (3,¥%2). However, we assumed
that there is only one crossing (zy, z2) by R of (31,%2), and thus the crossing
(t1,t2) by S must be a crossing by 5 of the crossing (z;, z2). Thus, in this case,
whenever we observe a crossing (2;,¢2) by Ro S of (y1,y2), we know where § is:
S(t1) = 21 and S(#3) = z2. The same holds true of course for (y3,%4). Now,
when the random walk S goes from z; to 24 in & shortest possible way, i.e. ina
straight way, it will first cross (x,, z2) and then (z3, z4) . Thus, S produces, by
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going from z; to 4 at shortest possible time from each other, a crossing by Ro§
of (y1,%2) followed by a crossing by Ro S of (y3,%1). These crossings appear
in the shortest possible time after each other. Thus, in order to reconstruct
Ellmin {y1,y4}, maz {y1,y4}]), we simply need to take a crossing (t;,f2) by
Ro S of (y1,y2) and a crossing (¢3,%4) by R oS of (y3,y4) minimizing |t; — #4|.
If |¢; — £4f is minimal, then the observations £ o S restricted to the time between
t; and t4 are a piece of scenery equivalent to &|[min {y1,y4},maz {y1,1a}]
(Because then, during time t; to ¢4, the random walk goes from z; to x4 in a
straight way, thus revealing in the observations during that time, the piece of £
comprised between the points z; and z4.) Now, the problem is that {R(k)}xez
is recurrent and thus the above described reconstruction method doesn’t work.
{(As a matter of fact, {R(k)}recz is a simple random walk starting at the origin
as one can easily check.) Thus, all the pairs of integers (y¥:,y2) will get crossed
by {R(k)}rez infinitely often a.s. Thus, if we observe different crossing by Ro S
of {411, y2) we can no longer be sure that as crossing by 5, they are on the "same
spot”. Rather, these crossings by Ro S of (y1,y2) can be crossings by S of
different crossings by R of (1,y2). In order to still be able to find ocut when
”S is at the same spot”, we need to be able to recognize when two crossings
by Ro S of the same (y1,y=2) are also crossings by § of the same crossing by R
and when they are not. In order to achieve this goal, we are going to introduce
a statistical test. This statistical test will be called *Test for two crossings
by Ro S to be crossings by S of the same place”. Let g1, y2 be two integers
lying on the same side of 0 and such that |yy — y2| = 3n. Then, we define for
i = 1,2,...,n the i-th three unit interval of (y1,%2) to be equal to the ordered
couple of integer points (1 +3( ~1)(y2— 11 )/ly2 — 1) 41 +3i(g2 —11) w2 —~ 11 )
In other words, we partition (y;,¥:) in n oriented integer intervals of length 3
having same orientation as (y1,y2). Let (f1,12) be a crossing by a nearest
neighbor walk T of (y1,32). (Again we assume that [y~ 3] = 3n.) We
define the ”associated word of the crossing (¢;,%2) by T to be the binary word
w = (w(1),...,w(%), ..., w(n}) with n bits such that w(i) = 1 if the first crossing
of the i-th three umnit interval of (3,y2) by T during (#;,%2) is straight and
w(i) = 0 otherwise. Thus, the binary word associated with a crossing records
which of the three unit intervals (of the couple{y;, ¥2) which gets crossed), gets
crossed for the first time during the crossing in a straight way and which don’t.

Test for two crossings by Ro S to be crossings by S of the same place
Let y1, y2 be two integers such that |y — y2| = 3n. Let (#1,£2) be a cross-
ing by Ro S of (1,y2) having associated binary word w = (w(1),...,
w(z),...,w(n)). Let (f;,f2) be another crossing by R o § of (31,42)
having associated binary word w = (w(1),..., @(i),..., @{n)). We
want to test whether (¢;,%2) and (%;,%2) are crossings by S of the same
place, i.e. if (5(81),5(22)) = (S(h}),S(%:)) holds. Our test statistic
will be the number of common straight crossings, i.e.> ., w(i) x @(i).
When 37, w(i) x ®(i) 2 a((2)? + (2)*)/2, we decide that the cross-
ings (t1,t2) and (%;,%;) are crossings by S of the same place, i.e. that
{8(1), S(t2)) = (S(f1), S(£2)), otherwise we reject that hypothesis.
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What is now the distribution of the test statistic 3., w(¢) x®(¢) under each
of the two hypothesis? To be able to answer that question precisely, we are
going to introduce a numeration of the crossings. (This is a relatively important
point, since if we introduce the wrong numeration we get extremely complicated
distributions for the associated words.) Let y; and y2 be two integers different
from each other. Let T : D — Z be a nearest neighbor walk. Then, for
i > 0, we call i-th crossing by T of (y1,y2) , the i-th crossing (¢1;,%2;) by T of
(1, y2) after O ( if it exists). This means that (£1;,%2;) is the crossing by T of
(#1,92) such that #;;,22; > 0 and there are exactly i — 1 crossings (£1;,%2;) by T
of (1,y2) such that ¢,;,%2; € [0,min{t1;,t2:}]. For ¢ <0, we call i-th crossing
by T of (1,y2) (if it exists), the last |i]-th crossing (£1:,%2:) by T of (y1,%2)
before zero. This means that (#;,%2;) i3 the i-th crossing by T" of (y1,y2) iff
it is a crossing by T of (y1,y2) such that £1;,#2; < 0 and there are exactly i — 1
crossings (17,t2;) by T' of (y1,y2) with 215,225 € [maz{t1i,t2i},0]. If there
exists a crossing {¢10,%20} by T of (1,¥2) containing 0 in its interval, i.e. such
that ¢ € [min {t10,%20},maz {ti0,%20}], then we call that crossing {#iq,%20},
the O-th crossing by T of {31,%2). (Note, that the different crossings (&1, £2;)
by T of (y1,¥2) have their intervals [min{tii,2:}, maz{tii,t2:}] disjoint from
each other. Thus, it is always possible to introduce a strict order on the cross-
ing by T of (y1,%2), in the way defined above and thus the above definitions
makes sense.) Now, whenever we have a collection of integer couples (yi1, ya1)
with [ € L such that the different intervals [min{yu, y2}, mez{y1i, y21}] are
mutually disjoint, then all the different crossings (ty:,2i:) by T of the differ-
ent (y11,y2) have their intervals [min{tii;, t2ii}, max{ty;, ta1;}] disjoint. Thus
if {T(k)}xep is a simple random walk starting at the origin, by the strong
Markov property, ”what happens with T” during these different crossings is in-
dependent. In other words, the random vectors (T'(¢1:), T{(twi + 1), Tt +
2), ey T(%134)) for all the different li’s are independent of each other. If none
of the intervals [min{y,v2r}, maz{yu, y21}] contains 0, the random vectors
(T(t1:), .-, T(t11:)) are also identically distributed for those (y11,y21) having
same length (i.e. such that Jyy; — yx| is the same). I (311, y2) is such that
0 ¢ Imin{yu, yu}, maz{yu,yu}] and |y1; — yai| = 3, then the probability that
the i-th crossing by T of (¥, ya:) be straight is equal to 3. (Assuming that
{T'(k)}rep is a simple random walk starting at the origin.) To see this, note
that on an interval (y1;, y2:) of length 3 for each odd number j bigger or equal
to three, there is exactly one path of length j starting at yn at time 0 and
arriving at time j at yo;, in such a way that between time O and time j it
never goes back to y1;. The probability to follow a given path of length j with
a simple random walk is (1)7. Thus the probability for the i-th crossing of
(12, ¥21) where Jy1; — %21| = 3 by a simple random walk to be straight, is equal
to 3P/IEP +GP+(3)"+..] =% Now {R(k)}rcz and {S{k)}ren are
two independent random walks starting both at the origin. As before, let
¥1, Y2 be two integers such that |y;~ yof = 3n. Let (¢1,12) be a crossing by
R o S of (y1,¥2) having associated binary word w = (w(1),...,w(3), ..., w(n)).
Let {%1,%2) be another crossing by R o § of (y1,%:) having associated binary
word @ = (@(1), ..., w(%),..., @(n)). We can now apply what we explained for
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a simple random walk T to S and get:

Case I: when (S(t1), S(t2)) = (S(f1), S(£2)).

By lemma 5, w(i) , ®(i) = 1 iff the first crossing (%1;,Z2:) by R during
(S(1),8(t2)) of the i-th three unit interval of (y1,¥2) is straight and the first
crossings by S of (214, 22:) during (¢;,¢2) and during (Z;,%2) are both straight
Since, the probability of a crossing by a simple random walk of a three unit
interval to be straight is equal to % and since, the processes {R(k)}rcz and
{S(k)}xen are both simple random walks independent of each other, we get in
the case (S(t1), S(t2)) = (S(f1), S(I2)) that P(w(z) x w(i) = 1) is equal to (3)3.
Furthermore, because of the strong Ma.rkov property of the simple random wa.lk
we get that the different w(i) x w(i)’s given that (S(¢1), S(¢:2)) = (S(f1), S(tg)),
are independent of each other. Thus, in case I, our test statistic 3., w(i)x (%)
has a binomial distribution with parameters n and (2)3.

Case II: when (S(t1), 5(t2)) # (S(f1), S(E2)).

By ourlemma, w(i) , @(i) = 1 iff the first crossings (z1, 2;) ,resp. (£, %2;)
by R during (S(t1), S(22)) resp. during (S(%), S(£z)) of the i-th three unit in-
terval of (y1,¥2) are both straight and the first crossings by S of (z14,22:) ,
resp. (%1, %2i) during (¢1,t;) resp. during (%;,%2) are both straight. Since, the
probability for a crossing by a simple random walk of a three unit interval to
be straight is equal to 3 and since, the processes {R(k)}rez and {S(k)}ren
are both simple random walks independent of each other, we get in the case
(S(t1), 5(t2)) # (8(21), 5(22)) that P(w(i) x ®(3) = 1) is equal to (£)!. Fur-
thermore, because of the strong Markov property of the simple ra.ndom walk,
we get that the different w(i) x @(3)’s given that (S(t1), S(t2)) = (S(4), S(&2)),
are independent of each other. Thus in case II, our test statistic has a binomial
distribution with parameters n and (3)4.

Note that the test defined above has its error of first type and second type
both exponentially small in n. (Large deviation principle.) Thus there exists a
positive constant ¢ not depending on 7, such that in both cases, the probability
of an error by our test is smaller than ¢~ °*. We are next going to formulate
this in a lemma.

Lemma 6 Let y,, y2 be two integers lying on the same side of zero and such
that [;1— y2| = 3n. Let ! and k be two integers different from zero and let
¢ and j be two natural numbers. Let w = (w(1),...,w(s),...,w(n)) be the
characteristic word associated with the crossing by Ro S of (y1,y2) which is
equal to the i-th crossing by S of the l-th crossing by R of (y1,y2). Letw =
(w(1), ..., W(8),...,4(n)) be the characteristic word associated with the crossing
by Ro S of (yl,yg) which is the j-th crossing by S of the k-th crossing by R of
(y1,92). Then, ifl =k, we have that 3" »_, w(s) x w(s) has a binomial distribu-
tion with parameter n and (3)3. The pmbabtlzty of an error by our test in this
case, i.e. e~ > P(3°0 w(s) x W(8) < n((2)% - (3)*)/2)), where c is a posi-
tive constant not depending on n. Ifl# k, we have that Yoveg w(s) x w(s) has
a binomial distribution with parameters n and (2)*. The pmbabzhty of an error
by our test in this case, i.e. e~ > P(1_, w(s) x @w(s) > n((2)% +(3)%)/2)),
where ¢ is a positive constant not depending on n.
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We will now need the following definitions. Let (z}¥,z3*) designate the
first crossing after zero by R of (0, 3n) or of {0,—3n) which ever of the two
comes first after zero. Thus, if (z]F,z3F) designates the first crossing after
zero by R of (0,3n) whilst (xl,, , 257} designate the fist crossing after 0 by R
of (0, —3n), then, when 27} < 2}t we have (z7+,237) is equal to (a7 ,x2+)
whilst otherwise (:::1 t,237) is equal to (z75", 25;). This means that z* is the
first hitting time by {S(k)}xeo on {—3n,3n}. In a similar way, let (a:1 1 &3 )
designate the last crossing before zero by R of (0, 3n) or of (0, —3n) which ever of
the two comes last before zero. Because R is a nearest neighbor walk starting at
the origin we get that [-n,n] C [z7~, 237). Furthermore, the probability for the
first hitting time by a simple random walk starting at the origin at {-3n,3n}
to be bigger than n? is exponentially small i n. We already saw that z3+
the first hitting time of R on {—3n,3n} after zero. Furthermore, 23~ is the
first hitting time of the reversed random walk k — R(—k) on {-3n,3n} after
zero. Thus with high probability [z3~,x3%] C [-n3,n%]. Now, recall that
we want our partial reconstruction algorithm at level n to reconstruct a piece
of the scenery £ which is the restriction of £ to an interval containing [-n,n]
and contained in [-n3,7n3]. Thus, if we could reconstruct £ between the point
x5~ and the point z31, we would in most cases meet the requirement which
we put on our partial reconstruction algorithm at level n. Now, our partial
reconstruction algorithm at level n will try to find a siraight crossing by S of
(z37,23%). During such a crossing the observations £ o S are a copy of the
piece of scenery £|[z5~,z53%]. Thus, if we could construct an algorithm capable
of finding with high enough probability a straight crossing by S of (z7,z37)
, our problem would be solved (i.e. the problem for the partial reconstruction
algorithm at level n.) Let now (t;"",t;"*'), resp.(t1~,57) designate the first
crossing by S of (z7%,x3%), resp. (z77,257) . {7+ < £}~ then define (¢} , 12 )
be equal to (£}, t“"‘) and define (£7,12) to be equal to (¢7~,437). K¢t >~
then define (¢ ,£5 ) be equal to (77,137} and define (13,13} to be equal to
(e, at). Now we saw that crossings of pairs with disjoint intervals have their
interval disjoint too. This means that all the crossings (z7;, z5;) by R of (0,3n)
or of (0,—3n) which are different from (z}%,z5*) and from (z}~,2}~) must
be outside [z37,27%], i.e. 7,22 ¢ J=5~,23F[ Now § starts at the origin
and thus S(0) € [z77,27*]. So, the first time S crosses a crossmg by R of
(0,3n) or of (0,—3nr) it must necessarily be a crossing by S of (.'1:l + z3%) or of
(z7~ ,:J:2 7). Let us call (z7,23) the one crossing of the two (z]+,z5*) or of
(z7,237) which gets first crossed by 5. As a maiter of fact, when 5 is at
[7~,27F] for § to get to another crossing by R of (0, 3n) or of (0, —3n), S must
first cross (z7%,23%) or (#77,25 ) in order to reach another crossing by R of
(0,3n) or of (0, —3n). By lemma 5, the first time § crosses a crossing by R of
either (0, 3n) or (0, —3n), this is also the first crossing by Ro § of either (0, 3n)
or (0,—3n). Thus we get the following characterization of the crossing (i ,£3 ):
(¢7 ,t8 ) is the first crossing by Ro S of either (0,n) or (G, —n) which ever of
the two (0, 3n) or (0, —3n) gets crossed first by Ro S . (Note that (27,23) was
defined in such a way that (S(t1), S(¢2)) = (27,2%).) Thus we can construct
(t} ,t% ) if we have Ro §. On the other hand, we can use our test for two
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crossings by o S to be on the same place, in order to try to find (£3,£7). As
a matter of fact (13,13) can be characterized as using the following idea: after
a positive crossing by S of (S{¢3 ), ST )) = (23,27) we have that 5 is at the
point 7. So from there on the first time S will cross again a crossing by R of
(0,3n) or (0, —3n) ( that is the first time after that time when S is at z} that
we observe a crossing by R ¢ S of (0,3n) or (0,—3n) ) it will either be that S
crosses (z7%,23%) or (277, 237). This gives us the following characterization
of (13,13): the first time that after a positive crossing by S of (z3,z}) the next
crossing by S of (z7*,23%) or (z7~,23~) is not a crossing by S of (z},z}),
(i.e. it is a crossing by S of the one (z7%,z3%) or (z]~,z3~) which is different
from (z7,23)). Because of lemma 5 this characterization is equivalent to the
following: (¢3,%}) is the first crossing (s,t) 8 < £, by Ro S of (0, 3n) or (0,-3n)
for which the following holds: the last crossing by R o § of (3n,0) or (—3n,0)
before that crossing, i.e. before time s, i3 a positive crossing by § of (z3,z])
and (s,1) is not a crossing by S of (z§,z}). (Thus,it is a crossing by S of the
one (z7%,23%) or (z},z3~) which is different from (z7,23).) Now we can
use the above characterization of (13,{}) to determine (¢3,47) using our test for
crossings. As a matter of fact, with our test for a crossing by Ro § to be a
crossing by S on the same place, we can with high probability find out whether
a crossing by R o S of (0,3n) and of (0, —3n) are also crossings by S of (z7,z3)
or not. (This is so because we know that (¢ ,£3 ) is a crossing by S of {z7,23).
Thus we can compare other crossings by Ro S of (0,3n) and of (0, —3n) with the
crossing (¢7 ,t3 ) by RoS using our test for crossings.) Thus we will proceed as
follows in order to get an estimate (£3,£}) for (t3,¢}). We take the first positive
crossing by R o S of (0,3n) or (0, —3n) which our test identifies as not being a
crossing by S of (x},z%) but such that the last crossing by Ro S of (0,3n) or
(0, —3n) before £3 is identified by our test for crossings to be a positive crossing
by S of (z3,27). We explained how our partial reconstruction algorithm finds
(7 .13 ) and how it can with high probability find (3, t3).

Let us go on with our informal discussion of the partial reconstruction algo-
rithm at level n. The next step for our partial reconstruction algorithm at level
n will be to try to find a straight crossing by S of (S{t§ ), S(t3 )). (Note that
{S(t3 ), S(t3 )} = {z37,25~)}. We already saw that in most cases, if we are
able to determine a straight crossing by S of (z3%,z3™) then we have solved the
problem which we ask the partial reconstruction algorithm at level n to solve.)
The idea which comes first to mind now for finding such a straight crossing by
S, would be to use our test in order to find a crossing by S of (z3,z}) followed
in minimal time by a crossing by S of (z3,27). Here (23,27) = (S(t2), S(t2)).
In this simple setting this doesn’t quite work. As a matter of fact, the distance
between the points S(t7 ) and S(£} ) is typically of order n?. The probability
for a simple random walk to cross an interval of length n? in a straight way is
negatively exponentially small in n2. Thus we need about exp(n?) crossings by
S of (5(13 ), S(t7 )) = (z3,2}) before we get a straight one. However our test
to test whether a crossing by R o S is also a crossing by S of (S(t7 ), S(t3 ))
has a negati‘ye exponential probability of making a mistake. Thus, if we apply
that test ¢™ times, many mistake will happen. So before we will be able to
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identify a straight crossing by S of (z7,z7) our test will have made a mistake.
This problem can be fixed in the following way. On top of the crossings by
Ro S of (0,3n) and (0,—3n) we will also look at the crossings by Ro S of
(0,3n®) and (0,—3n%). These crossings by Ro S of (0,3r°) and (0, -3n%) will
onlg besused to be able to find a lot of returns of S close to the origin. Let
(t3" ,£3 ) be the first crossing by Ro § of (0,3n%) or of (0, ~3n®) which ever
of the two gets crossed first. Thanks to our test we can with high probabil-
ity find approximately e™ crossings by S of (S(t’l" ),S’(t;"5 )) before making a
mistake. This is more then needed to get with high probability an interval
of Blength n? to get crossed by S in a straight way shortly after one of these
e™ crossings. We will thus restrict our attention to the crossings by Ro S
of either (0,3n) or (0,—3n) which appear within time n?® from a crossing
which we identified by our test as being a crossing by S of (S(t*° ), 5(t2° )).
Let w and @ be two binary words having same length. Then, we say that
w is bigger than 1, iff for each bit for which %(i) = 1, we also have that
w(i) = 1. Let w™ designate the characteristic word of the crossing (3 ,#} ) by
RoS. Let wj, designate the associated word of the crossing (£2,#7) by Ro S.
When, can a crossing by Ro § of (R(S{t3 )), R(S(f} ))) have its associated
word strictly bigger than w™. By Jemma 5, this can only happen if it is a cross-
ing by § of a crossing (z.,zs) by R of (R(S(f )), R{S(t] ))) and the crossing
(a,2s) by R must be such that for each i € 1,2,...,n for which w™({) = 1
we also have that the first crossing by R during (z., ) of the i-th three unite
interval of (R(S(¢7 )), R(S(t7 ))) is straight. We will prove that with very
high probability the only crossings by R of (R(S(¢3 )), R(S(t7 })) which come
within n28 from the crossing (S(£2° ), S(t3° )) and which satisfies that property
i8 (S(&7° ), S(¢2" )) itself. Thus, in this case, if within time n?® from a crossing
by S of (S (t’i‘5 ), .‘5'(t'£,_‘ls )) we cbserve a crossing by RoS of (R{S(t3 )), R(S(t )))
having associated word bigger than w™, then this must be a crossing by S of
(S(13 ),5(t7 )). The same holds for (R(S(&} )), R(S(t7 })) and w},. We can
now explain how our partial reconstruction algorithm at level n work:. We take
the set of all the couples of natural numbers (¢,,%;) where {, < ¢, and such
that ¢,,%, lie within time %% from a crossing which we identified as a crossing
by S of (S(ti‘° )3 .5'(t’2"'5 ))and such that e™ > t,,¢, and such that there exists
t > t, and s <{; such that (¢,,t) is a crossing by Ro.S of (R(5(t3 )), R(S(:} )))
having associated word bigger than w™ and such that (s, ;) is a crossing by Ro S
of (R(S(t3 )), R(S(t7 ))) having associated word bigger than w},. Among all
the couples (t,,%5) satisfying all of the above conditions, we pick one (t2,:7)
which minimizes £, —¢,. In other words we pick two crossings at minimum
distance from each other (in the sense that the distance between the ends which
are furthest away from each other is minimized.) For the two crossings we
require that they both be within time n2® from a crossing which we identified as
a crossing by S of (E;'(t{lls ),S’(tf.,_"s )) and that both crossings come before time
e™. Furthermore we require that the first crossing of the two be a crossing
by Ro S of (R(x%), R(z7)) (this means that it is a crossing of either (3n,0) or
(—3n,0)) and that it bas associated word bigger than w™. In a similar way,
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we require that the second of the two crossings picked be a crossing by Ro § of
(R(x%), R(z})) which has its associated word bigger than wf,. The piece of
scenery which is going to be the output of the partial reconstruction algorithm
at level n will the restriction of the observations £ o § to the interval comprised
between the crossings which we pick. (To be more precise let us say that we
take the interval between the ends 7 and £gwhich lie furthest away from each
other of the crossings which we picked.) If everything goes correctly {which
according to our above explanations should be the case with high probability),
the couple (£Z,t3) should be a straight crossing by S of {z3,27). Our partial
reconstruction algorithm at level n has as cutcome the piece of scenery obtained
by restricting the observations £oS to the space between £ and £5. (This means
that the outcome of the partial reconstruction algorithm at level n is equal to
the following piece of scenery: k — £(S(k)) [t8,t3] — {0,1}.) In the case
that the couple (t7,2) is a straight crossing by S of (z,27), this means that
the outcome of the partial reconstruction algorithm at level n is equivalent to
¢|lmin{z3,z} }, maz{zF,z7}] and thus is equivalent to £|[z3~,23+]. Let us, at
this stage define the partial reconstruction algorithm at level n in a precise way:

Algorithm 7 The input of the partial reconstruction algorithm at level n are
the observations {0 S. Step a) Let ¢ : Z — {0,1} be the four periodic scenery
such that (v(0), (1),4(2),(3)) = (0,0,1,1) when £(S(0)) = 0 and such that
(¢(0), ©(1),(2), ¢(3)) = (1,1,0,0) otherwise. Step b) Construct RoS. Note
for this purpose, that B o S is the only nearest neighbor walk starting at the
origin and generating the observation £ 0§ on ¢. Thus Ro § is the only
nearest neighbor walk starting at the origin and such that for all integer k, we
have R o S(k) = £(S(k)). Step ¢) Find the first positive crossing by Ro S
of (0,3n) or (0,—3n) which ever gets crossed first. Call it (17,13) . Let w™
designate the word associated with the crossing (t3,t7) by RoS . Step d) Find
the first positive crossing by Ro S of (0,3n) or (0, —3n) for which the following
holds: our test indicates it not be o crossing by S of (S(t7), S(&2)) (by this we
mean that when we compare that crossing by Ro S with the crossing (t1,12) our
test indicates that S is on different places for the two crossings) but such that
before that, the last positive crossing by Ro S of (3n,0) or of (—3n,0), is such
that our test indicates it to be a crossing by S of (S(13),S{t7)). (By this we
mean that when we compare that crossing by Ro S with the crossing (£1,12) our
test indicates that S is on the same place.) Call that crossing (£,63). Let
wy, designate the word associated with the crossing (£5,13) by Ro §. Step e)
Find the first positive crossing by Ro § of (0,3n%) or (0, —3n5) which ever gets
¢rossed first. Call it (t;‘a, 25) . Step f) Up to time e find all the crossings
by Ro S of (0,3n%) or (0, —3n5) which our test for crossings identifies as being
crossings by S of (S(t2°),8(t3°)). LetT™ C [0,e™") be the integer random set
of the points up to e™ which lie within time n2® of a crossing which our test
for crossings identifies as being a crossing by S of (S(¢°), S(13°)). Step g) Let
{(t3;, 15,)|é € I} C ™ x ™ designate the set of all positive crossings by Ro § of
(R(S(22)), R(5(t}))) which lie within '™ x I'™ and which have there associated
word bigger then w™. Step k) Let {(£3;,t3;)|7 € J} C I™ x ™ designate the set
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of all positive crossings by RoS of (R(S(t3)), R(S(t}))) which lie within [ xI'®
and which have there associated word bigger then w™*. Step i) find a crossing
(83a,875r) in {(t5;,41,)]i € I} and a crossing (855,13, ) in {(3;,t3,)lj € J} such
that 3y —t3;, is minimal under the constraints i3, —13., > 0. (Equivalently, find
a couple (i1, j1) € I'x J minimizing 13, —t3; under the constraint toy—t32 >0.)
Put 17 to be egual to 13, anditf to be equal to t],. Step j) The outcome of our
partial reconstruction algorithm at level n is going to be the observations £o0 S
restricted to the integer interval [t3,t5]. More precisely the output of the partial
reconstruction algorithm at level n is equal to the piece of scenery k — £(S(k))
[£2,£3) — {0,1).

5 Proof that the partial reconstruction algorithm
works

In this section we are going to formally prove that the partial reconstruction
algorithm at level n works with high probability. Recall that we say that the
partial reconstruction algorithm at level n works when there exists an integer
(random) interval I*, such that [-n,n] C I™ C [-n3,7n%] and such that the
output of the partial reconstruction algorithm at level n is a piece of scenery
equivalent to the restriction of £ to I™. (We denote that restriction by £|I™.)
Recall also that E* designates the event that the reconstruction algorithm at
level n works. Let E™ be the complement of E®. This section is devoted to
proving that -, P(E™) < co. This together with lemma 4, proves then that
the main result of this paper holds, i.e. that one can a.s. reconstruct a scenery
up to equivalence if one is only given the observations £ o §. To prove that

ae1 P(E™) < oo holds, we are going to proceed as follows: We will define 7
events related to E*: ET, EZ, ..., E7. We will show that when E}, EZ, ..., E7 all
hold, then E™ also holds. In other words, Ef N EZ N...N EF C E™, Then we will
show that for each E with i € 1,2, ...,6,7 the probability of the complement
of E7 is finitely summable over n. (E]® will designate the complement of EP.)
This proves then that 3.._, P(E™) < oo, since P(EP) + P(E?) + ... +
P(E?€) > P(E™°). Before starting to prove that E} N EZ N...NE} C E™. Let
us define the events E7, EF, ..., E}.

Let E} be the event 23+, 3~ C [-n®,n%). Recall, that (z7+,25%) was
defined to be the first crossing after zero by R of {0,3n) or of (0,—3n) which
ever of the two comes first after zero. Furthermore, (z7'~,z5~) was defined
to be the last crossing before zero by R of (0,3n) or of (0, —3n) which ever of
the two comes last before zero. Thus, E} = {R([0,7%) N {-3n,3n} # @ and
R([-n3,0]) N {—3n,3n} # 0).

Let Ef be the event that S visits both points —»® and n® before time n'®,
that is Eff = {—n%,n® € §([0,n!9])}.

Let EF be the event that our test for crossings by R o S to be crossings
by S of the same place, does not fail a single time for all crossings by Ro §
of (0,3n) or {0, —3n) which have the numbers defining them smaller than n!5.
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Thus Ef ={ Forany ! , k € Z and i and j € N such that n'® > |l|, |k|,4,j our
statistical test for crossings to be on the same place, will determine correctly if
I = k or not, when comparing the two crossings by R o § which correspond to
the i-th crossing by S of the I-th crossing by R of (0, 3n) or (0, —3n) and to the
j-th crossing by § of the k-th crossing by R of (0,3n} or (0, —3n).}

Recall, that (i7°,t3") designates the first crossing by R o S of (0,3n5) or
(0,—3n®) which ever of the two gets crossed first by Ro §. Let E} be the
event that up to time e™ our test for crossings by Ro S to be crossmgs by S
of the same place never makes a mistake when comparing the crossing (7", 12°)
to another crossing by R o § of (0,3n%) or (0, —3n%). That is, E} = {for each
crossing (t,8) by Ro S of (R(S(ti‘s)),R(S(t’z‘s))) where e®* > t,8 , our test
recognizes correctly whether (S(¢), S(s)} = (S(t}"), S(¢5")) or not.}

Let ET be the event that the first crossing after 0 by R of (0,3n°) or of
(0, —3n°) happens during [0,71!] and the last crossing before 0 by R of (0, 3n5)
or of (0,-3n%) happens during [-2n'1,0]. More precisely Ef = {R([0,n**]) N
{=3n%3n°} # 0 and R{[-n!,0]) N {—3n%,3n%} # B}.

Let E} be the event that in the interval [-n?%,n2%)] the only crossing by B
of (3n,0) or (—3n,0) having associated binary word bigger than w™ is (23, 2])
and the only crossing by R of (0, 3n) or {0, —3n) having associated binary word
bigger than w3, is (z3,z7). In other words, E} = {for any crossing (z,,z,) by
R of (3n,0) or (—3n,0) for which z,,z, € [-n%,n%] and (z,,2z,) # (23,27)
there exists # such that w™(¢) = 1 and » > 7 but the first crossing by R of the
i-th three unit interval of (R(z,), R(z,)} during (z,,z,) is not straight}n{for
any crossing (x,,x,) by R of (0,3n) or (0 —3n) for which z,,z, € [-n?8,n2)
and (z,,x;) # (23,27) there exists i € n such that wj,(¢) = 1 but the first
crossing by R of the i-th three unit mterval of (R(z,), R(z,)) during (z,,z,) is
not straight.}

Let E} designate the event that before time e™, S crosses (—n3,n3) in both
directions in a straight way within time n? from a crossing by S of (a:{‘s,:cg‘ﬁ).
That is B} = {there exists (84,%5), (88,%s), (8c,%c) Such that s, <f, < 8 <
th < 8. <t.<e",|ts—t] < n? and such that (s,,t,) is a crossing by
S of (S(t7°), S(t5°)) whilst (85,,) is a straight crossing by S of (—n3,n%) and
(8¢, t.) is a straight crossing by S of ( n%,-n%).}

We are now ready to start our proofs:

Proof that E}' N EF N..n EF N E} C E*. Let us recall once more, that
(7T, z5t) was deﬁned to be the ﬁst crossing after zero by R of (0,3n) or of
(0,—3n) which ever of the two gets crossed first after zero. In a similar way,
(z]~,2%~) was defined to be the last crossing before zero by R of (0,3n) or of
(0, —3n) which ever of the two comes last before zero. (z,z}) was defined to be
the one of the two crossings (27~,23~) and (z7%,23") which gets first crossed
by S whilst (z%,z]) was defined to be the one which gets crossed second. Thus,
{(2}",237), (=T ,x,"')} = {(z?,2}),(z},23)}. We have already mentioned
that all the different crossings (t:;1, t,;,g) by a nearest neighbor walk T of different
pairs (¥, yie) such that the intervals [min{yi, 2}, maz{yi1, ¥io }| are mutually
disjoint for different i’s, have their intervals [min{t;;1, tij2 }, maz{tij1, tij2 }] also
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mutually disjoint. Thus, all the crossings (z.,zs) by R of (0,3#n} and of (0, —3n)
which are different from (z},2%) and from (x2,2%) must lie outside [z3~,221],
that i z.,z; ¢]z5~,23%[. Thus, when at a time ¢, S is between z7~ and
z7t, ie. S(t) € [x77,27*], then the first time after time # that § will cross a
crossing by R of (0,3n) or of (0,—3n) (and that we will thus observe a crossing
by R oS of (0,3n) or of (0,—3n)), S will cross either (z7~,x5~) or (z7+,23+).
So, by lemma 5, this means that if at a time £, S is between 2P~ and z},
then the first time after time ¢, that we observe a crossing by Ro S of (0,3n)
or of (0, —3n), this must be a crossing by S of either (z}~,z3~) or (z1*, z37).
Recall that (¢3,7) designates the first crossing by S of (z%,2%). Now, (¢§,t3)
can be characterized as follows: let (s,t) be the first positive crossing by S of
(x3,27) such that the first crossing by Ro S of (0,3n) or of (0, ~3n) after ¢
is not a crossing by S of (27, 23). Then, (17,¢7) is the first crossing by Ro §
of (0,3n) or of (0, —3n) after £. When our algorithm searches for (¢,¢7) and
constructs the estimate (£3,#7) for (£2,£3), it uses the above characterization of
(13,17) in conjunction with our test for crossings by Ro § to be crossings by
S of the same place. Thus, if up to time ¢} our test for crossings by Ro S of
(0,3n) and of (0,—3n) to be crossings by S on the same place, never makes a
mistake, then our algorithm is able to identify (¢,}) correctly. In this case
(t5,43) = (8,82) . Now, when E} and EF both hold, then n'® > ¢7. But
when E7 holds, our test for crossings by Ro S of (0,3n) and of (0, ~3n) to
be crossings by S on the same place makes no mistake up to time n'®. {Asa
matter of fact until time n!®, § will never get further then the crossings number
tnl% by R of (0,3n) and of (0, —3n). Furthermore, during time n!®, § will at
most cross any crossing n!® times.) Thus, when E7, Ef and E} all hold, we
get that (7,7) = ({5, 7).

When EZ holds, then n* > |S(t1°)], 1S(#2°)]. Now, n28 > nl! +n25, (at
least for n big enough which we will assume here). Thus, whenever S at a time ¢
is within time n% from a crossing by S of (S(t3"), S(¢2")), then when E? holds,
[S(¢)| is smaller equal than n*6. Now, when E} holds, we have that up to time
e™, all the crossings by S of (S(t;‘b), S(t‘l‘s)) are correctly recognized by our
test. Rec:‘s.ll that I'" was defined to be the random set of the integer points up
to time e™ which come within time n?® of a crossing which our test identifies to
be a crossing by S of (S(#3°), S(¢7°)). Thus when both E and E? hold, then
5(T™) C [-n?¢,n%]. However, when E} holds, it is not possible, during a time
when § is in the interval [-n2%,n2%], to observe a crossing by Ro S of (3n,0) or
of {(—3n,0),with associated word bigger than w™ and which is not a crossing by
S of (z3,z7). Thus, when E7, E}, E} all hold, then during time I'*, all the
crossings by Ro § of (3n,0) or of (—3n,0),with associated word bigger than w™
must be crossings by S of (z3,z7). In a similar way, when E7, E}, E? all hold,
then during time I'*, all the crossings by R o S of (0,3n) or of (0,—3n),with
associated word bigger than w3, must be crossings by S of (z3,2%). Thus,
whenever E¢', E¢, EZ all hold, the set of crossings {(¢3;,¢%;)|i € I} c ™ x '™,
resp. {(23;,43;)l7 € J} C ™ x I'™ constructed in step g ,resp. h of our partial
reconstruction algorithm at level n are all crossings by S of (z§,27), resp. of
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(¢3,77). Thus in this case, §(23;) = 23 for all ¢ € I and S(t];) = 2} for all
jelJ.

This implies that when EY, EF, E¢ all hold, then [t7; —13;] > |27 —23|. When,
Eg, EY, Eg all hold, we would thus have that |t3; — 13| = |3 — 23| iff (¢3;, ¢5;)
is a straight crossing by S. Thus, when, EY, E?, EZ all hold, if there exists two
crossings (13,,17,) and (15,,%},) with a € T and b € J and such that (¢3,,},)
is a straight crossing by S , then the pair (ff,75) obtained in step i of the
partial recongtruction algorithm at level n, would have to be a straight crossing
by S of (25,z7). But, when E}, E} and E} all hold, then there exists two
crossings (13,,t7,) and (t3,,t},) with a € I and b € J , such that (£3,,13,) is
a straight crossing by § . As a matter of fact, when E} holds, then a7, 273,
z3, 2} € [-n®,n%. When, EF holds, then before time e™ and within time
n?® after a crossing by S of (S(t7°),5(t3°)), S crosses (—n?,n?) in a straight
way. Thus, when EP and EP both hold, then, before time e** and within time
n?5 after a crossing by S of (S(£2°),5(¢")), S crosses (z%,27) in a straight
way. When E? holds, then, up to time e™, our test for crossings identifies
correctly all the crossings by S of (S(t7°), S( 35)). Thus, when EP, E} and
E? all hold, there exists a straight crossing (s,t ) by S of (z3,2}) lying in
I'"xT™. (Recall that I'" is the random set of integer points constructed in step
f of our partial reconstruction algorithm at level n.) When, § crosses (23, z})
in a straight way, then it first crosses (z7,z7) in a straight way and ends up
crossing (x§,2}) in a straight way. Thus, if (s,t) is a straight crossing by S
of (z2,z7%), then there exists s,,8; € [min{s,t},maz{s,t}] such that (s,s,) is
a straight crossing by S of (z%,27) and (s,¢) is a straight crossing by S of
(z3,2%). Tt is easy to check that a straight crossing by S of (23, 27) has, when
seen as a crossing by R o S, its associated word bigger than w™. In a similar
manner, a straight crossing by S of (23, 27), has its associated word (here we
mean the binary word associated with that crossing seen as a crossing by Ro §)
bigger then the binary word w§;. We already saw that when E?, E} and
E7 all hold, we get that (#3,¢}) = (#,£7). This means, that when E}, Ep
and E7 all hold then the binary word w3,, constructed in step d of our partial
reconstruction algorithm at level n, is equal to the binary word of the crossing
(¢3,t3) by RoS. Thus, when E} \EF , E, E}, and E? all hold then there exist
a straight crossing (s,¢ ) by S of (23,27) lying in I'™ x I'™. and such that there
exists a € I and b € J such that ¢5, = s and £}, = ¢ (i.e. the straight crossing
(s,t ) "begins” with a crossing by R o S of (z},27) which has its associated
word bigger then w™ and "ends” with a crossing by Ro S of (z§,x7%) which has
its associated word bigger then w§,.) This then finishes to prove that when
E}, EY , EZ, E}, EY, Ef and E7 all hold, the pair (£2,t7) obtained in step
i of the partial reconstruction algorithm at level n, is a straight crossing by §
of (z3,23). Thus, when E}, E} , E}, E}, E?, E} and E} all hold, the piece
of scenery which is the outcome of our partial reconstruction algorithm at level
R, i3 equivalent to the restriction of £ to [min{z3,2%}, maz{z3,23}]. But,
when E holds [min{z3, 2]}, maz{23,23}] C [-n% n%]. On the other hand by
definition, it’s always true that [-n,n) C [min{z},z}}, maz{z],z7}]. Thus,
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when ET holds, the restriction of £ to [min{z}, 23}, maz{z], z}}] satisfies the
demands we put on the outcome of the partial reconstruction algorithm at level
n. We just finished to prove that E', E3 , EF, E}, E}, E} and E} jointly
imply Ef'. Thus, EPNE;NEfNEFNENEFNE} C E™,

Proof that the probability of E7¢ is finitely summable over n. 3+
is equal to the first passage after zero of R at {—3n,3n}. We know that
for a simple random walk starting at the origin, the probability that from 0
up to time k, R does not hit on {~3n,3n} is bounded above by e~—*1%/(»*),
where k; is a strictly positive constant not depending on & or n. Thus the
probability that 23+ > n® is smaller, than e~*1". In a similar way, one can
show that P(—n® > 2§~) € e ™". Thus, P(E}°) is smaller than 2e—*1",
Thus, Y} o, P(ED*) < co.

Proof that the probability of EJ* is finitely summable over n. Let
us introduce a sequence of increasing stopping times in the following way. Let
us stop the random walk S when it first visits -1, then when it first visits -2, and
let us go on like this, until the random walk S first reaches —n®. From there on
let us wait until the random walks comes back to ~n®+1, then to —n®+2,and so
on until the random walk S reaches +n3. In other words, we define the stopping
times 7(I) for each { € 1,2,...,3 n3, in the following way: forl € 1,2,...,n3, let
7(?) be the first passage of S at —I. For ! € n® + 1,n° +2,...,3 n3, let 7(l) be
the first passage of § at —n® +1 after time 7(n3). For ! =0, let 7(0) = 0. Then
by symmetry and the strong Markov property of the random walk we get that
the times between our stopping times are i.i.d.,i.e. the collection 7(I) —7(I—1),
where 1 €1,2,...,3 n3 isiid. Obviously, when n!® > r(3 n3), then E} holds.
Thus, P(r(3 n®) > n!%) > P(E2°). Let X(I) be the random variable equal to
7(l )=7(1—1). Then, P(r(3 n?) > n!®) = P(X(1)+ X(2)+...+ X (3n%) > n!%).
For any set of positive numbers a, b, ¢,d, e, ... we have that (a+b+c+d+....)° >
a®+82+c2+.... Thus, X(1)'/34+X(2)1/3+ .+ X(3n3)1/% > (X (1)+ X(2) +...+
X(3n%))'/3. This implies, that P(X(1)}/3+X(2)1/3+...4+ X(3n3)}/3 > n%) >
P(X(1)+ X(2) + ... + X(3n3) > n 15). By Chebychev, we get 3n3E[X (1)1/7]
/ (0®) > P(X(I1/3 + X(2)'/% + ... + X(3n3)!/3 > n5). Thus, we get that
3E[X(1)'/3)/n? > P(E3<). It is a well known fact that the expectation of
X(1)'/3 is finite and thus we get that the expression on the left side of the last
inequality is finitely summable over n. Thus 3 oo, P(EZ°) < oo.

Proof that the probability of E}¢ is finitely summable over n. By
lemma 6, the probability of our test to make a mistake, when comparing the
i-th crossing by S of the I-th crossing by R of (0,3n) or (0,—3n) with the j-th
crossing by § of the k-th crossing by R of (03,n) or (0,—3n) is smaller than
e~ ", where ¢ is a positive constant not depending on n. There are at most
4n%0 quadruples (i,5,k,1) such that { , k € Z ;i , 5 € Nand =% > Ji|, |k, i.j.
Thus, 4n%%e" > P(E}¢). Obviously, the expression on the right side of the
previous equation is finitely summable over n, and thus } oo | P{EF) < o0.

Proof that the probability of E}° is finitely summable over n.
Within time ™" the random walk S can at most cross e™ crossings by R of
(0,3n%) or (0,-3n%). Furthermore, up to time e"' the random walk S can
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Cross any crossing at most e™ times. Thus, for E}¢ to hold it is enough to ask
that our test does not make a mistake whenever it compares the i-th crossing
by § of the }-th crossing by R of (0,3n°) or (0, ~3n®) with the j-th crossing by
S of the k-th crossing by R of (0,3n°) or (0,—3n%), wherel ,k€Z;i,j €N
and e > [f], |k}, 4,3 . Furthermore, by lemma 6, the probability of our test
to make a mistake, when comparing the i-th crossing by § of the I-th crossing
by R of (0,3n°) or (0,-3n%) with the j-th crossing by S of the k-th crossing
by R of (0,3n%) or (0, —3n°) is smaller than e~*"". There are at most 4e*™*
quadruples (i,5,k,1) such that ! , k € Z ;i , j € N and & > |, |k|, i,

Thus, 4de*™* x e=="* > P(Ep©). Obviously, the expression on the left side of the
previous equation is finitely summable over n, and thus 3"~ | P(E}°) < .

Proof that the probability of E}¢ is finitely summable over n. We
know that for a simple random walk starting at the origin, the probability
that from 0 up to time k, R does not hit on {~3n% 3n°} is bounded above
by e~*1%/(""°) where k, is a strictly positive constant not depending on k or
n. Thus, the probability that the random walk R, between time zero and time
n'! does not hit on {~3n% 31} is smaller, than e~®", Thus, e~*™ >
P( R([0,n"]) n {—3n®3n°} = B). By symmetry, one can show that e~*1™ >
P(R([-n',0]) N {-3n5,3n°} = 8). Thus, 2¢~%" > P(EP¢). From this it
follows that 3 | P(ELF*) < oo.

Proof that the probability of EZ* is finitely summable over n. The
bits of w™ and w§, arenot i.i.d. As a matter of fact, S chooses among (2}, z5t)
and (z]~,z57) the one it crosses firsts, to decide which one of the two will be
equal to (z7,z7) and which one will be equal to (2} ,2} ). So we will have
to work with (2%, 23%) and (2}, z37) directly. Let w™* be the binary word
associated with the crossing (¢7%,437) by Ro S. (Here, (t71,45%) denotes the
first crossing by S of (z7*,23%).) Let w™ be the binary word associated with
the crossing (177,¢57) by RoS. (Here, ({7, ") denotes the first crossing by
S of (z7+,25%).) We can now find an upper bound for the probability of the
event Eg¢ by using w™ and w™~. As a matter of fact, EF° holds when in the
interval [-n%%,n29] the only crossing by R of (0, 3n) or (0, —3n) having associ-
ated characteristic word bigger than w™*t is (z}*,z3*) and the only crossing by
R of (0,3n) or (0, —3n) having associated characteristic word bigger than w"—
is (x77,25~). Now let (z,,%,) be any crossing by R of (R(z}), R(z}*)) dif-
ferent from (z7'+,z3+). Then the interval [min{z?+,z3*}, maz{z}*, 231},
and [min{z,,z,}, maz{z,,z,},] must be disjoint, since the different crossings
of an interval, as well as crossings of disjoint intervals have their own interval
disjoint. By the strong Markov property for R and for S, we have that what is
happening in disjoint intervals is independent. Thus, for given i € 1,2, ..., x, the
event {w"*(i) = 1} is independent of the event {the first crossing by R of the
i-th three unit interval of (R(z,), R(z,)) during (z,,z,) is straight}. Recall,
that for {w™+(i) = 1} to hold we need to have that the first crossing by R of
the i-th three unit interval of (R(z}%), R(z3%)) during (z+,z3+) is straight
as well, as the first crossing by S of that first crossing during (£7,13%). We
already saw why the probability for a crossing over a three unit interval to be
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straight is equals to 3. Thus, P(w™* (i} = 1) = (3)%. Using this and the
above mentioned independence leads for a fix i to P( the first crossing by R
of the i-th three unit mterva.l of (R(z,), R(z,)) during (z,,x,) is straight if

wt(@) =1) = (§)®+ & = B < 1. Thus, the probability that the binary
word assoc1a.ted w1th the crossing (z,,%,) by R is bigger than w™t is equal
to (8)". Now, there are at most n?® crossings (x,,z,) by R of (0,3n) or
{0,—3n) different from (z7%,z3%) and such that =,,z, € [-n*,n%%]. (To
see this note that the different crossings considered here have their intervals
mutually disjoint.) Thus the probability that there exists a crossing (z,,z,)
by R of (0,3n) or (0 —3n) having associated binary word bigger then w™*, but
different from (z7'*,z3%) and such that z,,z, € [-n?%,1n?9] is smaller than
n26 x (22)". The same inequality holds for w™~ and (z7~,z5~). This im-
plies that 2070 x (32)" > P(Eg°). Since the expression on the left side of the
previous mequa.hty is finitely summable over n, we get that 3>, P(E}*) < oo.

Proof that the probability of E7° is finitely summable over n.

Let z2 be a non random number, such that n!! > |z5|. Then the distance
between x, and the integer point n® is smaller than 1 n!2, (At least for n big
enough, which we will assume here.) Thus, the probablhty that the random
walk S hits on the point n® between time ¢ and t + n?5, given that at time ¢,
S is at zp,( i.e. S(t) = x.), is bigger than a constant p. (Where p does not
depend on n or z, as long as n!' > |z3|). The probability that the random
walk § crosses (—n?,n%) in both directions in a stra.xght way within time 4n3
right after time ¢, given that S(t) = n?, is equal to (1 )#"° Thus the probability,
that S crosses (—n%,n%) in both directions in a stra.lght way within time n?®
from a time ¢, such that S{f) = 2, where n!' > [z,| is bigger than p(3) )
Let 1, va, .0, be the sequence of stopping times defined inductively on i,
in the following wa Let vy be the time that for the first time S ends its
first crossing of (z} ,:c:2 *). Thus, 1, = t§'. For a crossing (s,t), we call
maz{s,t} the right end of the crossing (s,#). Let 141 be the right end of
the first positive crossing by S of (z2°,27") after time v; + n25. (Le. we ask
that there exists ¢ < v; such that (f,;) is the first positive crossing by § of
(9:}‘5,:::5‘5) such that t,1; € [; + n?,00[.) Let ¥3,Y%,...,Y;,... designate the
collection of Bernoulli variables defined in the following way: Y; is equal to
one iff the random walk § within time n?® after »; crosses (~n2,2%) in both
directions in a straight way. When we condition under 35‘5, then the variables
Y; become i.i.d.. If on top of that we have that we condition under x-; = 29,
where 2 i3 an integer number which is smaller in absolute value then n!l, then
we get that the ¥;’s have parameter b1gger than px (} )4"°.  Let now EJ
be the event that for i=1,2,... up to e" /10 we have that there exists at least
one i € 1,2,...,e" /19 such that ¥; = 1. Let Effdesignate the complement
of Ef Then, we get that given that n1! > |23°|, we have that the event E7f,
has probability less then .ezp(in((1 — p - exp(—4n3In2)) « exp(n?/10))) which
is smaller than exp(—p - exp(—4nin2) - exp(n?/10)). Roughly speaking, the
previous formula behaves like ezp(—e™/19), and thus is finitely summable over
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n. This implies, that exp(—p - exp(—4n3in2)) - exp(n?/10)) + P(23° > nlt) >
P(E7f). However, P(EZ°) > P(z}° > n'!). We already proved that P(EP<)
is finitely summable over n, and thus P(E}Y) is finitely summable over n too.
Let E7, designate the event that »; < e forall i € 1,2,...,e"" /10, Then,
E} nEY C EF. Thus, P(E7F®) > P(ETf)+ P(E?$). Since we already proved
that P(E7Y) is finitely summable over n, we only need to prove that P{ETs) is
also finitely summable over n and this will then imply that P(EF°) is finitely
summable over n. Let EFy be the event that there are more than n? - en'/10
positive crossing by S of (z7°,23") up to time e*'. Obviously, Efy C E}, and
thus P(E7§) > P(E7§). Soif we could prove that P(E%¥) is finitely summable
over n we would be done. When EJ holds, we get that n!! > |a°[,|=3’).
Thus, for the same reasons as in the proof of } .-, P(E3°) < oo, we get that
P(X(1) + X(2) + ... + X(5-n!1 .02 . en*/10) > on'y > P(EF|ER). Here, as
before, the X (i) ’s are i.i.d. such that X (1) has the same distribution than the
first passage time of the random walk {S(k)}z>0 at 1. (Recall that {S(k)}x>0
starts at zero.) Using the same trick as in the proof of 3 oo, P(EF) < o0,
we get that P(X(1) + X(2) + ... + X(5- nll - n25 . en'/10) > ¢n*) ig smaller
than P(X(1)1/3 + X(2)/3 + ... + X(5 - ni! - n25 . "' /10)1/3 > on'/3) Thyg,
by Tchebycheff, we get E[X(1)1/3].5-nll .02 ."'/10 . ¢—n' > P(EnS|ED).
Since, E[X(1)'/3] is finite, the expression on the left side of the last inequality
is finitely summable over n. However, E7§ C (E7f N Eg') U E2°, which implies
that P(E3$ 0 E}) + P(EP®) > P(Eg). But, P(EZ|ER) > P(E3$ N E}) and
thus P(ET$|ED) + P(EZ°) > P(E75). Both of the terms in the sum on the
right side of the last inequality have been proven to be finitely summable over
n, and thus P(E7{)} is also finitely summable over n. This achieves to prove
that Yoo, P(EP°) < oo.
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