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Abstract

We introduce the multiscale analysis of seasonal persistent processes; i.e., time series models
with a singularity in their spectral density function at one or multiple frequencies in [0,1/2].
The discrete wavelet packet transform (DWPT) and an non-decimated version of it known as
the maximal overlap DWPT (MODWPT) are introduced as an alternative method to spectral
techniques for analyzing time series that exhibit seasonal long-memory. Approximate maximum
likelihood estimation is performed by replacing the variance/covariance matrix with diagonalized
matrix based on the ability of the DWPT to approximately decorrelate a seasonal persistent
process. Simulations are performed using this wavelet-based maximum likelihood technique
on a variety of time series models. An application of this methodology to atmospheric CO4
measurements is also presented.

Keywords. Discrete wavelet packet transform, Gegenbauer process, long memory, multitaper
spectral estimation, periodogram, wavelet variance.



1 Introduction

A simple generalization of the fractional difference process (or fractional ARIMA model) was men-
tioned, in passing, by Hosking (1981) and allows the singularity in the spectral density function
(SDF) of the process to be located at any frequency 0 < f < 1/2. Such a process has been referred
to as a Gegenbauer process (Gray et al. 1989) and also a seasonal persistent process (SPP) (Andél
1986). We prefer the latter term because it more accurately and concisely describes the content of
the time series. That is, a sinusoid of particular frequency is associated with the singularity present
in the spectrum thus causing a persistent oscillation in the process. The autocovariance sequence
is a hyperbolically decaying oscillation. While Gray et al. (1989) fit an SPP to the Wolfer sunspot
data, where short-range dependence was allowed through fitting ARMA components, recent atten-
tion has also appeared in the economics literature; e.g., Ooms (1995), Lobato (1997) and Arteche
and Robinson (1999).

The discrete wavelet transform (DWT) has been widely used in the analysis of time series which
exhibit long-range dependence; usually characterized by a slowly decaying autocovariance sequence
or SDF with a singularity at the frequency f = 0. The DWT is efficiently implemented through
a series of filtering and downsampling operations via the pyramid algorithm (Mallat 1989). Let
{h;} and {g;} denote the unit scale wavelet (high-pass) and scaling (low-pass) filters, respectively.
Let H(f) and G(f) denote the transfer functions (Fourier transforms) for the filters {/;} and {¢;},
respectively. Wavelet filters for higher scales are obtained through the inverse Fourier transform
of Hi(f) = H(2~'f) H{;g G(2'f) for 0 < f < 1/2. The key feature of the wavelet filters is that
H;(0) = 0 for all j, and hence, the effect of the singularity in the spectrum is essentially eliminated
for each scale of wavelet coefficients. The downsampling operation corresponds to stretching and
folding the SDF of the filtered coefficients, thereby ‘flattening’ their spectrum even further. The
result of these operations is that the wavelet coefficients of a long memory process are approximately
uncorrelated.

Although the DWT works very well for long memory processes, it fails to approximately decor-
relate processes with more general SDFs. An example of such a process is the MA(1) time series
model X; = ¢; — 0e;—1 which is dominated by higher frequencies in its spectrum as # — —1. The
SDF of this process exhibits a peak in its spectrum at f = 1/2. The orthonormal basis associated
with the DWT corresponds to a partitioning of the frequency axis, which is all wrong for this MA(1)
process. A generalization of the DWT - the discrete wavelet packet transform (DWPT) — involves



a redundant partitioning of the frequency axis. An orthonormal transform may be thought of as a
subset of basis functions (disjoint frequency partitions) of the DWPT. The DWT is one example
of such a subset.

The model of interest here, the seasonal persistent process, is introduced in Section 2. Its
spectrum and asymptotic expression of the autocorrelation function are provided. Section 3 gives a
brief introduction to the DWPT and a non-decimated version of it — the maximal overlap DWPT.
Parameter estimation for seasonal persistent processes, through approximate maximum likelihood
in the wavelet domain, is provided in Section 4. Results from simulations are given in Section 5
and we anlayze monthly COs measurements from Mauna Loa, Hawaii, in Section 6. Conclusions

are provided in Section 7.

2 Seasonal Persistent Processes

2.1 Single Factor Model

Let {Y;} be a stochastic process such that
-5
Yi=(1-20B+B%) & (1)

is a stationary process, then {Y;} is a seasonal persistent process (SPP); a simple example of a
seasonal long-memory process. Gray et al. (1989) showed that {Y;} is stationary and invertible for
|p| =1and —1/4 <6 <1/4or |p| <1 and —1/2 < § < 1/2. Clearly, the definition of an SPP also
includes a fractional difference process; a simple example of a long-memory process. When ¢ = 1
we have that {Y;} is a fractional difference process with parameter d = 26 (Hosking 1981). If {¢;}
is a Gaussian white noise process, then {Y;} is also called a Gegenbauer process since Equation (1)

may be written as an infinite moving-average process via

}/t = Z C]E;iiet—ka

k=0
where C,gi; is a Gegenbauer polynomial (Rainville 1960, Ch. 17). The SDF of {Y;} is given by
ol 1 1
S = L fi - = = 2
v(f) {2| cos(2nf) — @|}28’ o 2 << 2’ (2)

so that Sy (f) becomes unbounded at frequency fg = (cos™! ¢)/(27), sometimes called the Gegen-

bauer frequency. Example spectra are given in Figure 1, these are taken from Andél (1986).
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Figure 1: Spectral density functions (in decibels) for SPPs with (8) 6 = 0.4, f¢ =1/12, (9) 6 = 0.2,
fa =1/12, (10) 6 = 0.3, f¢ = 0.352 and (11) § = 0.3, f = 0.016. These are Figures 8-11 in
Andal (1986).

The autocovariance sequence of an SPP may be expressed via
1/2
Sy = Sy (f)cos(2m fr)df.
—1/2
An explicit solution is known only for special cases. Gray et al. (1994) showed that the autocorre-

lation sequence of an SPP is given by

rr ~ 10 eos(2nfaT) as T — oo. (3)

Two sequences are related via ar ~ b, as 7 — oo if lim,; _...{a,/b;} = ¢ where ¢ is a finite nonzero

constant.



2.2 k-factor Model

An obvious extension of the single factor SPP would be to allow multiple singularities to appear
in the SDF of the process. Consider the k-factor Gegenbauer process {Y;} (Woodward et al. 1998)

with zero mean given by
k
vi=]] (1 —2¢;B + B2) €,
=1

exhibiting k asymptotes located at the frequencies f; = (cos ! ¢;)/(27), i = 1,...,k, in its spectrum

0.2

k
(k) ¢y — 3
S0 = U presaep s

|f| < 1/2. Using this model allows one to incorporate several observed oscillations, such as the

fundamental frequency and its harmonics.

3 Discrete Wavelet Packet Transforms

The orthonormal discrete wavelet transform (DWT) has a very specific band-pass structure which
partitions the spectrum of a long memory process finer and finer as f — 0, where the spectrum
is unbounded. This is done through a succession of low-pass and high-pass filtering operations;
see, for example, Percival and Walden (2000, Ch. 4) for an in depth introduction to the DWT.
In order to exploit the approximate decorrelation property for seasonally persistent processes we
need to generalize the partitioning scheme of the DWT. This is easily obtained by performing
the discrete wavelet packet transform (DWPT) on the process; see, e.g., Wickerhauser (1994,
Ch. 7) and Percival and Walden (2000, Ch. 6). Instead of one particular filtering sequence, the
DWPT executes all possible filtering combinations to obtain a wavelet packet tree, denoted by
T ={(G,n)|j=0,...,J;n =0,...,27 —1}. An orthonormal basis B C 7 is obtained when a
collection of DWPT coefficients is chosen, whose ideal band-pass frequencies are disjoint and cover

[0,1/2].
3.1 The Discrete Wavelet Packet Transform

We start of with a vector of observations X, and let hg,...,hz—1 be the unit scale wavelet (high-
pass) filter coefficients from a Daubechies compactly supported wavelet family (Daubechies 1992)
of even length L. In the future, we will denote the Daubechies family of extremal phase compactly

supported wavelets with D(L) and the Daubechies family of least asymmetric compactly supported
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Figure 2: Flow diagram illustrating the decomposition of X into DWPT coefficients W ,, for levels
j =1,2, and 3. The execution of the filtering is done in sequency order to preserve the natural
frequency ordering. For levels j = 0, 1 and 2 the wavelet coefficient vectors cover all frequencies
spanned by their children.

wavelets with LA(L). Another interesting family of wavelets that better approximate ideal band-
pass filters, for comparable lengths, is the minimum-bandwidth discrete-time (MBDT) wavelets of
Morris and Peravali (1999). We denote them by MB(L) and will utilize them in the future.

The scaling (low-pass) coefficients may be computed via the quadrature mirror relationship
g==D""hy oy, 1=0,...,L—1.

Now define
_ ) g, ifnmod4=0or3;
Unt = hi, if n mod 4 =1 or 2,

to be the appropriate filter at a given node of the wavelet packet tree. This ordering is necessary
in order to force the frequency intervals to be monotonically increasing; it is also called a sequency
ordering by Wickerhauser (1994).

Let W, denote the tth element of the length N; = N/27 wavelet coefficient vector W .,
(j,n) € T. Given the DWPT coefficients ijl,L%J,ta of length N;_;, we can directly compute

Wj s via

jnt—zunl —1,1 5 ,2t+1—l mod N, tzoalaaNj_l



Note, the recursion is started off with the data such that W o = X. This is one possible formulation
of the DWPT, we may also directly filter the observations by generating unique filter coefficients
at each level or apply a series of matrix operations; see Percival and Walden (2000, Ch. 6) for more
details. As with the DWT, the DWPT is most efficiently computed using a pyramid algorithm
(Mallat 1989) of filtering and downsampling steps. Figure 2 provides a graphical representation of
the filtering operations required to construct the vectors of a wavelet packet tree down to level 3.
The notation X — m 2w means that the length N vector X has been convolved with the
filter {h;}, whose Fourier transform is H(f), and downsampled by two in order to produce a new
vector W of length N/2. The algorithm has O(N log N) operations, like the discrete fast Fourier
transform.

An analysis (decomposition) of variance of the original time series may be performed via the

DWPT by selecting an orthonormal basis B; i.e.,
IXIP = D2 Wyl
(4n)eB

Let us define the wavelet packet variance v%()\;,,) associated with frequencies in the interval \;, =
(n/27%1, (n 4 1)/27+1] to be the variance of the DWPT coefficients W ,,. The unbiased DWPT-

based estimator is given by

1 N/2i+1 1
I)Q(A]’n) = N12] Z Wj%n,t?
J t=L'

i
where N} = N/2I+L L and L} = [(L —2)(1 — 1/27)]. The estimator is unbiased because all

coefficients that are affected by the boundary have been removed.

3.2 The Maximal Overlap Discrete Wavelet Packet Transform

Definition of the maximal overlap DWPT (MODWPT) is straightforward, given the DWPT. Simply
define the new filter u,; = un,l/21/2, replace it with the filter for computing DWPT coefficients
and do mot downsample the filtered output. Hence, the vector of MODWPT coefficients VNVj’n is

computed recursively via
Wj,n,t = Z ﬂn,le_l,L%J,t_ijll mod N» t=0,1,... , N -1
1=0

Thus, each vector of MODWPT coefficients has length N (to begin the recursion define \7\70,0 =

X). This formulation leads to efficient computation using a pyramid-type algorithm (Percival and



Walden 2000, Ch. 6). As with the DWPT, the MODWPT is an energy preserving transform and

we may define an unbiased MODWPT-based estimator of the wavelet packet variance to be

1 N-1
’;2( anﬁ Z nt?

where N; = N —Lj+1 and L; = (2/ — 1)(L — 1) + 1. As with the DWPT-based estimator, all
coefficients affected by the boundary have been removed for the calculation.
Given a particular level j of the transform, we may also reconstruct X by projecting the MOD-

WPT coefficients back onto the filter coefficients via

27 -1 Lj—1

= Z Z ﬂj,n,le,n,t—i-l mod N t= 07 s 7N -1 (4)
n=0 [=0

Let ﬁj’n be the wavelet packet detail associated with the frequency interval A;,. Then

Li—1

Djnt = Z Wjin Winttimoan, t=0,...,N—1,
1=0

and an additive decomposition in Equation (4) may be rewritten as X; = > (jm)eB ﬁj’n,t for any
orthonormal basis B. These details, when using Daubechies LA(L) wavelets, are associated with
zero-phase filters and there features line up perfectly with those in the original time series X at the

same time (Percival and Walden 2000, Sec. 6.6).

4 Parameter Estimation for Seasonal Persistence

The common techniques for estimating the long-memory parameter for a fractional ARIMA model
have recently been extended to SPPs, including log-periodogram and semiparametric analysis
(Arteche and Robinson 2000). As an alternative to the periodogram, the wavelet variance has
proved quite effective in estimating the long-memory parameter in fractional ARIMA models (Mc-
Coy and Walden 1996; Jensen 1999a, 1999b). We introduce methodology for estimating single and

multiple factor seasonal time series models using approximate maximum likelihood.
4.1 Initial Parameter Estimates

To facilitate the rapid convergence to a solution of the likelihood, we introduce initial estimates
(50, fG,()) for the SPP of interest. The Gegenbauer frequency, for a single-factor model, is straightfor-
ward to estimate by simply taking the Fourier frequency associated with the maximum periodogram

coordinate. Using this we may estimate the fractional difference parameter through least squares



regression across the wavelet packet variances v?(\;,) for (j,n) € B. This follows from the fact that
the wavelet variance is an estimator of the SDF on A;, and the particular form of the spectrum of
an SPP to yield

log v2(\jn) = a + Blog 2| cos(2mpuj ) — cos(2mfa)l, (5)

where p; ,, is the midpoint of the frequency interval A; ,. To be precise, the (j,n)th MODWPT vari-
ance covers the entire interval of frequencies A; , but it suffices to represent this interval by its mid-
point here. The slope from a simple linear regression of log 72 (), ,,) on log 2| cos(27mpj ) — cos(2mfg)|,
appropriately normalized, provides an estimate of the fractional difference parameter via 6o = — B/2.

Simplifying Equation (5) to just the frequencies, and not the full SDF, yields
log V2 (A\jn) = o + Blog 2|pjn — fal. (6)

We make use of Equation 6 to determine 30 in practice. The least-squares estimator is also worthy

of further investigation given its simplicity to compute.

4.1.1 Approximate Maximum Likelihood Estimation

McCoy and Walden (1996) and Jensen (1999a) have both provided an approximate maximum
likelihood estimator (MLE) to the fractional difference parameter for long-memory time series
models. The DWT provides a simple and effective method for approximately diagonalizing the
variance/covariance of the original process. We extend their results to the case of SPPs, where
two parameters 6 and fi define the SDF. As before, we utilize the DWPT under a particular basis
function B to approximately diagonalize the variance/covariance matrix of an SPP.

Let X be a realization of a zero mean stationary SPP with unknown parameters 6, fg and
02 > 0. The likelihood function for X, under the assumption of multivariate Gaussianity, is given
by

1 Ty—1
2 — X3, X/2
L6, fa,071X) = —(QW)N/2|EX|1/26 x X/ 7

where Yx is the variance/covariance matrix of X and |¥x| is the determinant of ¥x. As previously
alluded to, we avoid computing the exact MLEs of the parameters of interest and instead use the
DWPT to approximately diagonalize ¥x; i.e., Yx ~ Sx = WgQNWB, where Wg is an N x N
orthonormal matrix defining the DWPT through the basis B and € is a diagonal matrix containing

the band-pass variances of an SPP. It is convenient to work with the rescaled band-pass variance



= 520
Wjn = 0.0, such that

Y ES! 1

[dlcos(2rf) — cosCia PP ¥

for all (j,n) € B. The approximate log-likelihood function is now

2(67 vaO-z | X)

—~2log (Ew, fa, 02| X)) = Nlog(2)

1 Wl W;
= Nlog(o?) + Z nlog(wjn) + ) Z ]@ni]n (7)
(j,n)€B € (jm)eB e

Differentiating Equation (7) with respect to o and setting the result equal to zero, the MLE of ¢

is equal to
1

(:) .
(j,n)eB o

T ,
W, W,

Replacing 02 with its MLE, we reduce the complexity of Equation (7) to obtain

L(6, fa|X) = Nlog(62(6, fa)) + > Njnlog(@jn)- (8)
(4,n)EB

The reduced log-likelihood in Equation (8) is now a function of only two parameters § and fq,
whose space of possible solutions lives on (—1/2,1/2) x (0,1/2). In most practical situations, we
will be interested in fractional difference parameters which are strictly positive (thus reducing the
solution space even more). This estimation procedure differs from the frequency-based semipara-
metric estimator of Arteche and Robinson (2000) by simultaneously determining MLEs for both
the fractional difference parameters and Gegenbauer frequency, whereas their procedure requires

user-specified frequencies for the asymptotes in the SDF of the model.

4.2 Basis Selection Procedure

Given that we are working with time series that exhibit a wide range of characteristics, through
rather loose assumptions on their SDF's, selecting the orthonormal basis for the wavelet transform
is important. We want to adapt as best as possible to the underlying SDF, but only have the
observations to help us. For long-memory processes, the DWT works extremely well at approxi-
mately decorrelating the process (McCoy and Walden 1996). Whitcher (1998) related this ability
to the fact that the SDF's of the wavelet coefficient vectors are essentially flat; e.g., only varying by
3 dB for the unit scale DWT coefficients when the fractional difference (long-memory) parameter

is associated with stationary and invertible fractional ARIMA models (—1/2 < d < 1/2). Figure 3
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Figure 3: Squared gain functions for the MB(8), D(8) and D(16) wavelet filters. The ideal pass-band
is found between the dotted lines. The frequency intervals displayed correspond to the orthonormal
basis associated with the DWT (J = 2).

shows the squared gain functions of the wavelet and scaling filters for the first two levels of the
DWT; these correspond to the frequency intervals A; o, A1.1, A2,0, A2,1. As noted in Whitcher (2000),
the approximation to an ideal band-pass filter by the wavelet packet filter is crucial to successfully
producing approximately uncorrelated wavelet coefficient vectors. Hence, the ability of the MB(8)
wavelet filter to achieve the same approximation as a Daubechies wavelet filter twice its length is
highly desirable.

A constant SDF is associated with a white noise process, where [ S(f)df = o%. Several meth-
ods have been proposed in order to test for white noise in time series, such as the cumulative
periodogram and portmanteau tests; see, e.g., Brockwell and Davis (1991). There are a few varia-
tions of the portmanteau test, two applied to the sample autocorrelations of the raw data and one
applied to the sample autocorrelations of the squared data. A cumulative sum of squares (CSS) test
statistic was proposed by Brown et al. (1975) for testing the constancy of regression relationships
over time and successfully applied to test for nonstationary features in the output from the DWT
by Whitcher et al. (1998).

Figure 4 shows results from a small simulation study comparing the three proposed methods
for selecting an orthonormal basis. Realizations from an SPP (fg = 1/12,6 = 0.4), of length
N = 1024, were generated using an exact time-domain method (Hosking 1984). A partial DWPT

10
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Figure 4: Wavelet packet table (J = 6) for three white noise tests applied to an SPP (N = 1024)
with 6 = 0.4 and fg = 1/12, summed over 500 simulations. The frequency a particular node of
the wavelet packet tree 7 was chosen in the orthonormal basis B is given by the shade of the
rectangle — darker shades correspond to higher frequencies. All hypothesis tests were performed at
the a = 0.05 level of significance.

(J = 6) was applied using the MB(8) wavelet filter. As seen from the figure, all methods capture
the general shape of the SDF; see Figure 1. However, the portmanteau and cumulative periodogram
tests appear to select a basis which closely matches the true SDF more often than the CSS test (this
is seen by the higher number of ‘dark’ rectangles in the portmanteau and cumulative periodogram
wavelet packet tables). This is not surprising, since the CSS test is not specifically designed to test
for white noise, only for constant variance.

One disadvantage of the cumulative periodogram test is that, by applying the DFT to each

vector of wavelet packet coefficients, the number of values used in the test is halved. Given the

11



inherent downsampling of the DWPT, each level j of the DWPT has only N/2/ coefficients, and
hence, the cumulative periodogram test will only contain N/2/*! periodogram ordinates. This is

quite restrictive on the depth of the DWPT for a given sample size.

5 Simulations

To assess the performance of this approximate ML methodology, we simulate the four time series in
Figure 1 using numeric integration to compute their autocovariance sequences. Table 1 summarizes
the results of this simulation study for 500 iterations. The average MLEs 6 and fg are given along
with their empirical bias, standard deviation and empirical mean squared error (MSE). These time
series models provide an adequate representation of seasonal long-memory processes. The first two
provide an annual periodicity with two levels of persistence. The orthonormal basis was chosen by
applying a portmanteau test to the squared wavelet coefficients for all vectors in the wavelet packet
table.

When 6 = 0.4, the MLEs for all three wavelet filters exhibit a slight negative bias but the
estimated Gegenbauer frequency is right on. Reduce the level of persistence to 6 = 0.2 does
not diminish the ability of the method to accurately estimate the parameters, in fact both the
fractional difference parameter and Gegenbauer frequency show reduced bias and only slightly
increased standard deviation versus 6 = 0.4. The third model provides a high-frequency oscillation
fa = 0.3524 and its MLEs show a slight negative bias in the case of 6 and negligible positive bias
in the Gegenbauer frequency. The empirical MSEs are greater than those observed. This pattern
of empirical bias and MSE is similar when the Gegenbauer frequency is reduced to fg = 0.159,
producing a very low-frequency (large period) oscillation. There is a slight improvement in using a
wavelet filter that better approximates an ideal band-pass filter, the MB(16), but not overwhelming

evidence with respect to these specific time series models.

6 Application to Atmospheric CO, Data

Woodward et al. (1998) analyzed monthly atmospheric COs measurements from the Mauna Loa
Observatory, Hawaii. We analyze an extended version of these data obtained from the Carbon
Dioxide Information Analysis Center (CDIAC) website!. The current record of COy measurements

is from 1958 through 1998, but contains several missing values in the early years. The longest

"http://cdiac.esd.ornl.gov/ndps/ndp001.html
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Model MB(S) LA(16) MB(16)

(6, fa) 6 fc o fa o fa
N =128

(0.4, 0.0833) mean 0.3733 0.0845 0.3842 0.0857 0.3822 0.0827

bias —0.0267 0.0011 —0.0158 0.0024 —0.0178 —0.0006

SD 0.0509 0.0243 0.0473 0.0222 0.0484 0.0224

RMSE 0.0575 0.0243 0.0498 0.0223 0.0516 0.0224

(0.2, 0.0833) mean 0.2006 0.0854 0.1999 0.0861 0.1991 0.0830

bias 0.0006 0.0021 —0.0001 0.0028 —0.0009 —0.0003

SD 0.0609 0.0543 0.0577 0.0581 0.0588 0.0596

RMSE 0.0609 0.0542 0.0576 0.0582 0.0588 0.0595

(0.3, 0.3524) mean 0.2843 0.3596 0.2813 0.3626 0.2855 0.3606

bias —0.0157 0.0072 —0.0187 0.0102 —0.0145 0.0082

SD 0.0549 0.0289 0.0584 0.0365 0.0559 0.0359

RMSE 0.0571 0.0297 0.0613 0.0378 0.0577 0.0368

(0.3, 0.0159) mean 0.2900 0.0245 0.2892 0.0225 0.2876 0.0220

bias —0.0100 0.0085 —0.0108 0.0066 —0.0124 0.0061

SD 0.0442 0.0250 0.0422 0.0243 0.0443 0.0317

RMSE 0.0453 0.0264 0.0435 0.0252 0.0460 0.0322

Table 1: Simulation results for DWPT-based approximate MLEs 6 and f¢ using the MB(8), LA(16)
and MB(16) wavelet filters. An initial parameter estimate of ¢ was obtained by least-squares
estimation where fg was chosen to be the Fourier frequency with the largest contribution to the
periodogram. The portmanteau test (o = 0.05) was applied to the squared wavelet coefficients in
order to select the orthonormal basis B C 7.

continuous record begins in June 1964 with N = 416; see Figure 5. We observe an obvious
periodicity and time-dependent mean structure in the series.

Exploratory analysis was performed via a multiresolution analysis of the data; see Figure 6. For
simplicity, the standard orthonormal basis was used to apply a partial MODWT (J = 6) to these
data with an LA(8) wavelet filter. Although this particular orthonormal basis is not adapted to
the SDF of this time series, the strongest periodicity appears in Dy = 153’1 which is associated with
the frequency interval A3 ; = (1/16,1/8] or 8-16 month oscillations. The next lowest wavelet detail
752, capturing 16-32 month oscillations, also contains a modest periodicity but with an amplitude
which may be time dependent.

Before fitting a model to the process, the time-dependent mean should be removed. This
was accomplished in Woodward et al. (1998) by taking the second difference of the raw series
and modelling the residuals. Let Sco,(f) denote the true SDF for the CO2 measurements and let

D(f) = 4sin®(rf) be the squared gain function for the first order backward difference filter. Hence,
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Figure 5: Time series plot of the monthly Mauna Loa COs measurements.

the true SDF for the series given is Sco,(f)/D?(f) and differs from Sco,(f) at every frequency!

As an alternative to traditional differencing, consider the multiresolution analysis in Figure 6.
By definition of the wavelet transform, all wavelet details are guaranteed to have mean zero as long
as the dth order backward difference of the original process is stationary. For Daubechies families
of wavelet filters with even length L, they correspond to differences of order L/2. Therefore, the
LA(8) wavelet filter produces mean zero wavelet details for processes whose 4th order difference is
stationary. This appears to be a reasonable assumption for the Mauna Loa COy measurements.
The wavelet smooth Sg, which is associated with the frequency interval X6,0 = [0,1/128], appears
to be capturing the time-dependent mean of the time series quite well. Hence, we may produce a
low-pass filtered version of the series by summing over the first six wavelet details and ignoring the
wavelet smooth — corresponding to the wavelet rough Re = E?Zl 15]-. Filtering in this way only
affected frequencies in the range [0,1/128] (note, this is approximate since all compactly supported
wavelet filters are approximations to ideal band-pass filters).

Once an appropriate orthonormal basis B has been selected, the wavelet variances @;, may
be computed via numeric integration and optimization of the concentrated likelihood proceeds.
Allowing for two asymptotes in the SDF of our process, the wavelet-based seasonal long memory
model provides the following MLEs: 6 = 0.47, fl ~ 0.079, by = 0.22, fg ~ 0.165 and suggests the
model

(1 -1.756B 4+ B*)%7(1 — 1.013B + B*)"?Y(Y; — Sg1) = e

The first (6, f)-pair corresponds to the strong annual component in the data. This is apparent in
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Figure 6: MODWT-based multiresolution analysis (J = 6) of the Mauna Loa CO; series using the
MB(8) wavelet filter and standard orthonormal basis. The same vertical scale is used for the six
wavelet details D1—Dg (which each have mean zero), but not for the wavelet smooth Sg.

Figure 6 where the majority of energy is contained in the third wavelet detail, corresponding to the
frequency interval A3 ; = (1/16,1/8]. The second (6, f)-pair is associated with the first harmonic of
the annual frequency and contributes less, as indicated by its smaller fractional difference parameter.
These estimates tend to agree with the ones obtained in Woodward et al. (1998), although they
obtained initial parameter estimates and then ‘increased’ them until the residuals were free from a

12-month cycle.
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7 Discussion

Achieving approximate decorrelation in univariate stochastic processes is an appealing feature since
it reduces implementing time-consuming methods such as maximum likelihood. Using straightfor-
ward tests for white noise, an orthonormal basis may be selected from the wavelet packet table
that produces an approximately uncorrelated set of wavelet coefficient vectors. Approximate ML
estimation in the wavelet domain produces accurate results for a variety of seasonal long-memory
time series models. Although least squares regression of the wavelet packet variance was only used
to obtain initial estimates of the fractional difference parameter, this simpler technique deserves

further investigation.
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