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Abstract. For the estimation of the probability of a tail set beyond the range of the observations an
estimator based on Pareto tails can be used. We calculate the optimum number of upper order statistics
used for this estimator, in the mean square error sense. Moreover an adaptive procedure is given to find
this optimum in a practical situation.
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1 INTRODUCTION

Let X, Xs,...,X, be a sample of n i.i.d. random variables, with common (but unknown)
distribution function F'. The aim is to estimate an extreme exceedance probability that is, given
a 'high’ value z one wants to estimate 1 — F'(z).

On the one hand, if = is well into the sample range then it is known that 1 — F'(z) can be
estimated via the empirical distribution function ([7] Einmahl, 1990). On the other hand, if = is
at the boundary or outside the range of the observations (and then we shall call it a ’high’ value)
then alternative approaches have to be considered. Empirically this means P(X > z) < 1/n,
and hence we will denote x by z,, and define p, = P(X > x,). Therefore in this paper we
consider the cases np, — ¢ > 0 where c is a finite real constant, as n — oc. Note that 'well
into the sample range’ means np, — oo and in this case the use of the empirical distribution
function to estimate p,, is preferred.

For the main conditions we assume that F' belongs to the domain of attraction of the Gen-
eralized Extreme Value distribution for some real extreme value index «y ([10] Gnedenko, 1943),

shortly F € D,(GEV), y e R.
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Equivalently, one may write it in terms of tail probabilities
lim ¢t {1 — F (b(t) + za(t))} =1 — Hy(x) (1.1)
t—o00

for all z, for which 0 < H,(z) < 1, and a(t) > 0, b(t) are suitable normalising functions; H.,(z)

is the Generalized Pareto (GP) distribution function given by
Hy(z)=1-—(1+~vyz)"7, 14+yz2>0,7€R. (1.2)

For the exceedance probability estimator we use ( as in [4] Dekkers, Einmahl and de Haan,
1989; [5] Dijk and de Haan, 1992),
7 _l/ﬁn(k)
k Ty — b(2
(k) = —max{O, (1+%(k)"&T)(k)>} (1.3)
k

n

~

where a(t), b(t) and 4, (k) are estimators of a(t), b(t) and +y, respectively, n is the sample size and
k is an intermediate sequence i.e., kK = k(n) such that k(n)/n — 0 and k(n) — oo, as n — oo.

A motivation for (1.3) may be given as follows. Relations (1.1) and (1.2) suggest, for large z,

Tz —1/y
l—F(ac)z%{l—i—’y a(f)(t)} , as t—o00. (1.4)

Then take for ¢ the quantity n/k. Since the condition {1 + 4, (k)(zn, — l;(%)) a(%)} > 0 may not
be fulfilled (although asymptotically it will be zero), in practice the maximum value between
this quantity and zero is taken.

Our main result concerns the characterization of an optimal rate for the number of upper
order statistics, k, to use in (1.3), given a sample of size n. The reasoning is in the same line
as in [2] Danielsson, de Haan, Peng and de Vries (1997) and [6] Draisma, de Haan, Peng and
Pereira (1998) on extreme value index estimation, and [9] Ferreira, de Haan and Peng (1999)
on endpoint and high quantiles estimation. We obtain an optimal rate (in the sense of (2.5))
of order n to some negative power (cf. Theorem 2.1). However this asymptotic result might
not be adequate for practical applications. Firstly, it contains parameters (¢ and p’) that can
not be estimated with sufficient accuracy. Secondly, even in cases when ¢ and p’' are known,
the asymptotic optimal result may be far from the real optimum. Still, our optimal rate may

be applied in the adapted bootstrap procedure, as suggested in the aforementioned papers, to

optimize the performance of p, (k).



An alternative approach to our problem is given in the work by [13] Hall and Weissman
(1997). However they concentrate only on models with positive 7. Moreover, our result allows
smaller exceedance probabilities, therefore covering more interesting situations. Other related
work on tail estimation includes [3] Davis and Resnick (1984) and [14] Smith (1987).

The paper is organized as follows. Section 2 deals with our main result, namely Theorem
2.1. Following this, a simulation study is carried out on section 3, including results from the
adaptive bootstrap. In section 4 we present auxiliary Lemmas and the proof of Theorem 2.1.

Finally, some notation. Let a,, and b, be two sequences, then a,, ~ b, means lim;,_,+ ap, /b, =

1. Let y— = min(y,0) and v+ = max(vy,0).

2 ASYMPTOTIC OPTIMAL RATE

Let us assume the first order regular variation condition that is, condition (1.1) in terms of the

.
function U = (ﬁ) (the arrow denoting the generalized inverse function),

. Ulte)—-U@®) 27 -1
lim =
=0 a(t) gl

(2.1)

for all positive x, where a(t) is a suitable positive function (in particular it might be the same as
in (1.1)). Also assume the second order regular variation condition for U. Specifically, suppose

there exists a function A(t) — 0, as ¢ — oo, with constant sign near infinity such that, for all

positive x
Ultz)—U(t _
‘ (a;)(t)()_mayl_l :1:7+p—1_ac7—1
lim = (2.2)
t—00 A(t) plL v+p Y

where p < 0 is a real constant. For a detailed analysis on these conditions we refer to [12] de
Haan and Stadtmiuller (1996).

In order to achieve our main result, a second order condition for the function log U is needed.
We use Theorem A in [6] Draisma, de Haan, Peng and Pereira (1998) (here Lemma 4.2 in section
4). In particular,

logU(tx)—logU(t)  z7'——1 /
01010} RN ) it S (2.3)
t—00 A(t) I V-

where A(t) € RV, and p' < 0. Note that the limit function is as in (2.2) but where p and v

were replaced by p’ and y_, respectively. Basically p is determined from p and «y (see (4.2)).



Denote the right endpoint of a distribution function F by z i.e., zyp = sup{z : F(z) < 1}.
Under the assumption F' € D,(GEV), x is finite if v < 0 and infinite if v > 0 (both situations
may happen if v = 0).

By optimal asymptotic estimation it is meant to minimize, with respect to k, the asymptotic
mean square error function, as. F(p, (k) — pp)?. From the proof of Theorem 2.1 we have that

the random variable

VE o (an) (ﬁ”(k) - 1) (2.4)

where 7, (z) = —vy/logz if v > 0 and ry(z) = —yz” if v < 0, and a, = k/(np,), equals, in
distribution, to

n

(N + bias, y A( ?

WE) (1+0,(1))

where N is a normally distributed random variable with zero mean and variance var,, (see (2.12)
and (2.13) for var, and bias, , respectively). So, we have that the asymptotic bias component
of (2.4) is biasmpuzl(%)\/ﬁ Let A(%)\/E — A, as n — 00. Then we have three possibilities: 1)
A=0,2)0< X< ooand &) A= oo. If the intermediate sequence k = k(n) is such that 1)
holds, then (2.4) is asymptotically normally distributed with mean zero. Our approach assume
2) holds i.e., we deal with the intermediate sequences where (2.4) has, asymptotically, a non
zero bias component.

Thus we seek for the asymptotic optimal rate
ko(n) = arg i%f as. E(pn(k) —pp)?, (2.5)

where p,, is the true exceedance probability one wants to estimate and as. F/() means the
asymptotic expectation according to the limit distribution of (p, (k) — p,) as discussed earlier.
In order to express the restriction to intermediate sequences for k£ but include the optimal, one
must restrain k£ to some bounds, for instance that it ranges from logn to n/(logn). Nonetheless
any particular bounds do not play a role in the general result.

The estimators used in (1.3) are (as in [4] Dekkers, Einmahl and de Haan, 1989; [5] Dijk and
de Haan, 1992)

1 (V)2
~ _ (1) . o n
(k) = M +1-2(1 Ve

)7 (2.6)



and

~ .

i(3) = XuoknM{D (1 =45 (k) 27)
where

. 1 k—1 ]
My(g) = E (log ani,n —lOg Xn—k,n)]a J=12 (28)
i=0
and
(1)y2
o 1 My _ .
(k) = 1— 5(1 _ M) M(Z)) )~ = A (k) — Mr(zl)- (2.9)

Moreover take IS(%) =X kn-

Theorem 2.1. Suppose U(t) satisfies (2.1) and (2.2). Assume p <0,y > —1/2, v #0, vy #p

and np, — constant (finite, > 0) as n — oo. Also let, as n — oo,

logxnzo(nl_gﬂ’> ify>0;

’

(2.10)
+
(rg—z,) ' =0 (nf;ﬂ) ity <0,

and A(t) ~ ¢ ¥, with ¢ a non zero real constant, as t — oc.

Then, there exists an optimal ky = ko(n) minimizing the asymptotic mean square error,

ko(n) = arg i%f as. E(pn(k) —pn)?,

such that
( Vary =27 —72p,/
—2p' 2 bias?y,p, nizee vy >0
ko(n) ~ (2.11)
1 ,
var 142 120 _,zp/
{ (52 biasé,p/ _2p,_727> ni-2" |y <0
where
1+2 , 7y >0
var, = { (1=9)2(1=37+472) <0 (2.12)
Y234y 7
and
(1 , (limy 00 U(t) — a(t)/y =0 and 0 < y < —p)
ory > —p
’ 12 o1 .
T (i U() —a(t)/y # 0 and 0 <y < —p)
—37% +y+29% 20"+ 299" +9%p' +p'
7(1*7)(1*17)70’)(1*2%0’) p <7 <0
y=1)p
L Y(I=y=p")(v+p")(1=27—p") V<P

(2.13)



Remark 2.2. Note that ky(n) in the Theorem does not depend on x,,.

Remark 2.3. We restrict attention to v > —1/2, since otherwise the extrapolation should be

based on extreme rather than intermediate order statistics (cf. [1] Aarssen and de Haan, 1994).

Remark 2.4. Concerning the conditions in (2.10) in Theorem 2.1:

1. Since p' and 7 are unknown (2.10) may alternatively be written as

logz, =0(n),e>0 ify>0

(o —2n) " =0(n%),e>0 ify<0. (2.14)

2. In fact (2.10) is only required when np,, — 0 as n — oo.

3. Conditions (2.10) are equivalent to

. log p, B .
iy — 0 >0
i
A e — 0 <0
or, equivalently,
1
im —290n _ o ify >0 (2.15)
n—00 kO (n)
a0_7 .
im ———==0 ify<0 (2.16)
n—00 kO (n)

where ag, = ko(n)/(npn). Note that if v > 0, (2.15) implies (2.16); conversely if v < 0,
(2.16) implies (2.15). Therefore our optimal sequence satisfy condition (2.10) in [5] Dijk
and de Haan (1992).

Remark 2.5. Suggested by Bahadur-Kiefer representation we can see a correspondence be-
tween our result and optimal quantile estimation. Let the quantile estimator for a given ex-

ceedance probability p, be ([4] Dekkers, Einmahl and de Haan, 1989)

L : (2.17)

0 ) = X+ ()2

k



Assume the usual conditions, namely np, — ¢(> 0) and k& = k(n) such that k£(n)/n — 0 and
k(n) — oo, as n — oco. As referred in [5] Dijk and de Haan (1992) and subsequently analysed

in [8] Einmahl (1995), under similar conditions

\/E A na?ﬁl
a(}) ay(ay) Tpe(K) mon) and =N

have exactly the same asymptotic distribution, normal with mean value zero and variance (2.12)

((1 = pn(k)) = (1 = pn)) (2.18)

where, as z — oo,

z¥(logx)/y v>0
gy(z) ~ ¢ (logz)?/2  ~v=0
/v v <0

and a, = k/(npy). Later, in [9] Ferreira, de Haan and Peng (1999) the results on quantile
estimation in [11] de Haan and Rootzén (1993) were extended and the ko(n) minimizing the
as. E(Zp, (k) — z,)? was obtained. In the same way, Theorem 2.1 extends the ones in [5] Dijk
and de Haan (1992) on exceedance probability estimation. Moreover, the later equality in limit
distribution (2.18) still holds if we take in each case the k equal to the respective kg, the optimal
one that minimizes the asymptotic mean square error given in Theorem 2.1 on exceedance
probability estimation and the one given in Theorem 2.3 on quantile estimation ([9] Ferreira, de
Haan and Peng (1999)). Since

VE  qla)VE _ pi

a(P)ay(an) napt o c

(1+0(1)) (n — 00)

(where a(t) ~ ¢1t?, as t — 0o, with ¢; a real constant, from the second order regular variation
condition) we have that
v+1

as.E(pn (ko) _pn)2 ~ (pn

C1

2
) as.E(ip, (ko) — 4)*  (n — 00)

and so the minimization of the asymptotic mean square error with respect to k is exactly the

same in both cases.

Example 2.6. Generalized Extreme Value distribution. Let GEV; (z) = exp{—(1 + yz)~ 1/},
14+~vz >0,y € R Then U(t) = ((—log(l —1/t))™" — 1)/, t > 1, where lim; ,, U(t) =
xg = —1/y if vy < 0 and xyp = oo if v > 0. The second order parameter, p, equals -1 if
v # 1 and -2 otherwise. Possible choices for the auxiliary functions in the regular variation
conditions are a(t) ~ 7 and A(t) ~ (y — 1)t71/2 if v # 1; 72/6 if v = 1, as t — oo. Note that

lim; 00 (U (t) — a(t)/v) # 0. Hence, from (2.11) the asymptotic optimal rate may be calculated.



Example 2.7. Reversed Burr distribution. A random variable Y has Burr distribution function
with parameters 8, A and 7 if Fy(y) = 1 — /(B +y")*, y > 0, B, A\, 7 > 0. We shall denote
the distribution function of X = —Y ! by Reversed Burr distribution, say RBg ) -, which is
given by Fx(z) = 1 — B (B + (—z) ™), z < 0 = zg, B, A\, 7 > 0. This random variable
has been referred to in financial applications. The extreme value parameters are vy = —1/(\7)
and p = —1/A. Note that in order to properly use this model with the suggested methods
it must be shifted by a positive constant, say a, so that zg = a > 0. Therefore in this case
Ut) =a—p Yt/ —1)"Y7 ¢ > 1, and limy_,»o U(t) = zgp = a. Possible choices for the
auxiliary functions, in the regular variation conditions are a(t) = =7t Y7 /A7 and A(t) =

(14 7)t=Y*/A7, as t — co. Hence, from (2.11) the asymptotic optimal rate may be calculated.

3 SIMULATION RESULTS

For the simulations we use the distribution families presented in the examples in the previous
section, Generalized Extreme Value distribution and Reversed Burr distribution. Specifically
RBy42, GEV_1, GEV5 and GEV;. We opted by fixing two exceedance probabilities to be
estimated: 1/(nlogn) = .000010875 and 1/n = .0001. Then to each distribution function they

correspond to a different quantile given by,

—-1/7
_ _ - _
Ty = (= log(1 = pn)) 1—|—a and xn:—<—5)\—ﬁ> +a,
Y

n

for GEV, and RBg ) ;, respectively. The parameter a stands for a positive shift in the data
set, in order the sample be constituted of positive values. Three methods to estimate the
exceedance probability were considered: 1) (1.3) with & determined by the adaptive bootstrap
method, resumed in Appendix A; 2) (1.3) with k& equal to the intermediate sequence /n; 3)
empirical distribution function, by calculating the number of values in the sample greater than
the respective quantile. Of course the last approach is only used in the case p, = 1/n.

The simulation results are presented in tables 1 and 2 (see also figures 1, 2 and 3). They
are based on 100 independent simulations of samples of size n = 10000 of each distribution and
are resumed in terms of mean, root mean square error and n* (or n % ). In the first two cases,
1) and 2), n* equals the number of simulations with valid results in 100 (and so in this cases
the previous descriptive statistics and graphics use exactly these nx values). When using (1.3)

we distinguish the p, (k) = 0 case to be non-valid. In the bootstrap (for the technical details,



1 - bootstrap 2-k(n)=+yn
mean (x10*) rootmse (x10*) nx | mean (x10*) rootmse (x10%)  nx
GEV_; (a=4) .188 .255 86 180 227 86
RBy,4» (a=649) 223 244 48 224 250 74
GEV;5(a=2) 116 042 96 102 093 100
GEVi(a=1) .130 .060 82 144 120 100

Table 1: Estimation of p,, = 1/(nlogn), based on 100 independent repetitions of samples of size
n = 10000; nx is the number of valid simulations in 100.

1 - bootstrap 2-k(n)=+vn 3 - empirical d.f.

mean  rootmse n* | mean rootmse n* | mean  rootmse n x *

(x10%)  (x10%) (x10%)  (x10%) (x10%)  (x10%)
GEV_; (a=4) 105 .069 89 .093 .070 100 .087 .082 64
RBj 45 (a=649) .102 .064 67 105 .072 97 .102 .087 33
GEV5(a=2) .106 .037 81 .089 .051 100 .101 .093 67
GEVi(a=1) 113 .038 82 113 .061 100 124 119 71

Table 2: Estimation of p, = 1/n, based on 100 independent repetitions of samples of size

n = 10000; nx is the number of valid simulations in 100.

namely the explanation of the quantities k§(n1) and k§(n2), we refer to Appendix A) sometimes
happens to obtain kj(n;) less or equal to kfj(ns2), or the intermediate consistent estimate of p,,
involved in the algorithm is equal to zero, or l%o(n) is equal to 0,1 or it is greater than the sample
size; all of these also considered non-valid simulations. In 3), n * x denotes the number of non
zero estimates in 100 or, in other words, the number of samples with at least one observation
greater than the given x,.

In general we claim that the bootstrap procedure gave the most accurate results. Nonetheless

it involves more effort than the other two approaches.

4 PROOFS

We start giving some auxiliary Lemmas. The following one is part of Lemma 4.3 in [9] Ferreira,

de Haan and Peng (1999).

Lemma 4.1. Suppose condition (2.2) holds with p < 0. Then

Ulte)-U@®) v

lim a(D) 71— L _ 1
i A(t) P+
Proof. See [9] Ferreira, de Haan and Peng (1999). O
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Figure 1: Histograms, with area equal to 1, and boxplots of the estimates of p,, = 1/(nlogn).
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Lemma 4.2. Assume condition (2.2) holds with p < 0 and U(oo) > 0. Suppose that v # p.
Then
a(t)

T _
A =y e € oo
where
(0 ify<p
0 , _
T4 ify>—p

o -+ if 0 <y < —p and limy_,(U(t) —a(t)/y) =0
+o0 ifp<y<0

+oo if 0 <y < —p and limy_,o(U(t) —a(t)/y) # 0
[ *o© ify=—p.

Furthermore

logU(tx)—logU(t)  z7——1

a - 1
lim ®/U() v L ,
t—00 A(t) Pl -t V-

-t 1 - -1
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A(t) ifc=0
A(t) = Y+ — ;}((t) if c = +o00
pA(t)/ (v + p) ife=7/(y+p),

- if (0 <y < —pand lim(U(t) — a(t)/y) #0)
r_ Y ifp<vy<0 (4.2)
S if (0<7 < —p and Lm0 (U(t) - a(t)/7) = 0) '
ory<pory>-—p.

Proof. See [6] Draisma, de Haan, Peng and Pereira (1998). O

Let Y1,Ys,... be iid. random variables with distribution function 1 —1/y, y > 1. Then
U(Y1), U(Ys), ... are iid. F.

Lemma 4.3. Let

Méj) Uj (Yn—k,n)

Iy R A
with
I iy )
M) =+ ;{bg U(Yn-in) = logU(Yo-tn)},
1h=1-v,

1l =(1—-y)1—-2v-)/2.
Then under the conditions of Lemma 4.2, for k = k(n) — oo and k(n)/n — 0 (n — o0)

M= T2+ AT + ol ) + o, (A, =12

where (Py, Py) is normally distributed with mean vector zero and covariance matriz

n

k

EP} = iy
EP2 — 4(5—11y_)
2 (1*7—)2(1*27—)1(1*37—)(1*47—)

E(PiP) = e
and
dy=——1
L= 0500-72)
do — 2(3—2p —4y-)
27 T2y )T =) T=0=27-) °
Proof. See [9] Ferreira, de Haan and Peng (1999). O
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The following is a compilation of Lemmas 4.6-4.11 in [9] Ferreira, de Haan and Peng (1999).

In particular they state the consistency of the estimators 4, (k) and a(%).

Lemma 4.4. Under the conditions of Lemma 4.2 with p < 0, for k = k(n) — oo and k(n)/n —
0 (n — o0)

5 4 2 .
(k) _y (7—+— >M1+—M2+%A(E)

gl

Y ")/lllQ ’yl% k
with
0 ify<p
a(t)/U(t) — 5 7/9 if (limy 00 U () — a’(t)/’}/-l- =0
q%p:tlim~—+: and 0 <y < —p) ory > —p )
R ~1if (limysee U(t) — a(t) 7+ # 0 and 0 <y < —p)
orp<y<0ory=—p

d(%) lo + 4l 214 B n

=1+ My — — My + +o0,(A(-
a(%) l1l2 1 l% 2 ')’\/E p( (k))

with B a standard normal random variable, independent of (Py, P), and

~

b(z)-U(}) B 1 n

=—+4 +0,(A(+)) -
S = o) A
Proof. See [9] Ferreira, de Haan and Peng (1999).

O
Proof of Theorem 2.1. Let ap, = k/(np,). Then
7 _l/ﬁn(k)
k Tp — b(%)
p\nk‘ = — max 0, ].+',}\’nkT
(k) =~ { ( 0™
5 Y TU(%a,) — U(2) U2 = U(Y, kn —1/3n (k)
:EmaX{O, (1+77”(k) Cj’(ﬁ) [ (kan)n (k) I (k) n( k, )])}
n v ooalg) a(%) a(%)
which, by the previous Lemmas, for large values of n, has the same limit behaviour as
k An (k) a(%) [a;{—l ay—1 —1 n a)y —1 n
1+ - + A7) + o(A(~
n{ ! a(g) L v Y Pt ) gl (4G
B 1 n _l/ﬁn(k’)
—— 4 o0p(—=) + 0,(A(= . 4.3
ol +oa(] | (43)

The reasoning is divided in the two cases, v positive and ~ negative. First suppose v > 0.
Then a, " — 0 as n — oo and so (4.3) becomes

i (k) a(})
n{”” Y aly)

=
=S

D
=3
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[“%7_1 o (_ﬁA(%) +0(A(%))> - \% + Op(ik) + op(A(%))]} e _

Using the expansions given in Lemma 4.4 this becomes

k Iy + 4l 4 2, 2 B I~
—{1+7[1+<—!+7—+— >M1+<—1+—>M2—7—+MA(E)]
n lily v vhls 5 Y

3
ap —1 1 n n B n 1/ (k)
“ +a%(—7A—+oA— ) + 0,(A ]} :
E= A + oA ) - T+ o) + oA )
Since A(%) = Ly« p}A(%), after working out the multiplication we get

n
k

k B -n —1/9n (k)
( ) {a% + a,, [91M1 + oMy — T2 4 gy A(E ] }

npp Vk k)
. B -n 1/4m (k)
= Pn {a% HnF) (1 + g1 My + go M — 77% + 9314(%))} (4.4)
where g1, go and g3 are non zero real constants depending on «y and p'.
In the optimal case a%f%(k) must converge to one in probability. Note that the second factor

in the main brackets converges to one. In fact, we know that there exists a sequence k = k(n)

—mk) g (n — o0) in probability: take for ky(n), for example, the optimal one in

such that ay,
tail index estimation (for this sequence we have 4, (ko) — v = O((ko(n))~"/?) and log ag, /vko=
log(ko/(npn))/Vko — 0 - for the later see Remark 2.4.3.). Note that the power —1/4, (k) has no

~m (k) —1

influence since —1/4,, (k) — —1/7 (n — 00) in probability. Therefore, as n — oo, if a;,
then (a,, n k) _ 1)/((y — An(k)) log a,) — 1 in probability and so, at least in the optimal case,

the second factor in (4.4) does not contribute asymptotically. Hence the simplified expansion

Pu AL+ (7 = () log a + o(y — A (K)) log an)} /70 .

Disregarding terms of smaller order, we get

S — 9 oga
pn{l ¥ (k) (v = An(k)) log n}

or,

Pn
Pn — 7(7 'Yn(k)) log a;, .

Hence, as n — oo,

vYas.E(pn(k) — pn)® ~ pi(logan)’E(y — An(k))?

k var N, oy
2 2 Yoo 2 w2 (T2
~ p; (log npn) ( ? + bias?, ;¢ (E) ”)
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where var, and bias, y are from the representation in Lemma 4.4; they are known constants
calculated from the covariance matrix given in Lemma 4.3. Thus taking the derivative with
respect to k in the last expression and equating it to zero, one gets the result. For more details
see [9] Ferreira, de Haan and Peng (1999), e.g. proof of Proposition 4.12.

Next suppose v < 0. Then a;, — 0 as n — oo and so, by Lemma 4.4 relation (4.3) leads to

k 4 2 I -
E{1+7[1_ M1+—M2+q7”’1A(ﬁ)]

vlila VI3 Y k
lo + 414 201 B n
- My + XMy — v 1 0, (A2
- B D)
ay —1 1 n. B 1 L/ Am (k)
" )= L o)+ oy(4 ]}
S A — T o)+ opA)
or
k Iy +4l, 4 2, 2 1 n g in ) "
Yla M- (2 Ay Tt g
”{an+< lls +’Yl112> (l% i l%) 2+P+7 (k) Y (k)
Since A(%) = l{y<,} A(%) one may simply write
k < n )~ 1/ (k)
o v b
Pn (npn> {a‘n + gaMy + gs M> +96A(k)}
= Pn {cﬂ*%(’“) + a, (F) (94M1 + g5 Mo + gsfl(ﬁ)> }_l/%(k)
n n k
4 _4 <m0\ Y~/ An(k)
= pa {1+ (@7® = 1) 407" ® (M1 +g5Mz + g A() ) |
where g4, g5 and gg are non zero real constants depending on v and p’.
Next we prove that
a’Y_'AYn(k) -1
= -0  (n— o0) (4.5)

an ") (94M1 + g5 M> + 96;1(%0

in probability. Note that v —4, (k) = Op (94 M1 + g5 M> —i—ggfl(%)). Therefore (4.5) is of the same

order as
a%*ﬁ’n(k) 1 a% o azn(k)
an"® (v 4 (k)| | 7= (k)

s| < (log ay)a@>*mk)) 5 0 as n— oo .
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Hence the numerator in (4.5) is of smaller order than the denominator, and so (4.3) simplifies

to
. - n —1/4n (k)
Dn {1 + aﬁ%(k) (94M1 + g5Ms + gGA(E)>} . (4.6)

In the optimal case a,, n (k) (g4M1 + g5 Mo + gwi(%)) must converge to zero in probability
and in fact there exists a sequence such that this holds (for example take the optimal one in tail
index estimation together with condition (2.10) ). So, expanding (4.6) again we get, neglecting

terms of lower order,

an | ~n
Pn {1 - %?k) (94M1 + g5 M + geA(—))}

o

or,

o ~ N
Pn — %aTﬂ <g4M1 + g5M2 + ggA(%)> .

Hence, as n — oo,

2
" _ ~ N
as.E(pn(k) —pn)* ~ E [%%7 (94M1 + g5 M + QGA(E))]

2
~ (@:1) (%)27E <94M1 + g5 M> +96A(%)>2

() @ (st )

where var, and bias, , come from the representation in Lemma 4.4; they are known constants

calculated from the covariance matrix given in Lemma 4.3. Thus taking the derivative with
respect to k in the last expression and equating it to zero, one gets the result. For more details
see [9] Ferreira, de Haan and Peng (1999), e.g. proof of Proposition 4.12. Note that in order to

assure that a minimum is in fact attained one must assume the extra condition y > —1/2. O

A ADAPTIVE BOOTSTRAP ON EXCEEDANCE PROBA-
BILITY ESTIMATION

Without going into details, we remark that theoretically the adaptive bootstrap method to
estimate the optimal rate is still valid on exceedance probability estimation. The proof follows
the same line as in, e.g., [6] Draisma, de Haan, Peng and Pereira (1998) on extreme value index

estimation and [9] Ferreira, de Haan and Peng (1999) on endpoint and high quantiles estimation.
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The main step is Theorem 2.1 in section 2. In the following we shall just give the main steps
necessary to implement it.
In order to use the bootstrap method an alternative estimator to the exceedance probability

must be taken. We still use (1.3) but with

(D)2 r(2)
. 2 Mp "My |
Talk) = M2 2 41— (1= =), (A1)

in place of (2.6). Note that a similar substitution must be done in (2.7). For MY just take
4 =3 in (2.8). Denote this alternative estimator of the exceedance probability by p, (k). Then
we need the asymptotic variance and bias of the random variable vk (7 (an)/pp ) (pn (k) — b, (k)

where r,(a,) is the same as in (2.4). Following a similar reasoning as in the proof of Theorem

2.1 one gets
1+72
o ,v>0
vary = { 4(1—7)2(1—67—1—3572—7873—1—7274) <0 (A.2)
T2 (T=27)(1-37)(1-)(1-57)(1-67) 7
and
p [ fry—ryp!
i 70

2—127+2292 1293 —5p' +227p' —2172p' +6p' 2 —127p' 2 =22
2y(1—y)(I1—y—p")(1-2v—p")(1-3y—p')

e —2414y—3472+34v% —127* 469’ —30vp' +46+2p’ —22+3 A

10y, = 29 (1—9) (-7 )(1—29—p )(1—37—p )/ A1) (1—27) (A-3)

—6p"+187p"" —12v%p'*+2p'% —27p'®

0
(== (== (13- 2y P <7<
(1=y)p’ <
\ 29(1—y—p)(1—27—p")(1-37—p") VS P

The bootstrap procedure follows: Step 1) Select randomly and independently ny times (ny =
O(n)) a member from the sample {X1, X5,...,X,}. Indicate the result by X{,X5,... X} .
Form the order statistics X7, < Xj, <.--<Xp; . and compute the quantities p, (k) and
P, (k). We denote the resulting quantities by p* (k) and p. (k) for k = 1,2,...,n; — 1. Form
Gk = (pr (k) — ﬁ;(k))2 on the basis of these bootstrap estimators; Step 2) Repeat step 1 r

times independently. This results in a sequence I, ks k=1,2,...,n1 —1land s =1,2,.

Calculate % =) Uy ks 5 Step 3) Minimize Iqu k,s With respect to k but reject values which

s=1
are very small or very near to n;. Denote the value of k where the minimum is obtained by & (n1);

Step 4) Repeat step 1 up to 3 independently with the number n; replaced by ns = (n1)?/n. So

ng is smaller than n;. This results in kj(ng); Step 5) Calculate

ko(n) = (k5 (n1))* vary bias

ki(n2) vars bzas

18



with 4 any consistent estimator of v (we have used (1.3) with & = \/n) and, p' = p;,, (kj) =

log k& (n1)/(—2log ny + 2log k%(n1)) a consistent estimator of p'. This ko(n), which is obtained

adaptively, is asymptotically as good as the optimal number of order statistics in (2.11).

Acknowledgments. The author gratefully acknowledges Prof. Laurens de Haan for his support

throughout the work presented in this paper.

References

[1]

[2]

3]

[4]

[9]

[10]

[11]

[12]

[13]

[14]

Aarssen, K. and de Haan, L. (1994). On the maximal life span of humans. Mathematical Population
Studies 4, 259-281.

Danielsson, J., de Haan, L., Peng, L. and de Vries, C.G. (1997). Using a bootstrap method to choose
the sample fraction in tail index estimation. J. Multivariate Analysis, to appear.

Davis, R. and Resnick, S. (1984). Tail estimates motivated by extreme value theory. Ann. Statist.
12, 1467-1487.

Dekkers, A.L.M., Einmahl, J.H.J. and de Haan, L. (1989). A moment estimator for the index of an
extreme-value distribution. Ann. Statist. 17, 1833-1855.

Dijk, V. and de Haan, L. (1992). On the estimation of the exceedance probability of a high level.
In: P.K. Sen and I.A. Salama, Eds., Order Statist. and Nonparametrics: Theory and Applications,
North-Holland, Amsterdam, 79-92.

Draisma, G., de Haan, L., Peng, L. and Pereira, T.T. (1998). A bootstrap-based method to achieve
optimality in estimating the extreme-value index. Eztremes, to appear.

Einmahl, J.H.J. (1990). The empirical distribution function as a tail estimator. Statistica Neerlandica
44, 79-82.

Einmahl, J.H.J. (1995). A Bahadur-Kiefer Theorem beyond the largest observation. J. Multivariate
Analysis 55, 29-38.

Ferreira, A. de Haan, L. and Peng, L. (1999). Adaptive estimators for the endpoint and high quantiles
of a probability distribution. Technical Report, EURANDOM, Technical University Eindhoven.

Gnedenko, B.V. (1943). Sur la distribution limite du terme du maximum d’une série aléatoire. Ann.
Math. 44, 423-453.

de Haan, L. and Rootzén, H. (1993). On the estimation of high quantiles. J. Statistical Planning
and Inference 35, 1-13.

de Haan, L. and Stadtmiiller, U. (1996). Generalized regular variation of second order. J. Australian
Math. Soc. (Series A) 61, 381-395.

Hall, P. and Weissman, I. (1997). On the estimation of extreme tail probabilities. Ann. Statist. 25,
1311-1326.

Smith, R. L. (1987). Estimating tails of probability distributions. Ann. Statist. 15, 1174-1207.

19



