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Abstract

Consider the ���nite measure�valued di�usion corresponding to the evolution
equation ut � Lu� ��x�u� f�x� u�� where

f�x� u� � ��x�u� �

Z �

�
�e�ku � 	 � ku�n�x�dk�

and n is a smooth kernel satisfying an integrability condition
 We assume that
�� � � C��Rd � with � � ��� 	�� and � � �� Under appropriate spectral theoretical
assumptions we prove the existence of the random measure

lim
t��

e��ctXt�dx�

�with respect to the vague topology�
 where �c is the principal eigenvalue of L��
on Rd and it is assumed to be �nite and positive
 completing a result of Pinsky on
the expectation of the rescaled process
 Moreover we prove that this limiting ran�
dom measure is a nonnegative nondegenerate random multiple of a deterministic
measure related to the operator L� �


When � is bounded from above
 X is �nite measure�valued
 In this case

under an additional assumption on L� �
 we can actually prove the existence of
the previous limit with respect to the weak topology


As a particular case
 we show that if L corresponds to a positive recurrent
di�usion Y and � is a positive constant
 then

lim
t��

e��tXt�dx�

exists and equals to a nonnegative nondegenerate random multiple of the invariant
measure for Y 


Taking L � �
�� on R and replacing � by 	� �super�Brownian motion with a

single point source�
 we prove a similar result with �c replaced by 	
� and with the
deterministic measure e�jxj dx
 giving an answer in the a�rmative to a proposed
problem in �EF���


The proofs are based upon two new results on invariant curves of strongly
continuous nonlinear semigroups


� Introduction and statement of results

��� Motivation

In �Pin��� it has been proven that the superdi�usion corresponding to the semi�
linear operator Lu� �u� �u� tends to a nonzero limit in expectation if and only

�



if the linear operator L� � satis�es a certain spectral assumption
 Although the
statement was proved for the case when � and � are positive constants
 it is easy
to check that the proof works just as well in the variable coe�cient case
 A simi�
lar result has been presented in �EF��� for a non�regular setting �super�Brownian
motion with a single point source�


In this paper we replace the expectations by the superdi�usions themselves

and prove that the rescaled superdi�usions tend to a limit in law
 For the case
of the super�Brownian motion with a single point source this will give a positive
answer to a proposed problem in �EF���


��� Preparation

We begin with a number of notations
 Let M � M�Rd � denote the set of �nite
measures � on Rd endowed with the topology of weak convergence and with k�k
denoting the total mass of �� and let Mc � Mc�R

d� denote the subset of all
compactly supported measures
 Write Ck�� � Ck���Rd � for the usual H�older
spaces of index � � ��� 	� including derivatives of order k
 and set C� �� C���� Let
Cb � Cb�R

d� and C�
b � C�

b �Rd � denote the space of bounded continuous functions
on Rd and the space of nonnegative bounded continuous functions respectively�
and k � k denote the sup�norm for bounded functions
 Furthermore
 C � C�Rd�
and C� � C��R

d � refer to continuous functions on Rd and continuous functions on
Rd decaying to zero
 respectively
 Finally
 Cc �C

�
c � denotes the space of continuous

�nonnegative continuous� functions on Rd with compact support

We now continue with recalling the de�nition of the �L� �� ��Rd ��superdi�usion


Let L be an elliptic operator on Rd of the form

L �
	

�
r � ar� b � r on Rd � �	�

where aij� bi � C���� i� j � 	� ���� d� for some � � ��� 	� and the symmetric matrix
a � faijg satis�es

dX
i�j��

aij�x�vivj � � for all v � Rdnf�g and all x � Rd � ���

In addition
 let �� � � C� where � is bounded from above �we will later relax this
condition� and � is positive


Notation � �superdi�usion� Let �X�P� � � �M� denote the �L� �� ��Rd��
superdi�usion
 That is
 X is the unique M�valued continuous �time�homogen�
eous� Markov process which satis�es
 for any bounded continuous g � Rd �� R� �

E� exp hXt ��gi � exp h���u��� t�i� ���

�



where u is the minimal nonnegative solution to

ut � Lu� �u� �u� on Rd � ������

lim
t���

u��� t� � g���

��� ���

�see �EP����
 Here h�� fi denotes the integral
R
Rd
��dx� f�x�� �

Here is an equivalent way of replacing the word minimal in the de�nition of u in
Notation 	 �cf
 �EP����� u is the nonnegative solution to ��� obtained as a limit
of solutions with Dirichlet boundary condition� u � limn��� un where un�x� t� is
the solution to ��� for jxj � n with un�x� � � at jxj � n


Remark � We note that this de�nition will later be extended to a more general
class of ��s and a more general class of nonlinearities �see the last subsection of
this section�
 �

Remark � �mild equation with linear semigroup� In fact the parabolic
semilinear pde under ��� can be rewritten as an integral�equation �ormild�equation�
as follows� u is the unique function which solves

u��� t� � Ttg �
Z t

�
ds Tt�s

�
�u���� s�� � ���

with sup��s�t ku��� s�k 
 � for all t � �
 Here fTtgt�� denotes the semigroup
corresponding to the operator L� � and acting on Cb
 That is
 for bounded and
continuous g


Ttg �� Ex

�
exp

�Z t

�
��Ys� ds

	
g�Yt� � � � t



� ���

where Y denotes the di�usion corresponding to L on Rd living on Rd 	 f�g
 the
one�point compacti�cation of Rd �with expectations fExgx�Rd�
 and � denotes its
lifetime�

� �� infft 
 � j Yt �� Rdg�
We mention that the mild equation under ��� is usually written in a slightly

di�erent form� fTtgt�� is replaced by the semigroup corresponding to the operator
L on Rd and the nonlinearity �u� is replaced by ��u � �u� �see e
g
 formula
�	
�� in �EP����
 The advantage of that formulation is that the semigroup then
describes the spatial motion �the di�usion corresponding to L on Rd�
 while the
nonlinear term refers to the branching mechanism built in the construction of X

In this paper we chose to include � in the linear semigroup as in ��� for technical
reasons
 For example
 we do not have to assume that � is bounded from below

the semigroup under ��� makes sense whenever � is bounded from above
 �






Remark � �formula for expectation� Using the stochastic representation for�
mula for solutions of parabolic pde�s �see formula �
	� in �Fri���� it is easy to show
that u�x� t� �� Ttg�x� is the minimal nonnegative solution for ��� with � � �

From this
 it is standard to verify that

E�xhXt� gi � Ttg�x�� ���

�

In the sequel we will use concepts and facts from the so�called �criticality�theory�
of second order elliptic operators �see Chapter � in �Pin���� without further refer�
ence
 The de�nitions for subcritical� critical and product�critical operators
 for the
ground�state of a critical operator and its adjoint
 and for the generalized principle
eigenvalue of L�� on Rd are presented in Appendix �
 The reader should consult
that section from time to time
 where a review is given on criticality�theory


We will also use the notation hf� gi with nonnegative f and g for the �possibly
in�nite� integral

R
Rd

dx f�x�g�x�
 In �Pin��� the following result has been proved
�though formally for a somewhat more restricted case � see the note after the
theorem��

Theorem P Let � � Mc and g � C�
c � Let �c � R denote the generalized

principal eigenvalue of L � � on Rd � In the case when L � � � �c is critical we

denote the corresponding ground state by �� �The ground state for the formal

adjoint of L� � � �c will be denoted by ���� Finally� let � � R�

�i� lim
t��

e��tE�hXt� gi � � if � � �c� and lim
t��

e��tE�hXt� gi �� if � 
 �c�

�ii� a� If L� � � �c is subcritical or if L� � � �c is critical but h�� ��i ���

then
lim
t��

e��ctE�hXt� gi � ��

�ii� b� If L� � � �c is critical and h�� ��i 
�� then

lim
t��

e��ctE�hXt� gi � h�� �ih��� gi�

where � and �� are normalized by h�� ��i � 	�

The condition in �ii � b� of Theorem P is sometimes called �product�criticality �
�see Appendix A
� for more explanation�


Although this result was stated for the case when L is a conservative di�usion
�that is
 a di�usion having an in�nite lifetime� on Rd with a corresponding C��
preserving semigroup and � and � are positive constants
 it is easy to check that

�



its proof never uses these assumptions and consequently it is valid for our general
notion of the �L� �� ��Rd��superdi�usion as well
 �Note that if � is constant
 we
have �c � � � �c�L�
 where �c�L� denotes the generalized principal eigenvalue of
L on Rd 
�

In a recent paper �EF��� a non�regular setting
 namely a super�Brownian mo�
tion with a single point source has been studied and a result analogous to Theorem
P has been proved for this process
 In this case the additional mass production is
zero everywhere except at a single point �the origin
 say� where the mass produc�
tion is in�nite �in a 	�function sense�
 In other words
 consider the superdi�usion
Xsin corresponding to the formal evolution equation

ut �
	

�
�u� 	�u� �u� on R � ������

u��� �� � g����
where 	� denotes the Dirac 	�function at zero
 The precise meaning of the above
evolution equation is that u is the unique �nonnegative� solution to the integral

equation

u�� � t� �
Z �

��
dy p�t� � � y�g�y� �

Z t

�
ds p�t� s� � � ��u��� s�

�
Z t

�
ds

Z �

��
dy p�t� s� � � y���y�u��y� s�� t � �� ���

with sup��s�t ku��� s�k 
 � for all t � �
 where fp�t� x� y� � p�t� x � y�� t �
�� x� y � Rg denote the Brownian transition densities
 Xsin is then determined by
its Laplace�functional as in ���
 but with u from ���
 The corresponding expecta�
tions will be denoted by fEsin

� � � �Mfg

In �EF��� the following result is proved for � � 	 �the proof for general � � �

is virtually identical to the proof given in �EF�����

Theorem EF For all bounded continuous g � R �� R� and � �M�R��

lim
t��

e�t	�Esin
�

�
Xsin
t � g

�
� he�jxj� �ihe�jxj� gi� ���

Note that in this �non�regular� setting
 the number 	
� and the function x �� e�jxj

play the role of �c and � �� ���
 Note also that he��jxj� 	i � 	
 that is x �� e�jxj

has already been �normalized�

An obvious but important fact is recorded in the following remark


Remark 	 �
overscaling�� By Theorem P�i� and the Markov�inequality
 for the
�L� �� ��Rd��superdi�usion X we have limt��he��tXt� gi � � in probability if � �
�c 
 provided X� � Mc
 Similarly
 using Theorem EF
 limt��he��tXsin

t � gi � � in
probability if � � 	
�
 provided X� �M�R�� �

�



Motivated by these results and a proposed problem in �EF��� �see Remark � in that
paper�
 we ask the following natural questions� Let the �L� �� ��Rd��superdi�usion
X satisfy the condition in �ii�b� of Theorem P
 Does the rescaled process e��ctXt

have itself a limit in law for any X� � Mc Is the same true for the rescaled
process e�t	�Xsin

t for any X� �M�R� 
In order to answer the question
 we �rst invoke the de�nition of local extinction�

De�nition 
 �local extinction� A measure�valued path X exhibits local extinc�

tion if Xt�B� � � for all su�ciently large t� for each ball B
 The measure�valued
process X corresponding to P� is said to possess this property if it is true with
P��probability one
 �

Roughly speaking
 local extinction means that the support of the measure�valued
process leaves any given compact set in �nite time


Remark � �process property� In �Pin��
 EP��� it was shown that
 for �xed
L� � and �� if the property in De�nition � holds for some P� � � �Mc with � �� ��
then it in fact holds for every P� � � �Mc � �

Local extinction can be characterized in terms of L and � �see Theorem � and
Remark 	 in �Pin�����

Lemma � �spectral condition for local extinction� The �L� �� ��Rd��super�
di�usion X exhibits local extinction if and only if there exists a �strictly� positive

solution u to the equation �L� ��u � � on Rd that is if and only if �c � ��

Remark � �ergodicity and local extinction� Let f � R� � R� 
 Using Lem�
ma �
 it immediately follows that if �c � �
 we have f�t�hXt� gi � � as t�� a
s

for any g � C�

c and X� �Mc
 no matter how �large� f is

Nevertheless
 the situation is completely di�erent when replacing g � C�

c by
g � C�

b 
 For the case when � � Mc but g � 	 
 the condition �c � � �local
extinction� does not contain enough information about the behavior of the total
mass
 To elucidate this point
 consider the following example
 Fix �� � � � and
take an L with �c�L� � �� corresponding to a conservative di�usion
 LetX denote
the corresponding superdi�usion and let X	 denote the superdi�usion where L is
replaced by �

�� �supercritical super�Brownian motion�
 Then �c�
�
�� � �� � �

but for X we have �c�L � �� � �
 Nevertheless
 the processes kXk and kX	k
have the same law
 because the branching is independent from the motion process
and �no mass is lost� due to the conservativeness of the di�usion corresponding to
L
 �See the argument preceding formula �	
�� in �Pin���
� Therefore kXk grows
exponentially in expectation in this case
 On the other hand
 the �sub�critical

�



super�Brownian motion exhibits local extinction too but its total mass is constant
�resp
 tends to zero� in expectation


Last
 we mention that the case when �c � � and � does not belong to Mc

but rather ���nite
 has also been studied in the literature
 The simplest case is
the critical super�Brownian motion
 that is L � �

��� � � � and � 
 � �const

In this case �c � �
 For the ergodic behavior of this process under di�erent
 and
even mixed starting measures
 see �BCG���
 For �L� �� ��Rd ��superdi�usions see
�Pin���
 �

In the sequel we will always assume that �c � �� that is that the �L� �� ��Rd��
superdi�usion under consideration does not exhibit local extinction
 �As already
mentioned in this subsection
 in the singular setting the number 	
� plays the role
of �c
�

��� Scaling limits for superdi�usions

In this paper we will prove the existence of the scaling limits in the case of
�L� �� ��Rd��superdi�usions and in the case of the single point source as well
 un�
der the assumption that �c�L��� � � and that the condition in �ii�b� of Theorem
P �product�criticality� holds
 In addition
 we will assume that � is not �too large�

In fact we will be able to replace Mc and M�R� by two families of measures
 each
satisfying an integrability assumption only
 �See Theorems 	 and � below
�

As it is usual in the analysis of nonlinear phenomena
 we use a geometric
approach to the equation ���
 For a continuous function u de�ne the weighted
norm kuk
�� � supx ku�x�����x�k where � is the ground state of L����c
 Under
certain conditions guaranteed by Theorem 	 or � below
 we prove in Lemma �� of
section � the existence of a special smooth curve u � ����� � � �����
 in the space
of nonnegative functions bounded in the norm k � k
�� 
 such that ���� � � and
����� � � and that the curve is invariant under the positive time shift u��� �� u�t�
de�ned by ���
 Thus
 the curve emanates from zero and is tangent at zero to
the one�dimensional invariant �with respect to the semigroup fTtgt�� � subspace

spanned by �
 We prove that this curve is uniquely de�ned by the condition that
for any point u��� � g � ����� on the curve we have

u�t� � ����e
�ct�� �	��

where u�t� is the unique nonnegative solution to ���
 bounded in the kuk
�� �norm
at all t
 This condition means that the curve is parametrized in such a way that
the equation ��� restricted to the invariant curve becomes linear� !� � �c�


Since our invariant curve u � ���� is de�ned uniquely by the nonlinear equa�
tion ���
 it is quite legitimate to formulate the results in terms of the function �


	



as we do below �note that our proof of existence of the invariant curve in Lemma
�� is constructive and gives an algorithm for the computation of the function ��

In essence
 Theorems 	 and � illustrate one of the standard ideas of local nonlinear
analysis� the analogy between invariant subspaces of linearized evolution equations
and invariant curves of nonlinear equations


Before stating our main result we introduce an additional notation


Notation �� For � � g measurable
 de�ne the following space of measures�

M	g
 �� f� is a measure on Rd � h�� gi 
�g�

�

We now state our main result


Theorem � �scaling limit for �L� �� ��Rd� �superdi�usions� Let X be the

�L� �� ��Rd��superdi�usion with L� �� � as in the paragraph preceding Notation ��

Let � 
 �c where �c denotes the generalized principal eigenvalue of L� � on Rd �
Assume that the condition in �ii�b� of Theorem P �product�criticality� holds� In

addition� assume that �� is bounded from above�

Then for any X� � � � M	

� there exists a nonnegative non�degenerate

random variable N� such that for all g � C�
c �

lim
t��

e��cthXt� gi � N� � h��� gi in law� �		�

Moreover� under the normalization h�� ��i � 	� the law of N� is determined via its

Laplace�transform as follows�

Ee��N� � exph�������i � � � � �	��

where � �� ���� is the invariant curve de	ned by ��
�� Furthermore�

EN� � h�� �i� �	��

In particular� P�N� 
�� � 	�
If we assume in addition that � is bounded away from zero� then

lim
t��

e��ctXt�dx� � N� � ���x� dx in law� �	��

An interpretation of the above theorem will be given in the next subsection


�



Remark �� It is not hard to show that �		� implies that

P�N� � �� 
 P��hXt� 	i � � for all large t�s��

�We defer the proof to the next subsection
 because we will need the concept
of the h�transform for superprocesses de�ned in that subsection
� The rightmost
probability
 that is the probability of �nite time extinction is positive for all � �Mc

�see Theorem �
	 in �EP����
 and consequently P�N� � �� � � for all � �Mc� �

We continue with two proposed problems�

Problem �� Is it true in general
 that

P�N� � �� � P��hXt� 	i � � for all large t�s�  

�Cf
 Theorem III
�
� in �AN��� for non�spatial branching processes
� �

Problem �� What can we say about the asymptotic behavior of X in the case
when L����c is subcritical or L����c is critical but h�� ��i �� �case �ii�a�
in Theorem P� �

Finally
 we state a theorem analogous to Theorem 	 for the superdi�usion Xsin of
Theorem EF �super�Brownian motion with an additional single point source�


Theorem � �scaling limit in the case of a single point source� Let Xsin

be the superdi�usion corresponding to the integral equation ���� and assume that

��x� � K �ejxj� K � �� For any X��� � � �M	exp�jxj
� there exists a nonnegative

non�degenerate random variable N� with EN� � h�� e�jxji satisfying that

lim
t��

e�t	�Xsin
t �dx� � N� � e�jxj dx in law� �	��

Furthermore� the law of N� is determined via its Laplace�transform as in �����

where � �� ���� is the invariant curve de	ned by ��
� when replacing the nonlinear

equation �
� with ���� and using the formal substitution �c � 	
��

��� An interpretation of our main theorem via reduc�

ing it to a particular case

Before presenting an interpretation of Theorem 	 
 �rst recall the de�nition of the
h"transformed superdi�usion
 �The h�transform for �L� �� ��Rd��superdi�usions
was developed in �EP���
�

�



De�nition �� �h�transformed superdi�usion Xh� Let � 
 h � C��� and
consider the �L� �� ��Rd�"superdi�usion X� De�ne

Xh
t �� hXt

�
that is


dXh
t

dXt
� h

	
� t 
 �� �	��

Then Xh is the �Lh
� � �

h� �h�Rd�"superdi�usion
 where

Lh
� �� L� a

rh
h
�r� �h ��

�L� ��h

h
� and �h �� �h� �	��

Xh makes sense even if �h is unbounded from above �see �EP��
 Section �� for
more elaboration�
 Xh is called the h�transformed superdi�usion� �

Remark �	 �h�transforms� �i� Lh
� is just the di�usion part of the usual linear

h"transformed operator Lh �see �Pin��
 Chapter ���


�ii� The operators A�u� �� Lu� �u� �u� and Ah�u� �� Lh
�u� �hu� �hu� are

related by Ah�u� � �
hA�hu�� �

Remark �
 �invariance under h�transforms� An obvious but important
property of the h"transform is that it leaves invariant the support process t ��
supp �Xt� of X� �

We now give an interpretation of Theorem 	 using the transformed process
X
 � �X as follows
 First note that � and �� transform into 	 and ��� respectively

Hence
 Theorem 	 states that for X


� � � �M


lim
t��

e��ctX

t �dx� � N


� � ��� dx in law �	��

�cf
 Theorem III
�
	 in �AN��� for non�spatial branching processes�
 Recall that

X
 is the �L

� � �c� ���R

d��superdi�usion
 �Note that �
 � �c is no more spatially
dependent
�

Next
 note that integrating against the function 	 in �	�� yields

lim
t��

e��ctkX

t k � N


� in law� �	��

that is
 the total mass behaves like e�ctN

� as t��
 Recall that �c is the average

mass creation at each point of Rd and note that since � transforms into 	
 we
have

EN

� � k�k�

��



By �	�� �applied for the ��transformed setting� N

� depends on the whole branching

term �cu � ��u�
 where �� can be identi�ed with the variance of the o�spring
distribution �see Appendix 	 in �EP����
 It depends also on L


� 
 that is on the
motion process
 which fact comes of course from the spatial dependence of the
branching


Note also �see Appendix A
�� that by the product�criticality assumption
 and

by the invariance of this property under h�transforms
 L

� corresponds to a positive

recurrent di�usion �loosely speaking
 positive recurrence means that the di�usion
hits any �xed ball in �nite expected time� which ergodizes with invariant den�
sity ��� dx �see Theorem �
�
�
 in �Pin����
 Putting this together with �	��
 the
righthand side of the approximating formula

X

t �dx� � e�ctN


� � ��� dx

can be interpreted as e�ctN

� being the total mass and ��� dx being the limiting

distribution of the individual particle�

We close this section with the
Proof of Remark ��� It is enough to prove the inequality for X

 because the
probability of extinction is the same for X �starting with �� and X
 �starting with

� � ���
 and also P�N� � �� � P�N

� � ��� Using �	��
 we have

P�N

� � �� � lim

s��
Ee�sN

�
� h
�
��i � lim

s��
lim
t��

Ee�she
��ctX�

t ��i


 P��hX

t � 	i � � for all large t�s��

This completes the proof of the remark
 �

��� More general branching

In this subsection we will consider superdi�usions with more general branching
mechanisms and generalize our main theorem for that setup
 To this end
 �rst
recall that in �EP��� the de�nition of the �L� �� ��Rd��superdi�usion has been
extended for ��s which are not necessarily bounded from above but rather satisfy
the more general condition

�c � �c�L� �� 
�� ����

This extension relies on the fact that the h�transform with h � � transforms for�
mally the quadruple �L� �� ��Rd� into the quadruple �L


� � �c� ���R
d �
 which corre�

sponds to a superdi�usion X �since �h � �c 
 ��
 Then the
�L� �� ��Rd��superdi�usion #X can be de�ned by #X �� �


X �where X starts at

��



X� � � � Mc if and only if #X starts at #X� � �

� � Mc�
 #X 
 however
 is not

M�valued in general but rather ���nite measure�valued
 �See �EP��� for more
elaboration
� In particular
 the appropriate topology for measures becomes the
vague topology in place of the weak one


In fact
 this construction can easily be generalized for �time�independent� local
branching
 that is for the case when instead of the quadratic nonlinearity in ��� we
have the more general nonlinearity of the form�

f�x� u� � ��x�u��x� �

Z �

�
�e�ku	x
 � 	 � ku�x��n�x�dk�� ��	�

Here n is a kernel from Rd to �����
 that is n�x�dk� is a measure on �����
for each x � Rd 
 and n��� B� is a continuous� function on Rd for every measurable
B 
 ����� �cf
 subsections 	
��	
� in �Dyn����
 In order to be able to de�ne the
superdi�usion #X corresponding to L
 � and f via an h�transform
 we assume that
� 
 �� is bounded from above and that n satis�es

sup
x�Rd

Z �

�
�k � ��x�k��n�x�dk� 
�� ����

Moreover
 we assume that the convergence to the limit

lim
K���

Z �

K
kn�x�dk� � � ����

is uniform with respect to x on every compact subset of Rd 
 �This condition will
guarantee that the map x �� f�x� u�x�� is continuous whenever u � C
�

The h�transform with h � � takes the operator L�� into L

���c
 while f�x� u�

transforms into

f
�x� u� � ���x�u��x� �

Z �

�
�e�ku	x
 � 	 � ku�x��n
�x�dk��

where

n
�x�dk� ��
	

��x�
n

�
x�

dk

��x�

	
�

Note that by ����
 n
 satis�es

sup
x�Rd

Z �

�
�k � k��n
�x�dk� 
� ����

�In the original setting of �Dyn��� only the measurability was required� We� however�
prefer to work in this paper with the spaces of continuous functions�

��



�and this integral converges uniformly with respect to x�
 Using this
 along with
the fact that �� is bounded from above by assumption
 the ��transformed mild
equation uniquely de�nes a superdi�usion X �see subsections 	
��	
� �Dyn����

Then the superdi�usion #X can be de�ned in the usual way� #X �� �


X
 �Note that

#X is M
�valued for every starting measure in M

 In particular
 if � is bounded
away from zero then #X is M�valued for every starting measure in M

� Denote

the semigroup corresponding to L

� � �c by fT 


t gt��
 It is immediately seen that
#X corresponds to the mild equation

u��� t� � Ttg �
Z t

�
ds Tt�s �f�u��� s�� � ����

where the linear semigroup fTtgt�� is de�ned by

Tt�u� �� �T 

t �u
��� t 
 ��

and the nonlinearity f is de�ned by

f�x� u� �� ��x�f
 �x� u
�� �

�The h�transformed mild�equation is de�ned whenever the initial function at t � �
belongs to C�

c " see �EP��� for further explanation for the case when n � �
�
In fact
 Theorem P and the remark preceding it are still true for this more

general setup
 Our proof of Theorem 	 still works for this more general setup if �in
addition to ����
 the boundedness of �� and the product�criticality assumption of
the theorem� one requires that

sup
x�Rd

Z �

�
����x�k��� � ���x�k��n�x�dk� 
� for some 	 � �� ����

This will guarantee that the H�older�type condition ���� in Lemma �� is satis�ed
for the nonlinearity f

 Then Lemma �� yields the existence of a unique smooth
invariant curve de�ned by �	�� for the nonlinear equation ����


We summarize the above in a proposition
 Let us call the superdi�usion de�
scribed in this section the �L� �� f �Rd � �superdi�usion�

Proposition �� �scaling limit for �L� �� f �Rd � �superdi�usions� Let X be

the �L� �� f �Rd��superdi�usion with L as in the paragraph preceding Notation ��

and the nonlinearity f�x� u� given by ���� where ���� is satis	ed� Let � 
 �c 
�
where �c denotes the generalized principal eigenvalue of L � � on Rd � Assume
that the condition in �ii�b� of Theorem P �product�criticality� holds� In addition�

assume that �� is bounded from above�

�




Then for any X� � � � M	

� there exists a nonnegative non�degenerate

random variable N� such that

lim
t��

e��ctXt�dx� � N� � ���x� dx in law� ����

�Here the convergence is with respect to the vague topology��

Moreover� under the normalization h�� ��i � 	� the law of N� is determined via

its Laplace�transform as follows�

Ee��N� � exph�������i� � � ����

where � �� ���� is the invariant curve de	ned by ��
� for the nonlinear equation

��
��

Furthermore�

EN� � h�� �i� ����

and in particular� P�N� 
�� � 	�
If we assume in addition that � is bounded away from zero� then X isM�valued

and ���� holds with respect to the weak topology�

Letting � � � and choosing an appropriate n �see subsection 	
� in �Dyn����

��	� has the form

f�x� u� � c�x�u��p� � 
 p 
 	�

with some nonnegative
 nonzero continuous function c
 In this case ���� and
���� will be satis�ed �with 	 � p� if we assume that c�p is bounded from above

�Alternatively
 one can slightly modify the proof of Theorem 	 by writing u��p

in place of u� everywhere
 Since f transforms into c�pu��p under an h�transform
with h � �
 the proof goes through when assuming the boundedness of c�p
�

��	 Outline

In Section � we will present examples for Theorem 	
 In Section � we will state
and prove two lemmas on invariant curves which play a key role in the proofs
 In
Section � some preparations are made before turning to the proofs
 and we also
state Theorem �
 an auxiliary result on the recurrence of di�usion processes which
we will use in the proof of our main theorem and which may be of independent
interest
 Section � will be devoted to the proofs of Theorems 	 and � and of
Proposition 	�
 The �rst appendix presents the proof of Theorem �
 Finally

our second appendix will collect some known auxiliary material on the criticality�
theory of second order elliptic operators


��



� Examples

In this section we present applications of our main result for three families of
superdi�usions
 In the �rst two examples the underlying motion process �corre�
sponding to the operator L� is recurrent
 in the last example
 it is transient


Our �rst example has actually been discussed in Subsection 	
�
 In fact
 as
we have seen
 every superdi�usion X satisfying the conditions of Theorem 	 can
be h�transformed �with h � �� into the type of superdi�usion of the following
example


Example �� �positive recurrent motion process� � 
 ��const� Let L
correspond to a positive recurrent di�usion and let � 
 � �const
 Finally
 let
� be bounded from above
 Then L � � � �c � L
 because �c�L� � � by the re�
currence property� and � � 	
 Furthermore
 since the di�usion process is positive
recurrent
 the operator L is product�critical �that is
 �� � L��
 Therefore
 �	��
holds for any �nite starting measure with �c � �


To give a concrete example for a positive recurrent di�usion
 let L correspond
to an Ornstein�Uhlenbeck process�

L �
	

�
�� kx � r on Rd � d 
 	�

where k � �
 �It is easy to see �cf
 Example � in �Pin��� on p
���� that ���x� ��
k



�d	�
exp��kjxj��
� �

The next example can be considered as a smooth version of our Theorem �
 �Recall
that formally �c � 	
� in that theorem
�

Example �� �super�Brownian motion with compactly supported ��
Let L � �

�� on Rd 
 d � �
 Let � � C�
c be not identically zero
 By the recurrence

of the one and two dimensional Brownian motions and Theorem �
�
�
 in �Pin���

we have �c � �
 The criticality of L��c follows by the recurrence of the Brownian
motion and Theorem �
�
� in �Pin���
 We now prove that � � L��Rd � �product�
criticality�
 To see this
 �rst let d � 	
 Note that � satis�es ���� � �c�� � �
outside a compact set and therefore ��x� � const � exp��p��c x� for large jxj
 By
the so�called minimal growth property at in	nity �see Theorem �
�
�
 in �Pin���� it
follows that in fact ��x� � const �exp��p��c jxj� for large jxj
 The proof for d � �
is similar� using polar coordinates
 it is easy to check that f�x� �� exp��p��c jxj�
satis�es ���� � �c�f � � outside a compact set
 Putting this together with the
fact that � satis�es ������c�� � � outside a compact set and the minimal growth

��



property of � at in�nity
 we have that � � K � f for K large enough
 Therefore

for both d � 	 and d � �
 �		� holds in the present case
 provided

��x� � K � exp

p

��c jxj
�
� K � ��

and the starting measure � � X� satis�es
�
�� exp

��p��c jxj
��


�
 �

Last
 we present an example where L corresponds to a transient di�usion process
on Rd 


Example �� Let

L �
	

�
�� kx � r on Rd d 
 	�

where k � �
 �Note that the di�usion corresponding to L is transient
� Let � be
a constant satisfying � � kd
 It is easy to see �cf
 Example � in �Pin��� on p
���
and p
���� that �c � � � kd and that L � � � �c � L � kd is product�critical
with ��x� � exp��kjxj�
�� and ���x� � 	
 Therefore
 �		� holds with �c � � � kd

whenever the starting measure � � X� satis�es h�� exp��kjxj�
��i 
� and

��x� � K � exp�kjxj�
��� K � ��

Note that if � � kd
 the superdi�usion Xt exhibits local extinction for any
� �Mc
 �

� Two results concerning invariant curves

Let X be a Banach space and let fTtgt�� be a continuous semigroup of bounded
linear operators acting on X 
 Let X� 
 X be a cone
 Consider the equation

u�t� � Ttu��� �

Z t

�
Tt�s � f�u�s��ds ����

for which we assume that it de�nes for any u��� � X� its semiorbit � a curve
u�t�� t 
 � in X�
 We assume that f � X � X is smooth
 i
e
 it is di�erentiable
and its derivative is bounded and uniformly continuous on bounded subsets of X 

It is easy to see in this case that the semiorbit u�t� de�ned by ���� is continuous
with respect to t and it is smooth with respect to the initial condition u���


We will also assume that

f��� � �� f ���� � � ��	�

��



and that for the derivative map F �u� � du� f ��u�du we have

kF �u�k � Kkuk� ����

�in the usual operator�norm� for some positive constants K and 	 and all small u

It follows
 in particular
 that

kf�u�k � Kkuk��� � ����

Concerning the linear semigroup Tt
 we assume that it has an eigenvector ��

Tt� � e�t� ����

for some � � �
 and that � � int �X� � �here int �X� � denotes the interior of the
cone X� in norm�topology� 
 Since the vector � is de�ned only modulo a scalar
factor
 we normalize it by k�k � 	
 We also assume that for some constant M � �

kTtk �Me	���
t ����

where �and this is a crucial assumption�

� 
 �	� ����

and 	 is the exponent in the H�older�type estimate ����


De�nition �� A curve Q in X is called invariant with respect to the system ����

if for any point u��� on Q its positive semiorbit u�t� lies in Q
 �

Lemma �� �the existence of a particular invariant curve� Under �����

����� there exists a unique smooth invariant curve Q lying in X� � parametri�

cally written as u � ����� � � ������ where ���� � �� ����� � � �that is� Q starts
at zero and it is tangent at zero to the eigenvector � of the linear semigroup�� such

that for any ��� for the point u��� � ����� on Q� its semiorbit is given by�

u�t� � ��e�t���� ����

Remark �� Note that for any point u��� � ����� on Q there exists a negative
semiorbit de�ned �just by formula ����� for any t � �
 such that it tends to zero
and is tangent at zero to � as t� ��
 �

Remark �� Note that we parametrize the curve Q in such a way that the system
becomes linear on Q� !� � ��� �

�	



Remark �	 Although our proof is more or less standard �see �SSTC��� for a
comparison�
 our invariant curve result itself is not a standard one because we do
not require the usual spectral gap assumption �note that � 
 � in �����
 �

Proof of Lemma ��� It is enough to de�ne the function � at small � only and
show that ���� lies in X� for small ��s� given any point u��� � ����� on the
curve Q with an arbitrarily small �� the function � is de�ned at all larger � by
formula ����
 because the positive semiorbit u�t� of u��� is de�ned at all t 
 � by
assumption


So
 take any su�ciently small � and consider the equation

v�t� � ��� e��t
Z t

��
Tt�s � f�e�sv�s�� ds ����

where t � �
 Here
 the unknown is a bounded continuous function v � ���� ��� X 

We will �nd it as a �xed point of the operator v �� $v de�ned by

$v�t� � ��� e��t
Z t

��
Tt�s � f�e�sv�s�� ds� t � ���� ��� ����

Conditions ��	������ imply �see below� that for all su�ciently small � it is a
smooth
 contracting operator which maps the set V of continuous functions v�t�
bounded
 say
 as kv�t�k � �j�j
 into V itself
 Therefore
 by the Banach principle of
contraction mappings
 it has a uniquely de�ned �xed point in V 
 which depends
on � smoothly
 Equivalently
 equation ���� has a unique solution v	 for all small
� which is uniformly bounded for all t � ��

sup
t��

kv	�t���k � �j�j� ����

Note that v � � solves equation ���� at � � �
 Hence
 by uniqueness


v	�t� �� � �� ��	�

Since v	�t��� is a �xed point of a smooth contracting operator
 its derivative �
��v

	 is
found as the unique solution of the equation obtained by the formal di�erentiation
of �����

�

��
v�t� � ��

Z t

��
Tt�s � e�sf ��e�sv	�s���� �

��
v�s�ds� ����

By ��	�
 ���� we immediately have

�

��
v	�t� �� � �� ����

��



We de�ne now the function u	�t��� � e�tv	�t���
 By uniqueness of v	
 the
function u	 is de�ned as the unique �bounded by �j�je�t� solution of

u�t� � �e�t��

Z t

��
Tt�s � f�u�s��ds� ����

�compare this with �����
 Recall that we de�ne the function v	 at non�positive t
only
 so the function u	 is
 by now
 de�ned only at t � � as well
 We de�ne u	�t���
at t 
 � as the positive semiorbit of the point u	����� de�ned by the system ����

Comparing formulas ���� and ���� shows that the function u	 satis�es ���� at all
t �we take into account that Tt� � e�t� by assumption�


Now take any � � � and consider the function u		�t��� � u	�t� � � e�����
 It
is immediately seen that once u	 satis�es ����
 the function u		 satis�es ���� as
well
 Therefore
 by uniqueness
 u		 � u	 at all non�positive t and
 in particular


u	��� �� � u	�� � e����� ����

for any � 
 �
 By de�nition
 this means that the time � shift �by the semi%ow
de�ned by ����� of the point u	��� e����� is the point u	��� ��
 Thus
 if we de�ne
the sought function � as ���� � u	��� ���� v	��� �� �
 we will have that the smooth
curve u � ���� is invariant with respect to system ���� and satis�es ����


Note also that ���� � � and ����� � �
 according to ��	�
 ����
 Thus
 this
invariant curve will indeed be tangent at zero to the eigenvector �
 Since � �
int �X� � by assumption
 it also follows that ���� lies in X� for all small ��s


To show the uniqueness of the curveQ � u � ���� satisfying ���� and ����� � �

note that if we take any point u��� on Q and consider its negative semiorbit u�t�t��
de�ned by ����
 then u�t� must satisfy equation ���� whose solution is unique as
we just have shown �the required boundedness of u�t� by ��e�t follows from ����
due to the assumed boundedness of ������


To complete the proof it remains to check that the operator ���� is smooth
and contracting on the set V � fv�s�s�	������ kv�s�k � �j�jg and maps this set into
itself
 First
 note that in ����

k$v�t�k � j�j�
Z t

��
kTt�sk � e��tkf�e�sv�s��kds

�recall that k�k � 	� and
 by virtue of ���� and ����


k$v�t�k � j�j�MKe�t
Z t

��
e	����
skv�s�k���ds�

Hence


sup
t��

k$v�t�k � j�j� MK

�	 � �

�
sup
s��

kv�s�k
	���

��



�recall that � 
 �	 by assumption�
 It is clear from this estimate that for all �
small enough
 if sups�� kv�s�k � �j�j
 then k$v�t�k � �j�j at all t � �
 which means
that the operator under consideration indeed maps the set V into itself


The smoothness of this operator with respect to � is obvious
 To prove the
smoothness with respect to v we must check that the linear operator

�v�t� ��
Z t

��
Tt�se

��	t�s
f ��e�sv�s�� ��v�s�ds ����

obtained by formal di�erentiation of ���� is well de�ned and bounded on the space
of uniformly bounded �v�s�s�	�����
 provided v�s� � V 
 This is straightforward

In fact
 by ���� and ����
 we obtain that����Z t

��
Tt�se

��	t�s
f ��e�sv�s�� ��v�s�ds

����
�M

Z t

��
e�	t�s
 �K��j�j��e��s � k�v�s�kds

� MK

�	 � �
��j�j�� sup

s�	�����
k�v�s�k�

and we see that formula ���� for the derivative of ���� de�nes a bounded linear op�
erator indeed �one may also check in the same way that the higher order derivatives
of ���� are bounded multi�linear operators�
 Moreover
 the norm of this operator
is small �less than 	� for small �
 giving the required contraction
 �

The following result is a version of the well�known ��lemma �see �SSTC����
from the theory of �nite�dimensional dynamical systems
 The advantage of our
result is that we do not assume the spectral gap condition


Lemma �
 �the existence of the scaling limit� Let for some initial condi�

tion u� the following limit relation hold

lim
t��

e��tTtu� � ��� ����

Then there exists the limit

lim
t��

u�t� e��tu�� � ���� ����

where u�t� �� denotes the solution of ��
� starting with the initial condition u��� � �
and � �� ���� is the equation of the invariant curve Q constructed in Lemma ���

��



Proof of Lemma ��� By continuity of the nonlinear semigroup de�ned by ����
 it
is enough to prove that for some small � � �

lim
t��

u�t� �e��tu�� � ������ ����

because if we denote � � � �
� ln � � �
 then u�t � �� e��	t��
u�� is the time � shift

of u�t� �e��tu�� and ���� is the time � shift of ����� �see �����

Denote

v�t� � e��tu�t� � � e����u��� t � ���� ���
By ����

v�t� � �e��	t��
Tt��u� �

Z t

��
e��tTt�s � f�e�sv�s�� ds� ����

Let v	�t� ��� be the solution of ����
 i
e


v	�t� � ����

Z t

��
e��tTt�s � f�e�sv	�s�� ds ��	�

We will prove that

v�t�� v	�t�� � ����

as � � ��
 for any �xed t � �
 Then putting t � � in ���� will give ���� and
�nish the proof of the lemma
 In fact
 we will prove that

sup
t�
�� ����

kv�t�k � �� ����

for an appropriately chosen � � which tends to �� as � � ��

First
 note that it follows from the existence of the �nite limit ���� that

e��sTsu� is uniformly bounded for all s 
 ��

sup
s��

ke��sTsu�k � L ����

for some �nite L
 It is now easy to show that

kv�t�k � �L� ����

for all � 
 � and t � ���� ��
 provided � is small enough
 Indeed
 this holds true
at t � �� for any � 
 and let t� � � be the maximal value of t for which ���� is

��



still valid
 If t� 
 �
 this means that kv�t��k � �L�
 Now
 by ����
 using estimates
���� and ����
 we have from ����

kv�t��k � L��MK��L�����e�t�
Z t�

��
e	����
sds � L��	 �

�MK

�	 � �
��L�����

If � was taken small enough
 we get that kv�t��k is strictly less than �L�
 hence
t� � � which proves the claim


Now take any � � 
 � such that � � � �� as � � ��
 We have�����
Z �� �

��
e��tTt�s � f�e�sv�s��ds

����� �MK

�
sup
s��

kv�s�k
	���

e�t
Z �� �

��
e	����
sds�

����

By ����
����
 this integral tends to zero as � � � ��
 uniformly for any t � �
 The
same conclusion can be made with respect to the integralZ �� �

��
e��tTt�s � f�e�sv	�s��ds �

the estimate like ���� follows from ���� and ����
 and the uniform boundedness
of v	 was proven in Lemma 	 �see ����� note that the upper bound on the norm
on v	 is also linear in � in present notations
 i
e
 v	 also satis�es ���� with an
appropriately chosen L�


Hence
 for any t � ��� �� �� we have from ����
 ��	� �we use estimates ����
 ����
and ������

kv�t� � v	�t�k � ��� �� �MK��L���

R �

�� � e
	����
sds

�
� sups�
�� ���� kv�s�� v	�s�k� o�	�� ���� ����

where
��� �� � � sup

s�
��� ��� �
ke��sTsu� � ��k�

Since ��� ��� � as � � � � � �� �see �����
 it immediately follows from ���� that
at su�ciently small � the sought relation ���� holds
 provided � � is chosen such
that � � � ��� � � � � � ��
 �

Note that we never used in the proof of Lemma �� �unlike in the proof of
Lemma ��� the completeness of the space X 
 Therefore
 we may change Lemma
�� �in order to adopt it to the particular problem we consider in this paper� as
follows


��



Lemma �� �the scaling limit in a weaker norm� For any norm k � k�
which is weaker than the original norm k � k� in X � if the �linear� limit relation

���� holds in the norm k � k� for some initial condition u�� then the �nonlinear�

limit relation ���� holds in the same norm� provided the following estimates are

valid�

kF �u�k� � Kkuk��� ����

kF �u�k� � Kkuk��� ����

kTtk� �Me�t� ����

kTtk� �Me	���
t ��	�

with � 
 �	� where F �u� is the derivative operator from �����

Proof� The proof repeats the proof of Lemma �� with the following modi�cation�
the estimate ���� �in the original k � k��norm� follows now directly from ����

Then
 it follows from ����
 ���� and ��	� that all the estimates of Lemma ��
remain unchanged in the norm k � k�
 Finally
 the required existence and uniform
boundedness �in the original norm k � k� and
 hence
 in the weaker norm k � k�� of
the solution v	 of the integral equation ���� are given by Lemma ��
 �

� Some preliminary results for the proof of

the main theorem

The proof of Theorem 	 and Proposition 	� will be based on two propositions �see
Propositions �� and �	 below� and on two lemmas stated and proved in Section �
�Lemmas �� and ���
 We will also use the following simple fact


Lemma �� For any � 
 � � Rd � R continuous de	ne the ��norm by

kfk� �� k�fk�

on ff continuous � �f is boundedg� If � � C� and if F is a uniformly bounded

family of functions� then the norm k � k� restricted to F is compatible with the

topology of uniform convergence on compacts�

�




Proof� First
 assume that fn tends to zero uniformly on compacts as n � �
 Since
� � C� and by assumption kfnk � K� n 
 	 for some K � �
 one can take a large
ball B � Rd �depending on �� such that

sup
x�RdnB

��x�fn�x� 
 �� n 
 	�

Since �fn also tends to zero uniformly on compacts as n � �
 we can pick an
N � N��� � N such that

sup
x�B

��x�fn�x� 
 �� n � N�

Then
 altogether we have

sup
x�Rd

��x�fn�x� 
 �� n � N�

proving the ��norm convergence for fn

Conversely
 assume that fn tends to zero in ��norm and �x an arbitrary

nonempty ball B � Rd 
 We have

sup
x�B

fn�x� � C���B� sup
x�B

��x�fn�x�

with some C���B� � �
 The righthand side of the last formula tends to zero as
n � � by assumption
 thus the same is true for the lefthand side
 This proves
uniform convergence on compacts for fn
 �

Let fStgt�� denote the semigroup corresponding to the operator L����c on
Rd �and acting on Cb�
 Note that

St � e��ctTt�

where fTtgt�� is the semigroup de�ned in ���


Proposition �� �convergence for S
t g in ��norm� Assume that the condition

in �ii�b� of Theorem P is satis	ed� and furthermore let � 
 � � C�� Then for any

g � Cb�

lim
t��

S
t g � hg� ���i in k � k� �

Proof� Since L� � � �c is critical on Rd 
 so is the h�transformed �h � �� operator
�L � � � �c�



 Let � 
 � and �� denote the eigenfunctions corresponding to the
latter operator and to its adjoint respectively
 It is easy to see that � � 	 and
�� � ���
 In particular h�� ��i � h�� ��i� Note that the ��transformed operator

�L� � � �c�

 � L� a

r�
�
� r

��



has no zeroth order part �it is a di�usion generator�
 Using this along with the
second part of �Pin��
 Theorem �
�
��
 we have that for any g � Cb given


lim
t��

S
t g � hg� ���i�

in the topology of uniform convergence on compacts
 Our goal is to verify that
this convergence holds also in k � k� 
 Using Lemma ��
 it is enough to show that
for any g � Cb given


F �� f�S
t �ggt��
is a uniformly bounded family of functions
 Recalling
 that the ��transformed
operator has no zeroth order part and denoting the corresponding expectations by
fE
xgx�Rd we have

�S
t g��x� � E
xg�Yt�

where Yt is the corresponding di�usion process
 It then follows that

kS
t �g�k � kgk�
This completes the proof of the proposition
 �

We now choose a particular function � in the following way�
Let h be a positive function satisfying

	� �L� � � �c�

h � � outside some compact set


�� h�x� �� as jxj � �

The existence of such an h follows by the recurrence of the di�usion corre�

sponding to the operator �L� � � �c�

 and from the following theorem which we

feel is of independent interest
 �For the proof see Appendix A
	�

Theorem � �necessary condition for recurrence� Let L be as in ���� and as�

sume that it corresponds to a recurrent di�usion process Y � Given any positive R�

and any function p�x� which tends to in	nity as jxj � ��� there exists a super�

solution on jxj 
 R�� that is� a positive C����function U�x� such that

LU � � on jxj 
 R�� ����

converging to in	nity as jxj � ��� asymptotically slower than p�

lim
r���

inf
jxj�r

U�x� ��� lim
r���

sup
jxj�r

U�x�

p�x�
� ��

The existence of such growing to in�nity supersolution is known as a su�cient
condition for the recurrence of L �see Theorem �
	
� in �Pin����
 Our result here
shows that this is also a necessary condition for recurrence
 �earlier it was known
only in the one�dimensional case " then the statement follows easily from Theorem
�
	
	�i� in �Pin����


��



Remark �� By the previous theorem
 h can be chosen arbitrarily slowly growing

This fact will be used later
 in the proof of Theorem 	
 �

Using the above h
 we de�ne � as follows
 Let

� �� 	
#h� where #h � h�K ����

and K is a positive constant to be �xed later
 Then
 obviously
 � 
 � � C�


Proposition �� �estimate for S
t in ��norm� Assume that L� �� �c is crit�
ical with the ground state � and let fStgt�� be as in Proposition ��� For any

� � �

k S
t k� � e�t� t � �� ����

if K � K� is large enough �K is de	ned in ������

Proof� By a simple computation
 the statement is equivalent to

k S
�ht k � e�t� t � �� ����

Recall that �L� ���c�

 has no zeroth order part
 Since the zeroth order term of

�L� � � �c�

�h is

	

#h
�L� � � �c�


#h �
	

#h
�L� � � �c�


h �� V�

we have that
V � �

outside a compact set by the �rst assumption on h
 Also
 if K is large enough
 we
can obviously guarantee that

V � � on Rd �

The estimate under ���� now follows from this and ��� with g � 	 and � replaced

by V �but now with E corresponding to L
�h
� �
 �

� Proof of Theorems � and � and Proposition

��

Proof of Theorem �� The strategy of the proof is as follows
 We will show that the
scaling limit exists in law for X

 More precisely
 we will prove that
 for � �M�	�

with � given by ����


lim
t��

E

� exp

D
e��ctX


t ��g
E
� E exp hZ���gi � g � C�

b � ����

��



with some random measure Z� having the form Z� � N

� ���� dx
 where the random

variable N

� is determined by �	�� �or by ���� for a general nonlinearity� and enjoys

the properties stated in the theorem �note that in �	�� or ���� the curve � �� ����
is now replaced by a new curve corresponding to the ��transformed dynamics
 that
is
 to T 


t and �
 or f

� Having shown this
 it will follow from the de�nition of
the h�transform that �		� holds for X starting with the measure � �� �


 � � �a
simple computation shows that �	�� holds for the original curve � �� ���� when
going back to X�
 That is
 when ��h�K� �� �where h�K are from ����� is a �nite
measure
 Putting this together with the fact that h can be chosen arbitrarily
slowly growing by Theorem �
 we will have that �		� holds true whenever � �M


It will also follow that ���� is satis�ed for X in place of X
 and C�

b replaced by

the class of all continuous g�s with g � const ��#h � const ���h�K�
 In particular

���� will hold for X
 replaced by X
 provided that � is bounded away from zero
�recall that h�x��� as jxj � ��
 This will prove �	��


Now we are going to show ����
 To do this
 let us summarize what we already
know about the nonlinear semigroup corresponding to X

 First
 concerning the
linear part of the semigroup
 T 


t 
 we know that the rescaled semigroup S
t corre�
sponding to �L� � � �c�


 has the following properties�
a� �L� � � �c�


 is a di�usion generator
 i
e
 �� � �c�

 � �
 and the ground state

� transforms into 	

b� By Proposition ��
 for any g � Cb 
 S
t g has the limit hg� ���i in k � k� 

c� By Proposition �	
 S
t satis�es the exponential estimate under ����
 Also


kS
t k � 	 since fS
t gt�� is a di�usion�semigroup �see the end of the proof of
Proposition ���


In addition to the linear part of the semigroup
 we have to control the nonlinear
term

f
�u� � �
u��

Here �
 � ��
 Thus
 for the derivative map

F �u� � du �� ���u � du�

we have �recall that k � k denotes the supremum norm��

k���u � duk� � k���uk � kduk� �

That is

kF �u�k� � k���uk � �k��k � kuk�

By the same computation
 also

kF �u�k � �k��k � kuk�

�	



Altogether
 working with the nonlinear dynamics corresponding to X
 and
with k � k� 
 we are in the position to implement the invariant curve method of
Section �
 More precisely
 we are going to apply Lemma �� with X � Cb
 X� �
C�
b 
 k � k� � k � k and k � k� � k � k� � where furthermore Tt and � are replaced by T 


t

and the function 	
 �Clearly
 	 � intC�
b in sup�norm topology
� Let � � u�t� g� ��

denote the solution of ��� or ���� �but L� � and f replaced with �L����c�

� ���

�c�

 � � and f

 respectively� with u��� �� � g���
 Let furthermore � �� ���� be

the invariant curve constructed in Section �
 Working with k � k� and using the
discussion at the beginning of this paragraph along with Lemma �� of Section �

��� and ��� or ���� applied to the ��transformed setting yields

E

� exp he��ctX


t ��gi � exph���u�t� e��ctg�i �

� exph�
����u�t� e��ctg�i �� exph�
������hg� ���i�i as t���

provided � �M�	� � �g � C�
b �and in particular for g � C�

b �
 That is


E

� exp he��ctX


t ��gi �� exph�����hg� ���i�i as t���

Let us �x now a � �M�	� 
 Note
 that the functional

&��g� �� exph�����hg� ���i�i

de�ned on C�
b is positive de�nite �for the de�nition of positive de�niteness see e
g


the proof of Theorem A in �EP����
 because it is the pointwise limit of functionals
possessing this property
 Moreover
 &� is continuous with respect to bounded
pointwise convergence
 since ���dx �M by assumption
 Also
 &���� � 	
 because
���� � �� It follows from these properties by a standard result �see the proof of
Theorem A	 in �EP���� see also Lemma �
	 in �Dyn�	��
 that &� is the Laplace
functional of a random measure
 that is
 there exists a random measure Z� such
that

EehZ���gi � exph�����hg� ���i�i� ����

for g � C�
b � Therefore
 altogether


E� exp he��ctX

t ��gi �� EehZ���gi� as t���

whenever g � C�
b 
 That is
 e��ctX


t converges to Z� in law


In order to identify Z�
 note that if N

� is a nonnegative random variable sat�

isfying �	�� �the Laplace transform in �	�� de�nes uniquely N

� � again
 because

��



of the positive de�niteness and continuity of s �� exph�� ��s�i�
 then the random
variable

Z	
� �� N


� � ����x� dx
clearly satis�es ���� and thus by uniqueness Z� � Z	

��
Using the fact that ����� � �
 it follows �	��
 �To do this rigorously
 recall

that ����� � � means that lims�� ��s�
s � � in k � k� 
 Since � � M�	� 
 we can
use uniform convergence to conclude �	��
�

Finally
 we show that N

� is non�degenerate
 Suppose to the contrary that

N

� � EN


� � h�� �i with P��probability one
 By �	�� this would imply that
��s� � s� for s � �
 But this is impossible because � is invariant with respect

to the nonlinear system ����
 Consequently N

� is indeed non�degenerate
 This

completes the proof of Theorem 	
 �

Proof of Proposition ��� The proof is the same as the proof of Theorem 	 ex�
cept the following
 For the general nonlinearity ��	� we have

f
�u� � �
u� �

Z �

�
�e�ku � 	 � ku�n
�x�dk�

where n
�x�dk� � ��x���n�x� ��x���dk�
 The derivative map is

F �u� � du ��
�
���u�

Z �

�
k�	� e�ku�n
�x�dk�



du�

Here
 we have ����Z �

�
k�	� e�ku�n
�x�dk� � du

����
�

� sup
x�Rd

Z �

�

h
u�x���x�k� � u��x����x�k���

i
n�x�dk� � kduk� �

By ����

kF �u�k� � O�kuk� kuk���

and
 analogously

kF �u�k � O�kuk � kuk���

These estimates are enough to obtain the results of Section �
 so the rest of the
proof for the general nonlinearity goes exactly the same way as in the case f�u� �
�u�
 �

Proof of Theorem �� The proof of Theorem � will be very similar to that of Theorem
	
 We will use the results of Section � exactly in the same way as in the case of

��



Theorem 	
 but we have to replace the �linear result� with an analogous result for
the singular setting and moreover to replace the pde setting of Propositions ��
and �	 by using the integral equation ���
 Fix a bounded continuous g� and set

u�x� t� �� Esin
�x hXt � gi � x � R� t 
 �� ����

Using the equation ���
 it is standard to verify the following integral equation for
the expectations �see formula �	 in �EF�����

u�x� t� �

Z
R

dy p�t� y � x�g�y� �

Z t

�
ds p�t� s� x�u��� s�� ����

x � R� t 
 �� �Symbolically
 ut �
�
��u� 	�u with u�x� �� � g�� Analogously to the

section preceding ���
 let us de�ne now the semigroup fTtgt�� by

�Ttg���� �� u��� t��
�The semigroup property can be checked by direct calculation
� By Theorem EF
then
 we know that e�t	�Ttg has a pointwise limit as t � � for any bounded
continuous g � R �� R� 


Let ��x� �� e�jxj �recall that the function x �� e�jxj plays the role of the
ground state
 this justi�es our notation
� De�ne the ��transformed semigroup by

T 

t �g� �� ejxjTt�e

�jxjg�� for e�jxjg � C�
b �

De�ne also S
t �g� �� e�t	�T 

t �g�
 Let � � 	x and rewrite ����

lim
t��

�Stg��x� � e�jxjhe�jxj� gi� g � C�
b �

Let G �� ejxjg� Then

lim
t��

�S
t G��x� � he��jxj� Gi� ����

Now ���� holds for every G satisfying e�jxjG � C�
b � In particular
 ���� holds for

every G � C�
b � We now show that this convergence is uniform on compacts
 Let

us �x a K � R compact
 We must show that for g � C�
b 


e�t	�ejxju�x� t�� C�g� as t � � ��	�

uniformly for x � K
 where C�g� �� he�jxj� gi
 Exploiting the notations ux�t� ��
u�x� t� and px�t� �� p�t� x�
 the Laplace�transform of ���� �with respect to t� is

cux��� � Z
R

dy dpy�x���g�y� � bpx���cu���� ����


�



where cux and bpx denote the Laplace�transforms of ux and px respectively
 Using
����
 the Laplace�transform of the lefthand side of ��	� is

ejxjcux���
	

�

	
� ejxj

Z
R

dy dpy�x���
	

�

	
g�y� � ejxj bpx���

	

�

	cu����
	

�

	

�� M�x� �� �N�x� �� �cu����
	

�

	
�

By continuity
 M is bounded on K � ��� ��
 Let

a �� inf
x�K
���

M�x� �� and A �� sup
x�K
���

M�x� ���

In the proof of Theorem ��b� in �EF��� we have shown that

cu����
	

�

	
� C�g�

	

�
as � � �� ����

and that

N�x� �� � 	 as � � �� ����

for each x � R
 We now show that in fact the convergence in ���� is uniform on
K
 To see this
 note that N�x� �� is continuous in x by monotone convergence

The uniformity of the limit in ���� thus follows by Dini�s theorem
 Let

b��� �� inf
x�K

N�x� �� and B��� �� sup
x�K

N�x� ���

Then we have

a� b��� �cu����
	

�

	
� ejxjcux���

	

�

	
� A�B��� �cu����

	

�

	
�

with
lim
�
�

b��� � lim
�
�

B��� � 	�

Using this
 ���� and a well known Tauberian theorem ��Fel�	
 formula �	�
�
�����
along with the monotonicity of the Laplace�transform
 it follows that ��	� holds
uniformly on K


Similarly to the proof of Theorem 	
 in order to conclude convergence in ��
norm
 we have to show that fS
t G� t 
 �g is a uniformly bounded family
 for every
given G � C�

b 
 Let G � C�
b with kGk � K
 Since he��jxj� 	i � 	
 we have

lim
t��

�S
t G��x� � K�


�



Consequently

kS
t Gk � K	 for all t 
 ��

with some K	 � K
 that is
 fS
t G� t 
 �g is a uniformly bounded family
 for every
given G � C�

b 
 Thus
 we have shown the convergence in ��norm for any � � C�

Now choose

� �� � � e�jxj�

We look for a substitute of Proposition �	 for the non�regular setting
 By Theorem
��a� in �EF��� we have that

lim
t��

e�t	�kTtk � ��

A simple calculation reveals that

kT 

t k
 � kTtk�

Therefore
 also
lim
t��

e�t	�kT 

t k
 � ��

and consequently
e�t	�kT 


t k
 � K� for all t 
 ��

with some K � �
 This gives the required estimate for the ��transformed linear
semigroup


Finally
 the ��transformed superdi�usion X
 can be de�ned in the usual way�
it will correspond to the integral equation

u��� t� � T 

t g �

Z t

�
dsT 


t�s���u
���� s���

The rest of the proof is virtually identical with the last part of the proof of Theorem
	 �by setting �c � 	
� and � � e�jxj in that proof�
 except that the convergence
of the ��transformed Laplace�functional now holds for all g�s with �g � C�

b �recall
that � � ��
 thus yielding convergence far all nonnegative bounded continuous
functions when going back to the original Laplace�functional
 �

A Appendices

A�� Proof of Theorem �

Proof of Theorem �� Let Y denote the di�usion corresponding to L on Rd with
probabilities fPx� x � Rdg
 Let �R �� infft 
 � j jYtj � Rg
 Using It#o�s formula
 it


�



is immediate that for any �xed R� � �
 $U�x�R�� R� �� Px��R� � �R� is the unique
solution to the boundary value problem

Lu � � at R� � jxj � R�

u � � at jxj � R� and u � 	 at jxj � R�
����

By the recurrence of Y 
 $U�x�R�� R� tends to zero in the layer jxj � �R�� R� � C�

as R� ��
 for any �xed �nite C � �


Note that

� 
 $U 
 	 for jxj � �R�� R�� ����

Let �r� �� denote spherical coordinates� i
e
 r � jxj
 By the Hopf maximum
principle �see Theorem �
�
� in �Pin����


$U �
r�x�R�� R� � � both at r � R� and r � R� ����

Next
 we show that

$U �
r

��
r�R�

� K�R�� sup
�

$U
��
r�R���

����

where the constant K depends �continuously� only on the coe�cients of L at
r � �R�� R� � 	�� i
e
 it is independent of the position of the outer boundary
�r � R�
 Hence


$U �
r

��
r�R�

� � as R� ���

To prove inequality ����
 just note that

U	�x� � U	�r� �
	� e�K	r�R�


	� e�K

is a supersolution for a su�ciently large K�

LU	 � �K�e�K	r�R�
�rr� arr� �O�K� 
 ��

and
 by construction
 U	�r � R�� � �
 U	�r � R� � 	� � 	
 Hence
 the product

U	�x� �


sup� $U

��
r�R���

�
is a supersolution with the boundary values at r � R�

and r � R� � 	 not smaller than those of $U 
 By the elliptic comparison principle

this implies that

U	�x� �
�
sup
�

$U
��
r�R���

	

 $U�x� at r � �R�� R� � 	�







and
 in particular
 $U �
r�r � R�� � U	�

r�r � R�� �


sup� $U

��
r�R���

�

 which proves

����
 When using this inequality we will always assume that K�R�� grows mono�
tonically with R�


To prove our theorem on the existence of supersolutions
 we will use an induc�
tive construction� we will produce an increasing to in�nity sequence R� 
 R� 
 � � �
and
 having built a supersolution U 	q
 de�ned at R� � r � Rq we will continue it
to the domain r � Rq�� where Rq�� � Rq may be taken arbitrarily large �though
�nite�
 The new supersolution U 	q��
 will coincide with U 	q
 at r � Rq� 	q where
	q can be taken arbitrarily small
 So
 this procedure
 indeed
 gives in the limit a
supersolution de�ned at all r 
 R� �recall that �r� �� denote spherical coordinates�
r � jxj�


At the �rst step �q � �� we take

U 	�
�x� � $U�x�R�� R���

i
e
 it is the solution of the boundary�value problem ���� for an arbitrary R� � R�

Let us now assume that we have the supersolution U 	q
 de�ned at R� � r � Rq

such that

U 	q
�Rq� �� � uq � const ����

and

inf
�
U 	q
�
r �Rq� �� � �� ����

By construction �see �����
 these two requirements are satis�ed at q � �
 with
u� � 	


Denote
���� � U 	q
�

r �Rq� ���

Take any Rq�� � Rq � 	 such that

K�Rq� sup
jxj�
Rq���Rq���

$U�x�Rq � 	� Rq��� 

	

sup� ����
inf
�
������ ��	�

Choose a su�ciently small 	q � � �arbitrarily small
 in fact� and take the solution
$U�x�Rq�	q� Rq��� of the boundary�value problem ����
 For brevity
 we will denote
$U�x� � $U�x�Rq � 	q� Rq��� below
 We will also use the notation

���� � $U �
r�Rq � 	q� ���


�



Since $U�x�Rq � 	q� Rq��� � $U�x�Rq � 	� Rq��� for any 	q � ��� 	�
 it follows �see
����
 ���� and ��	�� that

� 
 inf
�q�
����

inf
�
���� � sup

�q�
����
sup
�

���� 

	

sup� ����
inf
�
������ ����

This inequality allows us to �nd such constants � and A that

� � sup
�q�
����

sup
�

����

����
����

and

inf
�
���� � A � � sup

�
����� ����

Let us now de�ne

U 	q��
�x� �

�������������������

U 	q
�x� for jxj � Rq � 	q�

$U�x� � uq �A	q for Rq�� 
 jxj 
 Rq�

uq�U
	q
�x�� uq��	 � ����

�� $U�x��A	q��� for jxj � �Rq � 	q� Rq��

����

where A is the constant from ���� and ���� are some C����functions of z � �r �
Rq � 	q�
	q such that

��z� � � at z � �� ��z� � 	 at z 
 	 ����

and

� 
 ��z� 
 	 at z � ��� 	�� ����

Moreover


���z� � � at z � ��� 	�� ����

In the rest of this section
 any C����function satisfying ��������� will be called nice

Obviously
 the function U 	q��
 de�ned by ���� is C��� and it is a supersolution

�i
e
 it satis�es ����� for r � Rq � 	q and r 
 Rq
 So
 we must check that it is a
supersolution in the layer Rq � 	q � r � Rq too
 for an appropriate choice of the
�gluing� functions ����
 In this layer
 the inequality to check is

��U 	q
�x�� uq�L�� � ��rU 	q
� ar��� � � $U�x��A	q�L�� � ��r $U �x�� ar��� � ��
����


�



Note that at jxj � �Rq � 	q� Rq� we have

rU 	q
jx�	r��
 � ����rr �O�	q��

r $U jx�	r��
 � ����rr �O�	q��

U 	q
�r� �� � uq � ����� �O�	q�� �Rq � r��

$U�r� �� � ����� �O�	q�� �r �Rq � 	q��

Also
 it is easy to see that

r� �
	

	q
�� � rr

and

L� �
	

	�q
��� � �rr� arr� �O

�
	

	q

	
���

Plugging this into ���� we arrive at the following condition which must be ful�lled
at all � and at all z � ��� 	��

��	 � z����� � ��	 �O�	q���
�
���z� �

�
A� ����z �O�	q�

���� �O�	q�
���� � �

���� �O�	q�

���� �O�	q�
���



�z��

����

Since ����� is nonnegative by assumption
 and since 	q may be taken as small as
necessary
 it is su�cient that for some small enough �

�	� z����� �z� � ��� ������z� � �	� �sign����� �z���
A � ����z

����
���� �z�� ��� �������z��

��	�

where � is the constant from ����
 ���� �recall that A � ���� by ����
�����
 Denote

���z� �
���z�� ����z�

	� �
� ����

By ����
����
 if � is su�ciently small
 then to satisfy the inequality ��	� it is enough
to require that

�	� z����� �z�� ��� ������z� � ��z����� �z�� ����

where

��z� �

�
�� for ���� �z� � �
�� for ���� �z� 
 �

����


�



for some appropriately chosen constants �� which may be taken such that

� 
 �� 
 �� 
 	� ����

Let us now take a smooth function ��z� with zeros at �
 	 and at some � �
��� 	�
 Let ��z� � � at � 
 z 
 � and ��z� 
 � at � 
 z 
 	
 Also
 letZ �

�
��z�dz � �

Z �

�
��z�dz � 	� ����

Denote

I�� �

Z �

�
��z��	 � z�	���
dz� I�� � �

Z �

�
��z��	 � z�	���
dz�

Let

���z� ��
	

I�� � I��

Z z

�
�z � s���s�ds ����

at z � ��� 	�
 It is easy to see that this de�nes a nice function �� for any � satisfying
����
 Moreover


���� �z� �
	

I�� � I��
��z�� ����

We will assume now that �� is given by ���� where the choice of � will be speci�ed
below
 Note that the inequality ���� which must be satis�ed by the function �� is
rewritten as

�	� z����� �z�� ��� ������z� �
	

I�� � I��
��z���z�� ����

We will look for a nice function �� which satis�es the equation

�	� z����� �z�� ��� ������z� � ��z���z�
��z�

I�� � I��
� z � ��� 	�� �	���

Here we denote

��z� �

�
�� for z � ��� ��
�� for z � ��� 	�

�	�	�

for some constant �� such that

�� 
 	 
 ��� �	���


	



The integration of �	��� gives

���z� �

�����
����

	I�
�
�I�

�

	���


R z
� ��s��



��s
��z

���� � 	�ds for z � ��� ��

	 � ����
	I�
�
�I�

�

	���


R �
z ��s��	 �



��s
��z

����
�ds for z � ��� 	�

�	���

It is seen that ����� � �
 ���	� � 	
 We also have

����z� �

� ����
	I�
�
�I�

�

	��z
���

R z
� ��s��	 � s����ds for z � ��� ��

� ����
	I�� �I�� 
	��z
���

R �
z ��s��	 � s����ds for z � ��� 	�

�	���

Thus
 ����z� � � at z � ��� 	� and ������ � �
 ����	� � � ����
	I�
�
�I�

�

	���


��	� � �
 One

can also check that ���� ��� � ����
I�
�
�I�

�

���� � � and ���� �	� � � ����
	I�
�
�I�

�

	���


���	�
 It

follows that in order to have a nice function �� we must assume additionally that
���	� � � and that the continuity conditions

���� � �� � ���� � ��� ����� � �� � ����� � ��

are ful�lled �the continuity of the second derivative would then follow from equa�
tion �	��� since ���� � � by assumption�
 By �	��� and �	��� the continuity
conditions are written as

����I
�
� � ����I

�
�

and
	� ����

�	� ���I�� � I�� �
� � ����

�	� ���I�� � I�� �

�note that we took into account the equality �����
 This leads to the following
formula

�� �
�	� ��

��I
�
�

� I
�
� � I��
�
I��
� �

I��

� �	���

To ful�ll �	��� at a su�ciently small �
 it is enough to have

��

I��



I�� � I��
I�� � I��



��

I��
� �	���

By ����
 this will be satis�ed if I�� is close enough to 	 and I�� is close enough to
zero
 To this aim
 just take � su�ciently closely approximating the sum of the
delta�function near zero and the minus delta�function near 	


So
 �xing the choice of a smooth function � such that �	��� and ���� were
satis�ed �along with the requirements ���� � �
 ��	� � �
 ���	� � �
 ���� � �


�



and ��z� � � at z � ��� �� and ��z� 
 � at z � ��� 	��
 we obtain the nice functions
�� and �� satisfying �	��� and ����
 respectively
 By �	���
 this means that the
inequality ���� holds for these two functions


It follows that the function �� recovered from ���� is also nice and satis�es
��	�
 Hence
 for such chosen functions ���� the function U 	q��
 given by ���� is a
supersolution indeed at all r � �R�� Rq���


As required
 U 	q��
 is constant at r � Rq���

U 	q��
�Rq��� �� � uq � 	� C	q � uq���

Hence

uq � 	 
 uq��

and
 by taking 	q small
 we may always ensure

uq�� 
 uq �
	

�
�

Therefore


q 
 uq 
 q

�
�

By construction

U 	q��
�x� � uq��

and
U 	q��
�x� 
 uq�� � 	 at r 
 Rq�

It follows
 �rst
 that the supersolution U which we obtain in the limit of this
procedure as q � �� grows to in�nity�

lim
r��

inf
jxj�r

U�x� � ���

On the other hand
 this growth can be made arbitrarily slow� it is seen that
U�x� � q at jxj � Rq but Rq may be taken growing as fast as necessary
 �

A�� A review on criticality theory

Let L be as in �	�
 Then there exists a corresponding di�usion process Y on
Rd that solves the generalized martingale problem for L on Rd �see Chapter 	 in
�Pin����
 The process lives on Rd 	� with � playing the role of a cemetery state

We denote by Px and Ex the corresponding probabilities and expectations
 and
de�ne the transition measure p�t� x�dy� for L� � by

p�t� x�B� � Ex

�
exp

�Z t

�
��Ys� ds

	
�Yt � B

	
�

for measurable B 
 Rd 



�



De�nition �� IfZ �

�
p�t� x�B� dt � Ex

Z �

�
exp

�Z t

�
��Ys� ds

	
	B�Yt� dt 
��

for all x � Rd and all bounded B � Rd 
 then

G�x�dy� �

Z �

�
p�t� x�dy� dt

is called the Green�s measure for L � � on Rd 
 If the above condition fails
 then
the Green�s measure for L� � on Rd is said not to exist
 �

In the former case
 G�x�dy� possesses a density
 G�x�dy� � G�x� y�dy
 which
is called the Green�s function for L� � on Rd 


For � � R de�ne

CL���� � f u � C� � �L� � � ��u � � and u � � in Rd g�
The operator L���� on Rd is called subcritical if the Green�s function exists

for L � � � � on Rd � in this case CL���� �� �
 If the Green�s function does not
exist for L� � � � on Rd 
 but CL���� �� �
 then the operator L� � � � on Rd is
called critical� In this case CL���� is one�dimensional
 The unique function �up
to a constant multiple� in CL���� is called the ground state of L� � on Rd 
 The
formal adjoint of the operator L���� on Rd is also critical with ground state ��

If furthermore ��� � L��Rd�
 we call L� � � � on Rd product�critical 
 �For � � ��
this means that � is an L��eigenfunction
� Finally
 if CL���� � �
 then L� � � �
on Rd is called supercritical�

If � � �
 then L�� is not supercritical on Rd since the function f � 	 satis�es
Lf � � on Rd 
 In this case L� � � L is subcritical or critical on Rd according to
whether the corresponding di�usion process
 Y 
 is transient or recurrent on Rd 

Product criticality in this case is equivalent to positive recurrence for Y 
 If � � �
and � �� �
 then L� � is subcritical on Rd 


In terms of the solvability of inhomogeneous Dirichlet problems
 subcriticality
guarantees that the equation �L � ��u � �f in Rd has a positive solution u for
every � � f � C�

c 
 �Here C�
c � Cc�C�
� If subcriticality does not hold
 then there

are no positive solutions for any � � f � C�
c �

One of the two following possibilities holds �
	� There exists a number �c � R such that L�� on Rd is subcritical for � � �c


supercritical for � 
 �c
 and either subcritical or critical for � � �c

�� L� � on Rd is supercritical for all � � R
 in which case we de�ne �c ��


De�nition �� The number �c � ������ is called the generalized principal

eigenvalue for L on Rd 
 �

��



Note that �c � inf f� � R � CL���� �� �g
 Also
 if � is bounded from above

then case 	� holds


If L�� is symmetric with respect to a reference measure �dx 
 then �c equals
the supremum of the spectrum of the self�adjoint operator on L��Rd � �dx� obtained
from L� � via the Friedrichs� extension theorem


Let h � C��� satisfy h � � in Rd 
 The operator �L� ��h de�ned by

�L� ��hf �
	

h
�L� ���hf�

is called the h�transform of the operator L� �
 Written out explicitly
 one has

�L� ��hf � L� � a
rh
h
� r� � �

Lh

h
�

where L� � �
�r � ar� b � r


All the properties de�ned above are invariant under h�transforms

For further elaboration and proofs see Chapter � in �Pin���


Acknowledgements�We are grateful to M
 E�endiev
 K
 Fleischmann
 J
 G�artner

R
 Pinsky
 K
 Schneider and M
 Wolfrum for helpful discussions


References

�AN��� K
B
 Athreya and P
E
 Ney
 Branching Processes
 Springer�Verlag

Berlin�Heildelberg�New York
 	���


�BCG��� M
 Bramson
 J
T
 Cox and A
 Greven
 Ergodicity of critical spatial
branching processes in low dimensions
 Ann� Probab�
 �	�	���"	���

	���


�Daw��� D
A
 Dawson
 Measure�valued Markov processes
 In P
L
 Hennequin

editor
 �Ecole d��et�e de probabilit�es de Saint Flour XXI�����
 volume 	��	
of Lecture Notes in Mathematics
 pages 	"���
 Springer�Verlag
 Berlin

	���


�Dyn�	� E
B
 Dynkin
 Branching particle systems and superprocesses
 Ann�

Probab�
 	��		��"		��
 	��	


�Dyn��� E
B
 Dynkin
 Superprocesses and partial di�erential equations �The
	��	 Wald memorial lectures�
 Ann� Probab�
 �	����		��"	���
 	���


�EF��� J
 Engl�ander and K
 Fleischmann Extinction properties of super�
Brownian motions with additional spatially dependent mass production

Stoch� Proc� Appl�
 to appear
 	���


��



�EP��� J
 Engl�ander and R
G
 Pinsky
 On the construction and support prop�
erties of measure�valued di�usions on D � Rd with spatially dependent
branching
 Ann� Probab�
 ����������
 	���

�Fel�	� W
 Feller
 An Introduction to Probability Theory and its Applications

volume II
 John Wiley and Sons
 New York
 �nd edition
 	��	


�Fri��� A
 Friedman Partial Di�erential Equations of Parabolic Type
 Prentice
Hall
 	���


�Pin��� R
G
 Pinsky
 Positive Harmonic Functions and Di�usion
 Cambridge
University Press
 	���


�Pin��� R
G
 Pinsky
 Transience
 recurrence and local extinction properties
of the support for supercritical �nite measure�valued di�usions
 Ann�

Probab�
 ���	�����"���
 	���


�Pin��� R
G
 Pinsky
 Invariant probability distributions for measure�valued dif�
fusions
 Preprint


�SSTC��� L
 Shilnikov
 A
 Shilnikov
 D
 Turaev
 L
 Chua
 Methods of qualitative

theory in nonlinear dynamics� Part I
 World Scienti�c
 Singapore
 	���


��


