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Abstract

A carousel is an automated warehousing system consisting of a large number of
drawers rotating in a closed loop. In this paper we study the travel time needed
to pick a list of items when the carousel operates under the Nearest Item heuristic.
We find a closed form expression for all moments and the distribution of the travel
time. We also analyze the asymptotic behavior of the travel time when the number
of items tends to infinity. All results follow from probabilistic arguments based on
properties of uniform order statistics.

1 Introduction

A carousel is an automated warehousing system consisting of a large number of drawers
rotating in a closed loop in either direction. Such systems are mostly used for storage and
retrieval of small and medium sized goods, which are requested moderately often. The
picker has a fixed position in front of the carousel, which rotates the required items to
the picker. For a recent review of literature on carousels, as part of a general overview of
planning and control of warehousing systems, we refer to Van den Berg [2].

An important performance characteristic is the total time needed to pick a list of items.
This consists of the pure pick time plus the travel time. Only the latter depends on the
pick strategy. In this paper we consider the Nearest Item (NI) heuristic, where the next
item to be picked is always the nearest one. We will study the statistical properties of the
travel time under this heuristic.

We model the carousel as a circle of length 1. For ease of presentation, we act as if
the picker travels to the items, instead of the other way around. The picker travels at unit
speed and has to pick n(> 0) items under the NI heuristic. Their positions are uniformly
distributed on the circle. Using probabilistic arguments based on properties of uniform
order statistics we derive closed form expressions for all moments and the distribution of
the travel time needed to pick n items. We also investigate the asymptotic behavior of the
travel time as n tends to infinity.



The performance of the NI heuristic has also been investigated by Bartoldi and Platz-
man [1]. They prove that the travel time under the NI heuristic is never greater than one
rotation of the carousel. Litvak et al. [5] improve this upper bound and show that the new
upper bound is tight. Using an analytical approach, they find the mean and variance of the
remaining travel time under the NI heuristic, i.e., the travel time, when there is an empty
space at one side of the picker’s position. They also introduce a probabilistic approach
to determine the mean total travel time. In fact, in the present paper we elaborate this
probabilistic approach and we show that it enables us to completely analyze the travel
time.

The paper is organized as follows. In Section 2 we prove that the travel time under the
NI heuristic can be represented as a sum of independent normalized exponential random
variables. In Section 3 we use this representation to obtain all moments of the travel time.
Further, in Section 4 we derive a closed form expression for the distribution of the travel
time. Finally, in Section 5 we give an exhaustive analysis of the limiting behavior of the
travel time distribution.

2 The travel time as a sum of exponentials

Let the random variable Uy be the picker’s starting point and the random variable U;, where
t=1,2,...,n, be the position of the ith item. We suppose that the U;’s, i = 0,1,...,n, are
independent and uniformly distributed on the interval [0, 1). Let Uppi1, Urinsts - - -5 Uninsn
denote the order statistics of the random variables Uy, ..., U, on [0,1). These order statis-
tics partition the circle into n + 1 spacings with lengths

Dl - Ul:n+1 - UO:nJrla ceey Dn = Unm+1 — Unfl:n+17 Dn+1 =1~ Un:n+1 + UO:n+1-

To find the distribution of the travel time under the NI heuristic we use the following very
useful property of these spacings. If Y7,...,Y,,; are independent exponentials with the
same mean, then the random vectors (Dy, ..., D, 1) and (Y1/ S0 Y, ., Y/ S0 Y))
are indentically distributed (cf. Pyke [6, 7], or Sec. 13.1 in Karlin and Taylor [4]). Hence
the spacings are normalized exponentials.

Under the NI heuristic the picker does not have to know all spacings at once. He
first considers the two spacings adjacent to his starting position and then travels to the
nearest item. Next he also looks at the other spacing adjacent to that item and compares
the distance to the item located at the endpoint of that spacing and the distance to the
first item in the other direction, which is the sum of the spacings previously considered.
Then he travels again to the nearest item, and so on. Furthermore, we may act as if the
picker faces non-normalized exponential spacings, and afterwards divide the travel time
by the sum of all spacings. Then it is clear that each new spacing faced by the picker is
independent of the ones already observed. Now let X;, where i = 1,...,n+ 1, denote the
i-th non-normalized exponential spacing faced by the picker. So the spacings are numbered



~ NI heuristic

Figure 1: The NI route of the picker facing 5 exponential spacings.

as observed by the picker operating under the NI heuristic (see Fig. 1). Denote
Si=> X, i=12,...
7j=1
and let the random variable 7;, denote the travel time needed to pick n items under the
NI heuristic. Then T}, can be expressed as
L min(SZ-,XiH)

Tn:Z

i=1 Sn+1

(1)

In this section we introduce a quite simple random variable, which has the same distribution
as the right-hand side of (1). Further, we shall use the common notation

X<y

to indicate that the random variables X and Y have the same distribution. Now we are
going to prove the following theorem, which is crucial to the rest of the paper.

Theorem 2.1 Let X1, Xs,... be independent exponentials with mean . Then it holds for
alln =1,2,... that

n min(Si, Xz'+1) d n ( 1 > Xz
i B YA 1—— . 2
i Sn+1 ; 2"/ Sn+ @)

2

Proof. Let Y7, Y5, ... be independent exponentials with mean p. We will use the Y;’s to
subsequently consider all minima in the left-hand side of (2). For the first minimum, i.e.,
min (S, Xo) = min(X;, X) there are two cases. If X; < Xy, then we can put X; = %YI.
The overshoot of X, is again an independent exponential with mean p, so we can put



Xy = %Yl + Y5. The same arguments can be used when X, < X;. Then we can put
Xy = %YI and X; = %Yl +Y5. Hence, in both cases we have

1
min(Sl, XQ) = 5)/1

Further, since we have not made extra assumptions about X3, Xy4,..., X,,11, we can say
that X; =Y, [ =3,4,...,n+ 1. Also, note that for any : =2,3,...n+ 1 we have

1 1
S, = §Y1+§Y1+Y2+Y3+---+K'

= Y+ Y+ -+ Y.

From the arguments above it follows that

zn: min SzaXz—l—l) g 1 Yi + mlﬂ(zj 1 ]7 —I—l) (3)
i=1 n+1 2 }/1 + -+ Yn—i—l i=2 }/1 -+ Yn-i—l .
Since X7, X, ..., X1 and Y1, Y5, ..., Y, are just two sets of independent exponentials

with the same mean, expression (3) may, of course, be rewritten as

>

i=1 n+1 2 Sn+1 =

min Sl,XZH) a1l X " min Sl,XZH) (4)
2

n+1
Now, let us assume that for some ¢ = 2,3,...,n it holds that
" min(S;, Xiy1) g = 1 X; " min(S;, X;11)
SR AY (1o ) g LA R T )
i=1 n+l n+1 n+1

j=1 Jj=t

By virtue of (4), we know that it indeed holds for i = 2. Below we show, by expanding
min(S;, X;;1), that if equality (5) is valid for ¢, then it is also valid for i + 1.
Given the event
Eiip = [Sk—1 < Xip1 < Sk,

for some k =1,...,1, the random variables X1, ..., X,,;1 can be coupled as
Xl:%Yl, l=1,...,k—1, Xk:%ijLYkH;
Xi=Yi, l=k+1,...5 Xip1 = Z Y
Xi=Y, l=i+2,...,n+1,
where Y7,Y5,... are independent exponentials with mean p. This follows by observing

that, given E;; j, the random variable X, is the minimum of X; and X, and thus it is
exponential with mean p/2. Since the overshoot of X, is again exponential with mean
i we can repeat the argument for X, and so on. Eventually X;;; — Sg_; is less than
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Figure 2: Coupling of the random variables X7, ..., X,,; under event F; 4 .

Xk, so it is exponential with mean /2. The random variable X is then the sum of two
exponentials, one with mean p/2 and the other part (i.e., the overshoot) with mean p (see
also Fig. 2). Since the event E; ;) does not provide any information on the other random
variables, they remain exponential with mean pu.

Now, given the event F;,, it follows that

mln(szaXerl 7,+1 Z YE;

and for any j =44+ 1,...,n+ 1 we have

1 1
%::§K+m+§n+nﬂ+ +EH+Z Vi+Yiie+--+Y;
= 1
= Yi+---+Y].

Hence, given E;,;, we can replace the X;’s by Y;’s in the right-hand side of (5), yielding

i(l— .1 > ij + zn: min(E{ﬂYz,YjH). (6)
j=1 2i+1—j Y1_|_..._|_Yn+1 i Y1_|_..._|_Yn+1

Note that expression (6) does not depend on k.

Along the same lines, it can be verified that, given the event [X;,; > S|, the right-hand
side of (5) has again the same distribution as (6). Now it immediately follows from the
law of full probability that

" min(S;, Xiy1) ¢ < 1
p e 25 (1 )

i=1 Sn+1 j=1

Y

n+1 Sn+1

2”: min(S;, X;41)
+

where the Y;’s in (6) are replaced again by X,’s. Thus, by subsequently expanding
min(Sy, Xs), min(Sy, X3), ..., min(S,, X,11) we finally obtain:

zn: min(Si,Xi+1) d zn: (1 _ 1 > X
i=1 2nt=d Sn+1 ,

Snt1 j=1

which is exactly (2). O



3 Moments of the travel time

In this short section we shall use representation (2) to directly calculate the moments of
the travel time 7,,. From (2) we obtain for the k-th moment of the travel time,

(; (1 a 2i> siiil)k]

E[Tf] = E

LoV A X ™)
27 Sk, '
klyk%"'vknzo i
ki+ko+...+kn=k

To determine the expectation

. (X{“X;“? . .X,’;n) |

Shi1
first recall that the random variables X;/S, .1 = D;, i = 1,2,...,n+1 are uniform spacings.
Under the condition that D3y = ds,..., D, = d,, the random variable D; is uniform
on the interval [0,1 — d3 — --- — d,,+1] (cf. Sec. 13.1 in Karlin and Taylor [4]). Hence, by

conditioning and partial integration we obtain

o (D DR D D\ L DRt DR DR D
kil kol ks Fepg1! (k1 +1)! (ky — 1) k! knid! |

By symmetry and repeatedly applying this equality we find

(DU D Dyt o Dt
ky! k! Epid! (ki + -+ ko))
Using E(D%/k!) = n!/(n + k)! and substituting D; = X;/S,,1 yields

B (X{“Xé” g .X,’ii?) B knlks! . En 1]
S

kitko+thnt1 o (n+ki+ke+ -+ kpir)! ,

n+1
which is valid for any collection ki, ko, . . ., ky, 1 of nonnegative integers. Hence, (7) becomes
-1 ,
n+k o 1\%i
sl - ()2 Iles)
=1
k1k2ykn>0 7

k1+ka+--+kn=k

For example, for £ =1 we have:

E(T,) = — ! (1 - 2%) . 8)

:n—i—l_n—i—l

This formula has already been derived in Litvak et al. [5].
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4 The distribution of the travel time

Now we are going to determine the distribution of 7,,. Due to Theorem 2.1 we have:

" 1

i—1
So we need to find an expression for the right-hand side of (9). First note that it immedi-
ately follows from (9) that

1
Pr(T, <xz)=1, x> 1—2—n, (10)

which automatically yields the upper bound of Litvak et al. [5] (see Corollary 3.4). Also,
we will have different expressions for the distribution function in the intervals (0, 1/2],
(1/2,3/4], ..., (1 —1/2%1,1 — 1/27]. Namely, for 1 — 1/2¥"! < 2 < 1 — 1/2%, where
k=1,2,...,n, we have

Pr (Z <]_ - %) X < I'Sn+1>
i=1

k-1

- Pr(i(l—%— v) X; <Z<x—1+21>X +xXn+1). (11)

j=k j=1

Equation (11) can be rewritten as

=1
1—1/2F" <2z <1-1/2F,

Pr(l, <z) = Pr (nik (1 ok 11+l B )Xl < Z (x a (1 a %)) Yj) » (12)

where Xy, Xy, ..., Y], Y5, ... are again independent exponentials with the same mean. To
obtain a closed-form expression for Pr(7,, < x) we need the following lemma.

Lemma 4.1 Let X1, X,,...,Y1,Ys, ... be independent exponentials with the same mean,
and let ai, as, ..., by, by, ... be positive numbers. Then for any M, N > 0 we have

M N
Pr (Z anj > ZblYE)
j=1 =1

-y > (ﬁ I affibl) ("ﬁb—) (13)

m=10=ko<k1<...<km—1<km=N \j=1l=k;j_1+1 j=1 4j +bkj+1

Proof. The proof is based on the memoryless property of the exponential distribution.
Let us say that a; X; ‘beats’ b}, if a; X is greater than b;Y;. Now consider a; X; ‘competing’
with b,Y;. If a1 X; wins (which happens with probability a;/(a; + b)), then the overshoot
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of a1 X; has again the same distribution as a; Xy, and it will compete with byY5. If, on
the other hand, b;Y; wins (with probability b;/(a; + b1)), then the overshoot of b;Y; is
distributed as b,Y], and it will compete with a;X5. Formally,

M N a M N
r Zanj > ZblYl = b Pr Zanj > Zbl}/l | a X1 > b0hYq
j=1 =1 ar o

j=1 =1

bl M N
Pr{> a;X;>> bY|a1 X1 < bV

ay + b1 j=1 =1
M p fj P ﬁé X f}y
= r T a; X; > .
a; + by j:l = + by = J<Xg 2 1Y

Now we can repeat the arguments to reduce the two sums in the right-hand side. This
results in the following process: a; X beats the first k; terms of Y1 | b;Y;, where k; may
be zero. If k; < N, then it means that by, 1Y%, +1 beats a;X; and proceeds to compete
with as X5. Then, ay X5 beats the following ko — ky terms of Zfiklﬂ bY;, where ko — kq
may again be zero. If ks < N, then it means that by,;1Y%,+1 beats a2 Xe and further
competes with a3 X3, and so on. Now the ‘X-player’ wins if eventually, a,,X,, beats by Yy
for some m < M. Note that k,, — k,,_1 > 0, because a,,X,, clearly wins at least once.
Formally applying the law of full probability, as shown above for a; X; and b;Y;, we obtain
formula (13). O

Pﬁ

Now we can derive closed-form expressions for the distribution function of 7;, in the
sequence of intervals (0,1/2], (1/2,3/4],...,(1—1/2""1 1—1/2"]. The expression in (0, 1/2]
is the simplest one:

4 2"
Pr(T, 2. - " <1/2.
(T, < z) = R T 0<z<1/
In the next interval we get one additional term:
4 2" 4 2n—1
Pr(T, < 2. - "2 — 2z —1)" 1/2 <z < 3/4.
(Th <o) =23 577 3 o o DY 2<w<3

In fact an extra term appears in each of the following intervals. This is formulated in the
theorem below.

Theorem 4.2 For alln =1,2,... it holds that
n—1 . k 1 . . n
Pr(T, <z) = ];)(_1) (1:11 ﬁ> ok (2= 241) g4y (19)

O<z<1-—1/2"

where the coefficients ¢, are defined as

m> 1. (15)



Proof. We first combine (12) and (13) to obtain

Pr(T, < x)
k m . k; k+1—j
- i1 kj—kj—1 2
= Z Z (H (23 r— (27— 1)) H T 1 1)
m=10=ko<...<kpm—-1<km=n+1—k \Jy=1 l:kj,1+1
m

1
—1 ok+kj—j+1
1 - Ok+kj—j+1 _ |

@TJx—(?_1—1»>,1—J/TF1§x<i1—1/ﬂ(Hﬂ
Putting £ = 1 in (16) gives
Pr(T, <z) = c,a", 0<x<1/2,

which coincides with (14). Let us show that for 1/2 < 2 < 3/4 the formulas (16) and (14)
are again the same. For k£ = 2 formula (16) gives

4 8 2"
Pr(T, <z) = g-?---Qn_lxnfl
4 8 2n1 2 2" 2»!
Z.Z2. .. = 21 20 — 1
R AT ( W—¢x>w4—1(x )
48  on? 3 n—t on—2 ant 2
2.2 2 31 : 20 —1
+ 3 7 2n,2_1x ( 2n1_1$> an—2 _ | anl_l(x )
4
+ ..._|_<1_§aj> cn,I(Q:U—l)”*l‘ (17)

The first term in the right-hand side of (17) can be rewritten as

2TL

18 o 4
Xz
2 — 1

3

=cpa" — 2z —1).

..
7

37 onl_ ]

since

2[ 2[ 2l71 2l71
ﬁ$—<1—2l_1$> 2!—1_1:2l—1_1(2x_1)’ l>]_ (]_8)

Subsequently adding the terms in the right-hand side of (17) and using (18) we finally
obtain:
Pr(T, <z)=c¢,a" — ¢,y (22 — 1)", 1/2 <z < 3/4.



Similarly we can rewrite (16) for arbitrary k = 1,2,...,n. To do this we use the equalities
2m 1 , . om—l 2m , .
: Joe _ 9d (1 g i
T 21_1(2x 27 +1) 2ml_1<1 gm_l(“ 2+1)>
gm—l 1

= g7 @2 H1), m>ix1 >0, (19)

and

en (22— 2 + 1)l e (P -2 1)l + % Cnz (P70 — 97 4 1)l
) co (2j+mx — itm 4 1)l =1, (20)

m

_W+GJW<H

=1
m>10>0, j7=>0,

2m —1

where ¢y = 1 by convention. Equality (19) is a generalization of (18) and it can be checked
directly. Equality (20) can be established in the following way. Let us consider the function

1 2 2m

: , !
— . 20y _ 599 1 1) .
f(s,x) T 95— 2m—5(8 r—s +)
For [ < m it has the following expansion in rational fractions of s:
) ) 11 . ) 12
_ o _ 9 _ Ly 9.9
flz,s) = cm(2x 2+1)1_ cm,l(2 2y 22+1)2_8
1 . . 1 4
- VI
+ 3cm,2(4 2z 42+1)4_S
— e (=)™ fm[ L) (2m-2jx—2m-2j+1)l "
Lom 1) om — g’

m>1>0, j>0.

Putting s = 0 we get (20).
Combining the terms of (16), starting with the ones containing powers of (2F 1tz —
2k=1 1+ 1), we subsequently apply (20) and then (19). This finally leads to

1
Pr(T, <z) = cpa" —¢1 (20 —1)"+ 3 Cn2 (4x — 3)"

11 1 _ _
- "'+(—1)k15';"'ﬁ'0n—k+1(2k e — 2 )",

1-1/2"t <2 <1-1/2",
which coincides with (14). O

Formula (20) holds in particular for 0 < x <1, j = 0 and [ = m = n. This means that
(10) and (14) can be combined as follows:

PH(T, <2) = Y(-1) (Hﬁ) e (o= 1) 1 0y, @)

k=0 =1
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For x > 1 — 1/2" the right-hand side of (21) just adds up to 1, according to (20). Also,
note that due to (20) the distribution of 7}, can be written in another form:

n k 1 n
k=0 =14 ?
O0<zx<1.

It gives a simpler expression for 1 — 1/2F71 < 7 <1 —1/2* when k is greater than n/2.
In Fig. 3 we show the distribution of the travel time for several values of n.

1 T T T T P
n:2’,"—;
n=5 -

n=10 --+-
n=20 -
08 F
06 _
0.4 + // H -
0.2 - 4
0 0.2 0.4 0.6 0.8 1

Figure 3: The distribution of 7;, for n = 2,5, 10, 20.

5 Asymptotic results

In this section we analyze the distribution of the travel time under the NI heuristic, when
the number of items n tends to infinity. In fact, we consider 1 — T},, which is the difference
between the travel time under the NI heuristic and a complete rotation of the carousel. It
is clear that 1 — T}, converges in distribution to zero as n — oo. However, since (8) gives

2 1

one may expect that (n+ 1)(1 — T;,) has a proper limiting distribution.

We will use the common notation 7, SN 7, if the sequence Z, Zs, ... converges in
distribution to Z. The limiting distribution of (n+1)(1 —1T,,) is presented in the following
theorem.

11



Theorem 5.1 Let Xi, Xo, ... be independent exponentials with mean 1. Then

1
2i—1

(n+1)(1—Tn)i>§:

=1

and the limiting distribution is given by

Pr (i % X; < x) = (oo i(—l)i (H ﬁ) (1—exp(=22)), x>0, (23)

=1 1=0

where ¢, is defined as (cf. (15))

00 2j
coo:jHIQj_l.
Proof: Denote
"1 > 1
gn:;FXia €:;2i_1Xi-

According the Monotone Convergence Theorem we have E(§) = lim,,_,», E(&,) = 2, which
in particular implies Pr(¢ < o0) = 1.
To prove (22) we only need to rewrite (2) as

g (TL + 1)§n+1 .

(n+1)(1—-T,) S

By definition the sequence {,} converges a.s. to . Further, according to the strong law
of large numbers, the sequence {S,,/n} converges a.s to 1. Thus, the sequence {n&,/S,}
converges a.s. to &, which immediately gives (22).

The distribution of £ can be determined via inversion of its Laplace-Stieltjes transform
a(s), which is given by
o0 21
— —s&\ —
a(s) = E(e™%) = Hs—i—Qi'

1=0

It is readily verified that a(s) is a meromorphic function with simple poles a; = —2°,

1 =20,1,... The residues b; at these poles are given by
bi = Coo(—1)° HL 2! =0,1
i — Coo k:12k—1 , 1=0U,1,...

To invert a(s) we first expand this function in rational fractions of s, by following the
approach in Whittaker and Watson [8], Sec. 7.4. This approach requires that |a(s)] is
uniformly bounded on a sequence of circles C;, with centre at 0 and radius R;, not passing

12



through any poles, and such that R; — oo as j — oo. In this case we can take R; =
—(a; +aj11)/2 =271 4+ 27 and it is straightforward to show that for all s € C,

00 22+k

()l < la(-Ry)l <2 1T 55—

Since this upper bound does not depend on j, the function |a(s)| is indeed uniformly
bounded on the sequence of circles C;. Now we can conclude from Sec. 7.4 in [8] that

S — a; a;

a(s):a(0)+§;bi{ = +i]

From Litvak et al. [5], Remark 10.3, it follows that

i Y e (—1)H i (H r;) = —1=—a(0),

i—o @i i=0 \k=1

which implies that

a(s) = :
(s) ; p—
Inversion of this expression yields (23). O

Further note that for any £ = 1,2, ... we have

E([(n+1)(1 - T)]")

k_’ XlekQ . an+1 n+1 1 k;

— 1 k E 1 2 n+1 (_)

(n+1) 2 PR ( S Il (3
k1,k2,....kn4+12>0 B

ki+ko+-+knt1=k
n+k -1 ntl 1\ ki
e ®
w7 X T
k1,k2,....kn412>0
ki+ko+-tknt1=k
< kl(n+1)* (
“(n+1)(n+2)---(n+k)

1+ Ly +1>k<k'2’“
2 on) = T

Hence (see e.g. Chung [3], Sec. 4.5) for any k = 1,2, ... it holds that

lim E ([(n+1)(1 - T,)]") = E (¢F) < oo

n— 00
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In Fig. 4 we demonstrate the rate at which the distribution of (n+1)(1—1T,) converges
to its limiting distribution.

1

i n=5 ----
n=10 -----
n=20
n=inf —--

0.8 4
0.6 4
0.4 B
02 T

0 = 1
0 4 5

Figure 4: The distribution of (n+1)(1—-1,,) for n = 2, 5,10, 20 and the limiting distribution
as n — oo.

To find E (5’“) we use (23) and then change the order of integration and summation.
This yields:

E(¢) = e i(_l)i (ﬁl 2 1_ 1) Qk_’clz (24)

Changing the order of integration and summation is allowed, since the sum above is abso-
lutely convergent. Expression (24) can be simplified by using the equality

(-5 =S (o) o

which holds for £ = 0,1,.... For k£ = 0 the proof of this equality is given in Litvak et
al. [5], Remark 10.3. The case k > 0 can be proved along the same lines. Substituting this
equality into (24) gives the simple expression:

k 2j
E(g’“):k!jHle_l.
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