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Abstract

We present a new, natural way to construct nonparametric multivariate tolerance regions.
Unlike the classical nonparametric tolerance intervals, where the endpoints are determined
by beforehand chosen order statistics, we take the shortest interval, that contains a certain
number of observations. We extend this idea to higher dimensions by replacing the class of
intervals by a general class of indexing sets, which specializes to the classes of ellipsoids,
hyperrectangles or convex sets. The asymptotic behaviour of our tolerance regions is
derived using empirical process theory, in particular the concept of generalized quantiles.
Finite sample properties of our tolerance regions are investigated through a simulation
study. A real data example is also presented.
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1 Introduction

Several practical statistical problems require information on the distribution itself rather than
on functionals of the distribution like, e.g., mean and variance. For example, in life testing
of new products it is required that a certain percentage of sold products will not fail before
the end of the warranty period. There are many other examples of this kind in various
fields, such as reliability theory, medical statistics, chemistry, quality control, etc. (see e.g.,
Aitchison and Dunsmore (1975)). The statistical literature provides tolerance intervals and
regions as a solution to these problems. Starting with Wilks (1941), many papers on this
topic have appeared. The monographs Aitchison and Dunsmore (1975) and Guttman (1970)
provide thorough overviews of the literature, while extensive bibliographies can be found in
Jilek (1981) and Jilek and Ackermann (1989). Although there is a vast literature on the
two types of tolerance regions (guaranteed coverage and mean coverage in the terminology
of Aitchison and Dunsmore (1975) or S-content and S-expectation in the terminology of
Guttman (1970)), statistics text books, both the mathematically and the engineering oriented
ones, hardly deal with this topic explicitly. This is surprising since prediction regions are in
fact B-expectation/mean coverage tolerance regions. We refer to the introduction of Carroll
and Ruppert (1991) for useful remarks on this issue, in particular on when to use which type
of tolerance region. In case tolerance regions are mentioned in text books, the treatment is
often confined to tolerance intervals for the normal distribution. In practice, however, one
often encounters situations where the data are not normally distributed or univariate. In
order to deal with the first problem, nonparametric tolerance intervals are used. The idea,
which first appeared in the seminal paper Wilks (1941), is to consider intervals with two
order statistics as endpoints. It is important to note that it is decided beforehand which order
statistics to take.

In the spirit of the shorth (see e.g. Rousseeuw and Leroy (1988), Griibel (1988)), we pro-
pose a new approach to nonparametric tolerance intervals by taking the shortest interval that
contains a certain number of order statistics. Surprisingly, the asymptotic theory concerning
content (or coverage) is the same as for the classical procedure, although obviously by defi-
nition our intervals are not longer, and often much shorter. A problem with nonparametric
techniques in higher dimensions is that there is no canonical ordering. In order to overcome
this problem, essentially one-dimensional procedures such as statistically equivalent blocks
were developed to construct multivariate tolerance regions (see Wald (1943), Tukey (1947,
1948), Fraser (1953) and more recently Ackermann (1983)). From a statistical point of
view, there is much arbitrariness in these procedures, since they depend on auxiliary ordering
functions. Moreover, they are not necessarily asymptotically minimal (see Chatterjee and
Patra (1980)). Instead, one would like to have a genuine multivariate procedure, that is not
based on ordering the data. In Chatterjee and Patra (1980) a procedure is presented based
on nonparametric density estimation, which yields asymptotically minimal tolerance regions.
Our procedure is inspired by empirical process theory and extends to higher dimensions in a
natural way. It avoids the choices that have to be made when estimating densities. On the
other hand, we have to choose an indexing class to parametrize our empirical process, which
however has the advantage that we can choose the shape of the tolerance region. We will show
that our procedures are asymptotically correct, in contrast to those in Chatterjee and Patra
(1980) where only asymptotic conservatism is shown. Our tolerance regions are asymptoti-
cally minimal with respect to the indexing class and have desirable invariance properties. In
medical statistics, multivariate tolerance regions based on data from, e.g., blood counts, can



be used for screening of patients. In this paper, we will illustrate our approach by computing
tolerance regions for bi- and trivariate observations in such a situation. Multivariate tolerance
regions can be applied in several other fields. E.g., in statistical process control a multivariate
approach to capability studies (which, if properly conducted, should be based on tolerance
regions) is highly desirable, when various quality characteristics are taken into account.

This paper is organized as follows. Section 2 reviews some background material, while
Section 3 contains the main results. In Section 4 we study the finite sample properties of
our tolerance regions through simulations and apply the methods to a real data example.
Section 5 contains the proofs of the results in Section 3.

2 Preliminaries

Below we specify our setup and notation. We also state some preliminary results for convenient
reference later on. Let Xi,...,X,, 7 > 1, be i.i.d. R*-valued random vectors defined on a
probability space (§2, F, IP) with a common probability distribution P, absolutely continuous
with respect to Lebesgue measure, and corresponding distribution function F. Let B be the
o-algebra of Borel sets on R* and define the pseudo-metric dy on B by

do(.Bth) = P(BlABQ), for B1,B; € B.

Denote by P, the empirical distribution:

1 n
Py(B)=—3 Ip(Xi), BEB,

i=1

where Ip is the indicator function of the set B.

Let £ be the class of all closed ellipsoids A in R*. Fix ¢y € (0,1) and C € IR. Set
pp =1+ % For n large enough, we need existence and uniqueness of an ellipsoid A, 4,,c € €
of minimum volume such that P,(Ap t,.c) 2 Pa, almost surely. In other words, Ay, ¢, ¢ should
contain at least [np,] observations. The sets Apy, c are our candidate tolerance regions.
The existence and a.s. uniqueness of such an ellipsoid A, ¢, c was proved in Davies (1992).
There are between & + 1 and k(k + 3)/2 points on the boundary of Ay ;, ¢ in dimension k
(see Silverman and Titterington (1980)) and hence,

to + % < Pa(Angy,c) <to+ % + ﬁ(ﬁ%:;) a.8. .
However with some more effort it can be shown that a minimum volume ellipsoid that contains
at least m out of n points, contains ezactly m points, a.s. (see Lemma 3 at the end of Section
5). This result seems not to be present in the literature. It yields that

(1) Pr(An g 0) = %l-n (to + -—%) -‘ a.s. .

Let R be the class of all closed hyperrectangles with faces parallel to the coordinate axes. It
is easy to adapt the proof of Davies (1992) to R. Hence, there exigts an a.s. unique smallest
volume hyperrectangle A, :, c € R, with P,(Ang, c) > pn- Since with probability one, all
hyperplanes parallel to the coordinate axes contain at most one observation, the equality in
(1) holds here too.
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Figure 1: Uniqueness of minirnum area convex set.

Consider now the existence and a.s. uniqueness problem of A, ;, ¢ for C, the class of all
closed convex sets in IR% It is a well-known fact that the convex hull of X = {X),... , X} is
a bounded polyhedral set in IR? (i.e., a bounded set which is the intersection of finitely many
half-planes, see e.g., Webster (1994), Theorem 3.2.5), and thus a polygon. Since the convex
hull of X is the smallest (with respect to set inclusion) convex set containing &X', it follows
that the closed convex hull of A is the a.s. unique smallest area closed convex set containing
&. As the number of subsets of & is finite, the existence of a smallest area convex subset
containing [np,] points from X is assured. Hence, it is left to show that with probability 1,
any two different convex hulls of subsets of the sample will have different areas. Suppose we
have two sets of vertices {X;,,... ,X;,} and {X;,...,X; }, 3 < £ k < n with convex hulls
A; and Aj, respectively. Without loss of generality we assume that X, is a vertex of A;, but
not of Az. If we condition on {Xj,...,X,}, then we have to show that for any positive v

2) P{X;:V(4) =v]| Xs,... ,Xn} =0,

where V(A,) denotes the area of A;. Since 4, is convex, X lies in the interior of the triangle
Xi,0X;, (see Figure 1), for any neighbouring vertices X;, and X;,. As the area of A, is fixed,
X, can be only on some interval parallel to X;, X;,. (Actually, we assumed 5 < £ < n, but
a similar argument works for £ = 3 or £ = 4.) Hence, we see that (2) holds. Finally, it is
obvious that (1) holds for C.

Remark 1 Observe that unlike for the classes above, the minimum volume problem has no
unique solution for the case of all hyperrectangles in IR*. Consider a random sample of size
n in, e.g., IR%. Then with positive probability, there are 3 sample points that form an acute
triangle such that the remaining n — 3 sample points are in the interior of that triangle. In
this case, there are 3 minimal area rectangles that contain the sample.

Here are some more definitions and results. By the Blaschke Selection Principle (see e.g.
Webster (1994), Theorem 2.7.10), every sequence of non-empty compact convex sets contained
in a compact subset of IR* has a subsequence that converges in the Hausdorff metric to some
non-empty compact convex set in IR*. By Shephard and Webster (1965), the Hausdorff and
the symmetric difference metric d(A4, B) := V(AAB), wheére V' denotes volume (Lebesgue
measure), are equivalent on the class of all compact convex subsets of IR* with non-empty
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interior. Hence, we have convergence in the Hausdorff metric if and only if we have convergence
in the symmetric difference metric d.
Define for any class A C B:

Fuy) = i‘éﬂ{P"(A)‘ V(4) <y}

F(y) = sup{P(A): V(4) <y}, y>0,
AcA

and introduce as in Einmahl and Mason (1992) the generalized empirical quantile and quantile
functions, based on P, V and A by

Un(t) = imf{V(4): Pa(4) 21},
Uuft) = jgi{V(A)= P(A) > t}, t€(0,1);

set U(t) =0 for ¢t <0, and U(t) = limyy U(s) for ¢ > 1.

3 Main results

In this section we present the asymptotic results on our tolerance regions. Recall the notation
of Section 2. Let A be a class of Borel-measurable subsets of JR*. (We assume that .4 is such
that no measurability problems occur.)

Theorem 1 Fiz ty € (0,1) and let C € IR. Assume the following conditions are fulfilled:

C1) A is P-Donsker: /n(P, — P) converges weakly on A (in the sense of Dudley (1978)) to
a bounded, mean zero Gaussian process Bp; Bp is uniformly continuous on (A,dy) and has
covariance function P(A; N Ap) — P(A)P(Az), A1, A2€ A,

C2) With probability 1, there exist a unigue set Ansy.c € A with minimum volume end

C
Pn(An,to,C) >+

v’
C3) Asn — oo,

C 1
Pallngoc) =to+ = +0( 7)) e,

C4) Ay, the set in A with minimum volume and P(A,,) = to, exists, is unique, and

d(Anto,c, Aty) =+ 0 a.s. (n— 00).

Then we have

(3) Valts = P(Ango,c)) + C -2 Zo/lo(1 —tg) (n — o0),

where Z i3 a standerd normal random variable.



The following theorems, which are corollaries to Theorem 1, are actually our main general
results about tolerance regions. In fact, we will show that the sets Apy,,c, for suitable
C, are asymptotic tolerance regions. Theorem 2 gives the result for guaranteed coverage
tolerance regions, whereas Theorem 3 deals with mean coverage tolerance (or prediction)
regions. We show that the guaranteed coverage tolerance regions have indeed asymptotically
the correct confidence level, whereas the mean coverage tolerance regions have the correct
mean coverage with error rate o(1//n). These results are new and of interest in any finite
dimension, including dimension one. The numbers ¢y and 1 — o denote the (desired) coverage
and confidence level, respectively.

Theorem 2 Fiz a € (0,1) and let C = C(a) be the (1 — c)-th quantile of the distribution of
Z\fto{1 —to). Under the conditions of Theorem 1 we have

(4) nli’ngo P{P{Aps,c) >t} =1-c.

Theorem 3 If the conditions of Theorem 1 hold and \/ni(ty — P(Anto,0)) is uniformly inte-
grable, then BT :

(5) EP(Apt,0) =t +o (%) , M- 00.

Note that EP(Anz,,c) — to, 1 — 00, for every C € R.

In the final theorem, we will specialize our general results to three natural and relevant
indexing classes, which satisfy the conditions of the above theorems. From the point of view
of applications, this is the main result of the paper. In the sequel, .4 will be one of the
following classes: all closed

(a) ellipsoids,
(b} hyperrectangles with faces parallel to the coordinate axes,
(c) convex sets (for k = 2)

that have probability strictly between 0 and 1.

These classes of sets are very natural for constructing nonparametric tolerance regions.
The class of ellipsoids in (a) is a good choice, since elliptically contoured distributions are
considered to be natural and important in probability and statistics. The multivariate normal
distribution is of course a prominent example. One should choose the parallel hyperrectangles
of (b) as indexing class, if it is desirable, like in many applications, to have a multivariate
tolerance region that can be decomposed into (easily interpretable) tolerance intervals for
the individual components of the random vectors. The convex sets of (¢), which reduce to
tolerance regions that are convex polygons, are very natural, since when taking the convex
hull of a finite set of data points, one hardly feels the restriction due to the underlying indexing
class.

Theorem 4 Fizty € (0,1). If the density f of the distribution function F is positive on some
connected, open set S C IR* and f = 0 on RF\S, and if Ay,, the set in A with minimum
volume and P(Ay) = to, ezists and is unigue, then we have for the cases (a) and (b) that
(3),(4) and (5) hold. ' ) o

If k =2 and, in addition, f is bounded, then (3),(4) and (5) also hold for case (c).
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Remark 2 Theorem 4 is valid under very mild conditions. In particular, there are no smooth-
ness conditions on the density f. The uniqueness of At,, however, is crucial for the results
as stated. If it is not satisfied the results can be substantially different. On the other hand,
uniqueness of Ay, is a mild condition and holds for many (multimodal) distributions.

Note that it is well-known, see e.g. Dudley (1982), that for dimension 3 or higher there is
no weak convergence of the empirical process indexed by closed convex sets, since this class of
sets has a too large entropy. (Actually the supremum of the absolute value of this empirical
process tends to infinity, in probability, as n — 00.) This means that for this case Theorem
4, if true at all, can not be proved with the methods presented in this paper.

Remark 3 Since our general tolerance regions Ay 4, ¢ converge in probability to A,,, they are
asymptotically minimal with respect to the chosen indexing class. That means, e.g. for case
(a), that no tolerance ellipsoids can be found the volume of which converge to a number smaller
than V(A,). It is well-known that under weak additional conditions (see, e.g., Chatterjee
and Patra (1980)) there exists a region of the form {z € R*: f(z) > c}, for some ¢ > 0, that
has probability ¢y and minimal Lebesgue measure. Such a minimal region is unique up to sets
of Lebesgue measure 0. If the above level set belongs to the indexing class we use, then our
tolerance regions are asymptotically minimal (with respect to all Borel-measurable sets).

At a finer scale, it seems possible to prove (under additional conditions) along the lines of
Einmahl and Mason (1992) that in fact V{Apn,,,c) = V(Ay,) + Op(n=1/2),

Remark 4 It is rather easy to show that the tolerance regions of Theorem 4 have desirable
invariance properties. For cases (a) and (¢) the tolerance region Apto,c is affine equivariant,
Le. for a nonsingular k x k matrix M and a vector v in IR, we have that M A, s, ¢ +v is the
tolerance region corresponding to the M X; +v. (Here M. Anto,c = {Mz: 2z € Ay, c}.) Since
case (b) deals with parallel hyperrectangles, this property does not hold in full generality for
this case, but it does hold when M is a nonsingular diagonal matrix, which means that we
allow affine transformations of the coordinate axes.

Remark 5 Let m > 1 be an integer and let A C B be the class consisting of

(a’) unions of m closed ellipsoids,

(b’) unions of m closed parallel hyperrectangles, or

(¢} unions of m closed convex sets, contained in a fixed, large compact set (for k = 2),

with probability strictly between 0 and 1, respectively. Note that a minimum volume set
Ay to,c consists of at most m ‘components’ and that some of these components may have an
empty interior. Note as well that now a minimum volume set Ag to,c need not be almost surely
unique, hence C2) is not satisfied, but we still have the second part of C4) of Theorem 1,
which yields ‘asymptotic uniqueness’. Since also C1), the ‘existence part’ of C2), and C3) are
satisfied we see that Theorem 4 remains true when replacing the cases (a}, (b) and (c) by (a’),
(b} and (c’), respectively. This can be relevant for multimodal distributions. However, often
the indexing classes of cases (a), (b) and (c) suffice, since in many (multimodal) situations
the smallest closed set having probability ¢y, is a ‘nice’ connected set, because tg is typically
close to 1. Note that Remark 4, mutatis mutandis, holds true for the classes defined in (a’),
(b’} and (¢’).



4 Simulation study and a real data example

First we present results on the finite sample behaviour of our tolerance regions through sim-
ulations. Each simulation consisted of 1000 replications. Note that the asymptotic behaviour
of our tolerance regions does not change if we vary the number of observations in the tolerance
regions within o (y/n). However, even for the classical tolerance intervals, the finite sample
behaviour is very sensitive to the actual number of used order statistics (see Table 1).

number of order siatistics 93 94 95 96 97
confidence level 67.9% | 79.3% | 88.3% | 94.2% | 97.6%

Table 1: Sensitivity of classical 90% guaranteed coverage tolerance intervals with n = 100.

Simulations showed a similar sensitivity for our tolerance regions. Moreover, including
exactly [np,] observations we obtained slightly too low coverages, resulting in too low sim-
ulated confidence levels. Since the boundary of a tolerance region has probability zero, we
decided to add the number of points on the boundary of our tolerance regions to {np,].

For the classical tolerance intervals, we of course used an exact calculation, based on the
beta distribution, for the number of observations to be included. These intervals were chosen
in such a way that the indices of the order statistics that serve as endpoints are (almost)
symmetric around (n + 1)/2. We thus expect our tolerance intervals to be substantially
shorter for skewed distributions, as they automatically scan for the interval with highest
mass concentration. As mentioned above, we added 2 observations when constructing our
tolerance intervals. Tables 2 and 3 contain our simulation results for guaranteed coverage and
mean coverage tolerance intervals.

distribution sample size simulated confidence level | average length
P classical new classical | new

300 95.7% 93.3% 361 | 357

standard normal 1000 95.3% 90.5% 346 | 3.43
300 95.8% 94.2% 189 | 183

standard Cauchy | 459 96.4% 93.2% 153 | 14.9
—— 300 95.3% 96.8% 331 | 2.3
P 1000 94.6% 96.9% 3.11 2.50
300 96.2% 97 5% 284 | 146

Pareto(1) 1000 95.1% 96.0% 928 | 112
) 300 95.8% 94.3% 110 | 10.0
chi-square(5) 1000 95.2% 92.6% 104 | 942

Table 2: 90% guaranteed coverage tolerance intervals with confidence level 95%.

These tables show very good behaviour of our tolerance intervals. In particular, for the highly
skewed distributions they perform much better with respect to length; e.g., for the Pareto
distribution the length is reduced with 50%. In general, we see that the asymptotic theory
works well.



distribution T simu_lated coverage | average length
classical new classical | new

standard normal 300 90.0% 89.0% 3.31 3.24
1000 90.0% 89.5% 3.29 3.26

300 90.1% 89.5% 13.6 12.7

standard Cauchy | 50 90.0% | 80.6% | 129 | 124
. 300 90.0% 90.0% 2.98 2.35
b 1000 90.0% | 90.0% | 296 | 2.32
Pareto(1) 300 90.1% 90.1% 20.5 9.71
1000 90.1% 90.0% 19.5 9.22

chi-square(5) 300 90.0% 89.4% 10.0 8.91
1000 90.0% 89.7% 9.97 8.92

Table 3: 90% mean coverage tolerance intervals.

Table 4 gives simulation results for mean coverage rectangles with sides parallel to the
coordinate axes. We included 4 extra observations in all cases, i.e. we used 274 observations
for n = 300 and 904 for n = 1000. We simulated from the following distributions:

e bivariate standard normal with mean (J) and covariance matrix (} {

¢ bivariate half-normal with density f(z,y) = % e‘%(£2+92), T,y 20

» bivariate Cauchy distribution with density f(z,y) = % (1+2%+4%) 8/

» bivariate exponential (1,1) distribution with density f(z,y) =e~@+¥, £,y >0

e bivariate pyramid distribution with density f(z,y) = Wc‘“’""yn; see Figure 2
below.

-1

Figure 2: Bivariate pyramid density.

From this table, we again see that our tolerance regions perform well: the coverages are close to
90%, but slightly too low. This effect is caused by the minimum area property of our tolerance
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sample size

300 1000
bivariate normal 87.7% | 88.7%
bivariate half-normal | 88.3% | 88.9%
bivariate Cauchy 86.2% | 86.3%
bivariate exponential | 88.5% | 89.0%
bivariate pyramid 86.4% | 87.1%

distribution

Table 4: Simulated coverages of 90% mean coverage tolerance rectangles.

regions, and has a drastic impact on the confidence level of guaranteed coverage tolerance
rectangles. Therefore, we do not present simulation results for those rectangles. However, a
better performance of the mean coverage tolerance rectangles is possible by including more
observations.

We have also performed simulations for tolerance hyperrectangles in IR3, from the following
trivariate distributions:

.. . 0 . . {100
e trivariate standard normal with mean (g) and covariance matrix (3 % (l))

e trivariate half-normal with density f(z,y,2) = (%)3/2 e_%(”zﬂzﬂz), z,94,2>0

o trivariate Cauchy distribution with density f(z,y,2) = 3z (1 +2* +3* + 22)72
e trivariate exponential distribution with density f(z,y,2) = e~ @) p oy 2 >0

In Table 5 simulation results for the mean coverage hyperrectangles for n = 300 are presented.
Here we included 6 extra points. Hence for the 95% mean coverage tolerance regions 291 data
points were included. As is clear from this table the results are again very good. Replacing
90% (Table 4) by 95% seems to improve the asymptotics, as could be expected. We chose
95% here, not to improve on the coverage, but to speed up the computations; now the number
of points that have to be excluded is substantially less (9 against 24).

distribution simulated coverage
trivariate normal 93.6%
trivariate half-normal 94.1%
trivariate Cauchy 94.8%
trivariate exponential 94.2%

Table 5: Simulated coverages of 95% mean coverage tolerance hyperrectangles.

We give a brief description of the algorithm that was used for computing the minimum
area parallel rectangles, which led to Table 4. This algorithm can be easily extended to
one for minimum volume hyperrectangles; this was used for Table 5. The basic idea is that
since tolerance regions typically have a coverage of 90% or 95%, it is the outermost points
that determine the minimum area rectangle. As we have to find the smallest rectangle over
[npn] + 4 observations from {{X1,Y1),... ,{Xn,Ya}}, we ‘peel’ our data r + 1 times, where



r ;= n — [np,] — 4. Each peeling consists in removing the boundary observations of the
smallest rectangle over the remaining observations. Save the peeled observations in the set
P and let £ be the cardinality of P. Denote the order statistics of the y-coordinates of the
elements of P by Yj.¢, j = 1,... ,£. The horizontal sides of the minimum area rectangle can
lie only on the lines y = Yy and y = Yyryi—1.¢, where j=1,... ;r+landi=j,... ,r+ 1.
For each fixed ¢ and j, there are n — r — j + i sample points (including two observations on
the horizontal sides) between y = Yj., and y = Yp_r1;_1... Hence, for each i and j we can
construct i — j +1 rectangles containing exactly [np, ]+ 4 points such that horizontal sides lie
on y = Y}, and ¥ = Yz_r4i—1:¢, and the vertical sides each contain an observation. Find the
minimum area rectangle R;; in this set. The final minimum area rectangle is the minimum
area rectangle among the R;;’s.

Given the discrete nature of the empirical measure and the aforementioned sensitivity
of tolerance regions it can be, in particular when the density f is smooth, that a smoothed
version of the empirical measure yields somewhat better tolerance regions than the ones
presented in Section 3. We will briefly consider this here and will restrict ourselves to the
one dimensional situation and guaranteed coverage tolerance intervals. It can be shown, see
e.g. Azzalini (1981), Shorack and Wellner (1986), Section 23.2, and van der Vaart {1994},
that an integrated kernel density estimator (B,, say) as an estimator for the probability
measure yields the same limiting behaviour as in Section 3, when the bandwidth is chosen
to be K/n'/3, K € (0,00). So asymptotically, in first order, there is no difference between
the two procedures, i.e. Theorem 2 holds true, when A, 4, ¢ is based on B, instead of on P,.
However, for finite n it may be that a ‘smoothed procedure’ works better. We investigated
this through a simulation. Table 6 gives the resuits. We chose the Epanechnikov kernel
(with support [-1,1]) and K = 1/5S, with S the sample standard deviation, as suggested
in Azzalini (1981). Since P, is absolutely continuous we did not add the 2 observations as
indicated above.

distribution sample size | simulated conf. level | average length
standard normal 300 92.6% 3.58
1000 92.7% 3.44
: 300 96.4% 0.98
chi-square(5) 1000 o 050
300 94.5% 415
beta(5,10) 1000 o o
logistic 300 93.4% 6.51
g 1000 03.1% e
300 93.6% 4.52
Student-t(5} 1000 ot s

Table 6: ‘Smoothed’ 90% guaranteed coverage tolerance intervals with confidence level 95%.

This table shows excellent behaviour of the ‘smoothed’ tolerance intervals. We see indeed
that there is some evidence that, when the underlying density is smooth, our procedures can
be somewhat improved by properly smoothing the empirical.

All simulations were performed on a SunSparch and SunUltral0. Simulations in dimen-
sions one and three were performed using the statistical packages of the computer algebra
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system Mathematica. The (two-dimensional) rectangles algorithm was implemented in C++,
which was linked with a Mathematica notebook where data were generated and coverages were
computed. The computation for one replication (including the coverage computation) with
n = 1000 took at most 6 seconds. QOur simulations procedures for parallel hyperrectangles
can easily be extended toc dimengions 4 and higher.

As mentioned before medical statistics is one of the fields where tolerance regions are
used. Here we illustrate our theory with an application to Leukemia diagnosis. Leukemia is
a cancer of blood-forming tissue such as bone marrow. The diagnosis of Leukemia is based
.on the results of both blood and bone marrow tests. There are only three major types of
blood cells: red blood cells, white blood cells and platelets. These cells are produced in
the bone marrow and circulate through the blood stream in a liquid called plasma. When
the bone marrow is functioning normally the count of blood cells remains stable. In the
case of this disease the number of blood cells changes drastically and is therefore easy to
detect with tolerance regions. We now construct a 95% mean coverage tolerance ellipse and
two 95% mean coverage tolerance (hyper)rectangles (for dimension k¥ = 2 and k& = 3) for
blood count data kindly provided by Blood bank de Meierij, Eindhoven. Blood samples were
taken from 1000 adult, supposedly healthy potential blood donors. Among the measured
variables were the total number of white blood cells (WBC), red blood cells (RBC), and
platelets (PLT) in one nanoliter, picoliter, and nanoliter, respectively, of whole blood. We
computed tolerance regions (ellipse, rectangle, hyperrectangle) for the following combinations
of variables: (WBC, PLT), (WBC, RBC) and (WBC, RBC, PLT), for 500, 1000 and 500
observations, respectively (see Figures 3, 4 and 5 below).

PLT

500}

400 | L

300 |

200

100

WBC

Figure 3: 95% mean coverage tolerance ellipse.
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Figure 5: 95% mean coverage tolerance hyperrectangle.
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Comparing the tolerance regions in Figures 3, 4 and 5 with the in practice used one-
dimensional ‘reference’ or ‘normal’ values for WBC, RBC, and PLT (which we do not record
here}, it can be seen that our procedures work nicely. Due to the fact that the one-dimensional
distributions of WBC and PLT are somewhat skewed to the right our procedures tend to give
smaller regions (when these variables are involved), than those constructed (in one way or
another) from the one-dimensional reference values. This is the same effect as seen in Tables
2 and 3 for the skewed distributions there. Moreover, our tolerance regions are somewhat
shifted to the ‘left’ because of this skewness of the distributions of these variables. It is
obvious, but it can be important, that in Figure 3, the tolerance ellipse does not include
certain bivariate values, which would be included when forming two intervals by projecting
the ellipse on the horizontal and vertical axes. For Acute Leukemia, newly diagnosed, adult
patients very often have WBC values considerably over 10 (in many cases even above 100(!))
or RBC values around 3 or PLT values below 100. Clearly these values can be easily detected
by the depicted tolerance regions.

Finally we give some references on computing minimum volume ellipsoids and minimum
area planar convex sets (which we did not compute in this section). An algorithm for com-
puting the minimum volume ellipsoid containing all data points is presented in Silverman
and Titterington (1980). Algorithms for computing approzimate minimum area ellipsoids
containing m (< n) points are given in Nolan (1991) and Rousseeuw and van Zomeren (1991)
and the ezact algorithm we used for the minimum volume ellipse containing m (< n) points
was developed in Agullé (1996). The computer code of this algorithm was kindly placed to
our disposal by the author; it also works in higher dimensions (up to 10). As we noted in
Section 2, the minimum area planar convex set containing m (< n) sample points is a poly-
gon. Ezact algorithms for computing such sets can be found in Eppstein et al. {1992) and
Eppstein (1992).

5 Proofs

Here we present the proofs of the theorems of Section 3.

Proof of Theorem 1 For each n > 1, define the empirical process indexed by .A to be
on(4) = Vn(Py(4) - P(4)), A€ A

Because of C1) and the Skorohod- -Dudley-Wichura representation theorem (see e.g., Gaenssler
(1983), P- 82), there exists a probability space (2, F,P) carrying a version Bp of Bp and
versions &y, of ay, for all n € IV, such that

(6) sup |@n(A) — Bp(4)| = 0 a5, n— oo.
AcA

Henceforth, we will drop the tildes from the notation, for notational convenience. By C2) we
obtain

(7) Vi(Pr(Anty,c) = P(Ano,c)) — Br(Angy,c) 2+ 0 a8, n—oo.
Combining this with C3) yields
(8) Vnlto — P(Ang,c)) + C — Bp(Aptoc) = 0 as., n— oo

13



From C4) we have that dp(An ¢, As,) = 0 a.s. and hence, since Bp is continuous with

respect to dg,
(9) Bp(Anty,c) = Bp(As) as., n— oo
From (8) and (9) we now obtain that
va(ty — P(Ant,c)) + C = Bp(Ay,) as., n— oo.

Observing that
Bp(4s,) £ Z\/te(1 — to),

completes the proof.

Proof of Theorem 2 By Theorem 1, for all £ € IR, we have

P{v/n(ty — P(An 4, c)) + C <z} =+ P{Z+\/to(1 —t9) < =}, n —+ 0.

Hence, taking z = C, we obtain

lim P{P(Anz,,0) > to} = P{Z\/to(1 ~ t0) S C} =1 — e

Proof of Theorem 3 Theorem 1 with C = 0 yields

(10) Valto — P(Ant00)) 2 Z+/to(L — g), 1~ co.

By assumption v/n(ty — P{Ags t,0)) is uniformly integrable, hence

Ev/n(to - P(Ant0,0)) — E(Z+/to(1 ~ 1)) =0, n— oo,

which is the statement of the theorem.

O

We next present two lemmas. Lemima 2 is crucial for the proof of Theorem 4, whereas
Lemma 1 is needed for the proof of Lemma 2. Until further notice we shall, for case (c),
tacitly restrict ourselves to those closed convex sets that are contained in some large circle B
{which will be specified later on). In the proof of Theorem 4 we will show that this restriction

can be removed. For Lemma 1, recall the functions U and 17', defined in Section 2.

Lemma 5.1 Under the assumptions of Theorem { we have for the cases (a), (b) and (c),
that the functions U and F are inverses of each other. Hence, U is continuous on (0,1), F

is continuous on IR™, and they are both strictly increasing.

Proof We first prove the continuity of UU. Note that absolute continuity of P implies that

U(t) = jga{V(A) : P(A) > t}, for any t € (0,1),

F(y) = sup{P(4) : V(4) <y}, forany ye R*.
AcA

14



Let us now take an arbitrary decreasing sequence t,, | ¢, where t,,t € (0,1). Consider the

sequence of sets
Dy, ={V(A): P(A) >ty, A€A}.

It is easy to see that this is a nested sequence of sets, with limit set
o0
U Dm ={V(4): P(4)>1t}
m=1
and hence,

lim U(tm)= lim infDm = inf {V(4): P(4) >t} =U()

m—oQ

In case ¢y, 1t the proof is analogous. Similar arguments yield continuity of F.
Note that absolute continuity of P also implies that

(11) U(t) = jnf {V(4): P(4)=t}, for any t € (0,1),

and

(12) F(y) = sup{P(4) : V(4) =y}, forany ye R*.
AcA

It follows from (11} and (12) that U is the generalized inverse of F, i.e.
U(t) = inf{y : F(y) >t} for any t € (0,1).

Hence, clearly both U and F are strictly increasing and continuous. Thus we conclude
that they are inverses of each other. a

Lemma 5.2 Under the assumptions of Theorem 4 we have for the cases (a), (b) and (c) that
with probability one
d(An,to,Ca Ato) -0,

and hence do{An .0, Aty) =+ 0 (n = 00).

Note that an in-probability-version of this lemma, with £ = 1 and C' = 0, can be found in
Beirlant and Einmahl (1995), Corollary 1; see also Einmahl and Mason (1992).

Proof of Lemma 2 Since for cases (2) and (b) A is a Vapnik-Chervonenkis (VC) class we
have that C1) of Theorem 1 holds. The (restricted) class of convex sets is not a VC class,
but we still have C1), see Bolthausen (1978) and Dudley (1978), p. 918. Hence we have (6)
for all three cases. Since Bp is bounded, this yields

(13) sup [P,(A) — P(A)| = 0 as., n— o0,
AcA

It now trivially follows from (13) and the definitions of F, and F that

(14) sup |Fu(y) — F(y)| » 0 as., n— oo
y>0

15



Let £ < 1 be arbitrary. Since U(t) is continuous, increasing and nonnegative on (0,1) by
Lemma 5.1, it is uniformly continuous on (0, £}, and thus

(15) sup
te(0,4]

U u‘.+2 -U#)| =0, n— oo
(t+)-ve

We now want to prove that

(16) sup |Un(t) =U()| =0, n— oo.
te(0,f)

For any £ > 0 we have from (14} that for n large enough
Fly)—e < Fo(y) < Fly) +¢ for all y>0 as..

By Lemma 5.1, U is the generalized inverse of F. 1t is easy to see that U, and F, are
generalized inverses. Hence, we obtain from the above inequalities that

Ult—e) <U(t) <U(t+¢) forall te(0,1) as..
Since U is uniformly continuous, there exists > 0 such that
Ut)—6<Ut—e) Ut} <U@E+e) <U)+4§ for any te (0,4 as.,

which immediately yields (16). From (15) and (16) it follows that

(17) sup

C
U, t+~—)—Ut\—>0 a.s., n—oo.
te(0,£] n( \/’E ()

Now let us return to the sets given in the statement of the lemma:

o Ant,c, the as. unique smallest element of A with Pp(4nt,c) > fo + 70;- (and hence,
V(Ang,c) = Unlto + 5)),
e Ay, the unique smallest element of A with P(Ay,) = tp (and V(4s,) = U(lo))-
By (1),
Pr(Angoc) 2 t0 as., n— 00,

and thus by (13}
P(Ang,.c) = to, a8, n—oco.

From (17} we have
n:.l;l{go V(An,to,C) = V(Ato) a.s. .

The sequence {Ap¢,c}n>1 is uniformly bounded a.s., i.e. for each w € 2, with P(Qg) =
1, there exists a compact set M,,, that contains all the A, 4, ¢’s. By the Blaschke Selection
Principle the sequence {4y 4, c}n>1 has at least one limit set. So there exists a subsequence
{Ang to,c}e>1 and a non-empty closed convex set A* (an element of the indexing class (a),
(b) or (c), respectively), such that

leIEOV(Aﬂk,to,C AAY) =0 as. .
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Hence, V(4n, t,,c) = V(A*), and thus V(A*) = U(f) as. Using that P is absolutely
continuous with respect to Lebesgue measure, it is easy to see that P(4*) = 1.
So we have for the limit set A* that

V(4*) =U(ty) and P(A*) =1ty as.,

but by assumption there exists a unique set A,, satisfying these two equations. Hence, any
limit set A* of the sequence { Ay, +,c}n>1 is equal to Ay, and thus the sequence itself converges
to Az, (a.s.). ]

Proof of Theorem 4 We will check the conditions C1)-C4) of Theorem 1. We first prove
(3) and (4), for the cases (a), (b) and the restricted case (c). As noted in the proof of Lemma
2 we have that C1) holds. In Section 2 it is shown that C2) holds; C3) follows from (1). The
first part of C4) is an assumption of Theorem 4; Lemma. 2 yields the second part of condition
C4). This completes the proof of (3) and (4) for these cases.

Now consider the unrestricted case (c). We will prove (3) and (4). Let us first construct
a proper circle B, as used in the definition of the restricted class. Let B, be a circle with
radius r, say, such that A;, C By, and P(By,) > tyV (1 — ). For sake of notation, any space
V, between two parallel lines in IR? at distance « is said to be a ~-strip. Note that for a
probability measure P with density f we have that

lim sup P(V,) =0,
y—0 Vy

where each supremum runs over all y-strips. Therefore there exists a vy satisfying the in-
equality

(18) sup P(V,,) < %to

Yo

where the supremum runs over all yp-strips. Now choose B to be a circle with the same centre
as By, but with radius R > = 2 U(tg) + r, where v satisfies (18).

Next we show that Ap 4. c = A to,¢ for large n as., where Aj 1.c 18 defined similarly as
Anq to,c but for the restricted class. In other words we ha.ve to show that for n large enough
Ap to,c C B almost surely. Observe that

’IIHEOPn(Au,to,C’) = 1p a8,

lim Po(Bf) = P(Bf) < toA(l—to) as..

So, if there exists with positive probability a subsequence {An, to,cti>1 5uchthat Ay, 4o c & B
for all k, then Ay, 4 c contains an element of By, as well as an element of B¢ eventually.
Because the vp-strips form a VC class, we have that

: 1
JLIEO i}:ﬁ) Fo(Vp) <5t as..

Hence, Ay, 4,c eventually contains a triangle with area (R — r) > 2U(tp). However, this
can not happen because of the Glivenko-Cantelli theorem. This proves (3) and hence (4).
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Finally we prove (5) for all three cases. It suffices to show that \/n(to — P(Apy,0)) is
uniformly integrable. It follows from (1) that

|\/'E(t0 - P(An,to,ﬂ))l < l\/ﬁ(Pn (An,to,ﬂ) - P(An,to,O))l + I\/’H(t(l - Pn(An,to,D))l
< sup IVn(Pa(4) = P(A))| +1 as..
€

Therefore it suffices to establish uniform integrability of
Yy, := sup |v/n(Pa(4) — P(4))|.
A€A
Note that if Y is a non-negative random variable then

o0
EY = f P{Y > y}dy.
¢

Hence,
o0 o0
EY Iy, = ./0. IP{YI[y>,,] > y}dy = alP{Y > a} +f P{Y > y}dy.
a

Moreover, for the cases (a) and (b) (as then A is a VC class), using Theorem 2.11 of Alexander
(1984), we have for A > 8 and C},C; € (0,0) that

(19) P{igglx/f_z(Pn(A) — P(4))| > A} £ C1A%exp(—2)%).

For large enough 2, the right-hand side of (19) is less than exp(—X2). Let £ > 0. Then for a
large enough:

00 o0
EYy Iy, 5q = alP{Y, > a} + / P{Y, > y}dy < ae™® + f e Vdy <.
a a
In case (c), using Corollary 2.4 and Example 3 (p. 1045) of Alexander (1984) with ¥ = s,

we obtain the uniform integrability similarly as above; see also van der Vaart (1996), p. 2134.
O

Recall the notation of Section 2, in particular let X;,... , X, and € be as in that section.
Denote with E; € £ the almost surely unique ellipsoid of minimum volume containing at least
m € {k +1,...,n} (data) poiuts.

Lemma 5.3 E; contains ezactly m points, almost surely.

Proof Assume that E contains £ > m points and ¢ (k + 1 <t < k(k + 3)/2 a.s.) of these
points are on its boundary. Note that the smallest ellipsoid containing these ¢ boundary points
is equal to E, see Silverman and Titterington (1980). Consider ¢ — 1 of the ¢ boundary points
(call this set B) and let Ey be the smallest ellipsoid containing B. Denote the remaining
t-th boundary point of E; with Y;. Observe that Y; ¢ Ep. It follows from a conditioning
argument that for any subset of size r > 1 of the n points, we have a.s. that none of the
remaining n — 7 points is on the boundary of the smallest ellipsoid containing these r points.
This yields that a.s. V(Ey) < V(E).
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Note that the smallest ellipsoid containing a finite set is equal to the smallest ellipsoid
containing the convex hull of that set. Denote with ¥ a point on the boundary of Ey such
that the line through Yy and ¥ intersects the convex hull of B and such that the open interval
from Yp to Y; has an empty intersection with Ey. Set Y), = (1 — A\)Yp + AYy, A € [0,1]. Let
C) be the convex hull of BU {Y)}. Note that for A < X we have that C) C Cy. Let E) be
the smallest ellipsoid containing Cy. So V(E,) < V(Ey) for A < ).

From the Blaschke Selection Principle it follows that there exists a sequence ); (< 1},
j € IN, converging to 1 and such that

Jim V(E\AE") =0

for some E* € £. We have V(E*} < V(E,), since V(E);) < V(E1), j € IN. But C, C E*,
so V(E;) < V(E*). Hence V(E*) = V(E,) and E* and F; both contain C;. But, with
probability 1, E; is unique, so E* = E; and hence

lim V(Ey,AE;) =0.
j—=o0

So there exists a large j (denote the corresponding ); with n) such that E, contains all the
£—t points in the interior of E) and the points of B and does not contain the n — £ points in
the complement of Ey. If Y; € By, then Y}, is in the interior of E,, so according to Silverman
and Titterington (1980), E, = Ej and hence V(E,) = V(Ep) < V(E)) a-s., but this can not
happen since Cy C Ey. This yields that Y; ¢ E,. We now see that By, contains £ — 1 (> m)
points and V(E;) < V(E,;). Since E) is the minimum volume ellipsoid containing at least m
points, we have that V(E,) = V(E,). Since E, # E, this contradicts the a.s. uniqueness of
the minimum volume ellipsoid. o
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