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Abstract

We introduce the multiscale analysis of seasonal persistent processes� i�e�� time series models
with a singularity in their spectral density function at one or multiple frequencies in ��� ���	�
The discrete wavelet packet transform 
DWPT� and an non�decimated version of it known as
the maximal overlap DWPT 
MODWPT� are introduced as an alternative method to spectral
techniques for analyzing time series that exhibit seasonal long�memory� Approximate maximum
likelihood estimation is performed by replacing the variance
covariancematrix with diagonalized
matrix based on the ability of the DWPT to approximately decorrelate a seasonal persistent
process� Simulations are performed using this wavelet�based maximum likelihood technique
on a variety of time series models� An application of this methodology to atmospheric CO�

measurements is also presented�

Keywords� Discrete wavelet packet transform� Gegenbauer process� long memory� multitaper
spectral estimation� periodogram� wavelet variance�



� Introduction

A simple generalization of the fractional di�erence process �or fractional ARIMA model� was men�

tioned� in passing� by Hosking ���	�� and allows the singularity in the spectral density function

�SDF� of the process to be located at any frequency 
 � f � ���� Such a process has been referred

to as a Gegenbauer process �Gray et al� ��	�� and also a seasonal persistent process �SPP� �And
el

��	��� We prefer the latter term because it more accurately and concisely describes the content of

the time series� That is� a sinusoid of particular frequency is associated with the singularity present

in the spectrum thus causing a persistent oscillation in the process� The autocovariance sequence

is a hyperbolically decaying oscillation� While Gray et al� ���	�� �t an SPP to the Wolfer sunspot

data� where short�range dependence was allowed through �tting ARMA components� recent atten�

tion has also appeared in the economics literature� e�g�� Ooms ������� Lobato ������ and Arteche

and Robinson �������

The discrete wavelet transform �DWT� has been widely used in the analysis of time series which

exhibit long�range dependence� usually characterized by a slowly decaying autocovariance sequence

or SDF with a singularity at the frequency f � 
� The DWT is e�ciently implemented through

a series of �ltering and downsampling operations via the pyramid algorithm �Mallat ��	��� Let

fhlg and fglg denote the unit scale wavelet �high�pass� and scaling �low�pass� �lters� respectively�

Let H�f� and G�f� denote the transfer functions �Fourier transforms� for the �lters fhlg and fglg�

respectively� Wavelet �lters for higher scales are obtained through the inverse Fourier transform

of Hj�f� � H��j��f�
Qj��

l�� G��lf� for 
 � f � ���� The key feature of the wavelet �lters is that

Hj�
� � 
 for all j� and hence� the e�ect of the singularity in the spectrum is essentially eliminated

for each scale of wavelet coe�cients� The downsampling operation corresponds to stretching and

folding the SDF of the �ltered coe�cients� thereby ��attening� their spectrum even further� The

result of these operations is that the wavelet coe�cients of a long memory process are approximately

uncorrelated�

Although the DWT works very well for long memory processes� it fails to approximately decor�

relate processes with more general SDFs� An example of such a process is the MA��� time series

model Xt � �t � ��t�� which is dominated by higher frequencies in its spectrum as � � ��� The

SDF of this process exhibits a peak in its spectrum at f � ���� The orthonormal basis associated

with the DWT corresponds to a partitioning of the frequency axis� which is all wrong for this MA���

process� A generalization of the DWT � the discrete wavelet packet transform �DWPT� � involves

�



a redundant partitioning of the frequency axis� An orthonormal transform may be thought of as a

subset of basis functions �disjoint frequency partitions� of the DWPT� The DWT is one example

of such a subset�

The model of interest here� the seasonal persistent process� is introduced in Section �� Its

spectrum and asymptotic expression of the autocorrelation function are provided� Section � gives a

brief introduction to the DWPT and a non�decimated version of it � the maximal overlap DWPT�

Parameter estimation for seasonal persistent processes� through approximate maximum likelihood

in the wavelet domain� is provided in Section �� Results from simulations are given in Section �

and we anlayze monthly CO� measurements from Mauna Loa� Hawaii� in Section �� Conclusions

are provided in Section ��

� Seasonal Persistent Processes

��� Single Factor Model

Let fYtg be a stochastic process such that

Yt �
�
�� ��B �B�

���
�t ���

is a stationary process� then fYtg is a seasonal persistent process �SPP�� a simple example of a

seasonal long�memory process� Gray et al� ���	�� showed that fYtg is stationary and invertible for

j�j � � and ���� � � � ��� or j�j � � and ���� � � � ���� Clearly� the de�nition of an SPP also

includes a fractional di�erence process� a simple example of a long�memory process� When � � �

we have that fYtg is a fractional di�erence process with parameter d � �� �Hosking ��	��� If f�tg

is a Gaussian white noise process� then fYtg is also called a Gegenbauer process since Equation ���

may be written as an in�nite moving�average process via

Yt �
�X
k��

C
���
k���t�k�

where C
���
k�� is a Gegenbauer polynomial �Rainville ���
� Ch� ���� The SDF of fYtg is given by

SY �f� �
���

f�j cos��	f�� �jg��
� for �

�

�
� f �

�

�
� ���

so that SY �f� becomes unbounded at frequency fG � �cos�� �����	�� sometimes called the Gegen�

bauer frequency� Example spectra are given in Figure �� these are taken from And
el ���	���
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Figure �� Spectral density functions �in decibels� for SPPs with �	� � � 

�� fG � ����� ��� � � 

��
fG � ����� ��
� � � 

�� fG � 

��� and ���� � � 

�� fG � 


��� These are Figures 	��� in
And
el ���	���

The autocovariance sequence of an SPP may be expressed via

s� �

Z ���

����
SY �f� cos��	f�� df


An explicit solution is known only for special cases� Gray et al� ������ showed that the autocorre�

lation sequence of an SPP is given by

r� � ����� cos��	fG�� as � ��
 ���

Two sequences are related via a� � b� as � �� if lim���fa��b�g � c where c is a �nite nonzero

constant�
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��� k�factor Model

An obvious extension of the single factor SPP would be to allow multiple singularities to appear

in the SDF of the process� Consider the k�factor Gegenbauer process fYtg �Woodward et al� ���	�

with zero mean given by

Yt �
kY

i��

�
�� ��iB �B�

���i
�t�

exhibiting k asymptotes located at the frequencies fi � �cos�� �i����	�� i � �� 
 
 
 � k� in its spectrum

S
�k�
Y �f� �

kY
i��

���
f�j cos��	f�� �ijg��i

�

jf j � ���� Using this model allows one to incorporate several observed oscillations� such as the

fundamental frequency and its harmonics�

� Discrete Wavelet Packet Transforms

The orthonormal discrete wavelet transform �DWT� has a very speci�c band�pass structure which

partitions the spectrum of a long memory process �ner and �ner as f � 
� where the spectrum

is unbounded� This is done through a succession of low�pass and high�pass �ltering operations�

see� for example� Percival and Walden ��


� Ch� �� for an in depth introduction to the DWT�

In order to exploit the approximate decorrelation property for seasonally persistent processes we

need to generalize the partitioning scheme of the DWT� This is easily obtained by performing

the discrete wavelet packet transform �DWPT� on the process� see� e�g�� Wickerhauser ������

Ch� �� and Percival and Walden ��


� Ch� ��� Instead of one particular �ltering sequence� the

DWPT executes all possible �ltering combinations to obtain a wavelet packet tree� denoted by

T � f�j� n� j j � 
� 
 
 
 � J �n � 
� 
 
 
 � �j � �g� An orthonormal basis B � T is obtained when a

collection of DWPT coe�cients is chosen� whose ideal band�pass frequencies are disjoint and cover

�
� �����

��� The Discrete Wavelet Packet Transform

We start of with a vector of observations X� and let h�� 
 
 
 � hL�� be the unit scale wavelet �high�

pass� �lter coe�cients from a Daubechies compactly supported wavelet family �Daubechies �����

of even length L� In the future� we will denote the Daubechies family of extremal phase compactly

supported wavelets with D�L� and the Daubechies family of least asymmetric compactly supported
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Figure �� Flow diagram illustrating the decomposition of X into DWPT coe�cients Wj�n for levels
j � � � �� and �� The execution of the �ltering is done in sequency order to preserve the natural
frequency ordering� For levels j � 
� � and � the wavelet coe�cient vectors cover all frequencies
spanned by their children�

wavelets with LA�L�� Another interesting family of wavelets that better approximate ideal band�

pass �lters� for comparable lengths� is the minimum�bandwidth discrete�time �MBDT� wavelets of

Morris and Peravali ������� We denote them by MB�L� and will utilize them in the future�

The scaling �low�pass� coe�cients may be computed via the quadrature mirror relationship

gl � ����l��hL�l��� l � 
� 
 
 
 � L� �


Now de�ne

un�l �

�
gl� if n mod � � 
 or ��
hl� if n mod � � � or ��

to be the appropriate �lter at a given node of the wavelet packet tree� This ordering is necessary

in order to force the frequency intervals to be monotonically increasing� it is also called a sequency

ordering by Wickerhauser �������

Let Wj�n�t denote the tth element of the length Nj � N��j wavelet coe�cient vector Wj�n�

�j� n� 	 T � Given the DWPT coe�cients Wj���bn
�
c�t� of length Nj��� we can directly compute

Wj�n�t via

Wj�n�t �
L��X
l��

un�lWj���bn
�
c��t���l mod Nj��

� t � 
� �� 
 
 
 � Nj � �


�



Note� the recursion is started o� with the data such thatW��� � X� This is one possible formulation

of the DWPT� we may also directly �lter the observations by generating unique �lter coe�cients

at each level or apply a series of matrix operations� see Percival and Walden ��


� Ch� �� for more

details� As with the DWT� the DWPT is most e�ciently computed using a pyramid algorithm

�Mallat ��	�� of �ltering and downsampling steps� Figure � provides a graphical representation of

the �ltering operations required to construct the vectors of a wavelet packet tree down to level ��

The notation X � H�f�
��
�W means that the length N vector X has been convolved with the

�lter fhlg� whose Fourier transform is H�f�� and downsampled by two in order to produce a new

vector W of length N��� The algorithm has O�N logN� operations� like the discrete fast Fourier

transform�

An analysis �decomposition� of variance of the original time series may be performed via the

DWPT by selecting an orthonormal basis B� i�e��

kXk� �
X

�j�n��B

kWj�nk
�


Let us de�ne the wavelet packet variance ���
j�n� associated with frequencies in the interval 
j�n �

�n��j��� �n � ����j��� to be the variance of the DWPT coe�cients Wj�n� The unbiased DWPT�

based estimator is given by

����
j�n� �
�

N �
j�

j

N��j����X
t�L�

j

W �
j�n�t�

where N �
j � N��j�� � L�j and L�j � d�L� ���� � ���j�e� The estimator is unbiased because all

coe�cients that are a�ected by the boundary have been removed�

��� The Maximal Overlap Discrete Wavelet Packet Transform

De�nition of the maximal overlap DWPT �MODWPT� is straightforward� given the DWPT� Simply

de�ne the new �lter  un�l � un�l��
���� replace it with the �lter for computing DWPT coe�cients

and do not downsample the �ltered output� Hence� the vector of MODWPT coe�cients fWj�n is

computed recursively via

fWj�n�t �
L��X
l��

 un�lfWj���bn
�
c�t��j��l mod N � t � 
� �� 
 
 
 � N � �


Thus� each vector of MODWPT coe�cients has length N �to begin the recursion de�ne fW��� �

X�� This formulation leads to e�cient computation using a pyramid�type algorithm �Percival and

�



Walden �


� Ch� ��� As with the DWPT� the MODWPT is an energy preserving transform and

we may de�ne an unbiased MODWPT�based estimator of the wavelet packet variance to be

 ���
j�n� �
�

Nj

N��X
t�Lj��

fW �
j�n�t�

where Nj � N � Lj � � and Lj � ��j � ���L � �� � �� As with the DWPT�based estimator� all

coe�cients a�ected by the boundary have been removed for the calculation�

Given a particular level j of the transform� we may also reconstruct X by projecting the MOD�

WPT coe�cients back onto the �lter coe�cients via

Xt �
�j��X
n��

Lj��X
l��

 uj�n�lfWj�n�t�l mod N � t � 
� 
 
 
 � N � �
 ���

Let eDj�n be the wavelet packet detail associated with the frequency interval 
j�n� Then

eDj�n�t �

Lj��X
l��

 uj�n�lfWj�n�t�l mod N � t � 
� 
 
 
 � N � ��

and an additive decomposition in Equation ��� may be rewritten as Xt �
P

�j�n��B
eDj�n�t for any

orthonormal basis B� These details� when using Daubechies LA�L� wavelets� are associated with

zero�phase �lters and there features line up perfectly with those in the original time series X at the

same time �Percival and Walden �


� Sec� �����

� Parameter Estimation for Seasonal Persistence

The common techniques for estimating the long�memory parameter for a fractional ARIMA model

have recently been extended to SPPs� including log�periodogram and semiparametric analysis

�Arteche and Robinson �


�� As an alternative to the periodogram� the wavelet variance has

proved quite e�ective in estimating the long�memory parameter in fractional ARIMA models �Mc�

Coy and Walden ����� Jensen ����a� ����b�� We introduce methodology for estimating single and

multiple factor seasonal time series models using approximate maximum likelihood�

��� Initial Parameter Estimates

To facilitate the rapid convergence to a solution of the likelihood� we introduce initial estimates

����� �fG��� for the SPP of interest� The Gegenbauer frequency� for a single�factor model� is straightfor�

ward to estimate by simply taking the Fourier frequency associated with the maximum periodogram

coordinate� Using this we may estimate the fractional di�erence parameter through least squares

�



regression across the wavelet packet variances ���
j�n� for �j� n� 	 B� This follows from the fact that

the wavelet variance is an estimator of the SDF on 
j�n and the particular form of the spectrum of

an SPP to yield

log ���
j�n� � �� � log �j cos��	�j�n�� cos��	fG�j� ���

where �j�n is the midpoint of the frequency interval 
j�n� To be precise� the �j� n�th MODWPT vari�

ance covers the entire interval of frequencies 
j�n but it su�ces to represent this interval by its mid�

point here� The slope from a simple linear regression of log  ���
j�n� on log �j cos��	�j�n�� cos��	fG�j�

appropriately normalized� provides an estimate of the fractional di�erence parameter via ��� � �����

Simplifying Equation ��� to just the frequencies� and not the full SDF� yields

log ���
j�n� 
 �� � log �j�j�n � fGj
 ���

We make use of Equation � to determine ��� in practice� The least�squares estimator is also worthy

of further investigation given its simplicity to compute�

����� Approximate Maximum Likelihood Estimation

McCoy and Walden ������ and Jensen �����a� have both provided an approximate maximum

likelihood estimator �MLE� to the fractional di�erence parameter for long�memory time series

models� The DWT provides a simple and e�ective method for approximately diagonalizing the

variance!covariance of the original process� We extend their results to the case of SPPs� where

two parameters � and fG de�ne the SDF� As before� we utilize the DWPT under a particular basis

function B to approximately diagonalize the variance!covariance matrix of an SPP�

Let X be a realization of a zero mean stationary SPP with unknown parameters �� fG and

��� � 
� The likelihood function for X� under the assumption of multivariate Gaussianity� is given

by

L��� fG� �
�
� jX� �

�

��	�N��j"Xj���
e�X

T
��
X
X���

where "X is the variance!covariance matrix of X and j"Xj is the determinant of "X� As previously

alluded to� we avoid computing the exact MLEs of the parameters of interest and instead use the

DWPT to approximately diagonalize "X� i�e�� "X 
 b"X � WT
B#NWB� where WB is an N � N

orthonormal matrix de�ning the DWPT through the basis B and #N is a diagonal matrix containing

the band�pass variances of an SPP� It is convenient to work with the rescaled band�pass variance

	



�j�n � ��� $�j�n such that

$�j�n � �j��
Z n��

�j��

n

�j��

�

f��cos��	f�� cos��	fG���g�
df�

for all �j� n� 	 B� The approximate log�likelihood function is now

bL��� fG� ��� jX� � �� log
�bL��� fG� ��� jX�

�
�N log��	�

� N log���� � �
X

�j�n��B

Nj�n log�$�j�n� �
�

���

X
�j�n��B

WT
j�nWj�n

$�j�n

 ���

Di�erentiating Equation ��� with respect to �� and setting the result equal to zero� the MLE of ��

is equal to

���� ��� fG� �
�

N

X
�j�n��B

WT
j�nWj�n

$�j�n



Replacing ��� with its MLE� we reduce the complexity of Equation ��� to obtain

bL��� fG jX� � N log����� ��� fG�� �
X

�j�n��B

Nj�n log�$�j�n�
 �	�

The reduced log�likelihood in Equation �	� is now a function of only two parameters � and fG�

whose space of possible solutions lives on ������ ���� � �
� ����� In most practical situations� we

will be interested in fractional di�erence parameters which are strictly positive �thus reducing the

solution space even more�� This estimation procedure di�ers from the frequency�based semipara�

metric estimator of Arteche and Robinson ��


� by simultaneously determining MLEs for both

the fractional di�erence parameters and Gegenbauer frequency� whereas their procedure requires

user�speci�ed frequencies for the asymptotes in the SDF of the model�

��� Basis Selection Procedure

Given that we are working with time series that exhibit a wide range of characteristics� through

rather loose assumptions on their SDFs� selecting the orthonormal basis for the wavelet transform

is important� We want to adapt as best as possible to the underlying SDF� but only have the

observations to help us� For long�memory processes� the DWT works extremely well at approxi�

mately decorrelating the process �McCoy and Walden ������ Whitcher ����	� related this ability

to the fact that the SDFs of the wavelet coe�cient vectors are essentially �at� e�g�� only varying by

� dB for the unit scale DWT coe�cients when the fractional di�erence �long�memory� parameter

is associated with stationary and invertible fractional ARIMA models ����� � d � ����� Figure �

�
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Figure �� Squared gain functions for the MB�	�� D�	� and D���� wavelet �lters� The ideal pass�band
is found between the dotted lines� The frequency intervals displayed correspond to the orthonormal
basis associated with the DWT �J � ���

shows the squared gain functions of the wavelet and scaling �lters for the �rst two levels of the

DWT� these correspond to the frequency intervals 
���� 
���� 
���� 
���� As noted in Whitcher ��


��

the approximation to an ideal band�pass �lter by the wavelet packet �lter is crucial to successfully

producing approximately uncorrelated wavelet coe�cient vectors� Hence� the ability of the MB�	�

wavelet �lter to achieve the same approximation as a Daubechies wavelet �lter twice its length is

highly desirable�

A constant SDF is associated with a white noise process� where
R
S�f� df � ��� Several meth�

ods have been proposed in order to test for white noise in time series� such as the cumulative

periodogram and portmanteau tests� see� e�g�� Brockwell and Davis ������� There are a few varia�

tions of the portmanteau test� two applied to the sample autocorrelations of the raw data and one

applied to the sample autocorrelations of the squared data� A cumulative sum of squares �CSS� test

statistic was proposed by Brown et al� ������ for testing the constancy of regression relationships

over time and successfully applied to test for nonstationary features in the output from the DWT

by Whitcher et al� ����	��

Figure � shows results from a small simulation study comparing the three proposed methods

for selecting an orthonormal basis� Realizations from an SPP �fG � ����� � � 

��� of length

N � �
��� were generated using an exact time�domain method �Hosking ��	��� A partial DWPT

�
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Figure �� Wavelet packet table �J � �� for three white noise tests applied to an SPP �N � �
���
with � � 

� and fG � ����� summed over �

 simulations� The frequency a particular node of
the wavelet packet tree T was chosen in the orthonormal basis B is given by the shade of the
rectangle � darker shades correspond to higher frequencies� All hypothesis tests were performed at
the � � 


� level of signi�cance�

�J � �� was applied using the MB�	� wavelet �lter� As seen from the �gure� all methods capture

the general shape of the SDF� see Figure �� However� the portmanteau and cumulative periodogram

tests appear to select a basis which closely matches the true SDF more often than the CSS test �this

is seen by the higher number of �dark� rectangles in the portmanteau and cumulative periodogram

wavelet packet tables�� This is not surprising� since the CSS test is not speci�cally designed to test

for white noise� only for constant variance�

One disadvantage of the cumulative periodogram test is that� by applying the DFT to each

vector of wavelet packet coe�cients� the number of values used in the test is halved� Given the

��



inherent downsampling of the DWPT� each level j of the DWPT has only N��j coe�cients� and

hence� the cumulative periodogram test will only contain N��j�� periodogram ordinates� This is

quite restrictive on the depth of the DWPT for a given sample size�

� Simulations

To assess the performance of this approximate ML methodology� we simulate the four time series in

Figure � using numeric integration to compute their autocovariance sequences� Table � summarizes

the results of this simulation study for �

 iterations� The average MLEs �� and �fG are given along

with their empirical bias� standard deviation and empirical mean squared error �MSE�� These time

series models provide an adequate representation of seasonal long�memory processes� The �rst two

provide an annual periodicity with two levels of persistence� The orthonormal basis was chosen by

applying a portmanteau test to the squared wavelet coe�cients for all vectors in the wavelet packet

table�

When � � 

�� the MLEs for all three wavelet �lters exhibit a slight negative bias but the

estimated Gegenbauer frequency is right on� Reduce the level of persistence to � � 

� does

not diminish the ability of the method to accurately estimate the parameters� in fact both the

fractional di�erence parameter and Gegenbauer frequency show reduced bias and only slightly

increased standard deviation versus � � 

�� The third model provides a high�frequency oscillation

fG � 

���� and its MLEs show a slight negative bias in the case of �� and negligible positive bias

in the Gegenbauer frequency� The empirical MSEs are greater than those observed� This pattern

of empirical bias and MSE is similar when the Gegenbauer frequency is reduced to fG � 

����

producing a very low�frequency �large period� oscillation� There is a slight improvement in using a

wavelet �lter that better approximates an ideal band�pass �lter� the MB����� but not overwhelming

evidence with respect to these speci�c time series models�

� Application to Atmospheric CO� Data

Woodward et al� ����	� analyzed monthly atmospheric CO� measurements from the Mauna Loa

Observatory� Hawaii� We analyze an extended version of these data obtained from the Carbon

Dioxide Information Analysis Center �CDIAC� website�� The current record of CO� measurements

is from ���	 through ���	� but contains several missing values in the early years� The longest

�http���cdiac�esd�ornl�gov�ndps�ndp����html
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Model MB�	� LA���� MB����

��� fG� �� �fG �� �fG �� �fG
N � ��	

�
��� 
�
	��� mean 

���� 


	�� 

�	�� 


	�� 

�	�� 


	��
bias �


��� 



�� �


��	 



�� �


��	 �




�
SD 


�
� 


��� 


��� 


��� 


�	� 


���

RMSE 


��� 


��� 


��	 


��� 


��� 


���

�
��� 
�
	��� mean 

�

� 


	�� 

���� 


	�� 

���� 


	�

bias 




� 



�� �




� 



�	 �




� �




�
SD 


�
� 


��� 


��� 


�	� 


�		 


���

RMSE 


�
� 


��� 


��� 


�	� 


�		 


���

�
��� 
������ mean 

�	�� 

���� 

�	�� 

���� 

�	�� 

��
�
bias �


��� 



�� �


�	� 


�
� �


��� 



	�
SD 


��� 


�	� 


�	� 


��� 


��� 


���

RMSE 


��� 


��� 


��� 


��	 


��� 


��	

�
��� 
�
���� mean 

��

 


��� 

�	�� 


��� 

�	�� 


��

bias �


�

 



	� �


�
	 



�� �


��� 



��
SD 


��� 


��
 


��� 


��� 


��� 


���

RMSE 


��� 


��� 


��� 


��� 


��
 


���

Table �� Simulation results for DWPT�based approximate MLEs �� and �fG using the MB�	�� LA����
and MB���� wavelet �lters� An initial parameter estimate of � was obtained by least�squares
estimation where fG was chosen to be the Fourier frequency with the largest contribution to the
periodogram� The portmanteau test �� � 


�� was applied to the squared wavelet coe�cients in
order to select the orthonormal basis B � T �

continuous record begins in June ���� with N � ���� see Figure �� We observe an obvious

periodicity and time�dependent mean structure in the series�

Exploratory analysis was performed via a multiresolution analysis of the data� see Figure �� For

simplicity� the standard orthonormal basis was used to apply a partial MODWT �J � �� to these

data with an LA�	� wavelet �lter� Although this particular orthonormal basis is not adapted to

the SDF of this time series� the strongest periodicity appears in eD� � eD��� which is associated with

the frequency interval 
��� � ������ ��	� or 	��� month oscillations� The next lowest wavelet detaileD�� capturing ����� month oscillations� also contains a modest periodicity but with an amplitude

which may be time dependent�

Before �tting a model to the process� the time�dependent mean should be removed� This

was accomplished in Woodward et al� ����	� by taking the second di�erence of the raw series

and modelling the residuals� Let SCO�
�f� denote the true SDF for the CO� measurements and let

D�f� � � sin��	f� be the squared gain function for the �rst order backward di�erence �lter� Hence�
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Figure �� Time series plot of the monthly Mauna Loa CO� measurements�

the true SDF for the series given is SCO�
�f��D��f� and di�ers from SCO�

�f� at every frequency%

As an alternative to traditional di�erencing� consider the multiresolution analysis in Figure ��

By de�nition of the wavelet transform� all wavelet details are guaranteed to have mean zero as long

as the dth order backward di�erence of the original process is stationary� For Daubechies families

of wavelet �lters with even length L� they correspond to di�erences of order L��� Therefore� the

LA�	� wavelet �lter produces mean zero wavelet details for processes whose �th order di�erence is

stationary� This appears to be a reasonable assumption for the Mauna Loa CO� measurements�

The wavelet smooth eS
� which is associated with the frequency interval 

�� � �
� ����	�� appears

to be capturing the time�dependent mean of the time series quite well� Hence� we may produce a

low�pass �ltered version of the series by summing over the �rst six wavelet details and ignoring the

wavelet smooth � corresponding to the wavelet rough eR
 �
P


j��
eDj� Filtering in this way only

a�ected frequencies in the range �
� ����	� �note� this is approximate since all compactly supported

wavelet �lters are approximations to ideal band�pass �lters��

Once an appropriate orthonormal basis B has been selected� the wavelet variances $�j�n may

be computed via numeric integration and optimization of the concentrated likelihood proceeds�

Allowing for two asymptotes in the SDF of our process� the wavelet�based seasonal long memory

model provides the following MLEs� ��� � 

��� �f� 
 


��� ��� � 

��� �f� 
 

��� and suggests the

model

��� �
���B �B��������� �

��B �B�������Yt � eS
�t� � �t


The �rst ��� fG��pair corresponds to the strong annual component in the data� This is apparent in

��
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Figure �� MODWT�based multiresolution analysis �J � �� of the Mauna Loa CO� series using the
MB�	� wavelet �lter and standard orthonormal basis� The same vertical scale is used for the six
wavelet details eD�� eD
 �which each have mean zero�� but not for the wavelet smooth eS
�
Figure � where the majority of energy is contained in the third wavelet detail� corresponding to the

frequency interval 
��� � ������ ��	�� The second ��� fG��pair is associated with the �rst harmonic of

the annual frequency and contributes less� as indicated by its smaller fractional di�erence parameter�

These estimates tend to agree with the ones obtained in Woodward et al� ����	�� although they

obtained initial parameter estimates and then �increased� them until the residuals were free from a

���month cycle�

��



� Discussion

Achieving approximate decorrelation in univariate stochastic processes is an appealing feature since

it reduces implementing time�consuming methods such as maximum likelihood� Using straightfor�

ward tests for white noise� an orthonormal basis may be selected from the wavelet packet table

that produces an approximately uncorrelated set of wavelet coe�cient vectors� Approximate ML

estimation in the wavelet domain produces accurate results for a variety of seasonal long�memory

time series models� Although least squares regression of the wavelet packet variance was only used

to obtain initial estimates of the fractional di�erence parameter� this simpler technique deserves

further investigation�

References

And
el� J� ���	��� Long memory time series models� Kybernetika �� ���� �
������

Arteche� J� and P� M� Robinson ������� Seasonal and cyclical long memory� In S� Ghosh �Ed���

Asymptotics� Nonparametrics� and Time Series� Volume ��	 of STATISTICS� Textbooks and

Monographs� pp� ������	� New York� Marcel Dekker�

Arteche� J� and P� M� Robinson ��


�� Semiparametric inference in seasonal and cyclical long

memory processes� Journal of Time Series Analysis �� ���� �����

Brockwell� P� J� and R� A� Davis ������� Time Series� Theory and Methods �� ed��� New York�

Springer�Verlag�

Brown� R� L�� J� Durbin� and J� M� Evans ������� Techniques for testing the constancy of

regression relationships over time� Journal of the Royal Statistical Society B ��� ��������

Daubechies� I� ������� Ten Lectures on Wavelets� Volume �� of CBMS	NSF Regional Conference

Series in Applied Mathematics� Philadelphia� Society for Industrial and Applied Mathematics�

Gray� H� L�� N��F� Zhang� and W� A� Woodward ���	��� On generalized fractional processes�

Journal of Time Series Analysis �
 ���� ��������

Gray� H� L�� N��F� Zhang� and W� A� Woodward ������� On generalized fractional processes � a

correction� Journal of Time Series Analysis �� ���� ��������

Hosking� J� R� M� ���	��� Fractional di�erencing� Biometrika �
 ���� ��������

��



Hosking� J� R� M� ���	��� Modeling persistence in hydrological time series using fractional dif�

ferencing� Water Resources Research �
 ����� �	�	���
	�

Jensen� M� J� �����a�� An approximate wavelet MLE of short and long memory parameters�

Studies in Nonlinear Dynamics and Economics � ���� ��������

Jensen� M� J� �����b�� Using wavelets to obtain a consistent ordinary least squares estimator of

the long�memory parameter� Journal of Forecasting �
 ���� ������

Lobato� I� N� ������� Semiparametric estimation of seasonal long�memory models� Theory and

application to modeling of exchange rates� Investigaciones Econ�omicas �� ���� ��������

Mallat� S� ���	��� A theory for multiresolution signal decomposition� The wavelet representation�

IEEE Transactions on Pattern Analysis and Machine Intelligence �� ���� ��������

McCoy� E� J� and A� T� Walden ������� Wavelet analysis and synthesis of stationary long�memory

processes� Journal of Computational and Graphical Statistics � ���� ������

Morris� J� M� and R� Peravali ������� Minimum�bandwidth discrete�time wavelets� Signal Pro	

cessing �� ���� �	������

Ooms� M� ������� Flexible seasonal long memory and economic time series� Technical Report

����!A� Econometric Institute� Erasmus University�

Percival� D� B� and A� T� Walden ��


�� Wavelet Methods for Time Series Analysis� Cambridge�

England� Cambridge University Press�

Rainville� E� D� ����
�� Special Functions� New York� The Macmillan Company�

Whitcher� B� ����	�� Assessing Nonstationary Time Series Using Wavelets� Ph� D� thesis� Uni�

versity of Washington�

Whitcher� B� ��


�� Simulating Gaussian stationary processes with unbounded spectra� Journal

of Computational and Graphical Statistics� to appear�

Whitcher� B�� S� D� Byers� P� Guttorp� and D� B� Percival ����	�� Testing for homogeneity of

variance in time series� Long memory� wavelets and the Nile River� Submitted for publication�

Wickerhauser� M� V� ������� Adapted Wavelet Analysis from Theory to Software� Wellesley� Mas�

sachusetts� A K Peters�

Woodward� W� A�� Q� C� Cheng� and H� L� Gray ����	�� A k�factor GARMA long�memory

model� Journal of Time Series Analysis �� ���� �	���
��

��


