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This work extends the research programme of the authors into the design and analysis of
complex experiments.19:11:12 [t is seen how the special algebraic structures studied in the
polynomial ring algebra and Grobner basis environment can be exploited for situations
in which there is blocking, nesting, crossing and so on, or where groups of factors are
“favoured” over others. The connection is made between the Grobner basis methods and
the more classical symbolic formalism associated for example with Generalised Linear
Model packages, such as Splus and Glim.1® Examples are given from physical experiments

in engine mapping.

1. Grobner basis method

The algebra leading to the theory described in this paper assumes that the obser-
vations and the design points are without error, that is we study the identifiability
of the GLM component of a given model. In other words Grébner basis methods
treat the identifiability problem for the deterministic part of linear regression mod-
els given a design. We recall very briefly some basic notions. A design is here a
finite set of distinct points in R™ where m is the number of independent factors in



2 Grébner basis methods for structuring and analysing complez industrial ezperiments
the experiment. We consider models of the type

(@) = faz® +e(x) (1)

where the sum is finite,  runs over R™ and x®’s are monomials or terms: z% =
7t .. xf%m, where the a;’s for i = 1,...,m are non-negative integers. In particular
1 represents the constant component of GLM models where oa; = 0,7 =1,...,m.
The ’s are parameters, that is unknown constants. Finally ¢(z) is some error, for
example () is normally distributed around zero with variance o2. We concentrate
on the non-stochastic part of the model, namely > 6,z%.

Let the design points and the model terms be ordered as D = [dy,...,dn] and
[%]acr respectively. Here L is a list of m-dimensional, non-negative integer vectors
giving the exponents a of the model terms. We shall see in the next section that the
methods require us to order the model terms. The matrix form of the deterministic
part of Model (1) can be written as

Y =X0

where Y is the observation vector, © = [f,]acr is the vector of the parameters, X
is the design matrix with as many rows as design points and as many columns as
terms in the model and (i, j)-entry of X is the j-th term of the model evaluated at
the ¢-th design point.

Given a design D the aim is to determine a set of terms {z*}_ ., such that the
matrix X is full rank.

The starting point of the algebraic method is to express the set of design points,
D = {dy,...,dn} C R™, as the solution to a set of polynomial equations in as
many variables as statistical factors. This set of equations forms the basis of a zero-
dimensional polynomial ideal, Ideal(D) C RJz1,...,zn], called a design ideal, and
thus the theory of polynomial ideals can be applied.?> The Grobner basis methods
lead to a very natural class of identifiable models.!!

2. Term-orderings

One of the main objects in this paper is a term-ordering. A term-ordering 7 is a
total ordering on the set of all monomials, * or GLM components of any possible
polynomial model in a given number of factors. Moreover such a total ordering
has to be compatible with the simplification of monomials, that is z® =, z? if &
divides =%, equivalently if there exists 27, v # (0,...,0) such that z® = z7z7. In
particular ¢ >, 1 for all a # (0,...,0).

Given a term-ordering, 7, a finite subset GG of a polynomial ideal I is a Grébner
basis of I with respect to 7 if

(i) G generates I, thatisforall fe I, f=>" 549 for certain polynomials s,

geG

(it) (LT-(f): f € 1) =(LT-(g9) : g € G)
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where for a set of polynomials A, (A} is the ideal generated by A according to (i)
and LT, (f) is the largest term in f with respect to 7.

Given a term-ordering, 7, a Grobner basis of the design ideal, G = {¢1,...,9:}
is computed. A R-vector space basis of the quotient space Rlzy,...,z,]/(G) =
Rz1,...,zm,]/Ideal(D) is given by the monomials not dividing any of the leading
terms of the Grobner basis. We call this set of monomials Est,; where the subscript
7 stresses the dependency on the term-ordering. Sometimes we write Est, (D) where
D is the design. The set Est; is a saturated set, that is it has as many elements
as design points, and can be used as support for an identifiable, saturated linear
model as in (1)

(@)= Y faz®

zecMcEst,

where 0, ’s are identifiable parameters, M holds the model terms and 4(n(z)) is the
deterministic component of the model n(z). The set Est, has the structure of an
order ideal, equivalently it gives a hierarchical model structure. McCullagh and
Nelder speak of functional marginality.” That is if a higher order term is included
in Est, then its factors are also included. In particular the intercept is always
identifiable. Notice that the matrix X for the design D and the model M is full
rank and for M = Est the matrix X is invertible.

The above technology makes use of computer algebra packages such as Maple
and CoCoA.2*

As an example consider the two-dimension five-point design

D= {(07 0)) (17 0)) (27 0)) (17 1)) (_2; 2)}

We chose the term-ordering 7 given by the matrix A (see Section 3)

1 1
=(o 1)
In particular z5 >, x1. The Grobner basis with respect to 7 is given by the following
three polynomials

1T + 33:% — 4y

T3 — 323 4 22

o3 — 327 + 1223 + 22, — 122
and the leading terms are z;7o, 73, x3. The above equations can be easily checked
in Maple or CoCoA. The set Est is given by the monomials not divisible by those
leading terms. Thus the set Est is given by the following five terms

2 2
1 = z2 zy 35
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For the full saturated model the matrix X below is invertible

1 @ z2 22 232

001 0 0 0 0

v LO|1T 1 0 1 0
= 20]1 2 0 4 0
(1,1) | 1 1 1 1 1
(—2,2)|1 -2 2 4 4

More examples are given below.

3. Special monomial orderings: blocking

In the practical applications to date use has been made of the basic monomial or-
derings like tdeg and plex, which are available in standard packages. The basic
definitions are in Robbiano (1985).'* However it is also possible to use a very general
definition of a monomial ordering based on a special matrix construction. Associ-
ated to a (total rational) monomial ordering 7 there is a matrix A such that A is
square, with integer entries, full rank and the first non-zero entry in each column
is positive. Then the monomial z* = z{* ...z%" is larger than z” with respect to
the term-ordering 7 associated with A if and only if

A (al ce am)t >lez,Z"" A (ﬂl .. ﬂm)t (2)
where >;., z» is the lexicographic ordering over Z™. Recall that for two integer
vectors (ai,...,am) and (b1,...,bn) we have (a1,...,am) =iez,zm (b1,...,bm) if
and only if a; > by or a; = b; foralli =1,...,p and apt1 > bpq1 for some p < m.

The key to the present work is to translate the kind of structural requirements
of the design (blocking, favourite factors, etc.) into the structure of the matrix A.

Note first that a term-ordering has associated an initial order on the factors:
x; precedes x; in the initial order if z; > z; in the term-ordering. Next, under a
lexicographic ordering such as plex all possible monomial terms in z; would appear
in Est, before those involving x5 etc. Under a “graded” ordering such as tdeg all
possible terms of total degree  would appear before those of degree s, r < s. Recall
that the total degree of x* is Z:L ;. We can combine these two ideas together
by blocking the ordering matrix

A 0
0 A O
A=
0 O 0
0 A
and blocking the variables [z(") : ... : z(®)]. It is important to note that the term

“blocking” here is different from the usual meaning in experimental design. Between
blocks a plex type ordering operates but within a block, z(*) the monomial ordering
would be as given by A;. For example the “within-block” ordering could be tdeg.
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Thus factors in block A, will appear in Est before factors in other blocks. A simple
but important example is where one factor has a complex output relationship and
the other factors are simpler, something which occurs in repeated measurements.”
Then, factor one would be in a block on its own and the remaining factors treated
with, say, tdeg.

One could build up total term-orderings in m factors in more general ways which
include the above blocking method. It is clear that a term-ordering on m factors
induces an ordering on each subset of factors by projection. The blocking method
is one way of building orderings from the bottom up. Referring to the integer
representation of term-ordering defined in Equation (2), separated orderings on ZP
and Z? are combined to define an ordering on Z?*¢,

4. Blocking and classical structures

Simple crossed experiments correspond to the so-called minimal fan designs and
have a unique Est, whatever the monomial ordering. In this case Est consists of
crossed models and we write, for example, A x B. Thus for a full factorial design
with [; levels in the ith dimension (¢ =1,...,m) the corresponding Est is the “full
factorial” model with terms a;lfl ...xfm o with k; = 0,...,1; — 1. A generalisation
is given by the so-called echelon designs. A design D is an echelon design if for
any design point (di,...,d,) all points of the form (y1,...,ym) with 0 < y; < d;
(¢=1,...,m) belong to D. For an echelon design the identifiable set is given by a
similar structure to that of the design

g xdn o forall  (dy,...,dn) €D

m

This result can be extended to generalised echelon designs, that is designs such
that if a point (di,...,d,) is in the design then also all the points of the form
(Y1, Ym) with 0 < |y;| < |d;] (i =1,...,m) belong to the design, where |a| = a
ifa>0and |a| = —aifa<0.!

Let now fix a term-ordering 7. For a pair of designs such that D; C D5 then
Est(D,) C Est(Dy). Moreover the terms added to Est(D;) to obtain Est(Ds) are
the smallest terms with respect to 7 for which the design matrix is invertible.!

In particular it follows that Est(D;) U Est(Dy) C Est(D; U D). Indeed Dy C
D1 UD2 and Dl g D1 UD2 1mp1y ESt(Dz) g ESt(Dl UDQ) and ESt(Dl) g ESt(Dl U
D) respectively and thus Est(D;) U Est(Dy) C Est(Dy U D2). The equality in the
last inclusion is in general false, for an example consider the union design to be
{(0,0),(1,1)} and any term-ordering.

Similarly we have Est(D; N Dy) C Est(D;) N Est(Ds). This inclusion may be
strict as the following trivial example shows. Let the designs be D; = {(0,0)} and
D, = {(1,1)}. Now Est(D; N D) is the empty set and Est(D;) = Est(Ds) = {1}
the constant term.

Before proceeding we should introduce the notion of a compatible term-ordering.
The term-ordering 7 in m + p dimensions is compatible with the term-ordering 7
in m dimension when 2 =, z” if and only if z® >, 27 for all monomials z%, z°
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in the smaller space of m factors. For example consider the term-orderings 7, in
m factor with corresponding matrix A; and 75 in other p factors with matrix As.
Then the block term-ordering described on Section 3 on m + p factors operating
on the first factors according to 71 and on the second factors according to 75 and

corresponding to the matrix
A1 O
0 A

is compatible with both 7 and 7.
Consider now designs on different sample spaces. Let Dy be a design in R™ and
D> a design in R? and let the cross-product design be defined as

D1 X D2 = {(dl,d2) : d1 S Dl,dz S Dz}

Let G1 be a Grobner basis for Dy with respect to the term-ordering 74 and G5 a
Grobner basis for Dy with respect to 75. The set of polynomials G = {g,h : g €
G1,h € G2} is an interpolating set for Dy x Da. It is also a Grobner basis with
respect to any term-ordering on the monomials in m + p factors compatible with 7
and 7». This can be proved with a very useful tool in Grébner basis theory called
the S-polynomial test. We refer to Cox, Little and O’Shea (1997) and only mention
the main definition and theorem as S-polynomials are the main tool to prove that
a polynomial set is a Grobner basis. Given a term-ordering, 7 the S-polynomial
associated with two polynomials f and g is

LCM(LT.(f),LT-(g))
LT, (f)

_ LOM(LT,(f),LT.(g))

f LT (g)

g

where LCM stands for least common multiple. One can prove that a set G is a
Grobner basis for an ideal I with respect to 7 if G C I and the remainder of
the division of the S-polynomial for each pairs (f,g) with f,g € G is zero. More
importantly the structure of the Grobner basis G implies that the crossed model
Est(D;) x Est(Ds) is identifiable by Dy x Dy because Est(D;) x Est(D2) is the set
of all monomials in m + p variables not divisible by the leading terms of G; and
G-, that is the leading terms of G.

There is a link between cross-product designs and echelon designs. If D; and
D, are echelon then Dy x D5 is echelon. This follows directly from the definition
of echelon design. Moreover Est(Dy x Dy) = Est(D;) x Est(D>).

Similarly, purely additive models would be written A + B. For complex exper-
iments it is very difficult to prescribe the allowable interactions, additive terms,
etc. However the Grobner basis methods can reveal the relationship between the
allowable model structures and the designs (as varieties) more transparently via the
“blocking” of the monomial ordering.

For two designs D; in R™ and D, in RP? define the design D1 U Dy as

DyUDy = {(dl,a),(b,dg) :dy € Dl,dg S DQ}
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where a and b are some fixed points in R? and R™ respectively. The model given by
the union of Est(D;) and Est(D5) (the intercept in counted only once) is identifiable
by D; U D5 because for a = 0,b = 0 a set of interpolating polynomials, or more
precisely a Grobner basis with respect to a compatible ordering, is given by

{9,h—f,zy; :9€G1,h €Gyi=1,...omand j=1,...,p}

where the z;’s run over R™ and the y;’s over R? and f are some suitable poly-
nomials of the z’s. For generic a and b invariance of shifted designs applies.
Usually Est(D;) U Est(D2) C Est(Dy; U D3). For example for D; = {1,2,3},
D, = {1,2} and a = b = 0 we have Est(Dy) = {1,zy,27} and Est(D;) = {1,y:}
and Est(Dy U Dy) = {l,xl,m%,yl,y%}. The above statements can also be under-
stood by checking the appropriate X-matrices.

The relationship between term-ordering blocking, described above, and the clas-
sical structures makes itself felt in the analysis of variance, via special orthogonal
polynomials associated with the term-ordering. We simply construct orthogonal
polynomials in the usual way considering terms in the ordering determined by the
term-ordering.® Finally we refer to Fontana, Pistone and Rogantin (1999) for the
analysis of two-level factorial fraction designs.®

5. Applications

5.1. Favoured factors

We present now an example where certain factors are favoured. The design is a
subset of a much larger design for an engine emission experiment. In the considered
design there are eight factors and 105 distinct data points. Two factors are speed
and load and the other six factors are engine design factors. For twelve combination
of speed/load there are 26 combinations of the design factors. In general in engine
mapping, speed and load can be favoured over design factors. This is achieved
by choosing a term-ordering where engine speed and load are in a smaller block
and design factors in a higher block. Within a block a tdeg term-ordering applies.
This choice of term-ordering will make higher order terms in speed-load favoured
over those for the design factors. The design was given as a matrix whose first
column corresponds to speed, the second to load and so on. The matrix for the
term-ordering is then

OO OO OO+

|
cCoOocOoOoO~OR

OO OO OO

SO+ O OO o

O OO OO oo

—_ =0 O 0o oo

OO OO OO O
|

OO OHH OO O
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Notice that the “ordering equations” of (2) are

a3 + oy + a5 + o+ ar + ag
—ag

—ar

—a

—as

—ay

a1 + Qo

—

for a generic monomial z%, o = (ay,...,as). At first glance this term-ordering
does not look like the block term-ordering introduced in Section 3. But clearly it is
possible to rearrange the factors and obtain a block diagonal matrix of the type in
Section 3 and still corresponding to the above set of ordering equations. Specifically
this is achieved by moving to the end the first two columns of A and by considering
the rearranged vectors (as, ..., as, a1, as) for the exponents of monomials.

The Grobner basis computation was performed using the computer algebra pack-
age CoCoA? and it took less than 35.81s of cpu time on a SiliconGraphics machine
(see http://euridice.tue.nl). Tables 1 and 2 give the set of leading terms of the
Grobner basis and the set of identifiable terms respectively. Notice that the linear
and the constant terms are all identifiable. Also all the second order interactions
involving x; and z are identifiable, except z?.

Higher powers of z5 are favoured over powers of ;. This follows from the fact
that amongst the leading terms there is a lower power of z;, namely 2% and a higher
power of z5. The initial ordering corresponding to the term-ordering given by A
above is 3 »= ... = xg = 1 = Tz. By swapping the first and the second column
in the ordering matrix A for the ordering above the initial ordering on the factors
changes to 3 = ... = xg > T2 > x1. In this case the factor x; would have been
favoured over zo and higher powers of x; would appear in Est instead of powers of
xI2.

The set Est can be used as a starting set of terms on which to operate a backward
stepwise regression or similar methods in order to fit a model to the data set.
Above we have suggested that by changing the ordering different Est sets can be
obtained. In Section 5.2 this idea is developed leading to the notion of fan of a
design. Sometimes it is useful to orthogonalise the obtained Est set of identifiable
terms with respect to the term-ordering used to compute Est itself.® In our example
the terms involving z; and z5 only would be orthogonalised first as they are smaller
in the chosen ordering. For completeness Table 3 shows the set Est ordered with
respect to the ordering given by A, smaller terms come last.

5.2. Mazimal fan designs

The Grobner basis method provides a background theory for constructing designs
which maximise the number of different identifiable models, a type of robustness.
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Table 1. Set of leading terms for the engine emission experiment

xi 931938 asg x;xg xlxr xéazg 931932935 :c;:cg, xlx%au
rowy rgrg rlrgrg rl;c%:rg $2$§ THTTTY  T1TZTTTY TETS  THTR
T4y  TITR r% TexT TETy  T4T7 r3T7 $§ T5T6
T4Te  T3Te  Tj T4Ts T35 :cZ T3T4 T3 :cg 7wl
Table 2. Set of identifiable terms for the engine emission experiments
1
1 T2 xr3 T4 x5 xe x7 xs
T1L2 T123 T14 r125 T1%6 T1X7 r18 x%
Tox3 Toxy TaT5 T2T6 Tox7 Toxg T7Ty zg
93193% T1XT2T3  T1T2T4  T1T2T5  T1T2Te  T1T2L7  T1T2TR T1T7TY :clzc%
r% r%:rg :r%;m; $%r5 r%rg r%;w :B%:Bg Tox7Ty T2Tg
931935’ 931.17%.173 xlx%m x1x§x5 93193%.176 931.17%.177 xlx%azg T1T2T7TZ  T1T2TG
x% asg:cg, :c‘%:c4 :c‘%a:5 asga:(; acg:w :c‘%:cg ac%aw:cg x%xé
rlr% I1$g$3 :rl;cg:m; $1r§’r5 rlrg’:r@ 1‘1$g$7 ;clzngrg rlrgzmzrg $1$2$§
a:g 93%.173 :c%:c4 :c%a:5 x%azg x%:w :c%:cg acg’a:m:g x%x%
rlrg 1‘1$%$3 :B1:B%:B5 :Ell‘%l‘@ rlrézm rl;cé:rg ;clzrgrm*g rlrgzrg xy
asgacg asg:c4 :cg:cg, :cgacg x§x7 xéxg x§x7azg x%xé
5 5 5 5.2
T1TETE  T1THTT  T1THTE T ToTs TyT TowT ToTg THTg
Table 3. Set of identifiable terms ordered according to A
123 T i 3 i
1TLTTT  XTZTTTE T1THTTTY  THITTY  T1T2X7Xg  THTTTS TITTTS T2XTT L7
rg:rg xlrg’rg r%rg :rl;cg:rg :rgrg rl;cz:rg :rg;vg :rlrg r2r§
asg :cla:%acg asgacg xlx%xg, x%azg 931.17%.173 :cg:cg T1L223 93%933
r1x3 T2x3 3 :rg;m; ;311*%14 r%:m; :rl;c%:m; :r‘;r4 T1T2T4
x§x4 T1%4 Tax4 T4 :cga:5 931.17%.175 :cg:cg, riades x§x5
x1x§x5 x§x5 T1L2T5 xé:cg, r125 Ta2xs x5 T1T5T6  THT6
T1X5T6 ryTe rlrg’:r@ THTe :Ell‘%l‘@ rg’:r@ T1T2T6 :Egl‘@ T1T6
T2x6 T6 931933337 :cg:c7 :cla:%aw acg:c7 x1x§x7 x§x7 93193%.177
r%;w T1T2TT r%r7 T1TT T2T7 7 r1T3TZ TR T1T5T8
asg:cg :cla:g’acg x%azg xlx%xg :cga:g T1x2T8 :c%:cg r128 Taxg
7 5 6 4 5 3 4 2
a:g Ty x%az2 xy 125 Ty 1T Ty 125
z5 r1T2 z5 T To 1
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Such designs spread points in a space-filling manner and are suitable for computer
and other highly complex experiments, where little is known about the model in
advance.

Given a design D on R™ one could vary all the possible term-orderings and
determine all the Est-type models identifiable by D. The set so obtained is called
the algebraic fan and is a subset of all the models identifiable by D, with an order
ideal structure and with exactly as many terms as there are design points. This last
set is called the statistical fan. A classical result in algebraic geometry tells us that
the algebraic fan is finite, despite the fact that there are infinite term-orderings.'®
Moreover the fan defines an equivalence relation over the set of term-orderings, that
is two term-orderings 71 and 73 belong to the same class of equivalence with respect
to a design D if they give rise to the same identifiable set. The identifiable sets are
called leaves of the fan.

Designs may be classified according to how many leaves are in their fans. Thus
we talk of minimal fan designs for designs whose statistical fan has only one leaf.
Examples are full factorial designs and echelon designs. The term maximal fan
designs refers to those designs whose fan (both algebraic and statistical) includes
all the models with an order ideal structure and with exactly as many terms as there
are design points. There always exists a design whose statistical fan is maximal.!
The algorithms to compute directly the algebraic fan of a design, and known to the
authors, are computationally too intensive to actually be useful in large complex
designs. Nevertheless it has been noted that a random design is maximal fan with
probability one.! Work on maximal fan designs is in progress.

5.3. Mixture experiments

Understanding confounding and orthogonality in mixture experiments remains a
problematic area in the design of experiments. Mixture experiments present a par-
ticularly interesting class of problems for application of the Grébner basis method.
This is because the simplex condition Y ", #; = 1 (sum of proportions is one)
imposes an additional algebraic condition and the polynomial > ", z; — 1 belongs
to the design ideal. By applying directly the Grobner basis method at least one
of the factors will never be in the identifiable set because of the simplex condi-
tion. The polynomial models which arise as models under this new condition are
not fully determined in that the condition allows transformation between different
representations.

As an example let us consider the following three factor 6-point design

(170)0) (071)0) (070)1) (%)%)0) (%70)%) (07%)%)
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With respect to tdeg and the initial ordering x; > x5 > x3 a Grobner basis is

T1+ Ty + 23 —1
z3 —3/22% + 1/2x;
Taxi — 1/23073
T3r3 — 1/2m073
T3 —3/233 + 1/2x2

Notice that the mixture condition x; + x5 + 23 — 1 comes directly as a G-basis
element, and shows that this holds on the design points. For some design/term-
ordering pair, namely when more than one linear term does not appear in Est,
the simplex condition is not an element of the (reduced) Grébner basis but still it
belongs to the design ideal.

The leading terms for the previous example are

T x3 moxi zizs 3
giving the model
1 x3 x :U% Tox3 :U%

This is equivalent to the full 6-parameter homogeneous quadratic model. By the
symmetry of the design we deduce that the models

1 z3 =y 7% x5 2

and
1 1 2 CU% ToX1 :U%

are also identifiable. Actually, they come from other initial orderings. This can be
formalised by a homogenisation process. Here homogenisation means that an extra
indeterminate is added and, elevated to a suitable power, is multiplied to each term
in Est so that the total degree (sum of exponents) of each term is the same. For
example the homogenisation of the first model with respect to z; gives

2 mx3 TITy T3 Tax3 T3

and dehomogenising with respect to o we obtain the second model. Notice that
also the Scheffé polynomial model

ry T2 T3 T1T2 T1T3 T2T3

is identifiable as the design matrix is invertible. But the Scheffé model will never
be recovered directly as an Est set because it has not an order ideal structure. For
example it does not include the constant term 1. Nevertheless it can be retrieved
by exploiting the aliasing conditions defined by the Grdbner basis equations.!? Note
that the four models above, including the Scheffé model, are vector space bases of
the quotient space R[z1, 2, x3]/Ideal(D).
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Each element of the quotient space represents models aliased with each other
and in particular models that have the same values at the design points. In the
example z is aliased with 1 — x5 — x3 because of the equation z; + x5 +x3—1 = 0.
Thus the effects of including z; or 1 — 2 — z3 in a regression model are the same.

We now look at a problem derived from a real case study. Table 4 represents
the experimental design for a mixture experiment with factors xi,...,z9. It is
not the role of this paper to discuss the nature or quality of the design. Also the
outputs are not considered as the present work is concerned with the effect of using
different term-orderings on the identifiable set. The background is that z,...,x9
are proportions of materials in an experiment on the design of composite materials.

Classical mixture experiments offer various identifiable models. For example for
quadratic models with the constrain 2321 xz; = 1, full quadratic Scheffé model has
terms

{ti, @iz 0,5 =1,...,9,0#j}
At first glance it is not clear for the case study which, if any, terms z;z; are es-
timable, in the presence of linear terms {z;}. Thus we apply the Grébner ba-
sis method directly with respect to the tdeg term-ordering with initial ordering
T1 > Tg > To > T3 > T5 > Tg > T7 > Tg > Tg. Lhe model obtained is

1

) I3 Ty Is Tg T Ig T9

ToXg Todg XT38 XL3L9g XT4Lyg X4Lg I5L8 IX5Lg ITgXy TgXg TeLy
ZU% Trxg L7y w% T8gI9 563

With respect to the same initial ordering and the term-ordering corresponding
to the matrix B which blocks 21 and z4 as less relevant factors

1 0 0 1 0 0 0 0 0
0 0 0 -1 0 0 0 0 0
0 1 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 -1
B = 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 -1 0 0
0 0 0 0 0 -1 0 0 0
0 0 0 0 -1 0 0 0 0
0 0 -1 0 0 0 0 0 0
the estimable model is
1
) I3 Is Ie T I8 I9

T2y T2Xg T2X9 T3T7 T3TLg T3T9 T5L7 T5T8 ITsLyg Texr Telg Ted9
T2 TrTs TrTy T3 TsT9 TE

In this version the two factors x; and x4 are not included in the model. This is due
both to the simplex condition and choice of the term-ordering for which monomials
involving x4 and x; are larger than monomials not involving x4 and z;. Recall that
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the first column of the matrix B is multiplied by z;, the second column by zs and
so on according to (2).

It is advisable to use statistical techniques to help in the choice of the initial
term-ordering and the term-ordering in general. For example, a prior screening on
the initial factors can suggest an initial ordering. In the example above such an
analysis suggested that z; and x4 were the less influential factors. This, coupled
with some knowledge of the specific case study, makes Grobner bases a powerful
tool in the analysis of non standard experiments.

Table 4. A 9-factor 26-point mixture design

T T2 z3 T4 5 T6 x7 rs z9
0.2106  0.0000 0.1098 0.4119 0.0183 0.0366 0.0915 0.0366 0.0848
0.2014 0.0000 0.1050 0.3940 0.0175 0.0350 0.0875 0.0350 0.1247
0.2565 0.1062 0.1062 0.1681 0.0177 0.1062 0.0885 0.0354 0.1152
0.2553  0.1057 0.1057 0.1673 0.0176 0.1057 0.0881 0.0352 0.1194
0.1953  0.1020 0.1020 0.2124 0.0170 0.1020 0.0170 0.1020 0.1502
0.1950 0.1017 0.1017 0.2119 0.0170 0.1017 0.0170 0.1017 0.1523
0.2663 0.1103 0.0368 0.2480 0.0184 0.0368 0.0919 0.1103 0.0811
0.2635 0.1090 0.0363 0.2453 0.0182 0.0363 0.0909 0.1090 0.0915
0.2501  0.0000 0.1072 0.1430 0.0894 0.1073 0.0894 0.1073 0.1062
0.2710 0.0000 0.1161 0.1549 0.0968 0.1161 0.0968 0.1161 0.0322
0.2647 0.0000 0.0365 0.3559 0.0182 0.1095 0.0182 0.1095 0.0876
0.2586  0.0000 0.1069 0.2763 0.0891 0.0356 0.0891 0.0356 0.1089
0.1856  0.0967 0.0322 0.1371 0.0806 0.0967 0.0806 0.0967 0.1939
0.2239  0.0000 0.1075 0.2598 0.0179 0.1075 0.0896 0.0896  0.1042
0.2184 0.0000 0.1049 0.3232 0.0874 0.0350 0.0175 0.0874 0.1261
0.2791  0.0000 0.0385 0.4522 0.0192 0.1154 0.0192 0.0385 0.0380
0.2779  0.0000 0.0383 0.4504 0.0192 0.1150 0.0192 0.0383 0.0417
0.2297  0.0951 0.0951 0.1506 0.0793 0.0951 0.0159 0.0317 0.2075
0.2092 0.0000 0.0364 0.4092 0.0909 0.1091 0.0182 0.0364 0.0906
0.2616  0.1082 0.0361 0.2435 0.0902 0.0361 0.0180 0.1082 0.0981
0.2615 0.1081 0.0360 0.2434 0.0901 0.0360 0.0180 0.1081 0.0989
0.1862 0.0972 0.0324 0.3887 0.0162 0.0405 0.0162 0.0324 0.1901
0.1968  0.1028 0.0343 0.2140 0.0856 0.1028 0.0856  0.0343 0.1437
0.2583  0.1070 0.1070 0.2406 0.0891 0.0357 0.0178 0.0357 0.1087
0.2262  0.0522 0.0696 0.2784 0.0522 0.0696 0.0522 0.0696 0.1300
0.2362 0.0545 0.0726 0.2906 0.0545 0.0726 0.0545 0.0726 0.092
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