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Abstract

Consider the o-finite measure-valued diffusion corresponding to the evolution
equation uy = Lu + f(z)u — f(x,u), where

o0
flz,u) = afx)u? +/ (e F* — 1 + ku) n(z, dk)
0

and n is a smooth kernel satisfying an integrability condition. We assume that
B,a € C"(RY) with 7 € (0,1], and a > 0. Under appropriate spectral theoretical
assumptions we prove the existence of the random measure

lim e~ X, (da)

tToo
(with respect to the vague topology), where \. is the principal eigenvalue of L+ /3
on R? and it is assumed to be finite and positive, completing a result of Pinsky on
the expectation of the rescaled process. Moreover we prove that this limiting ran-
dom measure is a nonnegative nondegenerate random multiple of a deterministic
measure related to the operator L + .

When [ is bounded from above, X is finite measure-valued. In this case,
under an additional assumption on L + 3, we can actually prove the existence of
the previous limit with respect to the weak topology.

As a particular case, we show that if L corresponds to a positive recurrent
diffusion Y and [ is a positive constant, then

Hm e PLX (dx)

exists and equals to a nonnegative nondegenerate random multiple of the invariant
measure for Y.

Taking L = %A on R and replacing 8 by 8y (super-Brownian motion with a
single point source), we prove a similar result with A\, replaced by 1/2 and with the
deterministic measure e *ldz, giving an answer in the affirmative to a proposed
problem in [EF99].

The proofs are based upon two new results on invariant curves of strongly
continuous nonlinear semigroups.

1 Introduction and statement of results

1.1 Motivation

In [Pin96] it has been proven that the superdiffusion corresponding to the semi-
linear operator Lu + fu — au? tends to a nonzero limit in expectation if and only



if the linear operator L 4 (3 satisfies a certain spectral assumption. Although the
statement was proved for the case when « and 3 are positive constants, it is easy
to check that the proof works just as well in the variable coefficient case. A simi-
lar result has been presented in [EF99] for a non-regular setting (super-Brownian
motion with a single point source).

In this paper we replace the expectations by the superdiffusions themselves,
and prove that the rescaled superdiffusions tend to a limit in law. For the case
of the super-Brownian motion with a single point source this will give a positive
answer to a proposed problem in [EF99].

1.2 Preparation

We begin with a number of notations. Let M = M(R?) denote the set of finite
measures ; on R endowed with the topology of weak convergence and with |ul|
denoting the total mass of y; and let M. = M.(R?) denote the subset of all
compactly supported measures. Write C*7 = CF7(R?) for the usual Holder
spaces of index 7 € (0,1] including derivatives of order k, and set C" := C%". Let
Cp = Cp(R?) and C;f = C;7 (R?) denote the space of bounded continuous functions
on R? and the space of nonnegative bounded continuous functions respectively;
and || - || denote the sup-norm for bounded functions. Furthermore, C' = C(R?)
and Cy = Cp(R?) refer to continuous functions on R? and continuous functions on
R? decaying to zero, respectively. Finally, C. (C:F) denotes the space of continuous
(nonnegative continuous) functions on R? with compact support.

We now continue with recalling the definition of the (L, 3, a; R?)-superdiffusion.
Let L be an elliptic operator on R? of the form

1
L=3V-aV+b-V on R?, (1)

where a;j, b € CY", i,j = 1,...,d, for some n € (0,1] and the symmetric matrix
a = {a;;} satisfies
d
> ag(z)viv; > 0 for all v € RN\ {0} and all » € R”. (2)
ij=1
In addition, let a, 3 € C" where 3 is bounded from above (we will later relax this

condition) and « is positive.

Notation 1 (superdiffusion) Let (X, P,, u € M) denote the (L, S, a;R%)-
superdiffusion. That is, X is the unique M-valued continuous (time-homogen-
eous) Markov process which satisfies, for any bounded continuous ¢ : R? — R, ,

E,u exp (Xta_g> = exp (Ua _u('vt)>7 (3)



where v is the minimal nonnegative solution to

ug = Lu + Bu — au? onR? x (0,00),

4
Jim () = g() W
(see [EP99]). Here (v, f) denotes the integral [,qv(dx) f(z). <&

Here is an equivalent way of replacing the word minimal in the definition of u in
Notation 1 (cf. [EP99]): w is the nonnegative solution to (4) obtained as a limit
of solutions with Dirichlet boundary condition: u = lim,,_, ; %, Where wu,(x,t) is
the solution to (4) for |z| < n with u,(x) =0 at |z| = n.

Remark 2 We note that this definition will later be extended to a more general
class of #'s and a more general class of nonlinearities (see the last subsection of
this section). e

Remark 3 (mild equation with linear semigroup) In fact the parabolic
semilinear pde under (4) can be rewritten as an integral-equation (or mild-equation)
as follows: u is the unique function which solves

u(-,t) =Tg — /0 ds Ty (au?(-,8)) , (5)

with supg<s< |lu(+,s)|[| < oo for all t > 0. Here {T}};>o denotes the semigroup
corresponding to the operator L + 3 and acting on Cj. That is, for bounded and
continuous g,

tig =&, e | 5(v.) as) gtri) s r>t. (©)

where Y denotes the diffusion corresponding to L on R? living on R? U {A}, the
one-point compactification of R (with expectations {E; },cga), and 7 denotes its
lifetime:

Ti=inf{t > 0]Y; ¢ R%}.

We mention that the mild equation under (5) is usually written in a slightly
different form: {T}}>¢ is replaced by the semigroup corresponding to the operator
L on R? and the nonlinearity au? is replaced by —fu + au® (see e.g. formula
(1.3) in [EP99]). The advantage of that formulation is that the semigroup then
describes the spatial motion (the diffusion corresponding to L on R?), while the
nonlinear term refers to the branching mechanism built in the construction of X.
In this paper we chose to include 3 in the linear semigroup as in (6) for technical
reasons. For example, we do not have to assume that § is bounded from below,
the semigroup under (6) makes sense whenever [ is bounded from above. <&



Remark 4 (formula for expectation) Using the stochastic representation for-
mula for solutions of parabolic pde’s (see formula 5.15 in [Fri64]) it is easy to show

that u(x,t) := Tyg(x) is the minimal nonnegative solution for (4) with o = 0.
From this, it is standard to verify that

Es, (Xt,9) = Tig(x). (7)

&

In the sequel we will use concepts and facts from the so-called ‘criticality-theory’
of second order elliptic operators (see Chapter 4 in [Pin95]) without further refer-
ence. The definitions for subcritical, critical and product-critical operators, for the
ground-state of a critical operator and its adjoint, and for the generalized principle
eigenvalue of L+ § on R? are presented in Appendix 2. The reader should consult
that section from time to time, where a review is given on criticality-theory.

We will also use the notation (f, g) with nonnegative f and ¢ for the (possibly
infinite) integral [pa da f(z)g(x). In [Pin96] the following result has been proved
(though formally for a somewhat more restricted case — see the note after the
theorem):

Theorem P Let n € M. and g € CF. Let \. € R denote the generalized
principal eigenvalue of L + 3 on RY. In the case when L + [ — X\, is critical we
denote the corresponding ground state by ¢. (The ground state for the formal
adjoint of L + 8 — A. will be denoted by gz~5) Finally, let p € R.

(i) lime " E (X, g) =0if p> A, and lime "' E,(Xy,g) = 0o if p < A
tToo tToo
(ti —a) If L+ B — A is subcritical or if L+ 3 — A is critical but (¢, (5) = o0,
then
lim e *'E,(X;,g) = 0.

tToo

(ti = b) If L+ 8 — A¢ is critical and (¢, ¢) < oo, then

lim BiACtEp,<Xta g> = </~La ¢> (q‘;a g>7

tToo

where ¢ and ¢ are normalized by (¢, o) = 1.

The condition in (it — b) of Theorem P is sometimes called ‘product-criticality ’
(see Appendix A.2 for more explanation).

Although this result was stated for the case when L is a conservative diffusion
(that is, a diffusion having an infinite lifetime) on R? with a corresponding Co-
preserving semigroup and 3 and « are positive constants, it is easy to check that

4



its proof never uses these assumptions and consequently it is valid for our general
notion of the (L, 3, a;R?)-superdiffusion as well. (Note that if 3 is constant, we
have A\. = 3+ A.(L), where A\.(L) denotes the generalized principal eigenvalue of
L on R?))

In a recent paper [EF99] a non-regular setting, namely a super-Brownian mo-
tion with a single point source has been studied and a result analogous to Theorem
P has been proved for this process. In this case the additional mass production is
zero everywhere except at a single point (the origin, say) where the mass produc-
tion is infinite (in a é-function sense). In other words, consider the superdiffusion
Xsin corresponding to the formal evolution equation

1
up = §Au + bou — au® on R x (0,00),

u('v 0) = g(')a
where 6y denotes the Dirac 6-function at zero. The precise meaning of the above
evolution equation is that w is the unique (nonnegative) solution to the integral
equation

ul- 1) = / Ty ot v)e) + / ds p(t — s, 0)u(0, )
- / s / Tdyplt— s a0, (8)
0 —00

with supg< < ||u(-,s)|| < oo for all ¢ > 0, where {p(t,z,y) = p(t,x —y); t >
0, z,y € ]R_} ‘denote the Brownian transition densities. X" is then determined by
its Laplace-functional as in (3), but with u from (8). The corresponding expecta-
tions will be denoted by {Ef}n, e My}

In [EF99] the following result is proved for o = 1 (the proof for general a > 0

is virtually identical to the proof given in [EF99]):
Theorem EF For all bounded continuous g : R — Ry and p € M(R),

lim eT2ESN (XM g) = (e ) (e, g). (9)

Note that in this (non-regular) setting, the number 1/2 and the function 2 — e~ ||
play the role of A, and ¢ (= ¢). Note also that (e 21l 1) = 1, that is > e |7l
has already been ‘normalized’.

An obvious but important fact is recorded in the following remark.

Remark 5 (‘overscaling’) By Theorem P(i) and the Markov-inequality, for the
(L, B, a; RY)-superdiffusion X we have lim;o (e ?*X¢, g) = 0 in probability if p >
Ae , provided Xy € M.. Similarly, using Theorem EF, limtToo(e_thfi“,g) =0in
probability if p > 1/2, provided Xy € M(R). &



Motivated by these results and a proposed problem in [EF99] (see Remark 3 in that
paper), we ask the following natural questions: Let the (L, 3, o; R?)-superdiffusion
X satisfy the condition in (ii-b) of Theorem P. Does the rescaled process e <! X,
have itself a limit in law for any Xo € M,.? Is the same true for the rescaled
process e /2X5" for any X € M(R)?

In order to answer the question, we first invoke the definition of local extinction.

Definition 6 (local extinction) A measure-valued path X ezhibits local extinc-
tion if X;(B) = 0 for all sufficiently large ¢, for each ball B. The measure-valued
process X corresponding to P, is said to possess this property if it is true with
P,-probability one. &

Roughly speaking, local extinction means that the support of the measure-valued
process leaves any given compact set in finite time.

Remark 7 (process property) In [Pin96, EP99] it was shown that, for fixed
L, 3 and a, if the property in Definition 6 holds for some P,, p € M, with pu # 0,
then it in fact holds for every P,, u € M.. O

Local extinction can be characterized in terms of L and 3 (see Theorem 6 and
Remark 1 in [Pin96]):

Lemma 8 (spectral condition for local extinction) The (L, 3, o;; R?)-super-
diffusion X exhibits local extinction if and only if there exists a (strictly) positive
solution u to the equation (L + B)u =0 on R? that is if and only if Ae < 0.

Remark 9 (ergodicity and local extinction) Let f: Ry — R;. Using Lem-
ma 8, it immediately follows that if A. < 0, we have f(¢)(X¢, ¢g) — 0 as t — oo a.s.
for any g € C.F and Xy € M., no matter how ‘large’ f is.

Nevertheless, the situation is completely different when replacing g € CF by
g € C;r. For the case when u € M. but ¢ = 1, the condition A\, < 0 (local
extinction) does not contain enough information about the behavior of the total
mass. To elucidate this point, consider the following example. Fix g, > 0 and
take an L with A.(L) < —f corresponding to a conservative diffusion. Let X denote
the corresponding superdiffusion and let X™* denote the superdiffusion where L is
replaced by %A (supercritical super-Brownian motion). Then /\C(%A +p6) =p
but for X we have A\.(L + ) < 0. Nevertheless, the processes | X| and [|.X*||
have the same law, because the branching is independent from the motion process
and ‘no mass is lost” due to the conservativeness of the diffusion corresponding to
L. (See the argument preceding formula (1.4) in [Pin96].) Therefore || X|| grows
exponentially in expectation in this case. On the other hand, the (sub)critical



super-Brownian motion exhibits local extinction too but its total mass is constant
(resp. tends to zero) in expectation.

Last, we mention that the case when A, < 0 and p does not belong to M.
but rather o-finite, has also been studied in the literature. The simplest case is
the critical super-Brownian motion, that is L = %A,ﬂ = 0 and 0 < a =const.
In this case A\. = 0. For the ergodic behavior of this process under different, and
even mixed starting measures, see [BCG93]. For (L, 3, a, R?)-superdiffusions see
[Pin99]. O

In the sequel we will always assume that A. > 0, that is that the (L, 3, oz R?)-
superdiffusion under consideration does not exhibit local extinction. (As already

mentioned in this subsection, in the singular setting the number 1/2 plays the role
of A\..)

1.3 Scaling limits for superdiffusions

In this paper we will prove the existence of the scaling limits in the case of
(L, 3, a; R?)-superdiffusions and in the case of the single point source as well, un-
der the assumption that A\.(L + ) > 0 and that the condition in (ii-b) of Theorem
P (product-criticality) holds. In addition, we will assume that « is not ‘too large’.
In fact we will be able to replace M. and M(R) by two families of measures, each
satisfying an integrability assumption only. (See Theorems 1 and 2 below.)

As it is usual in the analysis of nonlinear phenomena, we use a geometric
approach to the equation (5). For a continuous function u define the weighted
norm ||ul|4-1 = sup, ||u(x)¢~" ()| where ¢ is the ground state of L+ —\.. Under
certain conditions guaranteed by Theorem 1 or 2 below, we prove in Lemma 20 of
section 3 the existence of a special smooth curve u = ¢(0), o € [0,00), in the space
of nonnegative functions bounded in the norm || - ||,-1, such that (0) = 0 and
¥'(0) = ¢ and that the curve is invariant under the positive time shift «(0) — u(t)
defined by (5). Thus, the curve emanates from zero and is tangent at zero to
the one-dimensional invariant (with respect to the semigroup {7}};>o ) subspace,
spanned by ¢. We prove that this curve is uniquely defined by the condition that
for any point «(0) = g = ¥(0g) on the curve we have

u(t) = ¢(ope), (10)

where u(t) is the unique nonnegative solution to (5), bounded in the ||u||4-1-norm
at all £. This condition means that the curve is parametrized in such a way that
the equation (5) restricted to the invariant curve becomes linear: & = A.o.

Since our invariant curve u = (o) is defined uniquely by the nonlinear equa-
tion (5), it is quite legitimate to formulate the results in terms of the function ),

7



as we do below (note that our proof of existence of the invariant curve in Lemma
20 is constructive and gives an algorithm for the computation of the function ).
In essence, Theorems 1 and 2 illustrate one of the standard ideas of local nonlinear
analysis: the analogy between invariant subspaces of linearized evolution equations
and invariant curves of nonlinear equations.

Before stating our main result we introduce an additional notation.

Notation 10 For 0 < g measurable, define the following space of measures:

M) .= {41 is a measure on R? : (1, g) < oo}

We now state our main result.

Theorem 1 (scaling limit for (L, 3, a;R?) -superdiffusions) Let X be the
(L, 3, a; RY)-superdiffusion with L, 3,a as in the paragraph preceding Notation 1.
Let 0 < \. where \. denotes the generalized principal eigenvalue of L + 5 on RY.
Assume that the condition in (ii-b) of Theorem P (product-criticality) holds. In
addition, assume that ag is bounded from above.

Then for any Xo = p € M), there exists a nonnegative non-degenerate
random variable N, such that for all g € CF,

lime (X, g) = N, - (¢, g) in law. (11)

tToo

Moreover, under the normalization (¢, @ =1, the law of N, is determined via its
Laplace-transform as follows:

Ee™ "™ = exp(u, —¢(0)) ,0 >0 (12)
where o +— (o) is the invariant curve defined by (10). Furthermore,

EN, = (1, 9)- (13)

In particular, P(N, < c0) = 1.
If we assume in addition that ¢ is bounded away from zero, then

lim e Xy (dz) = N, - d(x)dz in law. (14)

tToo

An interpretation of the above theorem will be given in the next subsection.



Remark 11 It is not hard to show that (11) implies that
P(N, =0) > P,((X;,1) = 0 for all large t's).

(We defer the proof to the next subsection, because we will need the concept
of the h-transform for superprocesses defined in that subsection.) The rightmost
probability, that is the probability of finite time extinction is positive for all u € M.
(see Theorem 3.1 in [EP99]), and consequently P(N, =0) > 0 for all p € M.. <

We continue with two proposed problems:
Problem 12 Is it true in general, that
P(N, =0) = P,((X¢,1) = 0 for all large t's) ?
(Cf. Theorem III.7.2 in [ANT72] for non-spatial branching processes.) <&

Problem 13 What can we say about the asymptotic behavior of X in the case
when L + 5 — A, is subcritical or L+ 5 — A, is critical but (¢, ¢) = oo (case (ii —a)
in Theorem P)? &

Finally, we state a theorem analogous to Theorem 1 for the superdiffusion X" of
Theorem EF (super-Brownian motion with an additional single point source).

Theorem 2 (scaling limit in the case of a single point source) Let X®*
be the superdiffusion corresponding to the integral equation (8), and assume that
a(z) < K-el*l, K > 0. For any X(0) = n € M&P 12D there exists a nonnegative
non-degenerate random variable N, with EN, = (u, e“‘”‘) satisfying that

fim e 12X (dr) = N, - e *ldz in law. (15)
o0

Furthermore, the law of N, is determined via its Laplace-transform as in (12),
where o — (o) is the invariant curve defined by (10) when replacing the nonlinear
equation (5) with (8), and using the formal substitution Ao = 1/2.

1.4 An interpretation of our main theorem via reduc-
ing it to a particular case
Before presenting an interpretation of Theorem 1 , first recall the definition of the

h~transformed superdiffusion. (The h-transform for (L, 3, o; R?)-superdiffusions
was developed in [EP99].)



Definition 14 (h—transformed superdiffusion X") Let 0 < h € C?7" and
consider the (L, 3, o; R?)-superdiffusion X. Define

h

. dX
XM= nx, <that is, dXtt :h>, t>0. (16)

Then X" is the (L}, 3", a"; R?)-superdiffusion, where

h
Lh .= L—i—a%-v, g =

(L + B)h

o "= ah. (17)

and «
X" makes sense even if 5" is unbounded from above (see [EP99, Section 2] for
more elaboration). X" is called the h-transformed superdiffusion. &

Remark 15 (h—transforms) (i) L} is just the diffusion part of the usual linear
h~transformed operator L" (see [Pin95, Chapter 4]).

(ii) The operators A(u) := Lu + Bu — au? and A"(u) := Lhu + p"u — o/u® are
related by A"(u) = FA(hu). <&

Remark 16 (invariance under h—transforms) An obvious but important
property of the h—transform is that it leaves invariant the support process t +—
supp (X;) of X. <&

We now give an interpretation of Theorem 1 using the transformed process
X? = ¢X as follows. First note that ¢ and ¢ transform into 1 and ¢¢ respectively.
Hence, Theorem 1 states that for Xg) =veM,

l%m e Mt XP(dx) = N - ¢d dx in law (18)
tToo
(cf. Theorem III.7.1 in [ANT72] for non-spatial branching processes). Recall that
X? is the (Lg), Ae, ap; RY)-superdiffusion. (Note that 3% = ). is no more spatially
dependent.)

Next, note that integrating against the function 1 in (18) yields

lim e X?| = N? in law, (19)
that is, the total mass behaves like eACtN,? as t — oco. Recall that ). is the average
mass creation at each point of RY and note that since ¢ transforms into 1, we

have
ENY = |v].

10



By (12) (applied for the ¢-transformed setting) N depends on the whole branching
term A.u — agu’, where aip can be identified with the variance of the offspring
distribution (see Appendix 1 in [EP99]). It depends also on Lg’, that is on the
motion process, which fact comes of course from the spatial dependence of the
branching.

Note also (see Appendix A.2) that by the product-criticality assumption, and
by the invariance of this property under h-transforms, Lg’ corresponds to a positive
recurrent diffusion (loosely speaking, positive recurrence means that the diffusion
hits any fixed ball in finite expected time) which ergodizes with invariant den-
sity ¢¢ da (see Theorem 4.9.9. in [Pin95]). Putting this together with (19), the
righthand side of the approximating formula

XP(dz) ~ eMIN? - ¢d dw

can be interpreted as At NG being the total mass and qﬁqg dz being the limiting
distribution of the individual particle.

We close this section with the
Proof of Remark 11. It is enough to prove the inequality for X, because the
probability of extinction is the same for X (starting with ) and X¢ (starting with
v = ¢u), and also P(N, =0) = P(N{ = 0). Using (18), we have

P(N?=0) = lim Ee*N0 681 _ Jig lim Be (™' X700

v sToo sToo tToo

> P,((X7,1) = 0 for all large #'s).

This completes the proof of the remark. O

1.5 More general branching

In this subsection we will consider superdiffusions with more general branching
mechanisms and generalize our main theorem for that setup. To this end, first
recall that in [EP99] the definition of the (L, 3, a;R?)-superdiffusion has been
extended for 8’s which are not necessarily bounded from above but rather satisfy
the more general condition

Ae = Ao(L + B) < 0. (20)

This extension relies on the fact that the h-transform with h = ¢ transforms for-
mally the quadruple (L, 3, a; R?) into the quadruple (Lg’, Ae, ad; R, which corre-
sponds to a superdiffusion X (since f* = A, < o0). Then the
(L, B, a; R%)-superdiffusion X can be defined by X := éX (where X starts at

11



Xy = p € M, if and only if X starts at Xy = %,u € M,). X, however, is not
Me-valued in general but rather o-finite measure-valued. (See [EP99] for more
elaboration.) In particular, the appropriate topology for measures becomes the
vague topology in place of the weak one.

In fact, this construction can easily be generalized for (time-independent) local
branching, that is for the case when instead of the quadratic nonlinearity in (5) we
have the more general nonlinearity of the form:

f(z,u) = afz)u?(z) + / Oo[e*’w(x) — 1+ ku(z)] n(z, dk). (21)
0

Here n is a kernel from R? to [0,00), that is n(z,dk) is a measure on [0, 00)
for each € R?, and n(-, B) is a continuous' function on R? for every measurable
B C [0,00) (cf. subsections 1.7-1.8 in [Dyn93]). In order to be able to define the
superdiffusion X corresponding to L, § and f via an h-transform, we assume that
0 < ag is bounded from above and that n satisfies

o0
sup / [k A ¢(z)k?] n(z,dk) < oco. (22)
z€RLJO
Moreover, we assume that the convergence to the limit

o0

I kn(x, dk) = 0 23

is uniform with respect to z on every compact subset of R?. (This condition will
guarantee that the map x — f(x,u(x)) is continuous whenever u € C.)

The h-transform with h = ¢ takes the operator L+ 3 into L6¢+AC, while f(x,u)
transforms into

oz, u) = ad(x)u’(z) + / oo[e*’w(x) — 1+ ku(2)] n®(x,dk),
0

where

n?(x,dk) := @ n <x %) .

Note that by (22), n® satisfies

sup / (k A E?)n?(z,dk) < oo (24)
zeR JO

In the original setting of [Dyn93] only the measurability was required. We, however,
prefer to work in this paper with the spaces of continuous functions.

12



(and this integral converges uniformly with respect to x). Using this, along with
the fact that a¢ is bounded from above by assumption, the ¢-transformed mild
equation uniquely defines a superdiffusion X (see subsections 1.6-1.8 [Dyn93)).
Then the superdiffusion X can be defined in the usual way: X = éX. (Note that

X is M?-valued for every starting measure in M. In particular, if ¢ is bounded
away from zero then X is M-valued for every starting measure in M?®.) Denote
the semigroup corresponding to Lg + Ac by {Tt¢}t20. It is immediately seen that
X corresponds to the mild equation

t
ust) =Tig = [ ds T (FluCes). (25)
0
where the linear semigroup {T;}¢>¢ is defined by
Tt(u) = ¢Tt¢(u/¢)v t >0,
and the nonlinearity f is defined by

fla,u) = ga) f? (w,u/0).

(The h-transformed mild-equation is defined whenever the initial function at ¢t = 0
belongs to CF — see [EP99] for further explanation for the case when n = 0.)

In fact, Theorem P and the remark preceding it are still true for this more
general setup. Our proof of Theorem 1 still works for this more general setup if (in
addition to (20), the boundedness of a¢ and the product-criticality assumption of
the theorem) one requires that

sup / [0 (2) kY0 A ¢? (z)k*] n(z, dk) < oo for some § > 0. (26)
zeR? JO

This will guarantee that the Holder-type condition (32) in Lemma 22 is satisfied
for the nonlinearity f?. Then Lemma 22 yields the existence of a unique smooth
invariant curve defined by (10) for the nonlinear equation (25).

We summarize the above in a proposition. Let us call the superdiffusion de-
scribed in this section the (L, 3, f;R?) -superdiffusion.

Proposition 17 (scaling limit for (L, 3, f;R?) -superdiffusions) Let X be
the (L, 3, f; RY)-superdiffusion with L as in the paragraph preceding Notation 1,
and the nonlinearity f(x,u) given by (21) where (26) is satisfied. Let 0 < \. < 00
where A\, denotes the generalized principal eigenvalue of L + 5 on RY. Assume
that the condition in (ii-b) of Theorem P (product-criticality) holds. In addition,
assume that ag is bounded from above.
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Then for any Xo = p € MP), there exists a nonnegative non-degenerate
random variable N, such that
l1im e Xy(dx) = N, - o(x)dz in law. (27)
tToo
(Here the convergence is with respect to the vague topology.)

Moreover, under the normalization (¢, ¢) = 1, the law of N,, is determined via
its Laplace-transform as follows:

Ee 7% = exp(u, —¥(0)) 0 > 0 (28)
where o — (o) is the invariant curve defined by (10) for the nonlinear equation
(25).

Furthermore,

ENN = (Ma ¢>7 (29)

and in particular, P(N, < oo) = 1.
If we assume in addition that ¢ 1s bounded away from zero, then X is M-valued
and (27) holds with respect to the weak topology.

Letting o = 0 and choosing an appropriate n (see subsection 1.8 in [Dyn93]),
(21) has the form
fx,u) = clx)u*™, 0 <p <1,

with some nonnegative, nonzero continuous function c¢. In this case (23) and
(26) will be satisfied (with 6 = p) if we assume that c¢? is bounded from above.
(Alternatively, one can slightly modify the proof of Theorem 1 by writing u'*?
in place of u? everywhere. Since f transforms into c¢Pu!'*P under an h-transform
with h = ¢, the proof goes through when assuming the boundedness of c¢?.)

1.6 Outline

In Section 2 we will present examples for Theorem 1. In Section 3 we will state
and prove two lemmas on invariant curves which play a key role in the proofs. In
Section 4 some preparations are made before turning to the proofs, and we also
state Theorem 3, an auxiliary result on the recurrence of diffusion processes which
we will use in the proof of our main theorem and which may be of independent
interest. Section 5 will be devoted to the proofs of Theorems 1 and 2 and of
Proposition 17. The first appendix presents the proof of Theorem 3. Finally,
our second appendix will collect some known auxiliary material on the criticality-
theory of second order elliptic operators.
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2 Examples

In this section we present applications of our main result for three families of
superdiffusions. In the first two examples the underlying motion process (corre-
sponding to the operator L) is recurrent, in the last example, it is transient.

Our first example has actually been discussed in Subsection 1.4. In fact, as
we have seen, every superdiffusion X satisfying the conditions of Theorem 1 can
be h-transformed (with h = ¢) into the type of superdiffusion of the following
example.

Example 18 (positive recurrent motion process, 0 < f=const) Let L
correspond to a positive recurrent diffusion and let 0 < [ =const. Finally, let
a be bounded from above. Then L + 3 — A, = L, because A\.(L) = 0 by the re-
currence property; and ¢ = 1. Furthermore, since the diffusion process is positive
recurrent, the operator L is product-critical (that is, ¢ € L!). Therefore, (14)
holds for any finite starting measure with A, = .

To give a concrete example for a positive recurrent diffusion, let L correspond
to an Ornstein-Uhlenbeck process:

1
inA—kx-VonR‘i,dZI,

where k& > 0. (It is easy to see (cf. Example 3 in [Pin96] on p.248) that ¢(z) =
d/2
(£)"* exp(=H{af?). o

The next example can be considered as a smooth version of our Theorem 2. (Recall
that formally A\. = 1/2 in that theorem.)

Example 19 (super-Brownian motion with compactly supported f3)

Let L = %A on R?, d < 2. Let 3 € CF be not identically zero. By the recurrence
of the one and two dimensional Brownian motions and Theorem 4.6.3. in [Pin96],
we have \. > 0. The criticality of L — A\, follows by the recurrence of the Brownian
motion and Theorem 4.6.7 in [Pin96]. We now prove that ¢ € L?(R?) (product-
criticality). To see this, first let d = 1. Note that ¢ satisfies (%A —A)p =10
outside a compact set and therefore ¢(z) = const - exp(£v/2)\. x) for large |z|. By
the so-called minimal growth property at infinity (see Theorem 7.3.8. in [Pin96]) it
follows that in fact ¢(x) = const-exp(—+v/2). |z|) for large |x|. The proof for d = 2
is similar: using polar coordinates, it is easy to check that f(x) := exp(—v/2). |7|)
satisfies (1A — \.)f < 0 outside a compact set. Putting this together with the
fact that ¢ satisfies (%A — Ac)® = 0 outside a compact set and the minimal growth
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property of ¢ at infinity, we have that ¢ < K - f for K large enough. Therefore,
for both d =1 and d = 2, (11) holds in the present case, provided

alr) < K -exp (\/QAC |ac|) , K >0,
and the starting measure p = Xy satisfies (p1,exp (—v/2A. |z])) < oo. &

Last, we present an example where L corresponds to a transient diffusion process
d
on R?.

Example 20 Let
1
L:§A+kx-Voan d>1,
where k£ > 0. (Note that the diffusion corresponding to L is transient.) Let (3 be
a constant satisfying 3 > kd. It is easy to see (cf. Example 2 in [Pin96] on p.247
and p.266) that \. = § — kd and that L + 8 — A = L + kd is product-critical

with ¢(x) = exp(—k|z|2/2) and ¢(x) = 1. Therefore, (11) holds with A\, = 3 — kd,
whenever the starting measure y = Xy satisfies (u, exp(—Fk|z|?/2)) < oo and

a(x) < K -exp(k|z*/2), K > 0.

Note that if § < kd, the superdiffusion X; exhibits local extinction for any
nw e Me.. <O

3 Two results concerning invariant curves

Let X be a Banach space and let {T;};>¢ be a continuous semigroup of bounded
linear operators acting on X'. Let XY™ C X be a cone. Consider the equation

u(t) = Tou(0) + /0 Ty s o f(u(s))ds (30)

for which we assume that it defines for any u(0) € X7 its semiorbit - a curve
u(t), t > 0in XT. We assume that f : X' — X is smooth, i.e. it is differentiable
and its derivative is bounded and uniformly continuous on bounded subsets of X.
It is easy to see in this case that the semiorbit u(t) defined by (30) is continuous
with respect to ¢ and it is smooth with respect to the initial condition «(0).

We will also assume that

f0)y=o0,  f(0)=0 (31)

16



and that for the derivative map F(u) : du — f'(u)du we have

IF (u)]] < K lull® (32)

(in the usual operator-norm) for some positive constants K and 6 and all small .
It follows, in particular, that

1 (Ol < K ffull ™. (33)

Concerning the linear semigroup 73, we assume that it has an eigenvector ¢:
T, = eM (34)

for some \ > 0, and that ¢ € int (X" ) (here int (X" ) denotes the interior of the
cone X in norm-topology) . Since the vector ¢ is defined only modulo a scalar
factor, we normalize it by ||¢|| = 1. We also assume that for some constant M > 0

ITell < M+ (35)
where (and this is a crucial assumption)
e < Ao, (36)
and 6 is the exponent in the Holder-type estimate (32).

Definition 21 A curve Q in X is called invariant with respect to the system (30),
if for any point u(0) on Q its positive semiorbit w(¢) lies in Q. <&

Lemma 22 (the existence of a particular invariant curve) Under (31)-
(36), there exists a unique smooth invariant curve Q lying in X | parametri-
cally written as uw = (o), o € [0,00), where ¥(0) =0, ¥'(0) = ¢ (that is, Q starts
at zero and it is tangent at zero to the eigenvector ¢ of the linear semigroup), such
that for any oo, for the point u(0) = ¥ (og) on Q, its semiorbit is given by:

u(t) = v(eMay). (37)

Remark 23 Note that for any point u(0) = ¥(0p) on Q there exists a negative
semiorbit defined (just by formula (37)) for any ¢ < 0, such that it tends to zero
and is tangent at zero to ¢ as t — —oo. <&

Remark 24 Note that we parametrize the curve Q in such a way that the system
becomes linear on Q: ¢ = A\o. &
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Remark 25 Although our proof is more or less standard (see [SSTC98] for a
comparison), our invariant curve result itself is not a standard one because we do
not require the usual spectral gap assumption (note that £ > 0 in (35)). )

Proof of Lemma 22. It is enough to define the function ¥ at small ¢ only and
show that (o) lies in X' for small o’s: given any point u(0) = v(op) on the
curve Q with an arbitrarily small op the function v is defined at all larger o by
formula (37), because the positive semiorbit u(t) of u(0) is defined at all t > 0 by
assumption.

So, take any sufficiently small o and consider the equation

t
o(t) = op+ e M / Ty o f(Mu(s)) ds (38)
—00
where t < 0. Here, the unknown is a bounded continuous function v : [—o00,0] — X.
We will find it as a fixed point of the operator v — v defined by

t

(t)y =00+ e_)‘t/ T,_s o f(eu(s))ds, t € [—00,0]. (39)
Conditions (31)-(36) imply (see below) that for all sufficiently small o it is a
smooth, contracting operator which maps the set V' of continuous functions v(t)
bounded, say, as ||v(t)|| < 2|o|, into V itself. Therefore, by the Banach principle of
contraction mappings, it has a uniquely defined fixed point in V', which depends
on o smoothly. Equivalently, equation (38) has a unique solution v* for all small
o which is uniformly bounded for all ¢ < 0:

sup [|[v*(t; 0)[| < 2[o]. (40)
t<0

Note that v = 0 solves equation (38) at o = 0. Hence, by uniqueness,
v*(t;0) = 0. (41)

Since v*(t; o) is a fixed point of a smooth contracting operator, its derivative a%v* is
found as the unique solution of the equation obtained by the formal differentiation
of (38):

9 ! As 17 _As, % 9

—u(t) =0+ Ti_so0e™ fl(e*v*(s;0))=—w(s)ds. (42)

do e do
By (41), (42) we immediately have

0 YR _
35" (t;0) = ¢. (43)
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We define now the function u*(t;0) = eMv*(t;0). By uniqueness of v*, the

function u* is defined as the unique (bounded by 2|o|e*) solution of

t
u(t) = oeMo + / Ty—s o f(u(s))ds. (44)
(compare this with (38)). Recall that we define the function v* at non-positive ¢
only, so the function u* is, by now, defined only at ¢t < 0 as well. We define u*(¢; o)
at t > 0 as the positive semiorbit of the point «*(0;0) defined by the system (30).
Comparing formulas (30) and (44) shows that the function u* satisfies (44) at all
t (we take into account that Ty = eM¢ by assumption).
Now take any 7 > 0 and consider the function u**(t;0) = u*(t + ;¢ o). Tt
is immediately seen that once u* satisfies (44), the function u** satisfies (44) as
well. Therefore, by uniqueness, ©** = «* at all non-positive ¢ and, in particular,

— AT

u*(0,0) =u*(r;e o) (45)

for any 7 > 0. By definition, this means that the time 7 shift (by the semiflow
defined by (30)) of the point u*(0;e~*7¢) is the point u*(0, ). Thus, if we define
the sought function ¢ as ¢(o) = u*(0,0)(= v*(0,0) ), we will have that the smooth
curve u = (o) is invariant with respect to system (30) and satisfies (37).

Note also that ¥(0) = 0 and ¢'(0) = ¢, according to (41), (43). Thus, this
invariant curve will indeed be tangent at zero to the eigenvector ¢. Since ¢ €
int (X1 ) by assumption, it also follows that ¢(o) lies in X' for all small o’s.

To show the uniqueness of the curve Q : u = (o) satisfying (37) and ¥/ (0) = ¢,
note that if we take any point u(0) on Q and consider its negative semiorbit u(t);<o
defined by (37), then u(t) must satisfy equation (44) whose solution is unique as
we just have shown (the required boundedness of u(t) by 20e’t follows from (37)
due to the assumed boundedness of ¢'(0)).

To complete the proof it remains to check that the operator (39) is smooth
and contracting on the set V' : {v(s)se(—o0,0]; [[v(5)[| < 2|o|} and maps this set into
itself. First, note that in (39)

t

[ < lo| +/ ITe-sll - eI (X0 (s)) lds

— 00

(recall that ||¢|| = 1) and, by virtue of (33) and (35),

t
o) < lol + MEet [ 00t

— 00

Hence,

sup [o(0)] < Jo| + 52— (sup (o]
<0 — & \s<0
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(recall that ¢ < A§ by assumption). It is clear from this estimate that for all o
small enough, if sup,q ||v(s)|| < 2|o], then [|5(t)]| < 2|o| at all ¢ < 0, which means
that the operator under consideration indeed maps the set V into itself.

The smoothness of this operator with respect to o is obvious. To prove the
smoothness with respect to v we must check that the linear operator

£ /_ Ty =5 F( Ao (s)) - Av(s)ds (46)

obtained by formal differentiation of (39) is well defined and bounded on the space
of uniformly bounded Av(s)sc(—oo,0), Provided v(s) € V. This is straightforward.
In fact, by (35) and (32), we obtain that

H/ LT N f(u(s)) - Av(s)ds

<M/ =) . F(2]0])0e - | Au(s)||ds

MK
(2|ff|) sup [[Av(s)],

<
A $€(—00,0]

and we see that formula (46) for the derivative of (39) defines a bounded linear op-
erator indeed (one may also check in the same way that the higher order derivatives
of (39) are bounded multi-linear operators). Moreover, the norm of this operator
is small (less than 1) for small o, giving the required contraction. O

The following result is a version of the well-known A-lemma (see [SSTC98])
from the theory of finite-dimensional dynamical systems. The advantage of our
result is that we do not assume the spectral gap condition.

Lemma 26 (the existence of the scaling limit) Let for some initial condi-
tion ug the following limit relation hold

liTm e MTiug = 0. (47)
t]oo
Then there exists the limit
l%m u(t; e Mug) = (o) (48)
t]oo

where u(t; &) denotes the solution of (30) starting with the initial condition w(0) = £
and o +— (o) is the equation of the invariant curve Q constructed in Lemma 22.

20



Proof of Lemma 26. By continuity of the nonlinear semigroup defined by (30), it
is enough to prove that for some small p > 0

lim u(#; pe N ug) = ¢(op), (49)

because if we denote # = —L1np > 0, then u(t + 0; e ™A vq) is the time 6 shift
of u(t; pe=Mug) and () is the time @ shift of ¥ (op) (see (37)).
Denote
v(t) = e Mu(t + ;e pug), t € [-7,0].
By (30)
t

o(t) = pe MHIT, g +/ e MTy_g o f(eMv(s))ds. (50)

Let v*(t; po) be the solution of (38), i.e.
t
v (t) = poo —I—/ e My 5o f(eMv*(s))ds (51)

— 00

We will prove that
v(t) —v*(t) = 0 (52)

as 7 — +o0, for any fixed ¢t < 0. Then putting ¢ = 0 in (52) will give (49) and
finish the proof of the lemma. In fact, we will prove that

sup v(t)[| =0, (53)
te[—7',0]

for an appropriately chosen 7’ which tends to +00 as 7 — +00.
First, note that it follows from the existence of the finite limit (47) that
e M Tyug is uniformly bounded for all s > 0:

s1>118 le 2 Tyug|| < L (54)

for some finite L. It is now easy to show that
lo(®)[| < 2Lp (55)

for all 7 > 0 and ¢ € [—7,0], provided p is small enough. Indeed, this holds true
at t = —7 for any 7, and let t5 < 0 be the maximal value of ¢ for which (55) is
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still valid. If ¢y < 0, this means that ||v(to)|| = 2Lp. Now, by (54), using estimates
(35) and (33), we have from (50)

to 2MK
lo(to)ll < Lp + MK (2Lp)"+¢% / (P00 ds < Lp(l + ~—(2Lp)°).

-7

If p was taken small enough, we get that ||v(¢o)|| is strictly less than 2Lp, hence
tp = 0 which proves the claim.
Now take any 7/ < 7 such that 7 — +00 as 7 — +00. We have

1+6 _!
S MK <Sup Hv(s)H) egt/ e()\tsfg)sds‘

s<0 T

H/ T eNT, o f(u(s))ds

(56)

By (36),(55), this integral tends to zero as 7/ — +o00, uniformly for any ¢ < 0. The
same conclusion can be made with respect to the integral

T’

/ e MT,_, o f(ev*(s))ds :

the estimate like (56) follows from (35) and (33), and the uniform boundedness
of v* was proven in Lemma 1 (see (40); note that the upper bound on the norm
on v* is also linear in p in present notations, i.e. v* also satisfies (55) with an
appropriately chosen L).

Hence, for any ¢ € [—7,0] we have from (50), (51) (we use estimates (32), (55)
and (35)):

lo(t) —v* ()| < &(r') + MEK(2Lp)? ( ., e(Aé—a)sch)
*SUPse[—71,0] ||U(8) - U*(S)H + 0(]—)7"—>+oo (57)

where
Er)=p sup [l M Touo —ogl.
se[T—71',7]

Since {(7') — 0 as 7 — 7" — +o0 (see (47)), it immediately follows from (57) that
at sufficiently small p the sought relation (53) holds, provided 7’ is chosen such
that 7/ — +o0, 7 — 7/ — +00. O

Note that we never used in the proof of Lemma 26 (unlike in the proof of
Lemma 22) the completeness of the space X'. Therefore, we may change Lemma
26 (in order to adopt it to the particular problem we consider in this paper) as
follows.
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Lemma 27 (the scaling limit in a weaker norm) For any norm | - |
which is weaker than the original norm || - |0 in X, if the (linear) limit relation
(47) holds in the norm || - ||1 for some initial condition wgy, then the (nonlinear)
limit relation (48) holds in the same norm, provided the following estimates are
valid:

IF ()0 < Kllullg, (58)
IF ()l < Kllull5, (59)

ITello < Me, (60)
1Tl < Mo (61)

with ¢ < X6, where F(u) is the derivative operator from (32).

Proof. The proof repeats the proof of Lemma 26 with the following modification:
the estimate (55) (in the original || - ||[p-norm) follows now directly from (60).
Then, it follows from (55), (59) and (61) that all the estimates of Lemma 26
remain unchanged in the norm || - ||;. Finally, the required existence and uniform
boundedness (in the original norm || - ||o and, hence, in the weaker norm || - ||1) of
the solution v* of the integral equation (38) are given by Lemma 22. O

4 Some preliminary results for the proof of
the main theorem

The proof of Theorem 1 and Proposition 17 will be based on two propositions (see
Propositions 29 and 31 below) and on two lemmas stated and proved in Section 3
(Lemmas 22 and 27). We will also use the following simple fact.

Lemma 28 For any 0 < v:R?Y — R continuous define the y-norm by

£l := 17 A,
on {f continuous : yf is bounded}. If v € Cy and if F is a uniformly bounded
family of functions, then the norm || - ||, restricted to F is compatible with the

topology of uniform convergence on compacts.
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Proof. First, assume that f,, tends to zero uniformly on compacts as n | co. Since
v € Cy and by assumption || f,|| < K, n > 1 for some K > 0, one can take a large
ball B ¢ R? (depending on ¢) such that

sup y(z)fa(z) <e, n>1.
z€RI\B
Since v f, also tends to zero uniformly on compacts as n T oo, we can pick an
N = N(e) € N such that

supy(z)fn(z) < e, n> N.
zEB

Then, altogether we have

sup y(x)fn(x) <2, n > N,
zERd
proving the v-norm convergence for f,.
Conversely, assume that f, tends to zero in y-norm and fix an arbitrary
nonempty ball B C R?. We have

sup fu(x) < C(y, B) sup y(x) fa()
zeB TEB
with some C(v, B) > 0. The righthand side of the last formula tends to zero as
n T oo by assumption, thus the same is true for the lefthand side. This proves
uniform convergence on compacts for f,. O
Let {S¢}i~0 denote the semigroup corresponding to the operator L 4+ 3 — A. on
R? (and acting on C3). Note that

Sy = eiActTt,
where {T}};~¢ is the semigroup defined in (6).

Proposition 29 (convergence for ng in y-norm) Assume that the condition
in (ii-b) of Theorem P is satisfied, and furthermore let 0 < v € Cy. Then for any
g € Ch, 5

lim S7g = (g,60) in || - |-

Proof. Since L + 3 — . is critical on R?, so is the h-transformed (h = ¢) operator
(L+ 3 —A)®. Let 0 < x and Y denote the eigenfunctions corresponding to the
latter operator and to its adjoint respectively. It is easy to see that y = 1 and
Y = ¢¢. In particular (x, ¥) = (¢, ¢). Note that the ¢-transformed operator

(L+ﬂ—/\c)¢=L+a%-V
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has no zeroth order part (it is a diffusion generator). Using this along with the
second part of [Pin95, Theorem 4.4.9], we have that for any g € Cj, given,

lim 579 = (g, 6),

in the topology of uniform convergence on compacts. Our goal is to verify that
this convergence holds also in || - ||,. Using Lemma 28, it is enough to show that
for any g € Cj, given,

Fo= {(Sf)g}tzo

is a uniformly bounded family of functions. Recalling, that the ¢-transformed
operator has no zeroth order part and denoting the corresponding expectations by
{Eﬁ}wekd we have

(S7g)(x) = ELg(Vy)

where Y; is the corresponding diffusion process. It then follows that

157 ()1l < llgll-

This completes the proof of the proposition. O
We now choose a particular function 7 in the following way:
Let h be a positive function satisfying
1) (L + B — X)?h < 0 outside some compact set,
2) h(zx) — oo as |z| — oo.
The existence of such an h follows by the recurrence of the diffusion corre-
sponding to the operator (L + 3 — \.)? and from the following theorem which we
feel is of independent interest. (For the proof see Appendix A.1)

Theorem 3 (necessary condition for recurrence) Let L be as in (1), and as-
sume that it corresponds to a recurrent diffusion process Y. Given any positive Ry
and any function p(x) which tends to infinity as |x| — +oo, there exists a super-
solution on |x| > Ry, that is, a positive C*"-function U(x) such that

LU <0 on || > Ry, (62)

converging to infinity as |x| — +oo, asymptotically slower than p:

lim inf U(z) =00, lim sup Ulz)
r—+00 |z|=r oo, 12, p(T)

=0.

The existence of such growing to infinity supersolution is known as a sufficient
condition for the recurrence of L (see Theorem 6.1.2 in [Pin95]). Our result here
shows that this is also a necessary condition for recurrence, (earlier it was known
only in the one-dimensional case — then the statement follows easily from Theorem
5.1.1(i) in [Pin95]).
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Remark 30 By the previous theorem, h can be chosen arbitrarily slowly growing.
This fact will be used later, in the proof of Theorem 1. &

Using the above h, we define v as follows. Let
v:=1/h, where h=h+K (63)
and K is a positive constant to be fixed later. Then, obviously, 0 < v € Cj.

Proposition 31 (estimate for Sf’ in y-norm) Assume that L+ 3 — \. is crit-
ical with the ground state ¢ and let {Si}i~o be as in Proposition 29. For any
e>0

| 8711y < e, t >0, (64)
if K = K. is large enough (K is defined in (63)).
Proof. By a simple computation, the statement is equivalent to

| P < e, > 0. (65)
Recall that (L+ 3 — A¢)? has no zeroth order part. Since the zeroth order term of
(L+ B — ) is

(L4 8—=X)?h==(L+8-X\)?h =V,

= =
S

we have that
V<0

outside a compact set by the first assumption on h. Also, if K is large enough, we

can obviously guarantee that
V <eon R?,

The estimate under (65) now follows from this and (6) with ¢ = 1 and /3 replaced
by V' (but now with E corresponding to Lg)h). O

5 Proof of Theorems 1 and 2 and Proposition
17

Proof of Theorem 1. The strategy of the proof is as follows. We will show that the
scaling limit exists in law for X?. More precisely, we will prove that, for . € ML/
with v given by (63),

Hg El‘f exp <ef)‘ctXt¢, —g> = Eexp <Zm —g) , g € C;ra (66)
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with some random measure Z,, having the form 7,, = N[f-qﬁqg dx, where the random
variable N[f is determined by (12) (or by (28) for a general nonlinearity) and enjoys
the properties stated in the theorem (note that in (12) or (28) the curve o — (o)
is now replaced by a new curve corresponding to the ¢-transformed dynamics, that
is, to Ttd) and o or f?.) Having shown this, it will follow from the definition of
the h-transform that (11) holds for X starting with the measure v := % - (a
simple computation shows that (12) holds for the original curve o — (o) when
going back to X'). That is, when ¢(h + K)-v (where h, ' are from (63)) is a finite
measure. Putting this together with the fact that hA can be chosen arbitrarily
slowly growing by Theorem 3, we will have that (11) holds true whenever v € M®?.
It will also follow that (66) is satisfied for X in place of X and Cb+ replaced by
the class of all continuous ¢’s with ¢ < const - géil = const - ¢(h+ K). In particular,
(66) will hold for X¢ replaced by X, provided that ¢ is bounded away from zero
(recall that h(x) — oo as || — oo0). This will prove (14).

Now we are going to show (66). To do this, let us summarize what we already
know about the nonlinear semigroup corresponding to X?. First, concerning the
linear part of the semigroup, Tt¢, we know that the rescaled semigroup Sf’ corre-
sponding to (L 4+ 3 — A.)? has the following properties:
a) (L + B — A.)? is a diffusion generator, i.e. (3 — A.)® =0, and the ground state
¢ transforms into 1.
b) By Proposition 29, for any g € C,, , ng has the limit (g, ¢¢) in || - |-
c¢) By Proposition 31, Sf) satisfies the exponential estimate under (64). Also,
||Sf>|| < 1 since {Sf}tzo is a diffusion-semigroup (see the end of the proof of
Proposition 29).

In addition to the linear part of the semigroup, we have to control the nonlinear

term
2(u) = a®u’.

Here o® = aup. Thus, for the derivative map
F(u) : du — 2a¢u - du,
we have (recall that || - || denotes the supremum norm):
120w - dully < [[2a¢u] - [|du]l;.

That is,
1E(w)lly < l12a¢ul] < 2[|ag] - ||ul].

By the same computation, also

IE(u)l] < 2[lad]l - [|u]-
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Altogether, working with the nonlinear dynamics corresponding to X¢ and

with || - ||, we are in the position to implement the invariant curve method of
Section 3. More precisely, we are going to apply Lemma 27 with X = C;, Xt =
Gl llo= 1+l and || l1 = || - |45 where furthermore T; and ¢ are replaced by Tt¢

and the function 1. (Clearly, 1 € in‘cC’,:r in sup-norm topology.) Let 0 < u(t,g,-)
denote the solution of (5) or (25) (but L, 3 and f replaced with (L +3—\.)?, (3 —
Ae)? = 0 and f?, respectively) with u(0,-) = ¢(-). Let furthermore o +— (o) be
the invariant curve constructed in Section 3. Working with || - ||, and using the
discussion at the beginning of this paragraph along with Lemma 27 of Section 3,
(3) and (5) or (25) applied to the ¢-transformed setting yields

Efexp (e *'X{, —g) = exp(u, —u(t,e *'g)) =

= exp(p/7, —yult,e *'g)) — exp(u/v, =10((g,¢9))) as t — oo,
provided g € MY, ~rg € Cb+ (and in particular for g € Cb+) That is,

B2 exp (e ™' X7, —g) — explu, —((g,69))) as t — oc.

Let us fix now a u € M'/7. Note, that the functional

U,u(g) = exp(p, —¥((g, $)))

defined on Cb+ is positive definite (for the definition of positive definiteness see e.g.
the proof of Theorem A in [EP99]), because it is the pointwise limit of functionals
possessing this property. Moreover, ¥, is continuous with respect to bounded
pointwise convergence, since gégg dx € M by assumption. Also, ¥,(0) = 1, because
¥(0) = 0. It follows from these properties by a standard result (see the proof of
Theorem Al in [EP99]; see also Lemma 3.1 in [Dyn91]), that ¥, is the Laplace
functional of a random measure, that is, there exists a random measure Z, such
that

Bel%e=9 = exp(u, —({g, p9))), (67)

for g € C’;’. Therefore, altogether,
E, exp <e_)‘°tXt¢, —g) — Eel%m=9) a5t — oo,

whenever g € C,". That is, e*)‘ctXtd) converges to Z, in law.
In order to identify Z,,, note that if N[f is a nonnegative random variable sat-
isfying (12) (the Laplace transform in (12) defines uniquely N;f — again, because
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of the positive definiteness and continuity of s — exp(u,#(s))), then the random
variable

7 = N!‘f - pp(x) da
clearly satisfies (67) and thus by uniqueness 7, = 7.

Using the fact that ¢/(0) = ¢, it follows (13). (To do this rigorously, recall
that ¢'(0) = ¢ means that lims .o (s)/s = ¢ in || - ||,. Since u € M7, we can
use uniform convergence to conclude (13).)

Finally, we show that N;f is non-degenerate. Suppose to the contrary that
Ni = ENJ = (u,¢) with P,-probability one. By (12) this would imply that
¥(s) = s¢ for s > 0. But this is impossible because ¢ is invariant with respect
to the nonlinear system (75). Consequently Nf is indeed non-degenerate. This
completes the proof of Theorem 1. O

Proof of Proposition 17. The proof is the same as the proof of Theorem 1 ex-
cept the following. For the general nonlinearity (21) we have

fo(u) = a®u? + /oo(ek“ — 1+ ku)n®(x, dk)
0

where n?(x,dk) = ¢(x) 'n(x, ¢(x)'dk). The derivative map is

F(u): du — [2a¢u + /Ooo k(1 — e k) n?(x, dk)} du.

‘ v

su OOU.’L’ x 2 U6$ 6.’1; 148 n\x . U~ -
< s [ U@k A @) @] n(r.db) - aul,

Here, we have

/ k(1 —e ) n®(z,dk) - du
0

By (26),
IF(w)lly = O(llull + [lull®),

and, analogously,
IF ()]l = O(llull + [[ull®).

These estimates are enough to obtain the results of Section 3, so the rest of the

proof for the general nonlinearity goes exactly the same way as in the case f(u) =
2

au’. |

Proof of Theorem 2. The proof of Theorem 2 will be very similar to that of Theorem
1. We will use the results of Section 3 exactly in the same way as in the case of
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Theorem 1, but we have to replace the ‘linear result’ with an analogous result for
the singular setting and moreover to replace the pde setting of Propositions 29
and 31 by using the integral equation (8). Fix a bounded continuous g, and set

u(x, t) = Egin (Xt,9), reR t>0. (68)

Using the equation (8), it is standard to verify the following integral equation for
the expectations (see formula 91 in [EF99)]):

ulie,t) = /R dy plt,y — 2)g(y) + /0 ds p(t — 5, 2)u(0, ), (69)

x € R, t > 0. (Symbolically, u; = %Au—i—égu with u(x,0) = g.) Analogously to the
section preceding (7), let us define now the semigroup {7;};>0 by

(Teg)(-) = (- 1).

(The semigroup property can be checked by direct calculation.) By Theorem EF
then, we know that e~*/2T,¢ has a pointwise limit as ¢ — oo for any bounded
continuous ¢ : R— Ry .

Let ¢(z) := e~ 1"l (recall that the function 2 — e~ I*l plays the role of the
ground state, this justifies our notation.) Define the ¢-transformed semigroup by

Tf(g) = elITy(e717lg), for e71"g € c,.
Define also S{(g) := e™"/2T?(g). Let p = 8, and rewrite (9):

im(Sig)(@) = e e, g), g € G

Let G := el*lg. Then
lim(SPG)(x) = (e72, G). (70)

tToo

Now (70) holds for every G satisfying e~ 1*IG € C,f. In particular, (70) holds for
every G € Cb+. We now show that this convergence is uniform on compacts. Let
us fix a K C R compact. We must show that for g € C,f,

e 2y (2, 1) = C(g) as t 1 (71)

uniformly for z € K, where C(g) := (e 1%, g). Exploiting the notations u,(t) :=
w(x,t) and p,(t) := p(t,x), the Laplace-transform of (69) (with respect to t) is

) = /R dy 5,7 (Ng(y) + AN T (V) (72)
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where u, and p, denote the Laplace-transforms of u, and p, respectively. Using
(72), the Laplace-transform of the lefthand side of (71) is

1 1 1 1
ol (a4 :ew/dypfx A2 o) + el A+ 2 ) @ (A + 2
2 - 2 2 2

= M(z,\) + N(z,\) - @ </\+ %) .

By continuity, M is bounded on K X [0,¢]. Let
a:= inf M(xz,\) and A := sup M(z, \).

zeK K
A<e :§\€<€

In the proof of Theorem 4(b) in [EF99] we have shown that

1 1
%(/\4-5) NC’(g)X as A | 0, (73)
and that
N(x,\) —1as |0, (74)

for each € R. We now show that in fact the convergence in (74) is uniform on
K. To see this, note that N(x, \) is continuous in = by monotone convergence.
The uniformity of the limit in (74) thus follows by Dini’s theorem. Let

b(A) := inf N(x,\) and B()) := sup N(z, \).
rzeK zeK

Then we have

— 1 _ 1 _ 1

with

limb(A\) = lim B(\) = 1.

lim b(A) = lim B(3)
Using this, (73) and a well known Tauberian theorem ([Fel71, formula (13.5.22)])
along with the monotonicity of the Laplace-transform, it follows that (71) holds
uniformly on K.

Similarly to the proof of Theorem 1, in order to conclude convergence in -

norm, we have to show that {Sf’G, t > 0} is a uniformly bounded family, for every
given G € C;F. Let G € G} with ||G|| = K. Since (¢=21#1) = 1, we have

g\m(S’f}G)(x) <K.
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Consequently,
1S¢G|| < K* for all ¢ > 0,

with some K* > K, that is, {SfG, t > 0} is a uniformly bounded family, for every
given G € C;r. Thus, we have shown the convergence in y-norm for any v € Cj.
Now choose
vi=¢ = eI,
We look for a substitute of Proposition 31 for the non-regular setting. By Theorem
4(a) in [EF99] we have that

lim e~ 2||Ty|| = 2.
tToo

A simple calculation reveals that
177116 = 1T
Therefore, also
lim e~/ = 2,
tToo
and consequently
eit/QHTtd)HdJ < K, forall t >0,

with some K > 2. This gives the required estimate for the ¢-transformed linear
semigroup.

Finally, the ¢-transformed superdiffusion X¢ can be defined in the usual way:
it will correspond to the integral equation

t
U(-,t) = Tt¢g _/0 dSTtd:s(aqsuQ('aS))'

The rest of the proof is virtually identical with the last part of the proof of Theorem
1 (by setting A\. = 1/2 and ¢ = e~ in that proof), except that the convergence
of the ¢-transformed Laplace-functional now holds for all ¢'s with ¢g € C’,;r (recall
that v = ¢), thus yielding convergence far all nonnegative bounded continuous
functions when going back to the original Laplace-functional. 0

A Appendices

A.l Proof of Theorem 3

Proof of Theorem 3. Let Y denote the diffusion corresponding to L on R? with
probabilities {P,, + € RY}. Let 75 := inf{t > 0 | |Y;| = R}. Using Itd’s formula, it
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is immediate that for any fixed Ry > 0, U(x, Ro, R) := P,(7r, > Tr) is the unique
solution to the boundary value problem

Lu=0 at Ry < |z| <R,
(75)
u=0at |z|=Ry and u=1at |z|=R.

By the recurrence of Y, U(x, Ry, R) tends to zero in the layer |z| € [Ro, Ry + C],
as R — +oo, for any fixed finite C' > 0.
Note that

0 < U < 1 for |z| € (R, R). (76)

Let (r,¢) denote spherical coordinates; i.e. r = |z|. By the Hopf maximum
principle (see Theorem 3.2.5 in [Pin95]),

Ul(x; Ro, R) >0 both at r =Ry and r = R. (77)

Next, we show that

rr!

U’"‘T:Ro < I((RO) Sgp U‘T:Ro-}-l (78)

where the constant K depends (continuously) only on the coefficients of L at
r € [Rg,Ry + 1]; i.e. it is independent of the position of the outer boundary
(r = R). Hence,

Ul

T‘T:RO — 0 as R — +o0.

To prove inequality (78), just note that

. . 1— e—I((T—Ro)
is a supersolution for a sufficiently large K:
LU* = —K?e K0=Ro)(yp oVr) + O(K) < 0,

and, by construction, U*(r = Ry) = 0, U*(r = Ry + 1) = 1. Hence, the product
U*(x) - (supw U‘r:ROH) is a supersolution with the boundary values at r = Ry

and 7 = Ry + 1 not smaller than those of U. By the elliptic comparison principle,
this implies that

U*(x) - (sup U‘T=R0+1> >U(x) at r € [Ro, Ro + 1]
¢
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and, in particular, U.(r = Rg) < U*.(r = Ry) - (supw U‘T:R0+1>’
(78). When using this inequality we will always assume that K(Ry) grows mono-
tonically with Ry.

To prove our theorem on the existence of supersolutions, we will use an induc-
tive construction: we will produce an increasing to infinity sequence Ry < Ry < ...
and, having built a supersolution U@ defined at Ry <r < R, we will continue it
to the domain r < R, where R,y; > R, may be taken arbitrarily large (though
finite). The new supersolution U+ will coincide with U@ at r < R, — 6, where
04 can be taken arbitrarily small. So, this procedure, indeed, gives in the limit a
supersolution defined at all » > Ry (recall that (r, ¢) denote spherical coordinates:
r=|zl).

At the first step (¢ = 2) we take

which proves

U(2)(.’IJ) = ﬁ(.’IJ, Rh R2)7

i.e. it is the solution of the boundary-value problem (75) for an arbitrary Ry > Rj.
Let us now assume that we have the supersolution U@ defined at R, <r <R,
such that

U(Q)(Rq, @) = uq = const (79)
and
inf U (R,, ¢) > 0. (80)
¢
By construction (see (77)), these two requirements are satisfied at ¢ = 2, with
Uy = 1.
Denote

alp) = U (Ry, ).
Take any Rq11 > R4+ 1 such that

- 1
K(R,) sup U(z; Ry —1,Ry11) < ——— inf a®(p). (81)
el ElRy— 1, Ry+1] a i sup, a(p) ¢

Choose a sufficiently small §; > 0 (arbitrarily small, in fact) and take the solution
U(x; Ry—64, Ryt1) of the boundary-value problem (75). For brevity, we will denote

U(x) = U(x; Rg — 0gy Rg41) below. We will also use the notation

Blp) = U;(Rq — bg: )
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Since U(x; Ry — 84y Rg+1) < U(a; Ry — 1, Ryyq) for any 6, € [0,1], it follows (see
(77), (78) and (81)) that

1
0 < inf infpB(p) < sup supf(y) < ———— infa’(p). 82
64€[0,1] ¢ () 6,€[0,1] ¢ () sup, a(p) ¢ () (82)

This inequality allows us to find such constants A and A that
Ble)

A > sup sup (83)
64€[0,1] ¢ a(y)
and
infa(p) > A > Asupa(yp). (84)
¥ P
Let us now define
(U@ (x) for |z| < Ry — b,
Ux) + ug — Ab, for Rgy1 > |z| > Ry,
Ut (z) = (85)

ug(UD() = ug)(1 = &1)+

( +(U(x) — A(Sq)@ for |z| € [Rq - 6quq]v

where A is the constant from (84) and ;2 are some C*-functions of z = (r —
R, + 64)/64 such that

£(2)=0 at 2<0, &(2)=1 at z2>1 (86)
and
0<é(z)<1 at z€(0,1). (87)
Moreover,
¢(z) >0 at z€(0,1). (88)

In the rest of this section, any C?"-function satisfying (86)-(88) will be called nice.

Obviously, the function Ut defined by (85) is C*7 and it is a supersolution
(i.e. it satisfies (62)) for r < R, — ¢4 and r > R,. So, we must check that it is a
supersolution in the layer R, — 0, < r < R, too, for an appropriate choice of the
‘gluing’ functions &; ». In this layer, the inequality to check is

—(UD(x) —uy)LEy — 2(VUD aVE) + (U(x) — ASy)LE, + 2(VU (2),aVEy) < 0.
(89)

35



Note that at |x| € [R, — 64, Ry] we have
VUD|,_(p) = () Vr + O(5,),

VU|:D:(T‘,(P) = B(@)VT + O((Sq)’
U@ (r, ) = ug — [a(p) + O(8)] (Ry — 1),

U(r, @) = [B(p) + O(8)] (r = Byg + 6y).
Also, it is easy to see that
V¢ = 6%{' -Vr
and

L¢ = 6%5” - (Vr,aVr)+ O (i> ¢

q bq
Plugging this into (89) we arrive at the following condition which must be fulfilled
at all p and at all z € [0,1]:

B(p) + 0(5)
a(p) + O(6)

"
2 _2

N~
—
[
~—

(1 )€l — 21+ 0(5,)E(=) < [A - ¢

Since &} , is nonnegative by assumption, and since §;, may be taken as small as
necessary, it is sufficient that for some small enough v

A - Ble)z .y

Oé((p) 2(2’)—(2—V)/\§é(2)7

(91)

(1 - 2)&(2) = (2= v)&i(2) < (1 — wsign(£5(2)))

where ) is the constant from (83), (84) (recall that A > S(p) by (83),(84)). Denote

§1(2) = A&a(2) (92)

$o(z) = Y

By (83),(84), if v is sufficiently small, then to satisfy the inequality (91) it is enough
to require that

(1= 2)&(2) = (2 = v)&(2) < x(2)€(2), (93)
where
T
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for some appropriately chosen constants y4 which may be taken such that
0<x+<x-<L1. (95)

Let us now take a smooth function ¢(z) with zeros at 0, 1 and at some ( €
(0,1). Let ¢(2) >0 at 0 <z < and ¥(z) <0 at ( < z < 1. Also, let

/ng(z)dz . /: W()dz = 1. (96)

Denote

Let
A0 ——— /0 (2 - s)p(s)ds (97)

at z € [0,1]. It is easy to see that this defines a nice function & for any ¢ satisfying
(96). Moreover,

1

" .
2(2) = I+ 1y

¥(z). (98)
We will assume now that & is given by (98) where the choice of ¥ will be specified
below. Note that the inequality (93) which must be satisfied by the function &j is
rewritten as

(1= 2)&5(2) = (2= v)&(2) < (2)b(2)- (99)

We will look for a nice function &y which satisfies the equation

(1= 2)¢(2) = (2 = )& (2) = K(Z)X(Z)%v z € [0,1]. (100)
Here we denote
= { o fr el o
for some constant k4 such that
Ey <1< k_. (102)
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The integration of (100) gives

oo ) TS R e(E) s e sena
1+E§%¢;ﬁwmrwtg )ds for =€ [¢,1]
It is seen that £y(0) =0, £y(1) = 1. We also have
&(z) = { (IJ+IK+,SXI+X‘2 o ¥ | 0 :is or =€ [0.d (104)
T (= J. ¢(3)(1 s)'"ds for z € [(,1]
Thus, §(2) > 0 at = € (0,1) and §(0) = 0, (1) = — =2 —(1) = 0. One
can also check that €f(0) = SE520(0) = 0 and €(1) = — 20— /(1). T

follows that in order to have a nice function £y we must assume additionally that
¥'(1) = 0 and that the continuity conditions

§o(C—0)=&(C+0),  &(¢C—0)=¢&(C+0)

are fulfilled (the continuity of the second derivative would then follow from equa-
tion (100) since ¥(¢) = 0 by assumption). By (103) and (104) the continuity
conditions are written as
Kax+l,) =rox-I,
and
_ F—X— _ F+ X+
L-nf +5) Q- +1;)
(note that we took into account the equality (96)). This leads to the following
formula

(1-v) If +1;
—- 20 (105)
X+1v - I

R4+ =

To fulfill (102) at a sufficiently small v, it is enough to have

bl xe (106)
I, Iy — 1, I;
By (95), this will be satisfied if I(T is close enough to 1 and I is close enough to
zero. To this aim, just take ¢ sufficiently closely approximating the sum of the
delta-function near zero and the minus delta-function near 1.
So, fixing the choice of a smooth function ¢ such that (106) and (96) were
satisfied (along with the requirements ¢(0) = 0, ¥(1) = 0, ¥'(1) = 0, ¥(¢) =
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and ¥(z) > 0at z € (0,¢) and ¥(z) < 0 at z € (,1)), we obtain the nice functions
&2 and &y satisfying (100) and (98), respectively. By (102), this means that the
inequality (93) holds for these two functions.

It follows that the function &; recovered from (92) is also nice and satisfies
(91). Hence, for such chosen functions &1 5 the function U@ given by (85) is a
supersolution indeed at all r € [Ry, Rg41].

As required, U@HD is constant at r = Ryy1:

U D (Ryy1,0) = ug+1 = Cby = ugia.
Hence,
ug + 12 ugp1
and, by taking 6, small, we may always ensure
Ugtl Z U+ 5
Therefore,
q2uq >

l\3|>-Q

By construction,
U(q+1)(37) < Ugt1

and
Ut (z) > ugr1 —1 at 7> Ry,
It follows, first, that the supersolution U which we obtain in the limit of this
procedure as ¢ — 400 grows to infinity:

lim inf U(z) = +o0.

rloo |z|=r

On the other hand, this growth can be made arbitrarily slow: it is seen that
U(x) < qat |z] < R, but R, may be taken growing as fast as necessary. O

A.2 A review on criticality theory

Let L be as in (1). Then there exists a corresponding diffusion process Y on
R? that solves the generalized martingale problem for L on R? (see Chapter 1 in
[Pin95]). The process lives on R UA with A playing the role of a cemetery state.
We denote by P, and E, the corresponding probabilities and expectations, and
define the transition measure p(¢t,x,dy) for L 4+ 3 by

p(t,a, B) = (exp(/ﬂ >;YteB>,

for measurable B C R?.
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Definition 32 If
/Ooop(t,x,B)dt =E, /Oooexp </0tﬂ(Ys)d3> 15(Y:) dt < oo,
for all z € R? and all bounded B C R?, then
G(x,dy) = /000 p(t, z,dy) dt

is called the Green’s measure for L 4+  on R?. If the above condition fails, then
the Green’s measure for L + 3 on R? is said not to exist. O

In the former case, G(x,dy) possesses a density, G(x,dy) = G(x,y)dy, which
is called the Green’s function for L + 3 on R?.
For A\ € R define

Criga = {ueC®: (L+B—Nu=0andu>0inR}.

The operator L+ 3 — X on R? is called subcritical if the Green’s function exists
for L + 3 — X on R?; in this case Crip—x # 0. If the Green’s function does not
exist for L + 3 — X\ on R?, but Cr+p-x # 0, then the operator L + 5 — A on R? is
called critical. In this case Cp43_y is one-dimensional. The unique function (up
to a constant multiple) in Crys_ is called the ground state of L + 3 on R?. The
formal adjoint of the operator L+ 3 — X on R? is also critical with ground state gz~5
If furthermore ¢¢ € LY(R?), we call L+ 3 — A on R* product-critical . (For ¢ = ¢
this means that ¢ is an L%-eigenfunction.) Finally, if C; -\ = 0, then L+ 3 — A
on R? is called supercritical.

If 3 =0, then L+ (3 is not supercritical on R? since the function f = 1 satisfies
Lf =0 onR? In this case L 4+ § = L is subcritical or critical on R? according to
whether the corresponding diffusion process, Y, is transient or recurrent on R? .
Product criticality in this case is equivalent to positive recurrence for Y. If 5 <0
and % 0, then L + 3 is subcritical on R%.

In terms of the solvability of inhomogeneous Dirichlet problems, subcriticality
guarantees that the equation (L + 8)u = —f in R? has a positive solution u for
every 0 < f € C!. (Here C! = C.NC".) If subcriticality does not hold, then there
are no positive solutions for any 0 < f € C/.

One of the two following possibilities holds :

1) There exists a number A\, € R such that L—\ on R? is subcritical for A > A,
supercritical for A < A, and either subcritical or critical for A = ..

2) L — X on R? is supercritical for all A € R, in which case we define A, = oo.

Definition 33 The number A\, € (—o0, 00| is called the generalized principal
eigenvalue for L on R . O
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Note that \c = inf {A € R : Cpi5_» # 0}. Also, if 3 is bounded from above,
then case 1) holds.

If L+ (§ is symmetric with respect to a reference measure pdz , then A, equals
the supremum of the spectrum of the self-adjoint operator on L?(R?, p dx) obtained
from L + 3 via the Friedrichs’ extension theorem.

Let h € C*7 satisfy h > 0 in RY. The operator (L 4 (3)" defined by

1
(L+8)"f = (L +B)(hf)
is called the h-transform of the operator L + 5. Written out explicitly, one has

Vh Lh
(L+B)hf:L0+aT-V+ﬂ+7,
where Ly = 3V -aV +b- V.
All the properties defined above are invariant under h-transforms.
For further elaboration and proofs see Chapter 4 in [Pin95].
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