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Abstract

Cumulative sum (CUSUM) charts for controlling the covariance matrix are proposed via the
projection pursuit method. Unlike traditional charts for covariance, the proposed charts can
be used in a low-volume or short-run environment. It is shown that the proposed procedures
are more effective than various existing ones. Their applications to monitoring a process with
paired measurements are demonstrated. The CUSUM chart based on the likelihood ratio is also
investigated. The performances of two new kinds of CUSUM charts are similar. However, the
likelihood ratio based CUSUM chart requires that the size of each subgroup is larger than the

dimension of the quality characteristics.

Keywords: Covariance Matrix, CUSUM Chart, Multivariable Control Chart, Projection Pursuit,
Shewhart Type Control Chart.

A Short Running Title: CUSUM for Covariance Matrix

1. Introduction

There are many situations in which the overall quality of a product is determined by several
correlated quality characteristics. Alt(1985) effectively illustrated the need for multivariate control
charts in such situations. Mason et al. (1997) discussed the implementation and interpretation
issues. Various types of multivariate charts for process mean have been suggested (see, for example,
Alt 1985, 1988; Jackson 1991; Lowry et al. 1992; Lowry and Montgomery 1995; Chan and Li 1994;
Ngai and Zhang 1994; Flury et al. 1995; Wierda 1994) in the past decade. A brief introduction to
the multivariate control problem can be found in Montgomery (1996, p322-330) and Ryan (1989,
p215-227). Like the process mean, the process variability, usually summarized by a covariance
matrix, is important for judging whether the process is in control. Two kinds of charts for covariance

were suggested by Alt (1985). However, neither the problem of efficiently controlling the process



covariance nor the comparison of these charts have been well studied. We will study these in this
paper.

The charts for covariance surveyed in Alt and Smith (1988) are of the Shewhart type, i.e.,
each plotted point is based only on an independent sample (also called subgroup). The Shewhart
type chart is easy to implement. But they only use the information in an individual sample (i.e.,
subgroup). Such charts are insensitive to small or moderate changes of the covariance matrix.
Another disadvantage is that these charts can be constructed only when each sample size is larger
than the dimension of the quality characteristics. This is not always possible or practical. For
example, as Ryan (1989, Chapter 6) points out, items coming off an assembly line may be produced
at such a low rate that the process might have already gone out of control when a subgroup of
sufficiently large size is formed. In the short-run environment, a large or moderate sample size is
usually not feasible because of the low-volume manufacturing. A very extensive and comprehensive
discussion on statistical process monitoring and control is given in a series of articles appearing in the
April 1997 issue of Journal of Quality Technology (edited by D.C.Montgomery and W.H.Woodall).

To overcome these disadvantages, CUSUM type charts based on the projection pursuit technique
(Huber 1985) are developed in this paper. In many cases the new charts can detect a change of
covariance more than twice faster (i.e., half of the average run length) than some existing Shewhart
charts. The CUSUM chart based on the likelihood ratio (LRC) is also investigated. Like the
Shewhart charts, the condition that each sample size is larger than the dimension of the quality
characteristics is required in constructing the LRC. Our study shows that the projection pursuit
based CUSUM chart with the reference values 1.5 and 0.5 performs better than the LRC in detecting
a upward change of covariance. However, the conclusion is reversed when a certain degree of
downward changes are presented in the covariance. We also show that we can adjust the reference
values so that the projection pursuit based CUSUM chart has performances similar to LRC in
detecting both upward and downward changes.

The proposed charts can be used for quality control of a paired measurement system. In
some situations, the precision of process measurements depends on product variability as well as
measurement error. Paired measurements on each single specimen from two or more laboratories
are made to account for these two sources of variation. Control charts for such a process have
been investigated recently (for example, Jackson (1991); Tracy et al. (1995)). The new charts can

simultaneously monitor both sources of variation.

2. Principles of the New Charts

Consider a p-dimensional random vector X, which represents p quality characteristics and is
normally distributed with mean g and covariance (matrix) ¥. A sample of size n (n > 1) is taken
from the process over each time period. The i-th sample is denoted by x;;, Kk = 1,---,n. The aim

of a multivariate control chart is to detect the possible deviations of process mean and covariance



from the nominal values (pg, ¥¢) which are assumed to be known in advance, while it gives as few
“false alarms” as possible. In terms of the run length (RL) of the chart, a chart should ideally
have a long RL when the process is in-control and a short RL when the process is out-of-control.
The run length is defined as the number of samples to be taken before receiving an out-of-control
signal. Here, we call the RL in-control RL or out-of-control RL depending on whether the process
is actually in- or out-of-control.

2.1. PP Approach

The projection pursuit (PP) method is a powerful tool for developing this kind of multivariate
chart for the mean (see, Huber, 1985; Ngai and Zhang 1994). The PP approach to control chart
for covariance is based on the following Principles (see Appendix I for the proof):

(i) ¥ = % if and only if a;axZ}glﬂX and a:m.nEglﬂX have unit variance, where ¢4, and @,n
are the eigenvectors correspond, respectively, to the largest and smallest eigenvalues of the matrix
251/2220_1/2, and 251/2 denotes the inverse of the square root of £ and a' is the transpose of a;

(il) amar and apg, will give the maximum and the minimum (signed) differences between the
variance of aTEO_ 12X and the unit value 1, respectively.

Principle (i) implies that in order to test whether the covariance matrix of X deviates from the

nominal Y, it suffices to make two univariate tests for the null hypotheses H,,q0: “the variance of
T T

max min

Eal/Qxik, and a, Eal/Qxik, where 1 < k < n,

min

251/2X is equal to 1”7 and H,no : “the variance of a 251/2X is equal to 17, respectively,

T
max

a
via the projected and transformed samples a
t =1,2---. In practice @mqz and am, depend on X, and are unknown and have to be estimated.
Let, for each a, T;(a) be an univariate statistic for testing H,,420, such that the larger value of T;(a)
gives the stronger evidence against H,,q.0. Then Principle (ii) suggests if an estimator G,q, gives
the maximum value of T;(a), it is a natural estimator of @4, in the i-th time period. Consequently,
T;(Gmaz) 18 @ natural test statistic for Hy,qz0 in the i-th period. Similarly, we can define i, and
test Hymino by Ti(amin )-

In summary, PP approach contains two key steps: (1) selecting a univariate control chart for
variance with a test statistic Tj; (2) estimating apq, and an,, iteratively over each time period ¢
and calculating the values of T;(Gmaz) and T;(Gmin )-

There are several well developed univariate control charts for variance. The most well-known and
relatively efficient ones are the CUSUM chart of Johnson and Leone (1962) and the exponentially
weighted moving average (EWMA) chart by Chang and Gan (1995). We choose the Johnson-Leone
CUSUM chart here (the PP extensions of the EWMA procedure is similar in principle). So the

remaining step is to calculate amaz, Amin, Ti(@maz) and T;(dmin ) for the Johnson-Leone chart.

Case 1: Using individual observations
The Johnson-Leone chart for variance is derived from the sequential test. Let x; be the observa-

tion of a univariate process at the i-th time period. The nominal value og = 1. Assume the process



mean is zero and in-control. Let k; < k, be two reference values. For example, we frequently use
values k, = 1.5 and k; = 0.5. Set

SUy =0, SU; =max{0,SU;_; + z2 — k,},

SLy=0, SL;=min{0,SL;_1 +a?—k}, i>1

SU; and SL; are called the i-th CUSUM values. The Johnson-Leone chart is defined to indicate
an out-of-control message as soon as SU; > hy or SL; < h;, where h, and h; are the respective
upper and lower control limits. For simplicity, we let h, = h = —h; > 0. However, it is possible
to improve the performance of the CUSUM chart by choosing some non symmetric pair values of
(e, hy).

Let x; be the observation of a p-dimensional process at the i-th time period. For simplicity, we
assume that the nominal values py = 0 and Xy = I, (p by p unit matrix). We also assume that
the process mean is stable. In light of the above, to estimate a;q; and Gmin, we first define the
CUSUM values for each direction a:

SU¢ =0, SU* =max{0,SUL | + (a' x;)? — ky},

SLE =0, SL?=min{0,SL |+ (a'x)? =k}, i>1.

According to Johnson and Leone (1962), when a'z; is normally distributed, {SU#} and {SL¢}
are the likelihood ratio statistics for testing the hypotheses, H,,uz0 and Hping. Even if alx; is
not normally distributed, SU;* and SL{ can be still used. This is because it can be shown that
when i is large, T;(a) = SU? is approximately proportional to the difference between the variance
of a" X and the nominal value 1 when the difference exceeds k, — 1 (see Appendix II); a similar
conclusion holds for SL{ when the difference is less than k; — 1. As already mentioned, it is natural
to estimate amer and amin DY Gimar and @imin in which SU? and SL{ attain the maximum and
minimum, respectively.

To simplify the notion, we denote SUZ and SL? by SU; and SL;, respectively. Let Aij and
)\éj be the largest and the smallest eigenvalues of the sample matrix xlxlT + e+ xjx;—, 1< <9

respectively. Define
Then it can be shown that

SUi = HHIHaE(l SUZ'a = max{(), SUil, sy SUii},

SLZ = HII|1|1I1 SL;l = min{O, SLH, tety SL”} (21)
al|=1



And if u(i) and [(i) are such that SU;,;y = SU; and SLy;y = SL;, then @imae and aipmin are
the eigenvectors corresponding to the largest eigenvalue of z;z, + --- + xu(i)x;—(i) and the smallest
eigenvalue of x;x, + -+ + xl(i)xk), respectively.

Now the CUSUM chart for covariance, to be denoted by M CD;(0), where the subscript means
sample size is 1 can be defined to indicate an out-of-control message when SU; > h, or SL; < h;.

The CUSUM values {SU;} and {SL;} can be separately used to detect a upward change (an
inflation) and a downward change (a shrinkage) of covariance, that is, there is a direction in which
the variance of the projected process increases or decreases.

A simulation study indicates that M CD1(0) is sensitive to the process mean shift (the details
are omitted here but are available from the authors). Hence we can use this chart to check whether
the process mean and covariance are in-control simultaneously. The major drawback is that when
MCDy(0) gives a signal, it is difficult to distinguish a mean shift from a covariance change. To
control the process mean and covariance separately, a commonly used method is to form a subgroup
of observations at each time period to reduce the effects of the process mean shift on the chart of
covariance. The major difference between our chart and the traditional ones is that in our chart a

small sample size is allowed, while the speed of detecting covariance changes is maintained.

Case 2: Using subgroups

Let xz;,,1 < k < n, be a subgroup of observations in the i-th time period. Assume that
Tik, 1 < k <n,i >1 are i.i.d. and follow p-dimensional normal with mean p; and covariance X.
Let ¥y be the nominal value of ¥ estimated from the previous samples. In this case, the principle
for constructing a CUSUM control chart is the same as in Case 1, and so we omit the details. This
chart is denoted by M CD,(0).
2.2. Likelihood Ratio Approach

Roy’s statistic can be used to construct a Shewhart chart, namely SR (see Appendix III for the
definition). The commonly adopted method to improve the performance of a Shewhart chart is to
apply the CUSUM procedure to the statistics used in that chart (for example, Roy’s statistics in
the SR chart). Especially, a CUSUM version of the SR chart is obtained in this way. The PP based
CUSUM chart for covariance turns out to be a procedure based on Roy’s statistics of cumulative
sample covariance matrices. The important difference between the above two CUSUM charts lies
in the order of applying the CUSUM and Roy procedures. In the PP based CUSUM chart we first
calculate the cumulative sample covariance matrices and then apply Roy’s procedure while in the
CUSUM version of the SR chart we first apply Roy’s procedure. The principles mentioned in the
last subsection support that the CUSUM procedure should be applied before Roy’s procedure. It
is natural to apply the likelihood ratio procedure SA, instead of SR, to these cumulative sample

covariance matrices (see Appendix III for the definition of the SA procedure). That is, for n > p



and 1 <j <1, let
Sij = (i —j +1)(n — 1)(=p — log(det(Vy;)) + tr(Vi;))

where V;; is defined by
{Winyfi + -+ yjmyjn) /(0 = 1)+ + (g + -+ Yinyin) /(0 = D}/ = j +1),
and det(-) and tr(-) denote the determinant and trace of a square matrix. And let
S; = max{0, S;1,- -+, Sii}.

Then a new CUSUM chart, named LRC,, can be defined to indicate an out-of-control message
when S; > h, where h is the control limit.

Note that according to the likelihood ratio procedure, the factor n — 1 in S;; and V;; above
should be n. The corresponding procedure is called LCR!,. In LC'R,, we use the unbiased sample
covariance estimator unlike LCR!, where the maximum likelihood estimator of covariance is used.
See Alt and Smith (1988, p. 344). LCR], is a biased procedure in the sense that some out-of-control
ARLs may be larger than the in-control ARL. So it is not surprising that the simulation in Table
2.1 indicates that LC'R,, is significantly better than LC'R],. We recommend using the LC'R,,.

3. Procedure of Constructing the New Charts

First we consider the case that the nominal value ¥y is known or can be estimated by the
previous in-control samples. The other cases will be discussed in the next section. The procedure
of MCD1(0) involves the following steps.

Step 1: Determine the parameters in M CD1(0). Choose k, and k;, for example, k; = 0.5 and
k, = 1.5. The parameters h; = —h and h, = h are determined by the values of in-control ARL
(average run length) and SRL (standard deviation of run length) which are specified in advance
(see Tables 5.1, 5.2). Alternatively, h is specified first and the ARL and SRL values are then
determined.

Step 2: For each ¢, calculate the sample average Z; of x;;,1 < k < n and make the following
transformation on g,

Yir = 261/2(%1@ — ;) for n > 1;

yit = X /2(3@1 — pp) for n = 1.

Step 3: Calculate SU; and SL;. For each ¢ and 1 < j <4, first calculate the maximum and the

minimum eigenvalues and the corresponding eigenvectors of
Wiy + -+ Yy /(0= 1) 4+ (yaya + - + Yintin) /(0 = 1), for n>1

?leyj—li ++ yi1y;1, for n = 1.



They are denoted by A, €5 and )\ﬁj,eﬁj. Then we calculate

SU;;j =N — (i —j+ Dku, SLij=X;—(i—j+1)k

followed by
SUZ' = max{(), SUil, tery, SUii}, SLi = min{(), SLil, Tty SL“}

Let u(i) and [(7) be such that SUs,;y = SU; and SLy;y = SLi.

Step 4: Check whether SU; is above h, and whether SL; is below h;. If SU; > h,, then a
upward change signal of ¥ in direction eyu(i) is indicated. If SL; < h;, then a downward change
signal of ¥ in direction eél(i) is indicated.

Like in the CUSUM chart for the process mean (see, for example, Hawkins and Olwell, 1998, p.
20-21), we can give an estimate of when the change occurs when SU; or SL; falls outside the control
limits. We look backward from the period i to check the subgroups: z;;, 1 <k < n,1 < j <.
Similar to the CUSUM chart for the process mean, if SU;; falls outside the control limits, then we
predict that the change occured at a period not later than j. SU;; shows the magnitude of such
shift (see Appendix IT). There may be several such j. It natural to choose the most significant one,

namely u(i), in the sense that SUj,(;) = max{0,SU;;,1 < j <i}.

4. Enhancements of the New Charts

4.1. FIR CUSUM

The fast initial response (FIR) feature is useful when there are start-up problems or ineffective
control actions after the previous out-of-control signal (see, Lucas and Saccucci, 1990). The aim of
FIR is to reduce the RL for mean shifts that one wishes to detect without significantly reducing the
in-control RL. A direct way of achieving this aim is to narrow the control limits. But simulations
show that a more efficient way to improve the FIR feature of M CD,,(0) is to add some time-varying
constants to the CUSUM values (the details is available from author). Here we present a method
used by Ngai and Zhang (1994). Take MCD,(0) as an example. The new CUSUM values are of
the forms {SU; 4+ 7O+ h,} and {SL; + r/O*1h;}, where 0 < r < 1 and u(i) and v(i) are defined
in Section 2.1. Using the same control limits of M CD,,(0) and the new sequences of the CUSUM
values, we can define a FIR CUSUM chart, denoted by M CD,(r). For the simplicity of notion, the
new sequences of the CUSUM values are still denoted by {SU;} and {SL;}.

The spirit of this improvement can be illustrated as follows. When the process is in-control,
most CUSUM values should be around zero and relatively far away from the control limits. Hence,
if we add a small value to each CUSUM value, the new sequences of CUSUM values will be still
within the control limits. On the contrary, when the process is out-of-control, the CUSUM sequence
will tend to the control limits and then fall outside the control limits. If we add a small value to

each CUSUM value, the new sequence of CUSUM values will fall outside the control limits more



quickly. As a result, a shorter out-of-control RL is obtained. The reason why we choose r*(W+1p,
and rl(i)“hl as the values to be put in the t—th CUSUM values is the following. Note that SU; < h,
is equivalent to SU;; < hy,1 < j < i. This implies that for the fixed ¢, the upper control limit
for SU;;,1 < j < i is a constant. Motivated by the sequential theory (for example, Siegmund,
1986), we can improve the performance of the chart by replacing the constant control limit by some
exponential control limit (1 —77*1)h,, which varies in j. Now the corresponding upper control limit
for SU;, iy is (1 —r**1)h,,. For simplicity, we check only whether SUj,, ;) > (1 —r*"*+1)h, (which

is equivalent to SUj,(;y + O+ p, > hy,). A similar illustration can be found for #{()+1p,.

4.2. No Previous in-Control Samples

In some situations, the nominal values of (g, X) are usually unknown at the beginning. We
need to modify M CDy(r) by the following commonly used method: during the i-th period, we use
the sample average and covariance fi; 1 and f]i,l’g of the first ¢« — 1 samples to estimate py and

Yo if no signal appears at the first ¢ — 1 periods. For the singular sample covariance ii—l,o, f)l__ll/%

is defined as the generalized inverse of 23121 0

5. RL Performances and Designs of the New Charts

5.1. RL Performances

The performance of a control chart to detect process change when it is out-of-control is evaluated
by its RL. The RLs of MCD,(r), LCR!, and LRC,, have two Properties (see Appendix IV for the
proof):

(i) The distribution of RL depends just on the solutions of the equation det(¥ — A¥j) = 0,
where Yy is the nominal value of the process covariance when it is in-control and X is the real value
of the process covariance.

(ii) The distributions of the RLs of MCD1(r) and M CDy(r) are the same provided that they
have the same parameters k,, k;, p, hy and h;, and the underlying process is normally distributed.

Property (i) also holds for the Shewhart charts: SA, SA’, SR and SV defined in Appendix III.

Let ¥; and X9 be two covariance matrices such that 251/221251/2 is diagonal with the same
eigenvalues as 261/222261/2. Observe that the equations, det(X1—AXy) = 0 and det(Xs—AXg) = 0,
have the same solution in this setting. Then, by Property (i), the distributions of the RLs with
31 and ¥y are the same. Thus, when we examine the out-of-control performance, we need only to
consider the situation when 261/22261/2 is diagonal with the i—th elements being the eigenvalues
of £5'/*557 2. This makes the performance evaluation of MCD,(r), SA’, SA, SR, SV, LCR"
and LRC,, easier.

Although the RL distribution of M C'D1(r) and M CDs(r) are the same, the assumptions behind
MCD;(r) and MCDs(r) are different. In the former we assume pu = y, is known and sample size

is 1. In the latter we do not assume g is known. So the process mean can be either in-control or



out-of-control. But we assume there is the additional information that the sample size is 2 in each

time period. This information is used for estimating the unknown parameter .

5.2. Designs of the FIR Parameter

Traditionally, we use the average RL (ARL) to summarize the main feature of an RL. However,
in some situations, it may be misleading. For instance, most authors have adopted the following
strategy in designing a control chart: choose the parameters in the chart so that the out-of-control
ARL’s are as small as possible, subject to the in-control ARL being larger than or equal to some
specified number. Unfortunately, for the exponentially weighted moving average chart (EWMA)
with time-varying control limits (see Lowery et el. 1992) or M CD,(r) discussed in this paper, we
can choose the parameters so that the out-of-control ARL’s are extremely small (near 1) while the
in-control ARL is still larger than that specified number. However, the variances of in-control RL
are tending to infinity. This will result in a lot of extremely small RL observations even if the
process is in-control (see Chan and Zhang, 1997, for details). So when we evaluate the performance
of a chart, we need to calculate ARL as well as the standard deviation of RL (SRL). Furthermore,
when we select the parameter r, we must put some constraint on the coefficient of variation of the
RL.

Recently, Chan and Zhang (1997) suggested as a constraint that the coefficient of variation of
RL should be designed to be smaller than or close to 1. We use the Shewhart type chart to illustrate
the suggestion. For the Shewhart type chart, when a precess is in-control ARL = 1/P and SRL =
ARL+V/1 — P (see Ryan, 1989, p.144), where P is the probability that the test statistic used in that
chart will fall outside the control limits. So the coefficient of variation SRL/ARL = /1 — P < 1.
We use this constraint when we design the parameter r of MCD,,(r).

There is another problem that we must consider in evaluating the performance of the proposed
charts. Ideally, we should calculate all of the out-of-control ARL and SRL when we evaluate the
performance of MCD,(r) and LRC,,. However, it is impossible to carry out this task using the
Monte Carlo simulation as there are a lot of out-of-control cases. A commonly used approach is to
select some typical out-of-control matrices. Recall in Subsection 5.1 that for M CD,(r) and LRC,,
with the nominal ¥y, we need only to select some typical out-of-control matrices from all the X

with 261/22251/2 being diagonal. For each p = 2 we select nine typical out-of-control matrices:
1/2 7 1/2 -
Y = EO TEO N )\(T) = BQ, 02, DQ, EQ, FQ, GQ, HQ, JQ, IXQ
where A\(T') stands for the vector of the eigenvalues of T and

By = (1.5,0.5), C,=(1.25,0.75), D, =(1.5,1.1),
By =(43,1), F,=(15,12), Gy=(1.1,12),
Hy=(0.9,1.2), Jy=(0.1,2.5), and K,=(2.5,3.5).

By, Do, F3, Cy,Go, and Hy represent some typical moderate or small changes; and FEs, .J, and



K, are the examples of large changes. Similarly, for p = 3, we select the typical out-of-control
matrices ¥ with 261/22261/2 having the vectors of the eigenvalues: Bs, Cs3, D3, F3, F3, and Gj,

respectively, where

By = (15,1.,1.), C3=(1.2,1.3,1.), Ds=(4.5,3.,2.),
Es; =(0.1,0.2,0.5), F3=(0.1,2.5,0.5), and G5 = (0.5,1.5,1.).

For each typical case, the out-of-control ARL and SRL are calculated by the Monte Carlo
simulation. The replicate number in all of these Monte Carlo simulations is 6,000 or 12000.

In the following cases, as will be shown in Table 5.1, we first select FIR parameter r for
MCD,(r). The h is calculated by some pre-determined in-control ARL and SRL (corresponding
to ¥p). The out-of-control ARL and SRL are then simulated (corresponding to By, C2, D2, and
Es). For illustration purpose, the in-control ARL and SRL are chosen to cover various r and h

values within certain ranges.

Casel: n=1orn=2.

For p = 2,k, = 1.5 and k; = 0.5, the ARL and SRL of MCD;(r) with » = 0,0.3,0.6,0.8 are
shown in Table 5.1. It suggests that for p = 2, » = 0.6 has a better ability to detect the process
covariance change among MCDq(r),0 < r < 1, subject to the condition that the coefficient of
variation of the RL is close to 1. If we prefer a chart with a small coefficient of variation, r = 0 is a

good choice. Note that, as pointed out in Subsection 5.1 (ii), the above result also holds for n = 2.

Case 2: n =5.
For p = 2, k, = 1.5 and k; = 0.5, the ARL and SRL of MCDs(r) with » = 0.0,0.4,0.5,0.6
are given in Table 5.1. Making a comparison of these numerical results, we suggest that any value

between 0.4 and 0.6 is a reasonable choice for r.

Case 3: n = 10.

For p =2, k, = 1.5 and k; = 0.5, the ARL and SRL of M CDyy(r) with » = 0.0,0.3,0.45 and
0.6 are shown in Table 5.1. Any value between 0.3 and 0.45 seems to be a reasonable choice for r.

Note that, for p = 3 and 4, the results are similar and not shown here.

In summary, for fixed n, p and control limits, as r tends to 1, the ARL of the chart decreases
while the SRL of the chart increases. For fixed n and p, it is possible to adjust 0 < r < 1 and
control limits so that the in-control ARL is not less than some specified level, the out-of-control
ARL is as small as possible and the coefficient of variation of RL is below or close to 1.

In-control ARL and SRL are two important quantities in selecting a chart. The in-control
ARL and SRL of MCD1(0.6), MCD1(0), MCDy(0), MCDy(0.6), MCD3(0), MCD1,(0), LRC

and LRCqy under various control limits h are listed in Tables 5.2 and 5.3.

6. Applications to Paired Measurements

10



Grubbs’s model is used for assessing bias and precision of paired measurement systems (see
Blackwood and Bradley 1991). We employ this model to account for the bias and variation of
observed measurements of a process. For simplicity, we will consider only the systems with two

devices being used to measure a process. Then Grubbs’s model is of the form
v =ptdi+or+er, Tp=ptdit oyt 2>, (6.1)

where x;; is the observed measurement when the i-th specimen is measured with the j-th device,
j = 1,2, pis the hidden (or true) process mean, d; is the true random deviation of the process from
p for the i-th specimen; oy is the bias for device j, and ¢;; is the random error for the i-th specimen
when measured by device j. In practice the variation observed from a process is due to the hidden
process variability and the error of the measurement device. If we use only single device to measure
a process, it is impossible to account for the sources when an out-of-control signal appears. We
will show that if two devices are used, a synthetic chart can be plotted for the variations of two
devices as well as for the process variance. A similar chart can also be plotted for the relative
precision—the ratio between the hidden process variance and the total observed variance. To this
end, we first formulate the above model in terms of the multivariate statistical analysis. Let

)T

pi=(p+o,p+a)’, e =(ee2)

dd; = (d;,d;)" and x; = (241, 242) . Then model (6.1) is equivalent to

Ty =p; +dd; +€, 1>1.

2

2
;, and o, are the

Assume that, given dd;, the expectations of €; and €;1¢;2 are zero. Let afl, o

variances of the process and the devices. Under these assumptions, the covariance matrix of x; is

2, 2 2
oqt0g, T4
I

and the relative precision of the process is 02/\/(03 +02)(03 +02).

The covariance of x; changes if the process variance or one of device variances changes. Hence,
to control the process variance or the measurement variance of the devices, it is sufficient to control
the covariance of the multivariate variable x;. Similarly, to control the relative precision, it suffices

to control the correlation of paired measurements.

Example 6.1. This example involves a real bivariate data set used by Tracy, Young and Mason
(1995, P. 374). The data set contains 19 paired measurements from a petrochemical industry. The
first 15 observations are taken from a stable process and used to estimate the in-control py and .

The results are
0.1498 0.0334

fip = (7.09,7.113) and Iy =
0.0334 0.0241

11



Tracy, Young and Mason (1995) applied the partial T?—Shewhart control chart for the process
mean to this data set and demonstrated that the observations 18 and 19 indicate that the process
mean is out-of-control (the referee pointed out that the partial 77 statistics are not independent
and F distributed as Tracy, Young and Mason claimed). They showed that the obervations 18 and
19 are located at the opposite regions (see Figure 3 in Tracy, Young and Mason, 1995). In our
opinion the locations of the observations 18 and 19 implies the process covariance, not the process
mean, is changed. This is because if the process mean is changed and the covariance is in-control,
the following observations should be not far from each other. Here we use M CDy(0.6) to support
our view. Now paired measurements 16 through 19 are used to check whether the hidden process
variance and the device variances are in control. To reduce the effect of the process mean, these
four paired measurements are grouped into two samples. Then these two samples are monitored
by MCDy(0.6). From Table 5.2, with k, = 1.5, k; = 0.5 and h = 12, the in-control (ARL, SRL)
is (130,128). The CUSUM values are SU; = 6.88, SL; = —4.83, SU, = 107.4 and SLy = —4.95.
SU, falls outside the upper control limit. Therefore, an out-of-control signal appears at the second
subgroup. The other CUSUM values are within the control limits. Thus both the hidden process

variance and the variances of measurement system are in control at the first subgroup.

7. Illustrative Examples

The following two examples show that M CDi(r) can be used when both p¢ and ¥y are known
or can be estimated from the previous samples. M CDi(r) can detect both changes in the process
mean and covariance. However, when we obtain an out-of-control signal, it is difficult to determine

whether the signal is due to change of the process covariance or the process mean.

Example 7.1. We begin with 28 samples of size 1 (see Table 7.1). The first two samples are
drawn from a three-dimensional normal N (0, I3), while the remains of samples are drawn from a

three-dimensional normal N (0, G) with

1.5 -0.5 -0.5
G=1| -05 15 -05
-05 —-05 1.5

We use MC'D1(0) and the FIR chart M CDi(r) to detect the covariance change in this data set.
First, we use MCD1(0).
Step 1: Select suitable parameters for M CD;(0). We choose k, = 1.5, k; = 0.5 and h = 15.
The in-control (ARL,SRL) is then (118,109) obtained by simulation.
/

Step 2: Calculate y; by multiplying each sample by Eal % In this example z; = y;.
Step 3: Calculate the CUSUM values, SU; and SL;, and u(i) and (7).
Step 4: Check whether SU; or SL; falls outside the control limits. 28 CUSUM values are

plotted on the chart in Figure 7.1. It shows that M CD;(0) gives an out-of-control signal at the

12



6-th sample. Note that «(6) can be used to estimate when the covariance change occurs.

Now we use M CD;(r) to monitor the same data set. Using k, = 1.5, k; =0.5,p =3, n =1,
r = 0.6 and h = 15 in Table 5.2, the in-control (ARL,SRL) are (109,109). MCD;(0.6) gives an
inflated out-of-control signal at the 3-th sample. So, compared with M CD;(0), MCD;(0.6) has a
faster response to an initial change.

In the short-run production environment, to detect the possible covariance change before the
end of production process we use the maximum number of observations to truncate the RL of
MCD,(r). Example 7.2 illustrates such situation. It shows that, unlike other charts, the proposed
chart can be used even where the sample size is smaller than the dimension of process distribution

and the process mean varies between samples.

Example 7.2. Suppose the maximum number of samples is 71. The first two samples are from
a three-dimensional normal N(0, I3), where I3 is the unit matrix. The remains are from a three-

dimensional normal with mean (1, -2, —3)" and covariance

200 —-0.25 -0.25
C=1] -0.25 1.00 -0.25
-0.25 —-0.25 2.00

We use MCD3(0.6) truncated by 71 to check whether a change has occurred in the process
covariance. Let k, = 1.5, k; = 0.5, and h = 13. According to Table 5.2, the in-control ARL is
42 (< 71). Calculate and plot the CUSUM values on the chart. An inflated out-of-control signal
appears at the fourth sample (see Figure 7.2). In practice we may not want to stop the process
immediately when an out-of-control signal appears in order to obtain some additional samples to
estimate the magnitude of the change. As an example, here we stop the process after we obtained

10 addtional out-of-control samples.

8. Comparison with other charts

In this section, using the Monte Carlo simulation, the performance of the proposed charts is
compared with the following charts. The definitions of these charts are given in Appendix III. The
replicate number in this study is 6000 or 12000, as before.

1. SR chart—the Shewhart chart based on Roy’s maximum and minimum eigenvalues of sample
variances (see Anderson 1984, p. 328).

2. SA chart—the Shewhart chart based on Anderson’s test of covariance (see Alt 1988, p. 344).

3. SV chart—the Shewhart chart based the square root of Hotelling’s generalized variance (see
Alt 1988, p. 349).

Note that the sample size n > p is required in all of these Shewhart type charts. We take n =5
and p = 2, 3 in this study.

13



Table 8.1 shows the results of the comparison of these charts with the M CDj5(0) (with &k, = 1.5
and k; = 0.5) and LRC5 chart for p = 2,3 when n = 5. It is clear from these comparisons that
the SA and SR charts are more effective than the SV chart in detecting the process covariance
change. Compared with the SA, SR and SV charts, in many cases M CD5(0) and LRC5 can detect
the moderate or small covariance change more than twice faster. The SR chart is slightly better
than M CDj5(0) and LRC5 in detecting the relatively larger covariance change such as Es. It is
found that M CD5(0) with &k, = 1.5 and k; = 0.5 can perform better than LRC5 when only upward
changes exist (for example, F, and K3) and worse than LRC5 when a certain amount of downward
changes happen (for example, By and .J3). It is clear that by adjusting the reference values we can
make M CD,, more sensible to some pre-specified change at the cost of effectiveness for detecting
some other changes.

As pointed out in Hawkins and Olwell (1997, p. 87, 144-145), in one dimensional cases, the
sample variance of each subgroup has a y? distribution (which belongs to the gamma family).
By applying the likelihood ratio procedure to the gamma distribution, they showed that if the

Johnson-Leone CUSUM chart is used to monitor for an increasing in variance from the in-control

2

2 or to a smaller variance o7, the optimal reference

standardized variance 1 to a larger variance o
values should be

ku = oulog(oy)/(on = 1), ki = oflog(af)/ (o] —1).

For example, if 02 = 1.5 and ‘712 = 0.5, we recover the frequently used reference values k, = 1.5
and k; = 0.5 approximately. However, in multivariate cases, neither the largest nor the smallest
eigenvalues of the sample covariance matrix of each subgroup follows the y? distribution (see Muir-
head, 1982, p. 420-425). This implies that the above formulae for k, and k; may be not optimal
for the multivariate cases from the point view of the likelihood ratio. This suggests that it may
be possible to improve the performance of MCD,(0) and SR by choosing suitable k, and k; or
pair values of (hy, hy). Unfortunately it is time-consuming if we try to directly optimize M CD,,(0)
with respect to k, and k;. Here we find a relatively fast but empirical way to adjust the reference
values to improve the performance of M CD5(0), substantially, in detecting the downward changes.
It is based on the following observation: although MCDj5(0) with &k, = 1.5 and k; = 0.5 is very
fast for detecting the upward changes, it is very slow when some downward changes happen. For
example, the out-of- control ARLs for some downward changes could be larger than the in-control
ARL. In the word of test, this means that like LCRL, M CD5(0) with k, = 1.5 and k; = 0.5 is
biased. The simulation in Table 8.2 shows that we can use the following method to choose the
reference values so that the resulting M C'D5(0) is unbiased, that is, the out-of-control ARLs are
less than the in-control ARL: First, we set k, = 1.5, k; = 0.5 and A = h,. Then we choose ¢, > 0
such that ARL(c,) = max.~9 ARL(c), where ARL(c) is the out-of-control ARL when ¥ = cX,.
Now if let k, = 1.5/¢,, ki = 0.5/¢, and h = h,/c,, then the corresponding ARL(c) for the new
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MCD,(0) attains the maximum at ¢ = 1. In Table 8.2 we demonstrate that the performance of
MCD5(0) with the adjusted reference values are now very similar to the LC'R5(0) which can detect

the upward changes as well as the downward changes fast.

9. Conclusions

We have proposed CUSUM charts MCD,(r) and LRC,, for monitoring the change of the
covariance matrix of a multivariate normal process using the projection pursuit and likelihood
ratio respectively. MCD,(r) is a natural extension of the CUSUM chart of Johnson and Leone
(1962) for variance while LRC, is not.

The distribution of the run lengths of the control charts M CD,(r) and LRC),, depend on the
nominal value ¥y and the actual ¥ of the process only and is through the characteristic roots of
the equation det(X — AXg) = 0.

Unlike the Shewhart type or likelihood ratio based charts, of which the subgroup size n is
required to be at least equal to the dimension p, the PP based CUSUM charts can be used for any
size n > 1. In Table 9.1, we present some out-of-control ARLs of M CDy(0) with p = 3 to show
that M C D4(0) still has a good performance when the sample size is less than the dimension of the
the quality charateristics.

Simulation studies on the ARL and SRL indicate that a considerable improvement on the other
three charts in terms of faster detection of the covariance change can be achieved if MCD,,(r) (or
LRC),) is used. However, the former calculation is more complicated.

Several simulated examples are given to illustrate the use of the proposed chart. MCD,(r) is
also applied to the monitoring of the process variability and measurement errors in paired mea-

surements systems.
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Appendix I
The proof of Principles (i) and (ii) in Section 2.

To prove (i), we note that the variances of a,), EO_I/QX and a,) 251/2X are

max min

a,TmEJWEEJI/QamM _ HTHa:Xl aTEO—I/QEEO—I/Qa
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and

a) S0 80  apmin = min a5, 2 85, Y

min
[lal|=1

respectively. Hence, the variances of a, EO_I/QX and a, EO_I/QX is equal to 1 if and only if

max min

all=1 all=1

which holds if and only if £5 /2555 "/ is an identity matrix, that is, S = ¥.

The proof of (ii) is similar.

Appendix 11

Consider SU*. We want to prove that as v — oo
SU%/v — E(a" X)? = ky

in probability when E(a' X)? > k,. In fact, if we define

wyg =0, wy,= Z((aij)2 —ky), m>1,
j=1
then
SUS, = max{0, Wy, — W—1, Wy, — Wipp—2, -+, W1 — Wo }.
Suppose FE(a'z;)? =1,i =1,---,mq, and F(a'x;)? =02, i =mo +1,---, with 02 > k,. Then
7 mo
wi= > ((a2)* = k) + D ((a";)? = k).
Jj=mo+1 Jj=1

According to the convergence theory of stochastic process (see Pollard, 1984, p106), as v — oo, we
have
w; v = (02 — ky)i/v + 0p(1)

where 0, (1) is uniform for 1 < ¢ < v. Hence for large v

SUS/U = maX{Ov (UZ - ku)(l - 1/U)7 T (02 - ku)(l - U/U)} + Op(l)
=02 —ky + op(1)

when 02 > k,. The proof is completed.
Appendix III

Here we give the definitions of the SR, SA and SV charts and their RL performances. As in
Section 3, we first make a transformation of each x;; into y;; by multiplying 261/2, 1<j <1 Let
s2(yi) = 20— (Wi — 7)) (wij — 7;) " /(n —1) be the sample covariance of the i-th transformed sample,
where 7; = 377 yij/n.
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SR Chart. Let SR,; and SR;; denote the maximum and minimum eigenvalues of s2(y;), Cyp
and Cj,. be the upper and lower control limits, and k, and k; be the upper and lower reference
values. In this paper, we choose k, = 1.5 and k; = 0.5 as those for M CD5(0). Then, the SR chart
is defined to indicate an out-of-control signal when SR,; — ky, > Cy, or SRy; — k; < Cj,.. Here, we
choose Cy, = —C},. = h, and h is a positive constant.

SA Chart. Suppose n > p. Let

SA; = (n—1)(—p —log(det(s*(y:))) + tr(s*(y:))),
SA; = n(=p—log(det((n —1)s*(y;)/n)) + tr((n — 1)s*(y:)/n))

where det(-) and tr(.) denote the determinant and trace of a square matrix. Then the SA chart
is defined to give an out-of-control signal when SA; > h. Here, without confusion, h denotes the
upper control limit of the SA chart. Similarly, the SA’ chart is defined by using SA!.

SV Chart. Suppose n > p. Let

SVi = (\/det(s*(yi)) — b3)// b1 — b3,

where by = (n — 1) P [[7_,(n— k), b3 = (2/(n — 1))P/?T'(n/2)/T((n — p)/2), and T'(-) is the Gamma
function. Then, the SV chart is defined to indicate an out-of-control signal when SV; falls outside
the upper and lower control limits C,, and Cj,.. Usually we choose Cy,. = —Cj. = h, where h is a
positive constant.
Appendix IV

Property (i) directly follows from the definitions of MCD,,(r) and LRC,,.

To prove Property (ii), we first let n = 2 and

?Jz = (xkl —$k2)/\/§,k = 1727""
Then,
Wy + -+ ymyn)/ (0= 1) + -+ (yayh + -+ yimyin)/(n— 1) =yiyi T+ + iy

Note that, under the ii.d. and normal assumption, {y;, & > 1} have the same distributions as
{xk1 — 1to, k > 1}. So the distributions of the statistics SU; and SL; are invariant when we reply
k1 — Jbo DY Yrn- Thus, the RL distributions of MCD1(0) and M CD5y(0) are the same.
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Table 2.1. Comparisons of ARL and SRL of SA, SA’, LCR!, and
LCR,, (with k, = 1.5, k; = 0.5) charts for n =5, p = 2,3,
where \ = \(3, /255, 1/%).

p=2,p4p=0
SA SA LCRL LCRs
h=20.7 h=16 h=60. h=18.6

A ARL SRL ARL SRL ARL SRL ARL SRL
(1,1) 203 205 203 202 233 67 248 241
B, 103 105 741 722 340 798 13.0 6.28
Coy 177 179 115 115 99.2 26.1 45.2 27.5
D, 214 216 118 114 424 133 32.8 20.6
E, 772  7.03 436 3.76 10.2 4.24 317 1.84
F, 220 222 74.5  73.2 582 189 29.8 18.2
G, 232 233 185 184 1232 356 102 73.7
Hy 204 206 184 179 220 61.6 97.1 70.9
Jo 7.34 6.87 5.41 492 647 1.27 2,57 091
K, 981 924 444 388 11.5 438 3.06 1.66

p=3,p=0
SA SA LCRL LCR;
h=36 h=28.25 h=110 h=30.

A ARL SRL ARL SRL ARL SRL ARL SRL
(1,1,1) 180 181 194 193 212 455 210 198
B3 193 192 153 150 408 86.7  79.7 52.4
Cs 198 197 171 168 585 127 94.5 62.7
D3 10.3  9.57 13.6 12.9 12,9 4.0 2.84 1.45
Ej 8.36  7.68 3.99 342 733 096 277 0.81
F3 13.8 13.0 12,1 117 938 143  3.07 1.07
G3 117 117 120 120 48.7 8.57 161 7.2
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Table 5.1. ARL and SDR values of MCD,,(r) with k, = 1.5, k; = 0.5, p =2
and p = 0 when the process is in-control (¥g) and out-of-control ¥, where
A= A(E,Pens

n=1lorn=2
(r, h) (0.0, 11.8) (0.3, 11.85) (0.6, 12) (0.8, 12.68)
A ARL SRL ARL SRL ARL SRL ARL SRL
(1,1) 129 121 130 123 130 128 130 152
By 44.8 38.1 444 38.1 409 37.7 32.5 37.7
Co 86.7 80.9 87.0 81.8 857 859 78.5 92.4
D, 351 311 347 313 323 31.8 26.8 33.0
E, 5.82 419 5.61 4.13 484 3.98 3.74 3.51

n=>5
(r, h) (0.0, 3.5) (0.4, 3.52) (0.5, 3.53) (0.6, 3.54)
A ARL SRL ARL SRL ARL SRL ARL SRL

(1,1) 104 99 105 101 104 102 102 104

By 18.7 15.6 17.8 154 17.1 15.3 15.8 14.9

Co 49.5 46.7 48.9 47.3 48.2  47.7 46.7 48.1

Do 15.7 13.3 14.9 13.2 14.3 13.2 13.3 13.2

E, 2.18 1.25 2.01 1.19 1.92 1.14 1.79 1.07
n =10

(r,h) (0.0, 1.7) (0.3, 1.72) (0.45, 1.73) (0.6, 1.9)
A ARL SRL ARL SRL ARL SRL ARL SRL
(1,1) 124 122 131 129 132 132 192 202
B, 118 950 11.6 9.60  11.0 9.6 11.1 10.5
Cs 401 38.0  40.6 39.1  40.4 39.8  48.6 50.2
D, 104 880 102 890  9.80 890  10.0 10.0
E, 136 0.61 1.32 058 127 0.53  1.22 0.50
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Table 5.2. The in-control ARL and SRL of MCD;(0.6), MCD5(0.6), MCD1(0), MCD5(0),
MCD5(0) and MCDq((0) with k, = 1.5,k = 0.5 for p = 2,3,4 and various control limits A

p=2 p=3 p=4
MCDy(0.6) or MCD5(0.6)
h ARL SRL | h ARL SRL | h ARL SRL
10* 45 26 | 13* 42 26 | 15* 37 26
12 130 128 | 15 109 109 | 20 156 159
15 298 289 | 18 231 229 | 22 242 242
17 506 489 | 20 385 382 23 308 306
18 642 566 | 22 590 538 | 25 476 456
MCD1(0) or MCD(0)
h ARL SRL | h ARL SRL | h ARL SRL
12 139 133 | 18 246 232 | 22 262 249
15 309 303 | 20 397 370 | 23 326 306
17 521 479 | 22 610 535 | 25 498 452
MCD5(0)
h ARL SRL | h ARL SRL | h ARL SRL
3.0* 43 25 | 4.0% 47 25 | 5.0% 45 24
3.5 106 104 | 4.5 131 129 | 5.5 105 100
4.0 182 178 | 5.3 302 301 6.0 164 162
4.3 249 244 | 5.5 373 365 | 6.5 257 251
4.5 308 300 | 6.0 599 535 | 7.0 411 386

MC Dy(0)
h  ARL SRL|h ARL SRL|h  ARL SRL
12 32 24|17 34 24|23 42 25
1.7 123 121 |22 122 12125 89 87
2.0 250 252 |25 239 237 |30 252 248
22 404 389 |27 374 370 3.2 381 371
25 760 626 3.0 684 585 |33 465 441

Note: "*'—the underlying RL has been truncated by 71.
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Table 5.3. The in-control ARL and SRL of LRC,, for (p,n) = (2,5), (3,5),

(4,5) and (2,10), and for various control limits A

(p,n)=(2,5) (p,n)=(2,10) (p,n)=(3,5) (p,n)=(4,5)
h ARL SRL | h ARL SRL | h ARL SRL | h ARL SRL
16.8 133 126 | 16.0 157 151 | 28.8 184 180 | 55.8 175 174
17.6 174 165 | 16.8 210 205 | 29.6 225 217 | 56.6 194 192
18.4 234 229 | 17.6 284 280 | 30.4 280 275 |57.4 217 213
18.6 252 244 | 184 379 365 | 30.8 313 307 | 60.0 293 282
19.2 308 301 | 19.2 507 469 | 31.2 347 340
20.0 415 391 | 20.0 679 574|320 419 399

Table 7.1. Simulated data used in Example 7.1
xy T2 3 T4 s i3 7

-2.90552 | 0.17469 | 2.17416 | -0.46873 | 1.50455 | 2.84555 | -0.06947

0.51099 | -0.92729 | -1.74290 | -1.29043 | 1.29883 | -0.57591 | 1.15380

0.27008 | -1.48665 | -0.61098 | 2.35554 | -0.85250 | 1.01441 | -2.02818

Ty €9 10 T11 12 13 T14

-1.34906 | -1.70090 | 0.02583 | 1.72567 | 1.66900 | -0.76182 | -0.05649

0.36748 | 2.47792 | 1.17191 | -0.95384 | -0.60798 | 0.13484 | -1.81073

-1.15512 | -0.88689 | -1.02823 | 0.50284 | -0.91250 | 1.11752 | 0.97035

T15 16 17 18 19 20 o1

-1.64530 | -1.30068 | -1.69236 | -1.33948 | -0.91634 | -0.85476 | 0.48865

0.96462 | -0.81295 | 9.26316 | -3.10570 | 0.06917 | 0.74236 | -0.50608

3.08148 | -0.91224 | 1.10580 | 2.75213 | 0.54215 | -0.50952 | 0.01627

22 23 L24 25 26 Ta7 28

-1.24435 | -1.32192 | 1.67164 | 0.57368 | -0.85195 | 1.13292 | -0.13808

0.29925 | 0.18265 | 0.80070 | -1.49815 | -1.98915 | 1.68993 | 0.64309

-0.18781 | 0.32869 | -0.45742 | 0.25999 | 2.56061 | -1.36947 | -1.09751
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Table 8.1. Comparisons of ARL and SRL of MCD,(0), LRC,, SR, SA
and SV (with k, = 1.5, k; = 0.5) charts for n =5, p = 2,3, where
A=A, Pen, ).

p=2,p=0
MCDs(0) SR SA SV LRC
h=4.3 h=3.11 h=16 h=3.66 h=18.6

A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL

(1,1) 247 244 205 204 203 202 211 212 248 241
B, 26.1 213 551 55.0 74.0 73.6 651 565 13.0 6.28
Coy 81.9 78.1 121 121 153 153 269 265 45.2 275
D, 2000 169 31.8 309 116 115 41.5 408  32.8 20.6
E, 240 136 244 190 435 3.78 582 536 3.17 1.84
Fy 17.8 149 275 26.6 110 109 329 322 29.8 18.2
G, 59.0 552 744 732 181 181 80.5 79.8 102 73.7
Hy 93.9 90.2 119 117 181 180 158 158 97.1 709
Jo 5.26 289 844 789 541 4.87 >211 2,57 091
K, 232 125 221 164 441 390 256 204 3.06 1.66

p=3,p=0
MCDs(0) SR SA SV LRC
h=4.95 h=3.73 h=28.7 h=4.05 h=29.8

A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL

(1,1) 209 206 206 206 205 205 197 196 203 189
B3 32.5 293 53.6  52.9 181 181 75.0 744 783 51.6
Cs 35.9 324 58.6  58.0 187 187 69.0 68.2 90.7 59.9
D3 1.87 0.94 1.69 1.08 481 431 234 177 280 1.44
Ej 12.4 0.60 > 206 12.9 12.6 > 197 2.75 0.82
F3 5.77  3.16 11.4 11.0 11.5 10.9 >197 3.06 1.07
G3 241 177 627 624 117 117 423 409 16.0  7.07
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Table 8.2. Comparisons of ARL and SRL of MCD,(0), LRC,, SR, SA

and SV charts for n =5, p = 2,3, where A = )\(2;1/222;1/2)_

p=2,u=0

MCD5(0) SR SA SV LRCj5

h=2.34/0.72 hy=3.2 h=16.2 h=3.66 h=18.6

ky,=1.5/0.72  h; = 0.493

k; =0.5/0.72

A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL

(1.0,1.0) 247 244 219 209 219 219 211 211 248 240
(0.2,0.2) 6.47 0.57 23.9 23.2 10.5 10.0 >2000 2.91 0.91
(0.4,0.8) 10.9 2.83 96.1 95.1 90.2 89.7 >1981 11.0 4.70
(0.8,0.6) 22.2 11.5 140 139 141 141 > 1731 24.5 12.7
(1.0,0.6) 24.2 13.3 156 154 153 154 > 1269 28.8 15.1
(1.6,0.6) 18.1 11.6 85.0 83.7 78.9 78.3 246 244 15.3 8.16
(2.0,0.6) 11.2 8.04 36.2 35.6 36.8 36.4 110 110 9.76 5.36
(1.0,0.8) 99.9 88.3 199 193 201 198 506 471 93.3 65.2
(1.4,1.2) 45.2 43.9 115 113 139 139 39.6 38.7 39.1 24.5
(2.0,1.2) 11.0 9.79 30.0 29.6 42.7 41.6 16.5 16.1 12.3 7.19
(1.6,1.6) 13.9 12.7 40.8 40.3 60.6 59.4 14.4 14.0 14.6 8.33
(1.8,1.6) 10.5 9.22 29.1 284 44.5 43.6 11.4 11.0 11.6 6.63
(2.0,1.6) 8.06 6.85 21.2 20.9 32.3 31.6 9.35 8.97 9.51 5.40
(1.8,1.8) 8.29 T7.18 22.4 21.7 33.9 33.1 9.16 8.72 9.69 5.43
(2.0,1.8) 6.83 5.62 17.2 16.8 26.1 254 7.68 7.22 8.22 4.61
(2.0,2.0) 5.74 4.62 13.8 13.5 20.9 20.2 6.49 6.01 7.16 4.00
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Table 8.2. (continued)

p=3,u=0

MCD5(0) SR SA SV LRCs

h =2.34/0.75 hy, =44 h=28.7 h=4.05 h=29.8

ky, =1.5/0.75 h; = 0.49944

k; =0.5/0.75

A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL

(1.0,1.0,1.0) 209 206 213 205 205 205 197 196 203 189
(0.2,0.2,0.2) 7.74 0.54 45.9 45.8 12.4 12.0 >2000 2.74 0.84
(0.2,0.6,1.4) 8.19 1.19 83.8 83.5 52.6 52.5 >1988 5.77 1.93
(0.2,1.4,2.0) 6.40 2.53 49.7 48.8 32.8 324 893 673 5.04 1.88
(0.4,0.8,0.8) 12.3 2.68 132 132 115 115 >1905 13.1 5.15
(0.4,0.8,1.2) 12.2 2.90 139 138 115 114 >1560 13.2 5.24
(0.6,1.8,2.0) 7.29 5.29 43.1 42.2 50.2 49.3 36.2 35.9 9.02 4.38
(0.6,2.0,2.0) 6.21 4.52 34.0 33.5 41.7 40.9 29.7 28.7 8.00 3.91
(0.8,0.8,2.0) 12.9 10.9 78.1 76.3 82.7 82.0 107 107 15.0 7.89
(0.8,1.0,1.4) 45.6 39.0 189 184 165 167 147 147 42.1 23.2
(1.2,1.6,1.8) 9.81 8.40 64.1 63.3 89.9 89.7 16.5 15.9 16.2 8.53
(1.2,1.8,2.0) 6.60 5.39 37.2 36.5 59.6 59.0 12.3 11.8 11.4 5.97
(1.4,1.8,1.8) 7.39 6.08 44.1 434 71.0 70.3 11.3 10.7 12.8 6.72
(1.6,1.6,1.6) 9.51 8.24 63.2 62.6 94.3 92.5 13.1 12.6 16.7 8.73
(1.6,1.8,2.0) 5.68 4.43 29.6 28.9 53.0 52.8 8.46 7.96 10.1 5.24
(1.8,1.8,2.0) 5.16 3.95 25.5 25.2 47.1 47.0 7.38 6.88 9.29 4.75
(1.8,2.0,2.0) 4.61 3.41 21.1 20.8 39.8 39.0 6.54 6.04 8.28 4.21
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Table 9.1. The out-of-control ARL and SRL of M CD5(0) with p =3, =0, h =10/0.74,
ky = 1.5/0.74,k; = 0.5/0.74 and the in-control (ARL.SRL)= (170, 161) where A = \(3, /*x5, /?).

A ARL SRL A ARL SRL A ARL SRL
(0.2,0.2,0.2)  24.9 1.49  (0.2,0.8,1.4) 26.0 589 (0.4,0.4,1.4) 33.4 9.44
(0.2,0.4,0.6)  27.3 2.58  (0.2,1.2,1.4) 24.7 7.05 (0.4,0.6,2.0) 25.7 14.4
(0.2,0.4,1.4) 261 5.18  (0.2,1.4,1.4) 234 7.95 (0.4,0.8,1.4) 37.7 14.0
(0.2,0.4,2.0) 21.2 842  (0.2,1.4,2.0) 18.0 9.32 (0.4,0.8,2.0) 254 14.8
(0.2,0.6,0.6)  27.6 2.80  (0.2,1.6,1.6) 20.1 9.06 (0.4,1.0,1.0) 41.7 12.3
(0.2,0.6,1.6)  24.7 6.94  (0.2,2.0,2.0) 13.9 881 (0.4,1.0,2.0) 24.4 14.9
(0.2,0.6,2.0)  21.0 8.67  (0.4,0.4,0.6) 35.0 6.14 (0.4,1.2,1.4) 34.7 15.3
(0.2,0.8,0.8)  27.7 3.03  (0.4,0.4,0.8) 35.7 6.48 (0.4,1.2,1.6) 30.6 15.7
(0.2,0.8,1.2)  27.1 434  (0.4,0.4,1.2) 351 7.92 (0.4,1.2,2.0) 22.9 14.6
(0.6,0.6,0.8)  59.2 22.9  (0.6,1.6,2.0) 19.6 16.0  (0.8,2.0,2.0) 14.2 11.9
(0.6,0.6,1.6)  43.7 25.1  (0.8,0.8,0.8) 126 87.0  (1.0,1.0,1.8) 34.1 31.0
(0.6,0.6,1.8)  35.8 22.6  (0.8,0.8,1.0) 146 111  (1.0,1.0,2.0) 26.0 22.9
(0.6,0.8,1.0)  78.0 422  (0.8.0.8,1.6) 57.2 47.8 (1.0,1.2,1.6) 40.0 37.7
(0.6,0.8,1.4)  60.6 37.9  (0.8,0.8,2.0) 30.2 25.6 (1.0,1.2,2.0) 23.3 20.6
(0.6,1.0,2.0)  28.0 21.7  (0.8,1.2,1.6) 44.6 40.3 (1.0,1.8,2.0) 153 13.0
(1.6,1.6,1.8)  14.8 12.5 (1.2,1.2,1.4) 453 423 (1.6,1.6,2.0) 13.0 10.7
(1.2,1.2,1.6)  33.7 30.9 (1.6,1.8,1.8) 13.1 11.0 (1.2,1.2,1.8) 26.1 23.2
(1.8,1.8,2.0) 10.7 8.61 (1.2,1.4,1.8) 226 20.0 (1.8,2.0,2.0) 9.76 7.75
(1.4,1.4,1.6)  23.7 21.2  (1.4,1.4,1.8) 195 16.9 (1.4,1.4,2.0) 16.4 13.9
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Extended Table 8.2. Comparisons of ARL and SRL of MCD,(0), LRC,, SR, SA
and SV charts for n =5, p = 2,3, where A = )\(2;1/222;1/2)_

p=2,u=0

MCD5(0) SR SA SV LRCj5

h=2.34/0.72 hy=3.2 h=16.2 h=3.66 h=18.6

ky,=1.5/0.72  h; = 0.493

k; =0.5/0.72

A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL

(1.0,1.0) 247 244 219 209 219 219 211 211 248 240
(0.2,0.2) 6.47 0.57 23.9 23.2 10.5 10.0 >2000 2.91 0.91
(0.2,0.4) 6.87 0.74 35.2 34.6 21.6 20.9 >2000 3.94 1.33
(0.2,0.6) 6.95 0.78 40.8 40.1 31.4 30.9 >2000 4.67 1.60
(0.2,0.8) 6.97 0.79 43.9 43.1 38.7 38.0 >2000 5.08 1.72
(0.2,1.0) 6.97 0.82 45.7 45.2 41.2 40.7 >2000 5.20 1.75
(0.2,1.2) 6.94 0.91 45.9 45.3 38.9 38.0 >2000 5.12 1.73
(0.2,1.4) 6.84 1.09 43.6 43.0 32.9 32.3 >1993 4.91 1.71
(0.2,1.6) 6.62 1.36 38.7 38.1 25.8 25.7 >1981 4.65 1.66
(0.2,1.8) 6.32 1.63 31.7 30.8 20.0 19.8 >1957 4.37 1.60
(0.2,2.0) 5.94 1.87 25.1 24.5 155 15.2 >1911 4.09 1.58
(0.4,0.4) 9.12 1.73 64.1 63.7 47.8 47.4 >2000 6.44 2.50
(0.4,0.6) 10.5 2.56 83.3 82.7 71.8 71.0 >2000 9.01 3.80
(0.4,0.8) 10.9 2.83 96.1 95.1 90.2 89.7 >1981 11.0 4.70
(0.4,1.0) 11.0 2.97 104 103 97.3 96.7 >1911 11.8 4.96
(0.4,1.2) 10.9 3.10 103 103 90.6 90.0 >1731 11.3 4.81
(0.4,1.4) 10.6 3.25 90.2 89.4 73.6 73.9 > 1449 10.2 4.44
(0.4,1.6) 9.96 3.51 69.5 68.9 53.9 53.7 > 1086 8.94 4.00
(0.4,1.8) 9.12 3.74 49.1 48.3 384 38.1 753 619 7.80 3.62
(0.4,2.0) 8.11 3.84 34.1 33.5 27.7 27.5 506 471 6.85 3.25
(0.6,0.6) 16.5 6.63 116 116 112 112 >1957 15.9 7.70
(0.8,0.6) 22.2 11.5 140 139 141 141 > 1731 24.5 12.7
(1.0,0.6) 24.2 13.3 156 154 153 154 > 1269 28.8 15.1
(1.2,0.6) 23.9 13.7 152 150 142 142 753 619 25.6 13.5
(1.4,0.6) 21.8 13.0 124 122 112 111 416 398 20.0 10.6
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Extended Table 8.2. (continued)

p=2,0=0
MCD5(0) SR SA SV LRCs

A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL
(1.6,0.6) 18.1 11.6 85.0 83.7 78.9 78.3 246 244 15.3 8.16
(1.8,0.6) 14.3 9.73 55.3 54.9 53.9 53.3 158 158 12.0 6.51
(2.0,0.6) 11.2 8.04 36.2 35.6 36.8 36.4 110 110 9.76 5.36
(0.8,0.8) 59.3 47.5 178 174 182 182 >1086 56.6 35.3
(1.0,0.8) 99.9 88.3 199 193 201 198 506 471 93.3 65.2
(1.2,0.8) 87.7 79.0 187 182 183 180 246 244 64.1 41.5
(1.4,0.8) 53.6 48.3 139 137 140 139 139 138 35.9 22.1
(1.6,0.8) 30.6 27.3 89.2 87.7 96.3 95.4 88.9 88.6 22.6 13.6
(1.8,0.8) 18.8 16.7 55.6 55.1 63.4 62.8 61.5 61.2 15.8 9.39
(2.0,0.8) 12.7 11.1 35.7 35.0 42.5 41.8 45.4 45.1 12.0 7.06
(1.2,1.0) 138 136 196 189 200 199 110 110 117 88
(1.4,1.0) 61.0 60.3 137 135 151 149 66.7 66.8 47.2 30.6
(1.6,1.0)  30.7 29.2 84.3 82.7 103 102 45.4 45.1 26.2 16.4
(1.8,1.0) 18.2 16.7 52.2 514 66.8 65.7 329 32.2 17.4 10.5
(2.0,1.0) 12.2 10.9 33.6 32.7 44.2 43.3 25.4 24.7 12.8 7.69
(1.2,1.2) 85.1 83.8 167 164 182 182 61.5 61.2 74.6 50.3
(1.4,1.2) 45.2 43.9 115 113 139 139 39.6 38.7 39.1 24.5
(1.6,1.2) 24.9 23.7 71.6 70.8 96.2 95.7 27.9 27.2 23.6 144
(1.8,1.2) 15.9 14.6 45.5 44.3 63.9 62.7 21.0 204 16.3 9.65
(2.0,1.2) 11.0 9.79 30.0 29.6 42.7 41.6 16.5 16.1 12.3 7.19
(1.4,1.4) 29.2 27.9 82.3 81.9 112 111 26.6 25.9 26.8 16.2
(1.6,1.4) 189 18.0 55.7 54.8 79.5 784 19.2 18.6 18.7 11.1
(1.8,1.4) 13.1 11.9 37.2 36.2 55.1 53.8 14.9 14.6 13.9 8.00
(2.0,1.4) 9.52 8.38 25.7 25.3 38.2 37.6 12.0 11.6 10.9 6.29
(1.6,1.6) 13.9 12.7 40.8 40.3 60.6 59.4 14.4 14.0 14.6 8.33
(1.8,1.6) 10.5 9.22 29.1 284 44.5 43.6 11.4 11.0 11.6 6.63
(2.0,1.6) 8.06 6.85 21.2 20.9 32.3 31.6 9.35 8.97 9.51 5.40
(1.8,1.8) 829 7.18 22.4 21.7 33.9 33.1 9.16 8.72 9.69 5.43
(2.0,1.8) 6.83 5.62 17.2 16.8 26.1 254 7.68 7.22 8.22 4.61
(2.0,2.0) 5.74 4.62 13.8 13.5 20.9 20.2 6.49 6.01 7.16 4.00
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Extended Table 8.2. (continued)

p=3,u=0

MCD5(0) SR SA SV LRCs

h =2.34/0.75 hy, =44 h=28.7 h=4.05 h=29.8

ky, =1.5/0.75 h; = 0.49944

k; =0.5/0.75

A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL

(1.0,1.0,1.0) 209 206 213 205 205 205 197 196 203 189
(0.2,0.2,0.2) 7.74 0.54 45.9 45.8 12.4 12.0 >2000 2.74 0.84
(0.2,0.2,0.4) 7.94 0.58 54.5 54.0 19.4 19.3 >2000 3.30 1.03
(0.2,0.2,0.6) 7.96 0.58 58.2 574 244 24.3 >2000 3.63 1.12
(0.2,0.2,0.8) 7.98 0.59 59.9 59.3 26.8 26.5 >2000 3.77 1.16
(0.2,0.2,1.0) 7.98 0.60 60.3 60.0 279 27.7 >2000 3.81 1.18
(0.2,0.2,1.2) 7.95 0.70 60.8 60.5 27.1 27.0 >2000 3.79 1.18
(0.2,0.2,1.4) 7.86 0.95 60.5 60.4 25.2 24.9 >2000 3.71 1.16
(0.2,0.2,1.6) 7.63 1.34 59.0 58.1 224 22.0 >2000 3.61 1.15
(0.2,0.2,1.8) 7.31 1.67 53.8 53.6 19.6 18.9 >2000 3.49 1.14
(0.2,0.2,2.0) 6.82 2.05 47.1 46.0 16.8 16.6 >2000 3.36 1.13
(0.2,0.4,0.4) 8.26 0.71 65.3 64.9 31.8 314 >2000 4.21 1.35
(0.2,0.4,0.6) 8.30 0.76 71.8 70.9 40.6 40.3 >2000 4.77 1.57
(0.2,0.4,0.8) 8.32 0.74 74.7 73.6 45.1 44.3 >2000 5.05 1.69
(0.2,0.4,1.0) 8.32 0.77 75.6 75.8 46.6 45.9 >2000 5.16 1.67
(0.2,0.4,1.2) 8.29 0.87 77.5 76.6 45.7 44.9 >2000 5.10 1.65
(0.2,0.4,1.4) 8.18 1.11 76.7 75.9 45.7 44.9 >2000 4.96 1.63
(0.2,0.4,1.6) 7.95 1.47 71.8 724 37.0 36.4 >1997 4.73 1.61
(0.2,0.4,1.8) 7.54 1.88 65.2 64.0 30.9 30.6 >1995 4.53 1.56
(0.2,0.4,2.0) 7.00 2.21 54.9 53.8 25.7 25.3 >1989 4.29 1.53
(0.2,0.6,0.6) 8.35 0.76 78.1 76.8 51.0 50.3 >2000 5.53 1.85
(0.2,0.6,0.8) 8.37 0.77 81.4 80.8 58.1 57.6 >2000 5.94 1.96
(0.2,0.6,1.0) 8.37 0.79 83.8 834 60.2 59.9 >1998 6.09 1.98
(0.2,0.6,1.2) 8.34 0.90 84.9 84.7 58.1 57.8 >1995 5.98 1.98
(0.2,0.6,1.4) 8.19 1.19 83.8 83.5 52.6 52.5 >1988 5.77 1.93
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Extended Table 8.2. (continued)

p=3,u=0
MCD5(0) SR SA SV LRCs

A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL
(0.2,0.6,1.6) 7.95 1.54 78.7 T7.5 46.5 46.2 >1974 5.48 1.88
(0.2,0.6,1.8) 7.52 1.95 68.6 68.8 38.6 38.5 >1952 5.16 1.82
(0.2,0.6,2.0) 6.97 2.28 56.4 55.0 319 31.9 >1927 491 1.78
(0.2,0.8,0.8) 8.38 0.78 85.4 85.1 65.7 65.2 >1997 6.44 2.11
(0.2,0.8,1.0) 8.37 0.81 87.4 87.7 67.0 67.0 >1990 6.61 2.12
(0.2,0.8,1.2) 8.34 0.93 88.3 88.8 65.5 65.5 >1974 6.46 2.13
(0.2,0.8,1.4) 8.18 1.25 86.8 87.3 59.8 59.2 >1944 6.21 2.08
(0.2,0.8,1.6) 7.92 1.59 81.1 80.2 51.2 50.8 >1907 5.88 2.03
(0.2,0.8,1.8) 7.47 1.99 70.6 69.3 42.8 42.5 >1848 5.53 1.95
(0.2,0.8,2.0) 6.91 2.33 57.4 56.0 35.2 34.9 >1767 5.17 1.91
(0.2,1.0,1.0) 8.37 0.88 90.3 90.4 70.4 70.3 >1970 6.77 2.16
(0.2,1.0,1.2) 8.31 1.04 91.1 91.1 68.5 67.5 >1929 6.67 2.15
(0.2,1.0,1.4) 8.15 1.31 88.9 89.3 61.9 61.3 >1866 6.36 2.10
(0.2,1.0,1.6) 7.85 1.66 81.3 81.1 53.6 52.9 >1765 6.05 2.06
(0.2,1.0,1.8) 7.36 2.09 69.5 69.0 44.4 44.2 >1646 5.62 2.00
(0.2,1.0,2.0) 6.84 2.35 56.0 54.8 36.1 35.7 >1497 5.25 1.95
(0.2,1.2,1.2) 8.22 1.23 91.3 91.3 65.0 64.6 >1848 6.53 2.14
(0.2,1.2,1.4) 8.03 1.49 88.2 88.2 60.0 59.3 >1719 6.27 2.08
(0.2,1.2,1.6) 7.72 1.82 80.1 78.8 51.7 51.3 >1559 5.92 2.04
(0.2,1.2,1.8) 7.24 2.18 67.0 66.3 43.0 42.6 >1379 5.57 1.97
(0.2,1.2,2.0) 6.64 2.45 53.5 52.5 35.2 34.7 >1184 5.24 1.93
(0.2,1.4,1.4) 7.82 1.73 83.2 83.2 54.9 54.0 >1532 6.04 2.04
(0.2,1.4,1.6) 7.44 2.08 75.0 73.7 474 474 >1312 5.74 1.99
(0.2,1.4,1.8) 6.98 2.31 62.2 60.8 39.9 394 >1094 5.37 1.94
(0.2,1.4,2.0) 6.40 2.53 49.7 48.8 32.8 324 893 673 5.04 1.88
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Extended Table 8.2. (continued)

p=3,u=0
MCD5(0) SR SA SV LRCs

A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL
(0.2,1.6,1.6) 7.07 2.30 66.6 65.4 41.8 41.7 >1065 5.45 1.93
(0.2,1.6,1.8) 6.62 2.44 55.1 54.2 35.3 34.8 840 656 5.13 1.88
(0.2,1.6,2.0) 6.09 2.58 44.0 43.4 29.5 28.5 649 566 4.86 1.82
(0.2,1.8,1.8) 6.21 2.56 46.4 46.0 30.6 29.9 629 554 4.89 1.84
(0.2,1.8,2.0) 5.73 2.61 37.1 36.3 25.6 24.6 476 447 4.62 1.76
(0.2,2.0,2.0) 5.30 2.60 30.7 30.2 21.9 20.9 356 346 4.39 1.70
(0.4,0.4,0.4) 10.3 1.48 90.8 89.1 54.5 54.2 >2000 6.04 2.15
(0.4,0.4,0.6) 10.9 1.77 101 99.2 69.6 70.3 >2000 7.37 2.67
(0.4,0.4,0.8) 11.0 1.81 107 106 79.0 78.9 >1998 8.19 3.02
(0.4,0.4,1.0) 11.1 1.90 111 111 82.3 82.2 >1989 8.43 3.12
(0.4,0.4,1.2) 11.0 2.00 112 112 78.8 78.0 >1974 8.23 3.02
(0.4,0.4,1.4) 10.8 2.31 111 111 72.0 71.7 >1944 7.79 2.88
(0.4,0.4,1.6) 10.3 2.70 101 101 61.9 61.8 >1906 7.30 2.77
(0.4,0.4,1.8) 9.49 3.11 87.6 86.3 51.8 51.3 >1848 6.69 2.62
(0.4,0.4,2.0) 8.59 3.40 69.2 67.3 42.0 41.1 >1767 6.16 2.48
(0.4,0.6,0.6) 11.8 2.28 114 114 89.9 90.3 >1995 9.60 3.68
(0.4,0.6,0.8) 12.0 2.50 121 121 101 101 >1976 11.1 4.27
(0.4,0.6,1.0) 12.1 2.58 127 127 104 104 >1929 11.5 4.49
(0.4,0.6,1.2) 12.0 2.72 128 128 101 101 >1849 11.2 4.33
(0.4,0.6,1.4) 11.7 3.01 126 126 91.8 91.8 >1559 10.4 4.07
(0.4,0.6,1.6) 11.0 3.40 114 114 78.9 78.9 >1559 9.39 3.77
(0.4,0.6,1.8) 10.1 3.76 94.3 94.2 64.9 65.3 >1379 8.40 3.50
(0.4,0.6,2.0) 8.95 3.96 72.9 T1.7 51.7 51.1 >1184 7.57 3.20
(0.4,0.8,0.8) 12.3 2.68 132 132 115 115 >1905 13.1 5.15
(0.4,0.8,1.0) 12.3 2.76 137 138 119 119 >1767 13.7 5.42
(0.4,0.8,1.2) 12.2 2.90 139 138 115 114 >1560 13.2 5.24
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Extended Table 8.2. (continued)

p=3,u=0
MCD5(0) SR SA SV LRCs

A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL
(0.4,0.8,1.4) 11.9 3.20 135 135 104 104 >1316 12.1 4.87
(0.4,0.8,1.6) 11.1 3.72 120 120 88.6 88.6 >1065 10.8 4.40
(0.4,0.8,1.8) 10.1 4.01 96.3 95.6 72.3 724 840 656 9.50 3.40
(0.4,0.8,2.0) 8.88 4.14 73.1 71.6 57.0 55.9 649 566 8.41 3.66
(0.4,1.0,1.0) 12.4 2.86 142 140 124 124 >1497 14.5 5.64
(0.4,1.0,1.2) 12.3 3.04 145 145 119 120 >1185 13.9 5.50
(0.4,1.0,1.4) 11.8 3.38 139 139 108 109 892 673 12.6 5.10
(0.4,1.0,1.6) 11.0 3.74 121 120 91.8 91.6 649 566 11.3 4.59
(0.4,1.0,1.8) 9.92 4.07 94.8 93.5 74.5 74.0 476 447 9.92 4.24
(0.4,1.0,2.0) 8.73 4.13 69.6 68.1 59.1 58.3 356 346 8.73 3.85
(0.4,1.2,1.2) 12.0 3.26 144 143 114 114 839 660 13.4 5.33
(0.4,1.2,1.4) 11.5 3.55 136 136 105 105 572 517 12.2 4.90
(0.4,1.2,1.6) 10.7 3.92 116 115 89.6 89.3 398 384 10.9 4.47
(0.4,1.2,1.8) 9.60 4.17 89.8 88.6 89.6 89.3 293 288 9.61 4.07
(0.4,1.2,2.0) 8.43 4.16 65.5 64.3 57.3 56.2 220 220 5.01 1.66
(0.4,1.4,1.4) 11.0 3.82 126 126 95.6 95.9 376 366 11.4 4.55
(0.4,1.4,1.6) 10.1 4.17 105 104 82.1 81.6 262 259 10.2 4.24
(0.4,1.4,1.8) 9.04 4.23 80.9 79.9 67.2 65.8 193 192 9.04 3.82
(0.4,1.4,2.0) 7.90 4.16 59.2 58.8 53.5 524 147 147 8.12 3.57
(0.4,1.6,1.6) 9.33 4.24 87.6 87.0 70.2 70.0 185 184 9.25 3.88
(0.4,1.6,1.8) 8.34 4.20 67.9 67.1 58.2 57.7 139 137 8.32 3.56
(0.4,1.6,2.0) 7.32 4.10 51.8 51.0 47.4 46.6 107 107 7.54 3.31
(0.4,1.8,1.8) 7.54 4.14 54.6 53.5 49.3 48.9 104 104 7.58 3.30
(0.4,1.8,2.0) 6.65 3.90 42.6 41.7 40.8 40.0 82.6 82.8 6.97 3.09
(0.4,2.0,2.0) 5.92 3.67 33.5 32.4 34.3 34.1 65.1 64.2 6.39 2.87
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Extended Table 8.2. (continued)

p=3,p=0
MCDs5(0) SR SA SV LRCs
A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL

(0.6,0.6,0.6) 16.7 5.17 135 134 119 119 >1952 14.6 6.20
(0.6,0.6,0.8) 18.7 6.58 145 144 132 132 >1849 18.3 8.04
(0.6,0.6,1.0) 19.1 7.11 152 151 136 136 >1644 19.8 8.71
(0.6,0.6,1.2) 19.2 7.31 158 157 132 132 >1379 18.7 8.28
(0.6,0.6,1.4) 18.2 7.58 152 153 120 120 >1094 16.6 7.29
(0.6,0.6,1.6) 16.1 7.72 134 133 103 103 840 656 14.2 6.35
(0.6,0.6,1.8) 13.4 7.23 106 106 83.1 834 629 554 11.9 5.46
(0.6,0.6,2.0) 11.1 6.75 78.4 T7.5 65.1 64.8 476 447 10.2 4.76
(0.6,0.8,0.8) 22.0 9.20 161 160 149 149 >1559 25.0 114
(0.6,0.8,1.0) 23.0 10.1 166 163 155 155 >1184 28.1 12.9
(0.6,0.8,1.2) 22.7 10.3 173 171 152 152 839 660 26.0 12.0
(0.6,0.8,1.4) 20.8 10.2 161 160 137 137 572 517 21.7 10.1
(0.6,0.8,1.6) 17.8 9.74 142 141 116 117 398 384 17.5 8.27
(0.6,0.8,1.8) 14.3 8.67 109 108 93.3 94.6 293 288 14.4 6.93
(0.6,0.8,2.0) 11.4 7.52 77.0 75.7 72.8 T72.2 220 220 11.8 5.80
(0.6,1.0,1.0) 23.8 11.1 179 177 161 160 763 625 31.4 14.9
(0.6,1.0,1.2) 23.1 114 178 175 155 155 473 450 29.2 13.5
(0.6,1.0,1.4) 21.0 10.9 170 169 143 143 311 307 23.8 11.2
(0.6,1.0,1.6) 17.7 10.2 140 140 120 120 216 212 18.9 9.01
(0.6,1.0,1.8) 14.0 8.80 107 106 96.7 95.7 163 163 15.1 7.36
(0.6,1.0,2.0) 11.1 7.64 74.4 72.6 74.8 73.9 126 125 12.5 6.18
(0.6,1.2,1.2) 22.2 114 177 175 153 153 293 288 26.9 124
(0.6,1.2,1.4) 20.0 10.9 166 165 137 139 193 192 22.0 104
(0.6,1.2,1.6) 16.7 9.86 134 134 116 116 138 137 17.8 8.50
(0.6,1.2,1.8) 13.2 8.54 99.5 98.3 93.6 93.0 104 104 14.5 7.03
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Extended Table 8.2. (continued)

p=3,u=0
MCD5(0) SR SA SV LRCs

A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL
(0.6,1.2,2.0) 10.5 7.23 69.2 68.1 72.9 72.0 82.6 82.8 12.1 5.97
(0.6,1.4,1.4) 17.7 104 149 149 125 125 132 131 19.0 8.88
(0.6,1.4,1.6) 14.8 9.28 120 120 106 106 96.3 96.6 15.8 7.51
(0.6,1.4,1.8) 11.8 8.19 87.2 86.3 85.8 85.6 74.0 73.8 13.3 6.43
(0.6,1.4,2.0) 9.47 6.89 62.6 61.3 67.0 66.2 59.0 58.8 11.2 5.47
(0.6,1.6,1.6) 12.5 8.53 95.6 95.1 91.2 91.0 71.6 71.5 13.6 6.47
(0.6,1.6,1.8) 10.2 7.37 71.6 714 74.4 73.8 55.7 54.4 11.7 5.67
(0.6,1.6,2.0) 8.42 6.08 53.3 52.5 58.9 58.1 45.4 45.1 10.0 4.82
(0.6,1.8,1.8) 8.70 6.26 56.3 55.7 61.8 61.1 44.1 44.0 10.2 4.87
(0.6,1.8,2.0) 7.29 5.29 43.1 42.2 50.2 49.3 36.2 35.9 9.02 4.38
(0.6,2.0,2.0) 6.21 4.52 34.0 33.5 41.7 40.9 29.7 28.7 8.00 3.91
(0.8,0.8,0.8) 49.6 34.9 177 175 177 182 >1065 47.6 25.4
(0.8,0.8,1.0) 61.2 46.1 188 183 184 187 649 566 59.3 33.5
(0.8,0.8,1.2) 57.3 43.8 191 187 173 173 398 384 50.1 27.3
(0.8,0.8,1.4) 43.4 34.6 183 179 156 157 265 262 35.8 19.1
(0.8,0.8,1.6) 28.7 23.1 150 150 132 134 183 182 25.5 134
(0.8,0.8,1.8) 18.8 15.7 150 150 107 108 138 137 19.0 9.85
(0.8,0.8,2.0) 12.9 10.9 78.1 76.3 82.7 82.0 107 107 15.0 7.89
(0.8,1.0,1.0) 78.0 64.0 199 193 188 187 356 346 79.1 474
(0.8,1.0,1.2) 67.0 55.8 200 195 185 187 220 220 63.7 36.7
(0.8,1.0,1.4) 45.6 39.0 189 184 165 167 147 147 42.1 23.2
(0.8,1.0,1.6) 28.1 23.8 154 152 139 140 108 107 28.4 15.2
(0.8,1.0,1.8) 17.9 15.1 110 109 110 111 82.4 82.3 20.6 11.2
(0.8,1.0,2.0) 12.3 10.1 75.0 73.3 85.5 84.4 65.1 64.2 15.7 8.37
(0.8,1.2,1.2) 57.2 49.5 203 197 176 176 139 137 53.4 29.8
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Extended Table 8.2. (continued)

p=3,u=0
MCD5(0) SR SA SV LRCs

A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL
(0.8,1.2,1.4) 38.5 33.4 179 176 160 162 96.3 96.6 37.5 20.2
(0.8,1.2,1.6) 24.4 21.6 144 142 133 134 71.6 71.5 26.2 14.0
(0.8,1.2,1.8) 16.1 13.9 102 101 107 108 55.7 54.4 19.3 10.2
(0.8,1.2,2.0) 11.3 9.75 69.9 68.6 82.9 81.6 45.4 45.1 15.0 7.99
(0.8,1.4,1.4) 28.0 24.7 157 156 145 147 68.7 68.4 29.0 15.3
(0.8,1.4,1.6) 19.3 16.3 124 122 122 124 51.7 50.6 21.8 114
(0.8,1.4,1.8) 13.5 11.8 88.3 87.7 98.1 98.1 41.2 41.2 17.1 8.90
(0.8,1.4,2.0) 9.91 841 61.7 60.1 76.2 75.8 33.5 32.8 13.5 7.02
(0.8,1.6,1.6) 14.7 129 97.3 95.7 104 106 39.7 38.9 17.7 9.07
(0.8,1.6,1.8) 11.0 9.16 1.4 721 85.2 85.0 31.9 30.9 14.5 7.37
(0.8,1.6,2.0) 8.67 7.10 51.7 51.0 67.7 67.6 26.6 25.6 12.1 6.28
(0.8,1.8,1.8) 8.90 7.54 55.5 55.5 70.9 70.8 26.2 25.8 12.2 6.23
(0.8,1.8,2.0) 7.33 5.88 42.1 41.5 56.6 55.7 22.1 21.7 10.5 5.41
(0.8,2.0,2.0) 6.17 4.81 32.8 31.9 46.7 46.2 22.1 21.7 9.20 4.76
(1.0,1.0,1.0) 207 195 213 205 205 208 197 196 200 188
(1.0,1.0,1.2) 122 117 212 205 198 199 125 125 127 93.8
(1.0,1.0,1.4) 58.6 55.6 197 191 174 175 87.6 87.1 62.4 38.0
(1.0,1.0,1.6) 30.0 27.5 151 150 149 149 65.6 65.2 35.8 20.6
(1.0,1.0,1.8) 17.8 16.2 108 108 118 117 51.3 50.2 24.0 134
(1.0,1.0,2.0) 12.1 10.7 72.8 714 90.7 90.5 41.8 41.7 17.7 9.93
(1.0,1.2,1.2) 78.5 76.2 213 206 190 192 82.6 82.8 90.7 59.0
(1.0,1.2,1.4) 43.2 41.5 187 182 171 172 59.0 58.0 52.3 30.6
(1.0,1.2,1.6) 24.9 225 143 141 144 144 45.4 45.1 32.5 18.2
(1.0,1.2,1.8) 15.8 14.0 98.9 97.4 114 114 36.2 35.9 22,7 12.7
(1.0,1.2,2.0) 10.9 9.60 66.9 65.8 87.4 87.0 29.7 28.7 16.8 9.13
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Extended Table 8.2. (continued)

p=3,u=0
MCD5(0) SR SA SV LRCs

A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL
(1.0,1.4,1.4) 28.5 27.0 157 157 153 154 43.4 434 36.8 20.6
(1.0,1.4,1.6) 19.0 17.6 121 121 130 132 33.5 32.8 26.2 14.3
(1.0,1.4,1.8) 13.1 11.6 85.5 84.5 104 105 27.4 26.1 19.3 10.3
(1.0,1.4,2.0) 9.58 8.23 59.3 58.2 80.9 81.2 23.1 22.8 15.0 8.02
(1.0,1.6,1.6) 14.1 12.6 94.4 94.0 111 112 26.7 26.3 20.2 10.8
(1.0,1.6,1.8) 10.5 9.26 68.4 68.5 90.0 89.6 22.0 21.1 16.0 8.49
(1.0,1.6,2.0) 8.29 6.88 49.1 48.7 70.4 69.9 18.6 18.1 13.1 7.02
(1.0,1.8,1.8) 8.68 7.22 53.5 52.1 74.7 74.0 18.2 17.6 13.4 7.10
(1.0,1.8,2.0) 7.03 5.65 40.1 39.6 59.5 58.5 15.7 15.1 11.2 5.84
(1.0,2.0,2.0) 5.97 4.63 31.2 30.3 49.6 49.6 13.4 12.7 9.71 5.06
(1.2,1.2,1.2) 60.6 60.4 208 202 191 193 55.9 55.8 95.6 62.8
(1.2,1.2,1.4) 35.6 33.9 175 173 169 171 41.1 40.1 53.7 31.6
(1.2,1.2,1.6) 21.7 19.9 133 133 143 143 32.3 31.9 33.1 18.6
(1.2,1.2,1.8) 14.3 12.8 92.4 90.9 114 114 26.1 25.8 22.8 12.5
(1.2,1.2,2.0) 10.3 8.88 62.9 62.1 87.9 87.7 22.1 21.7 16.9 9.25
(1.2,1.4,1.4) 24.3 22.6 148 148 153 154 30.9 29.9 37.6 21.1
(1.2,1.4,1.6) 16.9 154 113 112 129 130 24.6 24.2 26.5 14.5
(1.2,1.4,1.8) 12.0 10.6 78.9 TT1.7 104 104 20.3 194 19.5 104
(1.2,1.4,2.0) 9.08 7.77 55.1 54.0 80.4 79.2 17.3 16.5 15.2 8.26
(1.2,1.6,1.6) 12.7 11.3 86.9 87.1 111 112 19.8 19.3 20.6 11.1
(1.2,1.6,1.8) 9.81 8.40 64.1 63.3 89.9 89.7 16.5 15.9 16.2 8.53
(1.2,1.6,2.0) 7.74 6.38 45.9 45.3 71.0 69.9 14.2 13.6 13.2 7.00
(1.2,1.8,1.8) 8.05 6.73 49.6 45.3 74.8 74.3 14.1 13.5 13.4 7.02
(1.2,1.8,2.0) 6.60 5.39 37.2 36.5 59.6 59.0 12.3 11.8 11.4 5.97
(1.2,2.0,2.0) 5.67 4.37 29.3 29.1 48.9 48.3 10.5 10.0 9.85 5.17
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Extended Table 8.2. (continued)

p=3,u=0
MCD5(0) SR SA SV LRCs

A ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL
(1.4,1.4,1.4) 19.7 18.3 130 128 144 144 23.8 23.5 324 17.7
(1.4,1.4,1.6) 14.4 129 97.8 98.9 122 121 19.3 18.5 23.9 12.8
(1.4,1.4,1.8) 10.5 9.18 69.6 69.8 99.1 99.2 16.1 15.5 18.2 9.75
(1.4,1.4,2.0) 8.15 6.82 49.1 48.3 76.9 76.4 13.8 13.2 14.3 7.73
(1.4,1.6,1.6) 11.1 9.82 76.3 75.7 105 105 15.8 15.2 18.9 10.0
(1.4,1.6,1.8) 8.79 7.45 56.3 56.3 85.6 85.3 13.4 12.9 15.2 7.99
(1.4,1.6,2.0) 7.13 5.90 41.7 40.8 67.7 67.7 11.5 10.9 12.5 6.60
(1.4,1.8,1.8) 7.39 6.08 44.1 43.4 71.0 70.3 11.3 10.7 12.8 6.72
(1.4,1.8,2.0) 6.16 4.92 33.7 33.0 57.8 57.7 9.90 9.43 10.8 5.61
(1.4,2.0,2.0) 5.36 4.07 26.4 25.8 47.0 46.8 8.84 8.17 9.42 4.86
(1.6,1.6,1.6) 9.51 8.24 63.2 62.6 94.3 92.5 13.1 12.6 16.7 8.73
(1.6,1.6,1.8) 7.78 6.42 47.6 47.8 77.8 774 11.1 10.5 13.8 7.19
(1.6,1.6,2.0) 6.49 5.22 36.2 35.5 62.4 62.3 9.73 9.30 11.5 5.92
(1.6,1.8,1.8) 6.60 5.25 37.8 374 64.9 64.4 9.59 9.14 11.7 6.07
(1.6,1.8,2.0) 5.68 4.43 29.6 28.9 53.0 52.8 8.46 7.96 10.1 5.24
(1.6,2.0,2.0) 4.96 3.72 23.9 23.5 44.0 43.8 7.59 6.95 8.92 4.59
(1.8,1.8,1.8) 5.93 4.62 32.2 314 57.7 56.8 8.44 7.83 10.6 5.42
(1.8,1.8,2.0) 5.16 3.95 25.5 25.2 47.1 47.0 7.38 6.88 9.29 4.75
(1.8,2.0,2.0) 4.61 3.41 21.1 20.8 39.8 39.0 6.54 6.04 8.28 4.21
(2.0,2.0,2.0) 4.23 3.10 18.1 17.7 35.2 34.7 5.87 5.35 7.60 3.88
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Extended Table 9.1. The out-of-control ARL and SRL of MCD5(0) with p =3, =0, h =10/0.74,
ky = 1.5/0.74,k; = 0.5/0.74 and the in-control (ARL.SRL)= (170, 161) where A = \(3, /*x5, /?).

A ARL SRL A ARL SRL A ARL SRL
(0.2,0.2,0.2)  24.9 1.49  (0.2,0.8,1.4) 26.0 589 (0.4,0.4,1.4) 33.4 9.44
(0.2,0.2,0.4) 257 1.83  (0.2,0.8,1.6) 245 7.20 (0.4,0.4,1.6) 30.7 10.9
(0.2,0.2,0.6) 258 1.8%8  (0.2,0.8,1.8) 22.7 8.16 (0.4,0.4,1.8) 27.7 11.9
(0.2,0.2,0.8)  25.8 2.00 (0.2,0.8,2.0) 20.7 8.85 (0.4,0.4,2.0) 24.6 12.2
(0.2,0.2,1.0) 258 223  (0.2,1.0,1.0) 27.4 3.93 (0.4,0.6,0.6) 39.0 8.48
(0.2,0.2,1.2) 255 3.03 (0.2,1.0,1.2) 26.7 5.04 (0.4,0.6,0.8) 40.4 9.47
(0.2,0.2,1.4) 24.8 429 (0.2,1.0,1.4) 25.6 6.34 (0.4,0.6,1.0) 40.6 10.2
(0.2,0.2,1.6)  23.7 5.64  (0.2,1.0,1.6) 24.0 7.55 (0.4,0.6,1.2) 39.7 11.3
(0.2,0.2,1.8) 221 6.82  (0.2,1.0,1.8) 22.1 8.46 (0.4,0.6,1.4) 37.1 12.8
(0.2,0.2,2.0) 205 7.65  (0.2,1.0,2.0) 20.0 9.02 (0.4,0.6,1.6) 33.5 14.0
(0.2,0.4,0.4) 27.1 246  (0.2,1.2,1.2) 258 6.23 (0.4,0.6,1.8) 29.7 14.4
(0.2,0.4,0.6)  27.3 2.58  (0.2,1.2,1.4) 24.7 7.05 (0.4,0.6,2.0) 25.7 14.4
(0.2,0.4,0.8) 274 2.69 (0.2,1.2,1.6) 23.0 8.09 (0.4,0.8,0.8) 41.9 10.7
(0.2,0.4,1.0)  27.4 3.02 (0.2,1.2,1.8) 21.1 8.80 (0.4,0.8,1.0) 42.0 11.5
(0.2,0.4,1.2)  27.0 3.83  (0.2,1.2,2.0) 19.2 921  (0.4,0.8,1.2) 40.8 12.4
(0.2,0.4,1.4) 261 5.18  (0.2,1.4,1.4) 234 7.95 (0.4,0.8,1.4) 37.7 14.0
(0.2,0.4,1.6)  24.8 6.60 (0.2,1.4,1.6) 21.7 8.65 (0.4,0.8,1.6) 33.8 15.1
(0.2,0.4,1.8) 231 7.68 (0.2,1.4,1.8) 19.9 9.13 (0.4,0.8,1.8) 29.6 15.2
(0.2,0.4,2.0) 21.2 842  (0.2,1.4,2.0) 18.0 9.32 (0.4,0.8,2.0) 254 14.8
(0.2,0.6,0.6)  27.6 2.80  (0.2,1.6,1.6) 20.1 9.06 (0.4,1.0,1.0) 41.7 12.3
(0.2,0.6,0.8)  27.7 2.8%8  (0.2,1.6,1.8) 184 9.28 (0.4,1.0,1.2) 40.2 13.3
(0.2,0.6,1.0)  27.6 3.22  (0.2,1.6,2.0) 16.7 9.24  (0.4,1.0,1.4) 36.8 14.7
(0.2,0.6,1.2)  27.2 413  (0.2,1.8,1.8) 16.9 9.27 (0.4,1.0,1.6) 32.8 155
(0.2,0.6,1.4) 26.2 5.61  (0.2,1.8,2.0) 153 9.05 (0.4,1.0,1.8) 28.4 15.4
(0.2,0.6,1.6)  24.7 6.94  (0.2,2.0,2.0) 13.9 881 (0.4,1.0,2.0) 24.4 14.9
(0.2,0.6,1.8)  23.0 7.95 (0.4,0.4,0.4) 328 488 (0.4,1.2,1.2) 37.9 14.4
(0.2,0.6,2.0)  21.0 8.67 (0.4,0.4,0.6) 35.0 6.14 (0.4,1.2,1.4) 34.7 15.3
(0.2,0.8,0.8)  27.7 3.03  (0.4,0.4,0.8) 35.7 6.48 (0.4,1.2,1.6) 30.6 15.7
(0.2,0.8,1.0)  27.6 3.40  (0.4,0.4,1.0) 35.7 7.03 (0.4,1.2,1.8) 26.6 15.1
(0.2,0.8,1.2)  27.1 4.34  (0.4,0.4,1.2) 351 7.92 (0.4,1.2,2.0) 22.9 14.6
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Extended Table 9.1. (continued)

A ARL SRL A ARL SRL A ARL SRL
(0.4,1.4,1.4) 31.6 156  (0.6,1.2,1.2) 63.6 42.0 (0.8,1.2,1.8) 32.3 285
(0.4,1.4,1.6)  27.9 155  (0.6,1.2,1.4) 51.9 37.1 (0.8,1.2,2.0) 252 22.0
(0.4,1.4,1.8)  24.3 149  (0.6,1.2,1.6) 40.9 30.9 (0.8,1.4,1.4) 47.6 42.8
(0.4,1.4,2.0)  21.0 14.0 (0.6,1.2,1.8) 31.8 24.6 (0.8,1.4,1.6) 355 32.0
(0.4,1.6,1.6)  24.7 151  (0.6,1.2,2.0) 25.5 20.2 (0.8,1.4,1.8) 27.5 24.4
(0.4,1.6,1.8)  21.7 142  (0.6,1.4,1.4) 43.1 325 (0.8,1.4,2.0) 22.1 19.4
(0.4,1.6,2.0) 18.8 13.1  (0.6,1.4,1.6) 34.4 27.1 (0.8,1.6,1.6) 28.2 25.2
(0.4,1.8,1.8)  19.0 13.2  (0.6,1.4,1.8) 27.7 22.1 (0.8,1.6,1.8) 23.0 20.1
(0.4,1.8,2.0) 16.8 122  (0.6,1.4,2.0) 227 185 (0.8,1.6,2.0) 18.9 16.2
(0.4,2.0,2.0) 14.8 11.0  (0.6,1.6,1.6) 28.3 22.9 (0.8,1.8,1.8) 19.3 16.8
(0.6,0.6,0.6)  51.8 16.8  (0.6,1.6,1.8) 23.6 19.1  (0.8,1.8,2.0) 16.3 13.7
(0.6,0.6,0.8)  59.2 22.9  (0.6,1.6,2.0) 19.6 16.0 (0.8,2.0,2.0) 14.2 11.9
(0.6,0.6,1.0)  60.8 26.2  (0.6,1.8,1.8) 20.0 16.4 (1.0,1.0,1.2) 116 109
(0.6,0.6,1.2) 585 27.1  (0.6,1.8,2.0) 17.0 13.9 (1.0,1.0,1.4) 73.1 68.7
(0.6,0.6,1.4)  51.8 26.3  (0.6,2.0,2.0) 14.8 12.1 (1.0,1.0,1.6) 48.5 45.5
(0.6,0.6,1.6)  43.7 25.1  (0.8,0.8,0.8) 126 87.0  (1.0,1.0,1.8) 34.1 31.0
(0.6,0.6,1.8) 358 22.6  (0.8,0.8,1.0) 146 111  (1.0,1.0,2.0) 26.0 22.9
(0.6,0.6,2.0)  29.4 20.2  (0.8,0.8,1.2) 120 95.1  (1.0,1.2,1.2) 82.8 79.9
(0.6,0.8,0.8)  74.3 37.1  (0.8,0.8,1.4) 839 683 (1.0,1.2,1.4) 56.7 53.7
(0.6,0.8,1.0)  78.0 42.2  (0.8.0.8,1.6) 57.2 47.8 (1.0,1.2,1.6) 40.0 37.7
(0.6,0.8,1.2) 724 41.1  (0.8,0.8,1.8) 40.3 34.3 (1.0,1.2,1.8) 29.7 26.9
(0.6,0.8,1.4)  60.6 37.9  (0.8,0.8,2.0) 30.2 25.6 (1.0,1.2,2.0) 23.3 20.6
(0.6,0.8,1.6)  48.1 32.4  (0.8,1.0,1.0) 163 140 (1.0,1.4,1.4) 42.5 39.4
(0.6,0.8,1.8) 374 269  (0.8,1.0,1.2) 122 107  (1.0,1.4,1.6) 32.1 29.4
(0.6,0.8,2.0) 29.6 22.3  (0.8,1.0,1.4) 80.3 71.0 (1.0,1.4,1.8) 25.3 22.7
(0.6,1.0,1.0)  80.6 47.1  (0.8,1.0,1.6) 53.2 46.9 (1.0,1.4,2.0) 20.5 17.7
(0.6,1.0,1.2)  72.8 44.9  (0.8,1.0,1.8) 37.3 33.1 (1.0,1.6,1.6) 25.8 23.1
(0.6,1.0,1.4)  58.9 39.8  (0.8,1.0,2.0) 282 24.5 (1.0,1.6,1.8) 21.3 18.7
(0.6,1.0,1.6)  46.2 33.0  (0.8,1.2,1.2) 91.6 82.3 (1.0,1.6,2.0) 17.6 15.0
(0.6,1.0,1.8) 355 26.5 (0.8,1.2,1.4) 63.7 57.3 (1.0,1.8,1.8) 18.0 15.5
(0.6,1.0,2.0)  28.0 21.7  (0.8,1.2,1.6) 44.6 40.3 (1.0,1.8,2.0) 15.3 13.0
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A ARL SRL A ARL SRL A ARL SRL
(1.0,2.0,2.0) 134 11.3  (1.6,1.6,1.6) 17.1 14.6 (1.2,1.2,1.2) 62.3 58.8
(1.6,1.6,1.8)  14.8 12.5  (1.2,1.2,1.4) 45.3 423 (1.6,1.6,2.0) 13.0 10.7
(1.2,1.2,1.6)  33.7 30.9 (1.6,1.8,1.8) 13.1 11.0 (1.2,1.2,1.8) 26.1 23.2
(1.6,1.8,2.0) 11.7 9.49  (1.2,1.2,2.0) 21.1 185 (1.6,2.0,2.0) 10.6 8.54
(1.2,1.4,1.4) 354 325 (1.8,1.8,1.8) 11.8 9.60 (1.2,1.4,1.6) 27.8 25.0
(1.8,1.8,2.0) 10.7 8.61 (1.2,1.4,1.8) 226 20.0 (1.8,2.0,2.0) 9.76 7.75
(1.2,1.4,2.0) 185 16.0  (2.0,2.0,2.0) 8.91 6.96 (1.2,1.6,1.6) 22.9 20.1
(1.2,1.6,1.8)  19.1 16.6  (1.2,1.6,2.0) 16.1 13.7 (1.2,1.8,1.8) 16.4 14.2
(1.2,1.8,2.0) 14.2 12.0  (1.2,2.0,2.0) 12,6 10.4 (1.4,1.4,1.4) 29.0 26.4
(1.4,1.4,1.6)  23.7 21.2  (1.4,1.4,1.8) 195 16.9 (1.4,1.4,2.0) 16.4 13.9
(1.4,1.6,1.6)  19.9 172  (1.4,1.6,1.8) 169 17.2 (1.4,1.6,2.0) 14.5 12.2
(1.4,1.8,1.8)  14.7 12.6  (1.4,1.8,2.0) 129 10.7 (1.4,2.0,2.0) 11.5 9.38
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