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Abstract

We investigate the ground state energy of the random Schrédinger operator
—3A+ B(log t)~2/?V on the box (—t,¢)¢ with Dirichlet boundary conditions. V de-
notes the Poissonian potential which is obtained by translating a fixed non-negative
compactly supported shape function to all the particles of a d-dimensional Poisso-

—2/d i chosen to be of critical order, i.e. it is

nian point process. The scaling (log t)
determined by the typical size of the largest hole of the Poissonian cloud in the box
(—t,t)%. We prove that the ground state energy (properly rescaled) converges to a
deterministic limit I(/3) with probability 1 as ¢t — oo. I(f) can be expressed by a
(deterministic) variational principle. This approach leads to a completely different
method to prove the phase transition picture developed in [4]. Further we derive
critical exponents in dimensions d < 4 and we investigate the large-/3-behavior,
which asymptotically approaches a similar picture as for the unscaled Poissonian

potential considered by Sznitman [8].

0 INTRODUCTION AND RESULTS

In this article, we consider the infinite volume limit of the ground state energy (prin-
cipal Dirichlet eigenvalue) for a non-relativistic quantum particle in a scaled Poissonian
potential. The motivation for this study is to develop a better understanding of the cor-
responding (random) variational problem and its phase transition picture proven in [4].
Related random variational problems naturally arise in several questions of disordered me-
dia, e.g. in the study of the path behavior of Brownian motion in a Poissonian potential:
the Poissonian potential plays the role of an absorption rate, and one tries to determine
where the surviving Brownian particles settle down (see [8], Section 6.1). In the main
body of this article we first derive a (deterministic) variational principle for the infinite

volume limit of the (rescaled) ground state energy of the random Schrédinger operator.
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In the second part we analyze this variational problem and derive the phase transition
picture.

We start with the definition of the scaled (random) potential: it is obtained by translat-
ing a fixed shape function W to all the points of a Poissonian cloud (of constant intensity
v =1). Let P stand for the canonical law of the Poissonian point process w =), 6,, € Q
(where Q is the set of all simple pure locally finite point measures on R?). The scaled
Poissonian potential with scaling function ¢ : Ry — R, is then defined as follows: for
rERY F>0,t>0, w e N we set

Vﬁft(a:,w) def %V(gg,w) def @5)2ZW(95—371-) (0.1)
_ 8 o
- @(t)Q /W(l’ y) (dy),

where we assume that the shape function W > 0 is measurable, bounded, compactly
supported, and [W(z)de = 1. When it causes no ambiguity, we shall omit to write
superscripts ¢.

For any non-negative potential V and ¢ € Hy*(R?) we introduce the quadratic form

def 1

o) 2 IVl + [ Verar (02

Then the ground state energy on a non-empty open set U C R? of the potential Vﬁ‘ft is
defined as follows (see also Sznitman [8], (3.1.2))

def

Mg () int{ene (0): 6 € B, gl =1} 03)

1
= principal Dirichlet eigenvalue of — iA + Vi, in U,

where H& ’2(U ) is the Sobolev space with generalized Dirichlet boundary conditions on U.
Let ® denote the set of all test functions ¢ € H& ’2(Rd) which are continuous, compactly
supported, and normalized: ||¢||, = 1. For ¢ € ® we define the logarithmic moment

generating function of the Poisson process:

Ay(o) g E [exp {0/ ¢* de = / (7 — 1) dux, o €R, (0.4)
R Rd

and its one-dimensional Fenchel-Legendre transform, p € R,

A5(n) % sup (o= Ao(o) (0.5)



We introduce the following function: For 5 > 0,

def

. 1 .
1) nt{IVo+ s ved e O N <ah.  (09)
Our first main result is the following variational principle:

Theorem 0.1 Ford > 1, >0 and ¢(t) = (logt)"/? the following holds:
P-a.s. tlim (logt)*/4 /\Vﬁwt((—t,t)d) =1(5). (0.7)

The new result here is that the above limit exists P-a.s. and that it is P-a.s. equal to the

deterministic number coming from the variational principle (0.6).

Theorem 0.2 (Large-B-behavior) Letd > 1. The function I is concave, non-negative,

strictly monotonically increasing on [0, 00) with

lim 1(f) = ¢(d, 1), (0.8)

p—o0

where c(d,1) is the principal Dirichlet eigenvalue of —%A on a d-dimensional ball of

volume d.

The constant ¢(d, 1) was introduced by Sznitman [8], formula (4.4.20), in the unscaled
picture (see [8], Theorem 4.4.6). More quantitative estimates for the speed of convergence

in (0.8) as § — oo are provided in Lemmas 3.5 and 3.6 below.

Theorem 0.3 (Critical exponents in low dimensions) Let d < 3. There exists a
constant Cy(d) > 0 and for every by > 0 there exists a constant Cy(d,by) > 0 such that
for every 3 € (0,b;)

B—C YN < I(B) < B — CyptD. (0.9)

The new piece here is the lower bound, while the upper bound is contained in [4], Lemma

3.4. One should compare the above statement with the following theorem:

Theorem 0.4 (Phase transition in high dimensions) Let d > 4. There exists a
constant [.(d) > 0 such that

for all B < Be(d): I(B) =0, (0.10)
forall > B.(d):  I(B) <8, (0.11)

where the following bounds hold for B.(d):
Ford=4: B.(4)= . (0.12)

V3
Ford>5: d'7%(d—2)2¥4=3z1+1/d <ﬂ

—2/d
. ) < B.(d) < ¢(d,1). (0.13)



[.e., in high dimensions we observe a phase transition of the ground state energy on
the scale ¢(t) = (logt)/?. For small 3 we can choose as test function a normalized
approximation of the constant and we obtain already the correct leading order of the
asymptotic behavior of the ground state energy. For large [ the situation is completely
different, namely it is more favorable to localize the test function in regions where the
number of Poissonian particles is below its average value. In low dimensions this picture
does not hold true, namely for any positive value of [ one should localize the test function,
i.e. we do not see a phase transition on this scale. (Some parts of these pictures have

already been developed in [4].)

Theorem 0.5 (Critical exponent in 4 dimensions) Let d = 4. There exist con-
stants C3,Cy,C5 > 0 and by > [.(4) such that for every § € (.(4),bs)

(ﬁ B 50(4))2
|[1og [C5(8 — Be(4))] |

We remark that there is numerical evidence that the above picture does not hold true for

B—C3(8—p.(4)) <I(B) < 5 —C4 (0.14)

d > 5, i.e. we expect in large dimensions that the derivative I'(3) should have a jump
singularity at 3 = f.(d). This also corresponds to the picture emphasized in [4].

The next theorem holds for all dimensions, but is mainly interesting for d < 3: It
implies that we are considering the correct scaling, and formally we may write (.(d) = 0
for d < 3: (We write a(t) < b(t) for a(t)/b(t) == 0.)

Theorem 0.6 (Absence of a phase transition on other scalings) Ford > 1, § >
0 and (logt)'/* < ¢(t) < t the following holds:
P-a.s. lim o(t)* Ave,((—t,1)") = 5. (0.15)

t—oo

Small scalings are treated by the following corollary of Theorem 0.2:

Corollary 0.7 Ford > 1, >0 and ¢(t) < (logt)'/? the following holds:
P-a.s. Jim (log t)* Ave (=, 1)) = ¢(d, 1). (0.16)

Let us explain how this article is organized: In Section 1 we do all the preparatory work.
We introduce some further definitions and we recall some already known results including
the upper bound in Theorem 0.1.

In Section 2 we provide the lower bounds of Theorems 0.1 and 0.6. In a first step

—2

we show that if we allow a small error of order p(¢)~* we can restrict the infimum in

(0.3) (for U = (—t,t)?) to finitely many smooth test functions which live on balls with

4



radius of order ¢(¢). The main ingredients here are a cutoff (or localization) procedure for
eigenfunctions and the compactness property of convolution operators. In a second step
then, we derive for all of these finitely many compactly supported smooth test functions
a large deviation result estimating the potential term in (0.2). Putting these estimates
together yields the lower bounds of Theorems 0.1 and 0.6.

In Section 3 we prove Theorems 0.2 - 0.5. The main body in the analysis of the vari-
ational problem (0.6) is to calculate good upper and lower bounds on the logarithmic
moment generating function in order to control the Fenchel-Legendre transform. This is
done using scaling arguments, Taylor expansions and Sobolev inequalities. Using these es-
timates we prove the lower bounds in Theorems 0.3 - 0.5. (The upper bounds of Theorems
0.3 and 0.4 have already been proven in [4].)

The idea behind the proof of the upper bound in Theorem 0.5 is the following: The
Sobolev inequality (3.15) we choose to prove the lower bound turns into an equality (for
d = 4) if we choose an appropriate test function. This test function is not in Hy?(R*),
so we have to take a compactly supported approximation to evaluate (0.2) which then
gives the desired leading order. We remark that many of these Sobolev inequalities, we
are using here, have already been very helpful in the analysis of a variational problem
studied by van den Berg-Bolthausen-den Hollander [2].

The upper bound in Theorem 0.2 follows already from the simple fact I(5) < ¢(d,1).
However, we give a finer upper and lower estimate for I(f) in the large-F-regime, using
the asymptotics of the ground state energy in a deterministic square well potential. This
asymptotics is well known to physicists, but unfortunately we were not able to provide
a rigoros reference; this is why we describe the argument in Appendix B. The upper
estimate for I(3) in the large-(3-regime improves a previously known bound (see Theorem
0.1 and Lemma 3.5 in [4]).

Finally in Appendix A we prove the upper bound of Theorem 0.6 using as test function
(to evaluate (0.2)) a normalized approximation to a constant function on (—t,¢)?. Further
we sketch the proof of Corollary 0.7.

1 PRELIMINARIES
We start with the following definitions: For ¢ > 0, we define

Zdéf (_tvt)dv (11)

We of sup,cre W(z), and a denotes the minimal radius such that supp W C B,(0), where

B,(0) is the open ball with center 0 and radius a. For # > 0 and m € (0,1) we define the



following functions:

) . d
(B, m) def inf {% ||V¢)||§ +Bmp: ¢ € @, pe(0,1), Ag(p) < E} , (1.2)

L) = lim 15, m), (1.3)
L(p) € inf{%llvcﬁlngrﬁu: o€, pe(0,1), A?;(u)<d}- (1.4)

The limit on the right-hand side of (1.3) is well-defined since its argument is monotonically
increasing in m: I,(8) > I,(8,m) — L,(3) as m T 1.

The upper bound in (0.7) is a consequence of the following considerations: If we choose
©(t) = (logt)"/ then we have seen in Lemma 3.2 of [4] that for all ¢ € ® and x € (0,1)
with A%(p) < d we have P-a.s. limsup, . (logt)*Ay, (T;) < 1[|Vo||3 4+ Su. Hence we
obtain P-a.s.

. 1
limsup (log )/ M, (Te) < L(B) < §||V¢||g + B (1.5)

t—o0

Repeating the argument of Lemma 3.3 in [4], we see that we can choose two sequences
ftn € (0,1) and ¢,, € ® such that j, T 1 (as n — oo) and A} (y1,) < d for all n > 1 (see
formulas (3.28)-(3.29) of [4]) with

1
lim SV enllz + Bin = 5. (1.6)
Henceforth we obtain
P-a.s. lim sup (logt)Q/d v (Th) < L(B) < 8. (1.7)
t—oo

Furthermore we have for all § > 0 and m € (0,1)
Li(B,m) < L(B) <I(B) < L(B) < B. (1.8)
Lemma 1.1 There exists cg > 0 such that for all 3 >0, n >0 and m € (1/2,1) with
1—m<cenp™t (1.9)
the following holds:

L(3) < Li(3,m) +1. (1.10)



Proof of Lemma 1.1. The function m — m~ %4+ [(1 —m!* *?) v 0], with 1 <m <1, has
value 1 for m = 1 and is Lipschitz continuous. Let 1/¢g be a strict upper bound for its
Lipschitz constant. Then for all 5> 0, n > 0 and 1/2 < m < 1 which fulfill assumption
(1.9) we have

(m Y1 —1)+[1 —m> Y vo] <ns L (1.11)

From now on we fix such a triple 3,7, m, hence we can choose ¢ > 0 so small that the

following holds:

(m=Y" — 1) +m ™Y 4 [(1 —m'~Y") v 0|3 <. (1.12)
By the definition of I;(3, m) there are ¢ € ® and u € (0,1) with Af(p) < £ and
LIVl + B < Fi(5,m) +<. (113)
For r > 0 we scale ¢ by
Or(w) E 1o (/r). (1.14)
¢, scales as follows
lodlo=1 and [[Vorlly =r""(IVoll;, (1.15)
Ag, (o) = Ag(r~%o) and Ay (p) = TdA;‘)(,uJ). (1.16)

For r(m) & m?“ we have A5 (1) = 105 () < "d — ;md < d, and
1 2 1 2
L(B) < 5IVenlly + B = 55 IVl + B

=m Y (% Vol + 5mu> +(1=m" By

< 5 m) )+ (1 10

(1§8) I~1(5’ m) i (m74/d . l)ﬁ + m74/d€ + [(1 B m174/d) V. O]ﬁ

(1.12) .

This proves (1.10) and therefore Lemma 1.1.

The upper bound in (0.7) is a consequence of (1.7) and the following corollary:
Corollary 1.2 [,(5) = I(5) = L(/).

Proof of Corollary 1.2. This is a trivial consequence of the bounds (1.8) and the previous

Lemma 1.1.
O



2 PROOF OF THE LOWER BOUNDS IN (0.7) AND (0.15)

We assume that ¢ is a fixed positive scaling function with ¢(t) — oo as t — oco. We

suppress superscripts ¢ when no ambiguity arises.

2.1 Localization, compactness argument, and large deviations

Our first step consists of a localization argument: To evaluate (0.3) on U = 7, it suffices
to consider test functions supported in balls with radius Ry(t), if we allow a small error
©(t)™*n (see Lemma 2.1). In a second step (Lemma 2.2) we allow another small error
©(t)™*n to smoothen the test functions. In a third step (Lemma 2.3) we prove that we can
restrict ourselves to finitely many smooth test functions if we allow an additional small
error of ¢(t)~?n. Finally in Lemma 2.5 we give for every of these finitely many smooth
test functions a large deviation result estimating the potential term in (0.2).

Fort > 0, R > 0 and y € d~'?Rp(t)Z* we define Bj,, of Brow (), and we set
Vi, o {y € d?Rp(t)Z" : BryyNT; # 0}. Then (Bryy)yevy, is an open covering of 7.

Lemma 2.1 There exists cz(d) > 0 such that for 8 >0, 7 >0, R (c;/m)V2 Vv 1 and
t>0

Av,,(T;) > mi inf & — () *n. 2.1
Vi t)—ygﬁweﬂggéﬁ,t,y) Ve (@) —o(t) n (2.1)
lell,=1

Proof of Lemma 2.1. Let cg(d) < oo denote an upper bound for the number of balls
Briy, y € Yry, that intersect Br,o (this number does neither depend on R > 0 nor on

t > 0). We use a partition of unity: Choose y € C2°(B;(0)) a fixed non-negative function

with 3oz X(# = j)* = 1 for all 2 € R, and define ¢7(d) o S| Vx|l Forn >0,

R = (cz/n)"? Vv 1 and t > 0 we define a partition of unity over 7;,

1= Z X%%,t,y on 7;7 (22)

YEYR,¢

where Y g, (7) o X (1;“;;5)) are compactly supported in Bp,,. Next we denote by ¢ €
H,y*(T;) a principal Dirichlet eigenfunction of the Schrodinger operator —sA+ Vs, in 7,

With the help of the partition of unity we split this eigenfunction into pieces:

Y = Z (XR,t,yw)2- (2.3)

YEYR



The definition of R implies the following upper bound on the derivatives of xp,:

1
3 Z VXregl| < % H|VXR,1‘,,O|2HOO < np(t) 72 (2.4)

Y,
YEYR ¢ oo

We claim for all A € R If

v (Xraw?) 2 MIXrey¥lly;.  forall y € Yay, (2.5)

then

Ev, (1) > (A =nea()7) 19113 - (2.6)

Lemma 2.1 is a consequence of this claim: To see this, we observe that the left-hand side
in (2.6) equals Ay, ,(7;) |#|2. Choose A > A, (T;) + n(t)~?; then (2.6) cannot be true.
Therefore, we conclude that (2.5) has to fail for at least one y € Yg, for this choice of A.
We set ¢y & (Vriyt)/ |XR,tyt], for such a y € Yr, (note that ||xg.,?||, cannot vanish
for this choice of y). We obtain &y, ,(¢,) < A. Henceforth, mingeyy, , Ev, . (dy) < A for all
A > Ay, (T;) +ne(t) %, where Yy, ©iye Yiri: |[Xrey?ll, > 0}. But this implies claim
(2.1) of Lemma 2.1.

There remains to prove that (2.5) implies (2.6). We sum (2.5) over all y € Yz, and use

(2.3) to obtain

3| S Wl | + [Vaatde= 3 fu o) 2 A0 @D

yEYR L 1 YEYR ¢

To estimate the gradient term in (2.7), we take the derivative of formula (2.2):

2> eva, XRiyVXRiy = 0. Hence using (2.4) we have

S| W amer

yEYR L 1

1 1
=3 IVYll; + < > XrewVXnity » ¢V¢> t3 > Vawl? (2.8)

erR,t yEYR,t 1
]- 2 — 2
< 3 IVYl; + ne(t) 2 1Y) -

Collecting (2.7) and (2.8) yields (2.6). This finishes the proof of Lemma 2.1.



The next step consists of a smoothening and scaling argument: We take the convolution

of test functions with an approximation 6. of Dirac’s 6: Let 6; € C'2°(B;(0)) be fixed non-
negative with ||6;||, = 1. Set 6.(x) o e 46(x/e). Let * denote the convolution operator.
We set for R > 0 and N > 0:

def
(I)R,N =

{6 € H?(Ba(0) : lIoll, = 1.1IV6], < VN . (2.9)
For t > 0, y € R?, we define the scaling operator S, by

(57,0)(x) € o(t) "¢ ((t) Lz —y)). (2.10)

This operator maps Hy”(Bgr(0)) onto Hy*(Br.,); it fulfills

1Seydlly = lIoll,  and  [IV(Seyd)ll, = o(t) IV, (2.11)

We choose a truncation level M > 0 (to be specified later) and define V'V YA M.

Further we introduce
M,p def _
Var? = Bo(t) VM. (2.12)
For every test function ¢ we get the simple but useful inequality

E0,,(6) 2 Euyy(0). (2.13)

Lemma 2.2 There exist co(d) > 0, cio(d) > 0 such that for all 3 >0, n > 0, M > 0,

R=(c;/n)"*Vv1, N Y 28M + 19, = € (0,7(28McoNY?)=Y, and for all t > 0 we have:

A, (T;) > min inf SVBAﬁ(St,y(qb % 0.)) — 20(t) . (2.14)

T YEYR: ¢€PR N

Proof of Lemma 2.2. Let f € Hy*(By(0)), ||fll, = 1, be any fixed test function. Set

c10 & IV £]12. (co is defined below). We choose 3, 7, and M. By Lemma 2.1, by the lower

bound (2.13), and by scaling we know that for R = (c7/1)"/? vV 1 and ¢ > 0 we have

Av; . (7;) > min inf Evm (Siy0) — @(t) . (2.15)
’ VEYRt e Hy P (BR(0))
l[9ll,=1

For every normalized test function ¢ € Hy*(Bg(0))\ ®r.n we have

£ (Suwd) > 500N > IV (SeuDIE+ Bo() M > E(Sif). (216)

10



Hence we can restrict the infimum in (2.15) to the smaller class ®g y:

Aym(7;) > min inf EVM(Styqb) o(t) ™. (2.17)

Bt YEYR t PEPR N

To deal with convolutions, we use the Fourier transform w dEf fRd e~ () da: There
is a constant cg(d) > 0 such that for all £ > 0 and k € R¢ the estimate |1 — 6.(k)| < cock
holds; to see this one observes that 6.(k) = & (ck), 6,(0) = 1, and by Lipschitz continuity
161(0) — 6, (k)| < co|k| for some constant, cq. (& is even real analytic, since 6, is compactly

k| —o0

supported, and 6;(k) '—> 0.) We estimate:

(1-

We remark ||¢ = 0., < ||¢||,; this is a consequence of ||6.||, = 1 and the integral version of
the triangle inequality. Therefore we have for all ¢ € @5 y and & € (0,7(28McoNY/2) 1

~

.9,

l6 — ¢+ .|, = (2m) =" < (2m)"2cqe

k(K| = o |6l (218)

/Rd VM [(Spy0)? — (Sey(d +6.))?] da

< Vil 10Se9)* = (St 5 )%

= |V 16 + 6 % 8:) (6 — 6 % 62|,

< VIl 2115 16 — & 6]l (2.19)
< 2{|Vgil. cos IVl

< 2B8Mp(t)2ege N2 < (1) 2.

Using the integral version of the triangle inequality once more, we see
IV (St (6 % 8Dl = [[(V(Sty0)) * byl < 1V (Sey@d)l, - (2:20)
Combining the estimates (2.19) and (2.20) we get
vt (S1(0%6)) — Epe(S140) < (1) (2.21)

Finally we combine this with (2.17) to get the claim (2.14). Lemma 2.2 is proved.

Lemma 2.3 Given > 0,1 >0 and M > 0, there is R > 1 and a finite set ¥(n, 5, M) C
CH(Br4+1(0)) of normalized functions (i. e. ||¢|l, =1 for ¥ € ) such that for all t > 0:

)\Vﬁ,t(T) > min SVM(Styzb) (t)*277. (2.22)
YyEYR¢
YEW

11



Proof of Lemma 2.3. Choose R > 1 and N by Lemma 2.2. We choose ¢ > 0 so small that

the following three conditions hold true:

1
e <1, cos N2 < 3 2095N1/2(2N+5M) <

N |3

(2.23)

especially Lemma, 2.2 is applicable for this choice of . Set R’ Ly | > R+ ¢, so the
convolution map ¢ — 1 * 6. maps Hy>(Bg(0)) to C1(Br(0)). We endow C!(Bg/(0))
with the norm ¢ — |||+ ||V¥]|... As a consequence of the Arzela-Ascoli theorem this
convolution map Hy?*(Bg(0)) e, C!(Br(0)) is a compact linear operator. Since @ y is
bounded in Hy?(Bg(0)), its image ®py * 6. = {p* 6. : ¢ € Pp y} is relatively compact
in C2(Br (0)).

We claim that for every bounded set S C C}(Bg/(0)) the family of maps

(Ft,y 1S = R) >0 Ft,y(¢) déf @(t)QgVBAﬁ(St,y¢>v (2-24)

YEYR ¢

is equicontinuous, i.e. for every 1 > 0 there is an a > 0 such that for all t > 0, y € Ygry,
and 1,1, € S:
. . 1
[ = allo + IV (1 = ¥o)llc < dmplies [Fyy(¢n) = Fiy (42)] < 5. (2:25)

To prove this claim, we observe first that the inclusion map C!(Bg(0)) — Hy*(Bgr/(0))

1S continuous:

[, + VY], < en ¥l + e (VY] (2.26)

de

for ¢ € CH(Bp(0)), c1r = |Bp(0)]Y2. Let s, = sup{[[u]l, + [[V¥]l, : ¥ € S} < 0. We
choose « so small that sy(1 4+ 25M ey < /2. Using the Cauchy-Schwarz inequality:

|Fy (1) — Fry(12)] < % IVl — [Vaall3] + BM || (Seytin)* = (Seyt)?|
< SI9 (s + ) 9 — )+ M ([0 = 3],
< 250 (519001 = )l + 53 s — vl 2.7

< sp(14+20M)epa < g

Combining the relative compactness of ®p y * 6. with the equicontinuity (2.25) we obtain
the following: there is a finite set U C ®p v * 0. such that for all £ > 0 and y € Yi, we
have the lower bound

inf Fi,(¢*06.) > min Fy ,(¢) — .

PEPR N el

(2.28)

12



We normalize these test functions: ¥ & {|[#l; " = ¢ € W}; this is well defined, since for
¢:¢*667 ¢€ (PR,N:

)

(2.18) 1/ (2.23
Ml = U < [l =oll, < N2 < (2.29)

(NN

A quantitative bound on Fy,(||¢[|;" ¢) for these functions ¢ € &gy * 6. is (using the

integral version of the triangle inequality):

2
oyl ) < LIV

< + M < 2N + 3M. 2.30
2 Iyl (230

We estimate:

. (228) 2 -1 n (2:29) 1/2\2 .«
inf Fiy(¢*o:) = g“ggllwlzﬂ,y(ﬂzblb V) =5 2 (1= ceNV5) min Fry(v) —

n
SR N pew 2

(2.30) " n (223)
> min Fiy() —2coe N/2(2N + BM) — 2 > min F, (1Y) —n. (2.31)

Lemma 2.3 follows now from the bounds (2.14), (2.31) and definition (2.24) of F} .
a

We discretize the space R? on a very fine scale ¢ € (0,d~"/%a) (to be specified later; it

is smaller than the diameter of the shape functions): Set I;(() o Cj+ 10,04, j e 2

We define the i.i.d. Bernoulli variables &;(() def Liu(x;)>1} and a discretized version w¢ of

the Poissonian cloud configuration w by
def
WD g0 (2.32)
Jjecze
in this equation 0; is the Dirac measure located at j. We observe

d

Pl¢; = 0] = Plw’(K;) = 0] = 1 — PlwS(K;) = 1] = ™. (2.33)
Finally we set
def —d
M(C) = Woo|B2a(0>|C : (234)
We define an unscaled and a scaled lattice version of the potential:
Vi@) = | Ww—y)ofdy)  and  Vifa) = Bp(t) V(). (235)

Rd

The next lemma compares the two potentials Vﬁj‘,{ and ‘7/3{ .
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Lemma 2.4 Given >0, n >0 and ¢ € (0,d""/%a), define M by (2.34), and let R > 1

and ¥ be chosen according to Lemma 2.3. Then

lim nf min () <€Vﬁz\’4t(5t,y7,/}> . S%g,t(St,yzb)) > 0. (2.36)
Ypew

Proof of Lemma 2.4. Let sy & maxyey (|[¢] o + |VY|l,) < oo, then the functions
(Spy¥)* with t > 0, y € Yry, ¥ € ¥, are Lipschitz continuous:

|(Sty)(@1)® = (Sey)(@2)*] < 2 1Sty IV (Seyt)llog |71 — 22
<252 o(t) "oy — a9 (2.37)

We use the notation W~ (x) o W(—=z). Using [|[W]||, = 1 we see that the functions

(Siy¥)? * W are also Lipschitz continuous with the same upper bound 2s% o(t) ¢

for the Lipschitz constant. Let @¢ denote any point configuration with @¢ < w and
0¢(K;) = w*(K;); this means that ©¢ is obtained from w by removing extra points of the
Poissonian cloud w in boxes K; with w(K;) > 1. The choice (2.34) of M guarantees

VM) > [ W(z —y)(dy). (2.38)

_Rd

Using ¢ (K;) = w*(K;) < 1 we conclude

/ (Sey)? * W™ dw® — / (Spy¥0)? % W dot < 2% o(t) "4 VdC. (2.39)
K;

K;

(Sy¥)* * W is supported in a ball of radius (R + 1)p(t) + a < 3Rp(t) (for large t),
and the union of all K that have a non-empty intersection with this ball is contained
in a ball of radius 4Rp(t) (for large t). Therefore the number of these Kj’s is at most
|Biry1)(0)]/¢? We estimate for large ¢, using (2.38), (2.39) and Fubini’s theorem,

o1 (Egs (Suut) = Eupy(Siy)
<3 / (Seyt)? x W™ dw® — 3 / (Siy0) % W™ di® (2.40)
R4 R4
< 282 VAC T RYBy(0) () == 0,

since p(t) — oo as t — oo. Lemma 2.4 is proved.
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We define a discretized version of the Lebesgue measure

FECY 6y (2.41)

JjeCZ

compare this with definition (2.32). The map ¢ — ¢ 4(1 —e <) maps the interval (0, co)
diffeomorphically and monotonically decreasing onto the interval (0, 1); especially we have

¢ 1 — efgd) %1, We define ¢(m,d) for 0 < m < 1 implicitly by the equation

m=C41—e. (2.42)
def d def 1 def 1 def d .
We define o, = o(t)%0, ¢ = (t)7'C, 4o = o(t) "'y, and Wi(x) = o(t) W (p(t)x). W, is
supported in B,,)-1(0) and fulfills ||[W,[|, = [[W]|; = 1. Let T.v denote the translation
of a measure v by z € R?, i.e. (T.v)(A) = v(A — z). Further for ¢) € ® we define
def

0¢70—7t = sup
z€R4

/R (exp{ou? W} = 1) d(TR) — Ay(o)]. (2.43)

Lemma 2.5 Let 3> 0, n > 0, and assume that m < 1 is so close to 1 that { € (0, d_l/Qa).
Choose R and V as in Lemma 2.4. Then for ally € ¥, >0, 0 <0 andt >0

P [ min / Ve (St7y¢)2 do < mﬂ] < exp {log YR — mgo(t)d (o —Ay(o) — 0¢707t)} )
Rd

YEYR,¢

(2.44)

Proof of Lemma 2.5. We need some preparations for the large deviation estimates in the
derivation of (2.44): Let f be any compactly supported bounded measurable function.
Using independence, (2.33), and log(1 + z) < x we have

E [exp{a RdfdwCH =11 (1 (1 — e (e - 1)) < exp {m/Rd(ef’f - 1)dy<}.

jECZ4
(2.45)

Choose ¢ € ¥, 1> 0, 0 <0 and ¢t > 0. Using the exponential Chebyshev-inequality and

a change of variables r — o(t)~!(z — y) in the following large deviation estimate (o is
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non-positive) we obtain

P [min / V(S 0) de < m,u] =P [min / (Sp ) * W™ dw® < m,u]
R4 Rd

yEYR L yEYRt

< Z P [/Rd(St‘yqﬂ)Q « W™ dw® < m,u]

YEYR ¢

—oimp <p 4 oy L )? — ¢
Ze ]E{ep{a/Rd(S’w)*W dw}]

YEYR,¢

< Z exp {—Utm,u +m /R (exp{o:(Sp,10)* * W™} — 1) d%} (2.46)

yEYR L

= Z exp {—mw(t)d (w — /Rd (exp{o* « W} —1) d(Tytz/Q)> }

YEYR,¢

IN

< exp {log |Yr| — mo(t)! (opn — Ay(0) = 0pou) } -

This finishes the proof of Lemma 2.5.

2.2 Proof of the lower bound in Theorem 0.1

In this subsection we always assume that o(t) = (logt)/? for ¢t > 1.

Lemma 2.6 Let d > 1, o(t) = (logt)"/?, 3 > 0, n > 0, and assume that m < 1 is so
close to 1 that ¢ € (0,d""?a). Choose R and ¥ as in Lemma 2.4. Then for all i) € ¥
and p € [0,1) with

. d
Ay(n) > — (2.47)
there exist ¥ > 0 and ty > 1 such that for all t > ty:
P {min / Ve (Spyh) de < mp| <t77. (2.48)
yEYR,t R4

Proof of Lemma 2.6. Choose ¢ € ¥ and p such that (2.47) is fulfilled. By definition (0.5)

of A}, there is ¢ € R with
d

op— Ay(o) > — (2.49)

We may even choose o < 0. (To see this, one proceeds as follows: For ¢ > 0, pn € [0,1),

(= Ao = [

o 2
e dr < p— Wl =p—1<0, (2.50)
R
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especially we get for o > 0y = 0 that oo — Ay(09) > o — Ay(0).) We set
def 1
V= 5 m(op — Ay(o)) —d] > 0, (2.51)
where o < 0 fulfills (2.49). By the Lipschitz continuity of ¢ and the dominated conver-

gence theorem we know that

t—o0

Opot — 0, (2.52)
so Lemma 2.6 is a consequence of Lemma 2.5, of the asymptotics

log |Y] o
08 [Vrel oo ) (2.53)
logt

and of the choice (2.51) of ¥.

Lemma 2.7 Ford > 1, o(t) = (logt)"/%, and 3 > 0 the following holds P-a.s.:

liminf (logt)*? v (T2) > L(B). (2.54)

t—oo
Proof of Lemma 2.7. Let > 0, n > 0. Take m < 1 so close to 1 that the following three
assumptions are fulfilled: ¢) Lemma 2.6 is applicable, i) (recall I; = I, < 3, see Corollary
1.2 and (1.8))

I —n < Bm, (2.55)
and diz) (recall (1.3) and (1.8))
L<hBm)+n< % VI + Bmu+ 1 (2.56)
holds for all ¢ € ® and p € (0,1) with
NS (2.57)

Choose (, M and R, ¥ C & as in Lemmas 2.6, 2.3, 2.4, respectively. Then we get for
large t, using (2.22), (2.36), definition (0.2), and the scaling property (2.11):

(log 1)2/" Ay, (T) > =3y + (log )/ min £, (S,, 1)

yEYR L
eV
> - 2/d min £, :
> —4n+ (logt) yrg;gtfvﬁc,t(St,yd}) (2.58)
Pev
B (1 2 : ~ ¢ 2
— iy (S 190+ 0 i [ Vs 0r ).
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For all ¢ € U we define

o 2 (1= SV = m)(Bm)™ < 1, (2.59)

see (2.55). We define the finite set = o {v»eV: p, >0} We compare

1
L= 5 IVQIP + Brmpy + (2.60)

with (2.56): There are two cases to distinguish:
Case 1. If i, ¢ =, then we get trivially for all ¢ > 1:

min / V- (Siy) da >0 > myuy. (2.61)
Rd

YEYR¢

Case 2. Else if p, € Z, i.e. 0 < py < 1; then the condition (2.57) must fail (compare
(2.56) and (2.60)), i.e. Af(uy) > L. In this case we apply Lemma 2.6: it provides a
vy > 0 such that for all large ¢

P {min / VE (S h) da > mulp} >1 -t (2.62)
Rd

yEYR L

Collecting both cases we get for all large ¢, using (2.58) and (2.60):

P [(10g t)Q/d )\Vﬁ,t (7;) Z Il - 57’]]

. 1 2 . ~
> _ ¢. 2 > _ .
P {32\% (2 IVY||” + ﬁylémn,t /d Ve - (S y0) da:) L 77] (2.63)

> P | min </ V(S 0)? d —mud)) >0 >1-— Zt’ﬂw.
Rd

YyEYR,¢ <
pew YES

0

We choose a 6 € (0, minyez vy) and define the increasing sequence ¢, = n??% "% 50; then

D neN Dz t2"" < 0. The Borel-Cantelli lemma and (2.63) imply that

P-a.s. liminf (logt,)** A, (T2,) > 1 — 5. (2.64)

n—oo

For t > 1, let n(t) denote the smallest index with #,;) > t. Since Ay, ,(7;) > Ay, o (7))

and (logt)/(logt,) =1, we see that
P-a.s. li%n inf (logt)*/* M (T7) > I — 5n. (2.65)

But now the claim of Lemma 2.7 follows because 7 > 0 was chosen arbitrarily.
O

Proof of Theorem 0.1. Theorem 0.1 is now proven, too: It follows from formula (1.7),
Corollary 1.2 and Lemma 2.7.
]
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2.3 Proof of the lower bound in Theorem 0.6

The following lemma is analogous to Lemma 2.6 but with a different scaling:

Lemma 2.8 Let d > 1, o(t) > (logt)%, 3 > 0, > 0, and assume that m < 1 is so
close to 1 that ¢ € (0,d"?a). Choose R and U as in Lemma 2.4. Then for all 1 € VU,
1€ (0,1) and 0 > 0 there is a ty > 0 such that for all t > t§:

P {min / Ve (S ,0)de <mp| <t (2.66)
YEYR JRd
Proof of Lemma 2.8. Choose ¢ € W. The function A}, is convex with the global minimum

A (1) = 0 (see Lemma 3.1 of [4]). Hence for any p < 1 there exists o < 0 such that

¢ o — Ay(o) > 0 (see also (2.50)). Using Lemma 2.5 we obtain for all ¢ > 0:

P [min / V(S ,0) dr < m,u] < exp {log [Vis| — mo(t)* (s — 0p0n)} . (2.67)
Rd

YEYR ¢

The bound log |Yr,| < dlogt is valid for large t; consequently log |Yr | < ¢(t)¢. Further-
MOTe 0y ;4 0 holds (see also (2.52)). These facts and (2.67) imply the claim.
O

Proof of the lower bound in Theorem 0.6. We choose 3 > 0, n € (0,1), and assume
that m € (1 —#,1) is so close to 1 that ¢ € (0,d"*/2a). Choose R and V¥ as in Lemma
2.4. Using Lemmas 2.3 and 2.4 we know that there exists ¢t; > 0 such that for all ¢ > #;

p(t)° v, (Tr) > min o(t)*Epe (Spy1) — 4n
YEYR ¢ Bt
PYew

> min 3 [ V- (Sp,)* do — 4. (2.68)
YEYR ¢ R4
YET
Choose ¥ > 0 and p € (1 —7,1) (hence (1 —7)* < mu). Using Lemma 2.8 we have for

all t > t; V maxyey £

P [o(t)* Ay, (T2) > B —n(26 +4)] (2.69)

> P | min / ‘M/C(St’yzb)zda: >(1—-n)?* >1— E t.
YEYR JRd
phew Yew

Hence

P-a.s. liminf o(t)? )\Vﬁsot(’]Z) > 03, (2.70)

t—o0
this follows by the Borel-Cantelli lemma and since n € (0,1) was chosen arbitrarily (see

also (2.64)-(2.65)).
O
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3 ANALYSIS OF THE VARIATIONAL PRINCIPLE

3.1 The phase transition picture

We start with citing some well-known facts on the logarithmic moment generating function
and the Fenchel-Legendre transform (see Lemma 3.1 and formula (3.6) of [4]): Assume
that ||¢||, = 1, then A} is convex, non-negative, monotonically decreasing on (0, 1) with
the global minimum A*(1) = 0, and for p € (0,1) the maximizing o is non-positive (see
(2.50)) and given by

= A;(U) = g ¢>2e"¢2dx and A;‘,’(,u) = A;’l(u) = 0. (3.1)

We set,

def

A(p) = nf{Ag(p) - ¢ € @, |V, = 1} (3.2)
Recall that ||¢||, =1 holds for all ¢ € ®.

Lemma 3.1 Set ¢12(d) o

d=2//2. Then
I(3) = 02}21 (crah* (1) + Bpa) - (3.3)

Consequently, the function I is concave.

Proof of Lemma 3.1. We apply a similar scaling argument as in Lemma 1.2; recall defi-
nition (1.14) of the scaled version ¢, of ¢, which fulfills ¢, € ® if and only if ¢ € &. We
use definition (0.6) of I, the facts on A} and the scaling properties (1.15)-(1.16) in the

following calculation:
: 1 «
1(8) = nt { Z 190+ s > 0.6 € B, |V6IF = 1€ 0.1),43,(0) = o

1
= inf {§T—2 +Bpir>0,0€®||Ve|* =1, € (0,1), 1A} (n) = d, }

. 2/d
_inf {; (A‘f’(‘”) F 6 e Vot =1 e <o,1>} (3.4

d

— * 2/d
05%21 (012A ()™ + ﬁﬂ) '

The function I is therefore a infimum over linear functions; hence it is concave.

Here is a simple monotonicity argument to get lower bounds for I(/3):
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Lemma 3.2 Assume that Ay(c) < f(0) for allc <0, ¢ € ®, |[Vo||* = 1. Then for all
pwe (0,1):

A" () = (), (3:5)
where f*(u) o Sup,<o(po — f(0)). As a consequence we get

I(3) > inf (e f* ()" + Bpe) . (3.6)

T 0<pu<l

Proof of Lemma 3.2. Using (2.50) we see that we can restrict the supremum in definition

(0.5) of A} to non-positive values of o whenever ;1 < 1:

Ag(p) = sup (op — Ag(0)) - (3.7)

<0

This together with the assumptions on f implies (3.5). The lower bound (3.6) then follows
from (3.3).
d

First we provide the lower bound for d < 4 in (0.9) (compare this with Lemma 3.4 of [4]).

Proof of the lower bound in Theorem 0.3. Choose ¢ € ® with ||V¢l||, = 1 and ||¢||, = 1.
We use the following Sobolev inequality: For d < 4 there exists a constant ¢;3(d) > 0 such
that

loll; < c13(d). (3.8)

(To see (3.8) for d = 1, one uses Theorem 8.5 (i) in [3], which states ||¢/||3+[|¢||5 > 2 ||o]%,

and o3 < [1]1% 111>
For d = 2, formula (3.8) is a special case of Theorem 8.5 (ii) (3) in [3], which states

Vo2 + ||oll; > Say ||qb||3 for 2 < ¢ < 00, ¢ € Hy?*(R?), and some constant Sy, > 0.
For d = 3, one uses Theorem 8.3 (i) in [3], which states (for d = 3) ||V¢|[> > Ss ||¢]|; for
some constant S3 > 0, and Holder’s inequality, which implies ||¢]|, < ||¢)||2/4 ||¢)||;/4.)

We estimate the Taylor expansion of A4(o) at og = 0 up to second order for o < 0:
(3.1)
As(0) =0, AL(0) = [l (3.9)
Nj(o) = / o'e” dr < ;- (3.10)

The Taylor expansion and the Sobolev inequality (3.8) yield for all ¢ < 0:

4
Aglo) < |85 0 + @02 <o+ %02. (3.11)
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Using Lemma 3.2 we get for 0 < p < 1

N €13 o 1 2
A > —1)o— — =—(1- 3.12
(1) 2 sup (0= Do = 0?) = 50— u), (312)

and therefore with c14(d) € ¢15(2¢13) 24, and Cy(d) & =D (4/d)~4/4=D(4/d—1) > 0

I1(8) > inf (cia(1— )"+ Bu) > inf (cra(1 — W+ ) = g — Oy gD, (3.13)
u<

T oo<p<l

here the optimal point is = 1 — (d3/(4c14))¥#~9 < 1. This proves the lower bound of
Theorem 0.3 (the upper bound has been proven in Lemma 3.4 of [4]).

|

We provide now an alternative proof for the existence of a phase transition in dimen-
sions d > 4, including a quantitative lower bound for the critical point. This proof does
not make use of the Cwickel-Lieb-Rosenbljum theorem (see Theorem 9.3 of Simon [7],
Theorem 2.1 of [4], resp.).

First we introduce the relevant constants:

- B —2/d
g, & d(d4 2) g/ d(d4 2) g2 /d1+1/ap (#) : (3.14)

here S¢ denotes the unit sphere in R?¥!. S; is the optimal constant in the Sobolev

inequality (see Theorem 8.3 in [3])

IVoll; > Sali¢lly, . (3.15)

with v & d/(d—2), d > 3, € DY(R") D HY*(R") (for simplicity we skip here the formal

definition of D'(R™)). We set

def 2\ %/
Bo(d) = 1554 (8) — ¥ d-1g-4/dg,, (3.16)

Proof of Theorem 0.4. Let d > 4. Here we prove that for all 5 < 3y we have I(/3) > .
Using the concavity of I (see Lemma 3.1) this implies that there exists S.(d) > fo(d) > 0
such that (0.10)-(0.11) is fulfilled. This also proves the lower bounds in (0.12)-(0.13),
whereas the upper bounds in (0.12)-(0.13) are a consequence of Lemma 3.4 and Lemma
3.5 below.

We choose v = d/(d — 2), which fulfills 1 < v < 2. We claim for all £ < 0:

e —1<eq bl (3.17)
S .
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To prove (3.17), we observe first that for all s < 0:
1— st < e’ (3.18)

this is obvious for s < —1, (in this case we have 1 — |s[77! < 0 < €*). For —1 < s < 0 we
get (3.18) from 1 — |s|71 <1 —|s| =1+ s <€, since 0 <y —1<1. The bound (3.17)
follows by integrating (3.18) over the interval [¢, 0].

Let 0 <0, ¢ € @, [V, = 1. We substitute o¢? <0 for £ in (3.17), this implies

lo|”

» I
M) = [ = nar < olfo+ S <o To (19)

where in the last step we have used the Sobolev inequality (3.15), ||[V¢|l, = 1, and
||¢]|, = 1. Monotonicity of the Legendre transform (Lemma 3.2) yields for x € (0, 1):

* |0—|7 2 d/2 d/2
Ag(p) > sup ((u —1)o — vs7) = 7% (1—n) % (3.20)
the optimal point is 0 = —S/7™(1 — 1)YG=D | and we have used d/2 = v/(y — 1). We
insert this result in (3.6) and get

. ﬁ for 0 < ﬁ S /807
I(f) > inf ((1— + = 3.21
(9)> int (1= )i+ ) { I 321
recall definition (3.16) of (3. The proof of Theorem 0.4 is finished.
(]

3.2 Critical exponent in 4 dimensions (Proof of Theorem 0.5)

In this subsection we prove that for d = 4, (3y(4) is the critical § (i.e. 5.(4) = [o(4)) and
that I(3) is differentiable at [.(4).

Lemma 3.3 Let d = 4. There is a constant C3 > 0 such that for all 3 > [(y(4):
I(B) > B = C5(8 — Bo(4))*. (3.22)
FEspecially, I is differentiable at the point = [y(4).

Proof of Lemma 3.3. We use a similar technique as in the proof of Theorem 0.4. By

convexity of the exponential function we know for all y, s € R:

e’ > e’ +e¥(s —y). (3.23)
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Let £ < 0. We integrate (3.23) over the interval ¢, 0] and obtain
ef—1<e’ ((1—y)E+27'¢%). (3.24)

Let 0 <0, ¢ € ® with [|[V¢||, = 1. We substitute £ = g¢? in (3.24), integrate, and use
Sobolev inequality (3.15) for d =4, v = 2 to get for all y € R:

Ag(o) < e (L =y)alloll; +27 0> lol;)
<&’ ((1—y)o+2715,%"). (3.25)

We apply Lemma 3.2 to get for p € (0,1):

A5(p) > sup (W —e ((1 2 ;—;%))

<0
B %z(e_yﬂu +ev?(y —1))° for p <e¥(1—y), (3.26)
0 for > e¥(1 —y), ‘

here the optimal point is 0 = ((ue™ +y — 1) A0)S2. An exact optimization over y would
lead to a transcendental equation for y; however, it is sufficient for our purposes to use

an approximation to the optimal point: In (3.26) we choose

y=3p-1)€[-30]. (3:27)

We observe for this choice of y that © < (1 +y)(1 —y) < e¥(1 — y); i.e. the first case in
(3.26) occurs. Consequently (3.26) tells us

Sy

S

_ o ((1 — )+ i [(=1)™(1 — 2n) + 3n — 1] M) (3.28)

B ﬁ o 3nn!
Sy (1—p)*\
zﬁ ((l—u)+T>,

one should note that all Taylor coefficients are positive. Next we introduce the constant

C5 = 525 The inequality (3.28), the bound (3.3), and the definition (3.16) of /(4)
imply
: (1—p)?
19) > inf (o) (1= + S5 ) )
_ { B = Cs( = Bo(4))* for > fh(4), (3.29)
3 for 0 < < fo(4);
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for # > [y(4) the optimal value is given by u =1 — 2C5(5 — ((4)), for 0 < 5 < [(y(4)
we choose p 1 1. The differentiability of I() at § = (5y(4) is a consequence of the bound
(3.29) and of the upper bound I(f) < . This proves Lemma 3.3.

|

Lemma 3.4 Let d = 4. There are constants Cy > 0, C5 > 0, and by > [o(4) such that
for all 5 € (Bo(4),bs) the following estimate holds:

(8 — Bo(4))?
|10g[C5(8 — Bo(4)]]

Proof of Lemma 3.4. Let ¢ € ® with ||[V¢||5 = 1. We derive an upper bound for Ay(o):
For o < 0:

I(B) < 8- Cy

(3.30)

ob? O'2 O'2
Nylo) = [ e e < oll; + ool + 1ol = 1+ ool + ol (33D

The function Ay : (—00,0] — (0,1] is monotonically increasing, and —1 + /1 -z >
—x/2 — 2%/2 holds for all x < 1. Using these two facts and (3.31), we get for

8
7, 0,1): 1— <m} 3.32
ne Ty {MG( ) ”—2||¢||§ (3.32)

the following lower bound:

. 3.1)
A () (L) A () = sup {o <0: Ay(0) < p}

0_2
>sup fo <051 a ol + G ol < )

4 6
2
_ Il (_1 . \/1 20l m) (3.3
i 101l
21l )
> =g (1l —p) - (1= )"
eIl lll,”
We integrate this estimate over an interval (4, 1) C Z4; we obtain for p € Z,:
N =850 - [ Ay aow e 2P e aa)
) =204l 310l
2
1 VEIOIR e
< (1—p)+ (1—p)
[ﬂ eIl 31e11,"
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Further we assume now that our test function ¢ satisfies the bound

2llollg = llll3: (3.35)
one should compare this with (3.32). We apply (3.34) and (3.3) for g € (0, gi}% ol 2):
1(9) < inf (croy/A3 () + 1)
< 21—y 4 22210l + 6 ) 3.36
w%(waﬁ ST .
s for § < %2 [|oll,”,

8- A (- % 1017) o 5 Iol,” < 5 < 35 I,
Waerl| TG : ! - .

In view of this bound we need to maximize ||¢||; with the constraints ¢ € ®, |Vol|5 = 1,
and (3.35). Theorem 8.3 in [3] tells us: In the Sobolev inequality (3.15) (||V4||5 > Sy ||¥|%,
Y € DY(R')) we have equality if we choose the function ¢ to be

1

—_— 3.37
T+ [ (3:37)

U(r) =
(and also for scaled and translated versions of it). However, this function v is not com-
pactly supported; we even have ¢ ¢ L*(R*). Therefore we introduce a truncated approxi-
mation ¥g of ¥: Let x : R* — [0, 1] denote any fixed smooth radially symmetric function
which is compactly supported in Bs(0) and equals 1 on B;(0). For R > 0 we set

def X(2/R)
Ur(r) = TR

(3.38)

We note that for some positive constants ¢15 < ¢35, 16, C17 < €17, and ¢ the following
bounds hold for large R:

615 IOgR < ||¢R||§ < C15 IOg R, (339)
1l - R4 < [erlly < 1l (3.40)
ci7 < ||¢R||6 < ar, (3.41)

the last important inequality is

VYRl = (IVYIL] < IV@R = D), = IV (1 = x(-/R)l;
S H]-RsupP(I*X)verQ + ||vX||oo R_l H]-Rsupp(vx)wu2 (342)
<cgRY
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where we have used polar coordinates to evaluate the integrals for the norms and we
have inserted the following scaling behaviors: |z|*|Vi(2)]? < O(]x]7?) and |z]* | (x)]* <
O(|xz]™) as || — oo; Rsupp (V) is contained in an annulus centered at 0 with radii R
and 2R, and Rsupp (1 — x) does not intersect Bg(0). (3.40), (3.42), and equality in the
Sobolev estimate (3.15) yield for some constant c19 > 0 and large R:

2 —1)\2
S, < IVYR||; < ([IVYll, + c1sR™) < 54_1_@' (3.43)

TRl T (el - ar ) T R

In general i ¢ ®; we still need to scale p: We set

def

or(x) = cp(x/r), (3.44)

where the scaling constants ¢(R), r(R) are chosen such that ||pz||s = 1 = ||Vér|[; to be
specific, we have 7 = ||V, / |1Urll, and ¢ = ||gll, / [[Vg|5. Using further that

I¢rlly = crllYell, — and lorlls = " [vrll; (3.45)

we obtain for large R (cqg, 21 denote positive constants):

o IVYRll) C19
_ <9 9 3.46
loall* = S0 < S (3-46)
lonlly’ _ (e[ Y (3.47)
lerls — IVerlZ 1erlZ lwrll ~ log R
8 8
Iorlls _  ll¥xll Cu Aoz (3.48)

lorlls™ 1wl lvrls ~ log B

especially assumption (3.35) is fulfilled for the test function ¢g for large R. Let 5 > (3y(4).
We set
o o2 T
3(8 = Bo(4))
The bound (3.36) together with the estimates (3.46)—(3.48) and definition (3.16) of (3y(4)
yields for R large enough, say 5 € ((o(4), b):

(3.49)

I(8) < A— 4365;2 (log R)™ (ﬂ — Bo(4) — C”ﬁR*) (3.50)

_ (8 = 5o(4))?
c | 1og[C5(5 — Bo(4))]] (3.51)

for an appropriate choice of the positive constants Cy, C's. This proves Lemma 3.4.

=/
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3.3 Asymptotics in the large-3-region (Proof of Theorem 0.2)

The main tools to examine the large-3-behavior of I(3) (especially for proving the limit
(0.8)) are asymptotic upper and lower bounds for the ground state energy in a determin-
1stic square-well potential. These bounds, well known to physicists at least in dimensions

d < 3, are collected in Appendix B.

Let r4 denote the radius of a d-dimensional ball of volume d. Here is an asymptotic

upper bound for I(/3); we expect the exponent —1/2 of 5 to be optimal:

Lemma 3.5 There are positive constants b3(d) and cos(d) such that for all 3 > bs:

C22

19) < e(d 1) = 2. (3.52)

Proof of Lemma 3.5. Let by > 2¢(d, 1) and ¢y be defined according to Lemma B.1 in
Appendix B. Let 3 > b3. By the upper bound in (B.1), there is a test function ¢ € @
such that

€29 2

1
G IVOlE+ o< @)= 2 where = 120s, 09, (3.53)

This number z cannot be 0, i.e. ¢ cannot be supported in B,,(0), since this would imply
Vol /2 + B > |Vl /2 > Xo(B,,(0)) = ¢(d, 1), which contradicts (3.53). u cannot
equal 1, since then ||V|[5/2+ fu > 8 > bs > ¢(d, 1) which is a contradiction, too. It
remains to examine x € (0,1): We calculate, using the inequality 1+ & — e® < 0:

A%(p) = sup po — /(e"‘252 —1)dx

<0
R
= sup / (14 0¢® — ") dr + / (1—¢"?")da
o<0
R4\ B, (0) By, (0)
< |B,,(0)] = d. (3.54)

Consequently the pair ¢, u is an allowed test configuration in the definition (0.6) of I:
(0.6) and (3.53) together imply the bound (3.52). This proves Lemma 3.5.
(|

Next we prove a lower bound for I(3) in the large-/-region:

Lemma 3.6 There are constants co3(d) > 0 and by(d) > 1 such that for all 3 > by(d) the

following lower bound holds:

I(B) > cld, 1) — cp36* log . (3.55)
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Proof of Lemma 3.6. We abbreviate “radially symmetric non-increasing” by “RSNI”. Let
¢° denote the RSNI rearrangement of ¢ € ® (see [3], Section 3.3). Then ¢° € ®, too,
Ay = Ago, and therefore A = A%,. Lemma 7.17 in [3] shows ||[V¢°[|, < [[Vel[,. We insert
this in the definition (0.6) of I(3) and scale ¢ (see (1.14) - (1.16)); this shows for every
m > 0:

2/d
I(B) = inf{m2 IVoll; + B ¢ € ®RSNL, p € (0,1), Aj(p) < md} : (3.56)
The map [0,00) 3 s +— 1 — (1 + s)e™® € [0,1) is bijective and monotonically increasing.
Let 3> 1. We set s = s(8) & log(8/%) > 0 and m = m(8) & 1 — (1 + s)e— iy

Further let ¢ € ® RSNI, p € (0,1) with Aj(u) < md, and o o AY(p) < 0. We get (see

(3.1))

md > Agln) == Ao(o) = [ [L= (1= 067 da

Rd

, (3.57)

and consequently —o¢(z)? < s for |z| > rg4, since |B,,(0)| = d, and since \/|o|¢ is RSNT:
the level set {x : —o¢(x)* > s} is either empty or a ball centered at 0. We multiply the
inequality 1ga B,y (0) < s 7’ by ¢? and integrate; this yields the following inequality:

def
K =

2

‘le\Brd(U)gﬁ <eé’ ¢260¢2 dr = e’ Ny(o) = e’ pu. (3.58)
2 Rd

The inequality m?/? > 1—cy,(1—m) > 0 holds for some constant cy4(d) > 0 and m(3) < 1

sufficiently close to 1, i.e. for large 5. We combine the bound (3.58) and Corollary B.2

from Appendix B; we optimize over p; then we insert the lower bound for m?¢,

use
m3? < 1, and abbreviate cys = 2. 3*3/20%2, hence for large 3 and some constant co3 > 0
we get

m2/d

5= V6l + B> m**(c(d,1) = e3on™?) + B

> m¥4(c(d, 1) — cs0e2 1t ?) + B

> m2he(d, 1) — cose®?m?/ 1 p1/? (3.59)
> [1— coq(1+ %log ﬁ)ﬁ’l/?’]c(d, 1) — cos 3743

> c(d, 1) — 3872 log .

In view of (3.56) this proves Lemma 3.6.

29



A UPPER BOUND OF THEOREM 0.6 AND COROLLARY 0.7

To prove the upper bound in Theorem 0.6 we simply evaluate (0.2) for a “good” test
function.

Proof of the upper bound in Theorem 0.6. In this proof we always assume that p(¢)
is a strictly positive function with ¢(t) < t. Choose t so large that ¢(t) < ¢/2. As test
function we choose a function which is constant on 7;_, and with support contained
in 7;: Let x : R — [0,1] be any monotonically increasing C'*°-function with support
contained in (0,00), y(z) =1 for z > 1, and \/(z) < 2 for all x € R. We define

w59 (5)

The function y; is smooth, compactly supported in (—¢,¢), constant 1 on (—t + ¢(t),t —

(1)), and |xj(x)| < 2/p(t). Set fi(x) o T2, xi(ai) for & = (24,... ,24) € R?, hence

fi : R — [0, 1] is smooth, compactly supported in 7;, constant 1 on Z;_y), and |V f;| <
2/ dp(t)~'. We have

17elly > [Te-pn]  and IV £l < IV AT Tempio] < 2606t 0(8)™", (A2)
where cy(d) W 9d+12 Our test function is defined by normalizing f,:
def ft
b = ——), (A.3)
A
which satisfies ||¢¢]|, =1,
ol < il < N Tepi| 772 < [T 72, (A4)
td*l t —1
||V¢)t||; S 2026& = 2026t71<,0(t)71. (A5)
|/

Consequently

1 5}
A (Th) < §I|V¢t||§+/ﬂ‘/ﬁ,t(w)¢?(w) dr < tf(i) (1) W |, el w(Te)

C26 B w(T) e _plt) 3 W)
~ tp(t) " C(t) | Ty to(t) (1 > 202 T (A.6)

By the ergodic theorem, P-a.s. limsup, .. |7;|'w(7;) < 1, and hence

P-a.s. limsup ¢(t)*Ay,,(T;) < 6. (A7)

t—o0

The upper bound in Theorem 0.6 is proved.
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Proof of Corollary 0.7. By monotonicity we have for all 3, 3; > 0 and ((t) o (logt)'/4:

I(6y) "= liminf €(t)°\yy () < liminf (1) Ay (7))
< limsup é(t)QAVBwt(’];) < limsup £(t)*\o(7; \ supp V). (A.8)

t—oo t—oo

Now the claim follows from Theorem 0.2 and formula (4.4.38)—(4.4.40) in [8].

B ASYMPTOTICS OF THE GROUND STATE ENERGY

IN A d-DIMENSIONAL SQUARE WELL POTENTIAL

Recall, r4 denotes the radius of a d-dimensional ball of volume d.

Lemma B.1 There are positive constants bs(d) > 2¢(d, 1) and cyz(d) < é92(d) such that
for all 3 > bs the following holds:

C22 C22

c(d, 1) — NG < Mlgais, o (R?) < e(d, 1) — 75 (B.1)
Proof of Lemma B.1. By Theorem X.28 in [5] the Schrédinger operator Hz = —%A +
Blga\p, (o) s essentially self-adjoint on C° (R?). Theorem XIII.15 in [6] implies that the
closure of Hg has the essential spectrum Oess(Hp) = Oess(—A/2 + ) = [, 00). Therefore
the infimum of the spectrum of Hz > 0 either equals [, or it is a discrete eigenvalue
E € (0,5). (E =0 is certainly impossible.) We show that the second case occurs at least
for large values of 3: the potential S1ga B, (0) 1S radially symmetric; hence it suffices to
look for the ground state eigenfunction among radially symmetric functions. We therefore
search for weak solutions of the radial Schrodinger equation

=5 (00 + 200 )+ 814 ote) = B0 (B.2)

that fulfill

/000 b (r)[2r = dr < . (B.3)
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We solve piecewise the free radial Schrodinger equation explicitly in terms of (modified)
Bessel functions: We get with the abbreviation v = d/2 — 1:

() = <\/ﬁr> - <a1J,,(\/ﬁr) + azY,( 2ET)> for r < rq,
N (WT) - (a2lﬁ’y(\/mr) + 0441,,(\/@7“)) for r > ry 7

(B.4)

with constants ay, as, as, ay. Regularity of the solution at the origin and condition
(B.3) require a3 = 0 = ay. Furthermore, ¥ and ¢’ need to be continuous at r = r4. We
abbreviate f(z) o 27" J,(2), g(z) o 2 VK, (2), 2 © V2Er, and z & V23 = E)ry.
For a given E € (0, /), we get a eigenfunction ¢ if and only if the following condition
holds:

‘ =0. (B.5)
Using the asymptotics

2 Z—00 2 Z—00
e K, (2) 31, ey K () TX -1 (B.6)
m

s

(see [9], Section 7.23, and [1], formulas 9.7.2 and 9.7.4) we get

— 1. (B.7)

Let £ denote the smallest positive number with .J,(§) = 0. (Since the principal Dirichlet
eigenfunction of —A/2 on the ball B,,(0) is given by x — f(&|x|/r4) up to a normalizing
constant, ¢ is related to Sznitman’s constant by c(d,1) = (£/rq4)?/2.) The derivative
f'(z) = —=z7"J,41(2) has no zero point z in (0,¢] (see [9], Section 15.22). We calculate
for z € (0,£], using an identity for Bessel functions from [9], Section 15.23:

d f(z) — (2 f(5)) 2 f(z) Zfl(z)

= (55)=ere 4 () d%@f’(z))‘
J,(2) 2J!(2)
L1,(2) L(2J)(2))

= —2z2”3f’(z)2/ JX(t)tdt < 0.
0

— Z72u72fl(2)72 (B8)

Consequently —f(z)/(zf'(z)) is monotone decreasing on (0, ] with the value zero at £ and

a negative derivative at £. This shows that for some positive constants co7(d) < c25(d),
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and cag(d) < & the estimate —f(2)/(zf'(2)) > c27(§ — 2) holds for all z € (0,¢], and
—f(2)/(2f"(2)) < co8(§ — 2) holds for all z € [ — ca9,&]. We choose a constant oy to be
so large that cyrrq(2c(d, 1))~ 26, > 27‘d holds, and we choose another constant cyy > 0
so small that 2eygc(d, 1)_1/2rd022 < 1/2 holds. Further we choose b3 > 0 so large that
the three conditions 2'/2¢(d, 1)_1/27“d022b;1/2 < ¢y, b3 > 2¢(d, 1), and for all z > bé/Qrd:
—q'(2)/g(z) € [1/2,2] hold true; see (B.7). Let > b3 and E € (0, ¢(d, 1)). We first show
that for £ < ¢(d, 1) — &4~ /? the equation (B.5) has no solution: Using # < 2(3 — E),

— f(21) > cor(& — 21) = corra(n/2¢(d, 1) \/ﬁ

> eyrra(2¢(d, 1) (e(d, 1) = B) > earra(2¢(d, 1)) Penf 17 (B.9)

271312 > 2 S _ 9(z2) ‘
! T my(2)

This proves the lower bound in (B.1). To derive the upper bound in (B.1), we set E =
c(d,1) — ¢34~ "/? and estimate:

& — 2z =r4(\/2¢(d, 1) — V2F)

< 2(2¢(d, 1)) Y rg(e(d, 1) — B) = 212¢(d, 1) ™Y 21 4e0, 5712 (B.10)
S C29,
and therefore
z
_zif]‘(’(lz)l) < ea8(€ — 21) < 0282 %¢(d, 1) Py B2
1
< 2e95¢(d, 1) V2002 < — < — 9(z2) : (B.11)

220 T 220 (22)

Comparing (B.9) with (B.11) we conclude that the equation (B.5) has a solution E €
(c(d, 1) — Gy B2 ¢c(d, 1) — cyp371/?). This finishes the proof of the upper bound in (B.1)
and of Lemma B.1.

Corollary B.2 There is a constant c3o(d) > 0 such that for all functions ¢ € ®:

2/3

5 ||V¢||2 > ¢(d, 1) — c30 Hle\Brd(O)Qb (B.12)

Proof of Corollary B.2. We set 3 = (3 - 27232%) v (213¢(d, 1)by/ %), and we ab-
2 T

breviate x = Hle\BW(U)d)H . If Kk =0, ie if ¢ is supported in B,,(0), then (B.12)
2
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is obvious, since ¢(d, 1) is the principal Dirichlet eigenvalue of —A/2 over B,,(0). So
we may assume x > 0. Set 8 = (2r/Gyp) 3. There are two cases: If 3 < b3,
then (B.12) holds trivially, since in this case the right hand side in (B.12) is negative:
csok'/® > e(d, 1)(bs/3)"/? > c(d,1). Else if 3 > by, then Lemma B.1 is applicable. The
lower bound in (B.1) yields the claim (B.12):

1 é 32,
5 ||v¢||§ Z C(dv 1) - % - ﬁ/ﬁ] = C(d, ].) - 222/23 lil/3 2 C(d, ].) - 030K1/3. (B13)

Corollary B.2 is proved.

|
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