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ABSTRACT

Recent papers have formulated a model of portfolio choice for a fund manager, as agent for investors
who incent the manager to evaluate portfolio returns relative to a benchmark portfolio designated
by them. The papers make the ad-hoc assumptions that the manager chooses a portfolio that
maximizes a fixed expected exponential utility of the return in excess of the benchmark return, and
that returns are normally distributed. In what follows, I dub this the extant model.

This paper provides a deeper explanation for both the manager’'s use of exponential utility
and the specific degree of risk aversion used by the manager when choosing a portfolio, whether
returns are normally distributed or not. In this deeper model, however, the principals’ choice of
benchmark influences the manager’s degree of risk aversion an effect that is totally absent in the

extant model.



1 Introduction

It is common practice for the performance of a fund manager, acting as an agent on behalf of a
group of investors as principal, to be evaluated relative to the returns on some benchmark portfolio
designated by the principal. As a result, Brennan [2] and Becker, et.al [1] consider the portfolio
choice of a fund manager who maximizes the expected exponential utility of her portfolio’s return in
excess of the exogenous benchmark’s remark. The manager’s degree of risk aversion is not restricted
by the model itself, and is assumed to be independent of the designated benchmark. This model,
as detailed in section 2, is dubbed the eztant model in what follows.

The purpose of this article is to utilize a model of portfolio choice in which the manager derives
the exponential utility function from a deeper hypothesis, regardless of the functional form of the
excess return distribution. The deeper model is quite reasonably based on the manager’s desire to
maximize the probability of outperforming the average benchmark return over typical contractual
time periods. While the model supports the aforementioned papers’ use of exponential utility, it
does not support their implicit assumption that the manager’s degree of risk aversion is independent
of the benchmark chosen. In fact, the model provides the basis for a “Lucas Critique” of those
papers: the principals should realize that their choice of benchmark will influence the manager’s

degree of risk aversion, and that this in turn will affect the portfolio selected by the manager.

2 The Extant Model

The aforementioned papers’ specifications are nested in the following general model: A manager
chooses a portfolio p with return R, that maximizes the following expected exponential (a.k.a.

CARA) utility of the difference between its return and a benchmark portfolio’s return Ry, i.e.



max EU(R, — Rp)| = max E[—e (R~ fs)) = max — log E[e " (Fr=Fs)] (1)

Although the above logarithmic representation of the problem is unusual, it will prove to be the
most useful in what is to follow. Becker, et.al (op.cit) restricted attention to benchmark and
manager portfolios composed of a “market portfolio” with return R, and a riskless asset with

return ;. More formally, they assume that

Ry, = hR,+(1—h)R, (2)

R, = xR, +(1—-x)Ry.

The papers assume that returns are normally distributed. Assuming that the principal’s choice
of the specific benchmark portfolio in (2) is governed by standard portfolio theory, the 2-fund sep-
aration theorem predicts that the principal will want to maximize expected utility of own terminal
wealth, and hence will choose some h-weighted combination of the “tangency” portfolio with return
Ry, and the riskless asset with return Ry. For example, Brennan (op.cit, eqn.(4) shows that the
exact h will be inversely related to the ordinary investor’s degree of risk aversion.

But what about the manager, who is forced to use the principal’s benchmark? Despite this
difference with standard portfolio theory, the papers make the implied assumption that it applies
to the manager as well, with only the argument of the utility function changed. Hence, Becker,et.al

substitute R, in (2) into (1) as well, resulting in:

max — log Ele (@~ M)Hn—FR)] (3)

Let r,, = R,, — Ry denote the market portfolio’s return in excess of the riskless return. Note



from elementary statistics that problem (3) requires the manager to find the portfolio weight =
that maximizes —1 times the logarithm of the moment generating function (sometimes called the
cumulant generating function) of (z—h)r,,. The aforementioned papers assume multivariate normal

returns, in which case —1 times the log moment generation function is:

(—7)?
2

max —[=v(z — h)E(ry) + (z — h)?Var(rm)] (4)

which is a concave maximization problem with a unique solution given by the following first order
condition:
1 E (rm)

o=ht -
v Var(ry)

which is the manager’s optimal portfolio derived in Becker, et.al (op.cit, eqn.5).!

3 The Extant Model’s Predictions and Problems

The papers quite reasonably assume that the tangency portfolio m has a positive expected return
in excess of the riskless rate (i.e. the market risk premium) FE(r,,) > 0, in which case (5) shows
that z > h, i.e. the manager will choose to place a higher weight on the risky asset portfolio.
To see how much higher, Becker, et.al (op.cit, p. 123) claim that E(r,,)/Var(r,;,) has “a typical
magnitude of approximately equal to two.” Substituting this value into (5), a manager with a
degree of risk aversion 7 equal to, say, 4 will choose z = h + 2/4, i.e. the manager will commit
a much higher proportion of managed funds (50 percentage points!) to the tangency portfolio
m. Unless the manager’s degree of risk aversion v is extremely high, the manager will choose a
substantially riskier portfolio than the benchmark used to evaluate managerial performance. Only

in the limiting case of infinite risk aversion will the two portfolios be the same. While this may



seem obvious to readers of this paper, unfortunately Becker, et.al (op.cit, p.123) make the following

misleading claim:

Thus, benchmark investors are highly risk averse to deviations from the benchmark,
and we expect to find estimates of y for benchmark investors to be large relative to the

conventional standards of risk aversion.
Correcting this statement 2 requires the following changes, in italics:

Thus, benchmark investors who have a high degree of risk aversion « are highly averse
to deviations from the benchmark, and we have no reason, a priori, to expect to find
estimates of v for benchmark investors to be large relative to the conventional standards

of risk aversion.

In summary, the extant model of portfolio choice does not restrict the manager’s degree of risk
aversion. But the alternative model in the following section will both justify the manager’s use of

exponential utility, and wnll restrict the manager’s degree of risk aversion.

4 A Rationale For The Manager’s Utility Function and Degree of

Risk Aversion

Stutzer [7] provides a rationale for the manager’s use of the exponential utility function in (1), and
also for the specific degree of risk aversion 7 used by the manager, even when the returns are not
normally distributed. This last generalization of the extant model is important, because without
normally distributed returns, there is no motivation for restricting the portfolio choices to the form

in (2).
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In brief, Stutzer (op.cit) posits that the manager seeks to maximize the probability of outper-
forming the time-averaged return of the benchmark portfolio, i.e. the manager secks to minimize
the probability of realizing a nonpositive time-averaged portfolio return in excess of the benchmark
portfolio return.

The development there will now be applied, for the first time, to the extant model. T follow
the extant model in assuming that it is possible to find a portfolio p with expected return higher
than the benchmark portfolio’s expected return (i.e. E(R, — Rp) > 0). Under the extant model’s
restriction (2) and reasonable assumption that £(r,,) > 0, this implies that the manager will choose
x > h. Then, the probability that portfolio p will realize a finite time averaged portfolio return less
than or equal to the benchmark’s decays to zero, at a positive exponential rate, as time progresses
to infinity.? Stutzer (op.cit) argued that a manager who is worried about earning a time averaged
portfolio that is less than or equal to the benchmark’s, over the uncertain length of time that
managers are typically under contract with the principal, should choose a portfolio that makes this
probability decay rate as large as possible. Of course, doing so will mazimize the probability of
realizing a time averaged portfolio return that will exzceed the benchmark portfolio’s.

One might guess that this apparent stress on the probability of time-averaged outperformance,
rather than on both the probability and size of the outperformance, will lead to implausible portfolio
choice rules. But Stutzer (op.cit) showed that this fear is groundless. Using a simple result called
Cramer’s Theorem [3, pp.7-14] in a very straightforward fashion, Stutzer (op.cit) reported that this
decay rate mazimization hypothesis of manager behavior is equivalent to maximizing (1) over both
the space of portfolios p and —1 times the degree of risk aversion ! With the notation used in (1),

use the third expression there to express the decay rate maximization hypothesis as :



max max — log E[e_""(RP_R"}] (6)

where the inner maximization over —y determines the aforementioned probability decay rate for the
portfolio p. Of course, the second expression in (1) shows that the decay rate maximizing portfolio
p that solves (6) may also be found by the same joint maximization of the expected exponential
utility of R, — Rj.

When R, — Ry has the normal distribution that motivated Becker, et.al (op.cit) to adopt the
two-fund special formulation (2) and hence the extant model (4), the special case of (6) is just to
maximize (4) over both z and —, i.e. the manager solves:

2

ln:;rix max _[_F}((m - h’)E(T'm) + (_7) ('rﬂ - }L)QV”""'(T'-I:a)] (7)

— 2

The first order condition for the inner maximization over —y yields:

1 E (""m)

z — hVar(ry) >0 (8)

"}( =
which is positive because z > h. Substituting (8) into (7) and simplifying yields the decay rate for
the probability that the portfolio with weight = will realize a time averaged normally distributed
return less than the benchmark portfolio with weight h. Hence the manager maximizes this decay
rate, yielding:

A2 (9)

bo | =

max
T

l E(T‘?n)z _ l E(Rm - Rf) ?
2Var(ry) 2 Var(Ry,)

From (9), we see that in the extant model (4), the aforementioned decay rate for any portfolio =
is half the squared Sharpe Ratio (A,;) of the market portfolio with excess return r,,,. To understand

this result, note that the argument in the extant model’s utility function (3) is the excess return



(z —h)rp,. The ratio of its expected value (z —h)E(r,,) to its standard deviation (z —h)/Var(ry),
i.e. its Sharpe Ratio, is independent of the portfolio weight z. A manager who wants to ensure that
her portfolio will outperform the average return of the benchmark over the contract period should
maximize this Sharpe Ratio, because a high numerator obviously helps increase the probability
of a high average return in excess of the benchmark, while a low denominator helps prevent the
possibility of volatility-induced low returns that drag the average return below the benchmark’s.

So, in accord with the extant model, the decay rate maximization hypothesis does predict that
the manager will restrict risky asset investments to the tangency portfolio with return R,, and
maximum Sharpe Ratio A,,, and that the fraction of managed funds = devoted to the tangency
portfolio is greater than the benchmark portfolio’s fraction h.* But the hypothesis does not predict
that the manager will necessarily choose the allocation z in (5), although in this special case where
returns are normally distributed, the manager would not be averse to choosing the z given by
(5).5 The latter prediction of the extant model does not take account of the possibility that the
principal’s choice of benchmark could change the manager’s degree of risk aversion, as the deeper
model does.

In summary, the extant model assumed (i) normally distributed returns, (ii) that both the
principal’s designated benchmark portfolio and the manager’s portfolio could be restricted to the
forms in (2), and (iii) that the manager evaluates returns in excess of the benchmark using an
exponential (i.e. CARA) utility function. Adopting just the assumptions (i) and (ii), the decay
rate maximization hypothesis implied (iii), and is thus a deeper model. But it also implied a Lucas
Critique of the extant model: the manager reacts to the principal’s choice of benchmark (under
(2), this is determined by h) by changing the degree of risk aversion 7 used to evaluate portfolio

returns in excess of the benchmark’s. In the extant model, principals do not take account of this



possibility, and hence do not realize that the manager’s only concern will be the Sharpe Ratio of
the managerial utility function’s argument, which won’t depend on the particular z > h. Principals
in the extant model are unwarrantly optimistic about their ability to induce the manager to choose
the specific z given by (5).

The critique will be more specific in more realistic cases where returns are nonnormally dis-
tributed, and/or where portfolios are not restricted as in (2). To understand why, let us examine

the Taylor expansion of the log moment generating function in (1), producing:

—log Ele " Br=Ro)] = 1oy — koy?/2 + K3y /31 — gy /4L (10)

The coefficient x; in (10) is the i-th cumulant of R, — R;. In the extant model, returns are normally
distributed, and using (2) we derived &1 = (z — h)E(r,,), k2 = (x — h)?Var(ry), and all the higher
order cumulants of the normal distribution are zero, resulting in the problem (7). But when returns
are not normally distributed, higher order cumulants will appear in (10), changing the solution of
(6). Because of the alternating signs in (10), decay rate maximizers, who maximize (10), will exhibit
a preference for choosing portfolios p so that I, — Rj will have higher skewness (contributing to
a higher value of k3) as well as higher values of the other odd-order cumulants. Of course, the
opposite is true for the even-order cumulants (like k4 ). Ceteris paribus, such portfolios lower the
probability that the manager will realize a time averaged portfolio return that does not exceed the
benchmark’s.

Because these results follow from the use of exponential utility, neither the principal’s benchmark
portfolio nor the manager’s portfolio should be restricted by (2) in the presence of non-normally
distributed returns.

The following illustrative example shows that the decay rate maximization hypothesis gives



sensible answers, and is easy to implement nonparametrically.

5 Empirical Comparison

Following both Brennan (op.cit) and Becker, et.al, we assume that the equity portfolio is an index
of large stocks, i.e. the S&P 500 index portfolio. In addition, we allow a fixed income investment by
obtaining a corresponding series of returns for long-term government bonds. For the sole purpose
of fostering comparison with Becker, et.al (op.cit), the portfolio of risky assets used to form the
benchmark (i.e. the “market” portfolio) is the tangency portfolio of the stocks and bonds. But
due to the possible presence of non-normalities, the manager will be allowed to choose a portfolio
of risky assets that differs from the tangency portfolio.

Following Kroll, Levy and Markowitz [5] and general econometric practice, the required expected
exponential utilities are estimated by replacing the expectation operator with its sample average,
using Ibbotson Associates’ returns measured annually from 1926-1996 (7" = 71 years). Accordingly,
the riskless return is chosen to be the average annual Treasury Bill return over the same period,
reported by Ibbotson Associates to be Ry = .038. Formally, let Ry denote the large stock return
in year t = 1,...,71, while Ry denotes the long-term government bond return. Then an estimate

of the decay rate maximizing portfolio (6) is:

T=T71
max max — log — Z e—~,-(w,,. Rsptwg Rgt+(1-ws —wg ) Rp—(hRmi+(1—h) Rf)) (11)
Ws, Wy —y T 1

where Ry = .038 and R, is the return from the estimated tangency portfolio of stocks and bonds.
In Table 1, this decay rate maximizing portfolio is contrasted with its corresponding benchmark

portfolio for each h, in order to re-examine the misleading claim made by Becker, et.al (op.cit,
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p.123). The first line in Table 1 is the benchmark portfolio when the fraction h = 1 is invested in
the risky assets, i.e. the tangency portfolio of stocks and bonds that maximizes the Sharpe Ratio.
The tangency portfolio invests 64% of funds in stocks and 36% in bonds, similar to many investment
advisors’ recommendations. Using this annual data set, the stocks appear to be close to normally
distributed, with a slight negative skewness of —.31 and almost no kurtosis, while the bonds have
a desirable positive skewness of 1.49 but an undesirable positive kurtosis of 2.98. While the slight
degree of undesirable negative stock skewness is inherited in the (tangency) benchmark portfolio,
the conflicting effects of the bonds’ modest desirable skewness and undesirable kurtosis will help
keep the allocation of stocks to bonds, relative to the total investment in the two, close to that of
the tangency portfolio. But the actual allocation weights for stocks and bonds will be substantially
different from the tangency portfolio’s, due to the presence of the riskless asset. For example, with
h = 1, the decay rate maximizing portfolio shorts the riskless asset to invest 86 + 51 = 137%
of its own funds in the risky assets. But while this is z — h = 37 percentage points more than
the benchmark invests in the risky assets, the decay rate maximizing portfolio of the risky assets
has a stock weight of 86/137 = 62.7% with the rest (37.3%) invested in bonds. Relative to the
tangency portfolio, the slightly higher relative allocation to bonds is caused by the dominant effect
of the slightly negative skewness of stocks (—.31) and positive skewness of bonds (1.48), despite
the latter’'s undesirably higher kurtosis.

Examining Table 1 from top to bottom, we see that as the benchmark fraction h allocated to
the tangency portfolio decreases, column 3 shows that the riskless asset position changes from short
to long, the weight reaching 25% when the benchmark is the riskless asset return (h = 0).

Column 4 shows that = — h, which is the fraction of funds devoted to the risky assets in excess

of the benchmark’s fraction, successively increases, reaching 75 percentage points when h = 0.
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Column 6 shows that the endogenous degree of risk aversion successively decreases, from 9.05 when
h =1, down to 4.4 when h = 0. So like the extant model’s prediction (5), z — h is still inversely
related to (the now endogenous) «y. But unlike the extant model, if the principal chooses a lower h,
the manager acts as-if she had a higher degree of risk aversion -, and will hence will choose a risky
assct allocation weight z closer to h than one would predict using the lower degree of risk aversion.

Column 5 shows that the relative under allocation to stocks in the risky asset portfolio of stocks
and bonds becomes more pronounced, dropping to 58.7% when h = 0. So in this data set, the
relative allocation of stocks in the manager’s risky asset portfolio does not stray more than about
5 percentage points from the allocation in the principals’ tangency portfolio. But differences would
be more pronounced in data sets where some assets’ returns are more heavily skewed. For example,
the manager might want to purchase.(positively skewed) protective put options on some of the
risky asset holdings (portfolio insurance) when the benchmark does not include them.

Finally, it is useful to note that the decay rate maximization hypothesis can be easily extended
to cover the case where the return process is stationary and ergodic, as long as the process satisfies
regularity conditions sufficient to prove Ellis’ [4] Theorem (also see Bucklew [3, pp.20-22]). This
result, used for alternative purposes in Stutzer [6, Appendix], substitutes a different function for
the log moment generating function. But under the not unreasonable restriction that returns are

not identically distributed but still are independent, the estimator (11) is still sensible.
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Portfolio | Stock | Bond | Riskfree | z — h Stocks + Endogenous

Ry vs. R, % % % % Stocks + Bonds | Risk Aversion
h=1 64 36 0 64

Rate Max | 86 51 -37 37 62.7 9.05
h=.8 51 29 20 64

Rate Max | 75 45 -20 40 62.5 8.27
h=.6 39 21 40 64

Rate Max | 65 49 -5 45 61.9 7.24
h=.4 26 14 60 64

Rate Max | 57 36 7 53 61.3 6.25
h=.2 13 7 80 64

Rate Max | 49 33 18 62 59.8 5.27
h=0 0 0 100

Rate Max | 44 31 25 75 58.7 4.40

TABLE 1: Comparison of Benchmark Portfolio, with Fraction A in Riskless Asset, to the Corre-
sponding Decay Rate Maximizing Portfolio. The Investment Opportunity Set and h Restrict the

Endogenous Degree of Risk Aversion.

6 Conclusions

Recent models of a fund manager’s portfolio choice have posited that investors as principal will
designate a benchmark portfolio, and that the manager will evaluate the expected exponential
(i.e. CARA) utility of portfolio returns in excess of this benchmark’s return. The exponential
utility function can be derived from the deeper alternative hypothesis that a fund manager strives
to maximize (minimize) the probability that the chosen portfolio return will (not) outperform
the designated benchmark return on averageover the years the contract is in place. But in this
deeper model, the manager's degree of risk aversion is not independent of the principal’s choice of
benchmark. It is determined by jointly maximizing the expected exponential utility over both the

space of portfolios and —1 times the degree of risk aversion, and hence depends on the investment
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opportunity set and the designated benchmark’s returns.

Contrary to the contention of Becker, et.al (op.cit, p.123), the extant model does not restrict
the degree of risk aversion in any way. But this alternative model does. Using illustrative empirical
data and a range of benchmarks considered by Becker, et.al (op.cit), the alternative hypothesis
restricted the degree of risk aversion to lie between 4 and 9, depending on the specific benchmark

used.
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Notes

'In addition, Becker, et.al developed an estimable model that permits the manager to make
use of conditioning information. But the Lucas Critique developed herein does not depend on the
manager’s use of conditioning information. So T follow Brennan (op.cit) in assuming a simple TID

returns environment.

2The problem with their argument is their assumption that the manager will always choose a
portfolio p so that E(R,)/Var(R,) = E(R,,)/Var(Ry). In the extant model, this will only occur

when the manager’s degree of risk aversion is unconventionally high.

3Regularity conditions on the return distribution, needed to ensure exponential decay of that

probability, are given in Bucklew [3, pp.7-14].

4Recall that z > h ensures that the manager’s portfolio has a positive expected excess return
over the benchmark, enabling the manager to find a portfolio that outperforms the benchmark on
average, so that both the underperformance probability decay rate and the endogenous coefficient

of risk aversion are positive.

We will see in section 5 that when returns aren’t normally distributed, the decay rate max-
imization hypothesis will make a sharp prediction about the specific value of z chosen by the

manager.
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