Relative entropy in a variational study of
branching random walk in random environment *

F. den Hollander

EURANDOM, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

Hollander@eurandom.tue.nl

2nd July 2000

Abstract

We consider an infinite system of particles on the integer lattice that: (1) migrate
to the right with a random delay, (2) branch along the way according to a random law
depending on their position. The initial configuration has one particle at each site. With
the help of large deviation theory, we compute the exponential growth rate of the average
number of particles in a large box (= global growth rate) and the average number of
particles at the origin (= local growth rate). Both these growth rates are expressed in
terms of a variational problem. An analysis and comparison of these variational problems
reveals various interesting phase transitions as a function of the underlying parameters.
A key role in the calculations is played by the notion of relative entropy, which is used
to compute the weight of the various growth strategies of the system and to identify the
optimal growth strategy that determines the growth rate.
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1 Introduction

1l.a. Motivation. The contributions in this volume deal with the different faces that entropy
has in probability theory, ergodic theory, dynamical systems, information theory, statistical
physics and thermodynamics. In the present contribution we focus on an application of relative
entropy in probability theory and statistical physics, namely, to population growth in random
media.

Over the past ten years or so, I have been working with Andreas Greven on a program
in which we study random processes that interact either with themselves or with a random
medium and we try to describe their evolution using large deviation theory, entropy techniques
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and variational calculus. We have so far looked at polymer chains, diffusions in random
potentials, interacting diffusions, and population growth in random media (see [8], Part B,
and references therein). In order to explain what the program is about, I have chosen the
simplest example studied so far, namely, particles doing a one-sided migration on the integer
lattice and branching according to a local offspring distribution that is chosen randomly and
independently for different sites. This example is typical for the type of ideas and techniques
that come up also in more complicated examples. The present paper is a review of the work
in (1], [2], [4], [5], [6], [7].

We begin by formulating Sanov’s Theorem in large deviation theory, which is the main
conceptual tool in what follows (see [3], Section 3, and [8], Theorem I1.36). Let (Z;)ien be
i.i.d. random variables on a countable state space S with marginal probability law u. For
n €N, let

1 n
L, = 52521' (1.1)
1=
be the empirical measure associated with Zi,...,Z,. This is a random element of P(S), the

set of probability measures on S, which is endowed with the total variation distance. By the
ergodic theorem, L, tends to px in P(S) as n — oo. Sanov’s Theorem says that the family
(Lp)nen satisfies the large deviation principle on P(S), i.e.,

limsup % log u™(Ly, € C) < — inf H(v|u) VC C P(S) closed,
n—00 ved

(1.2)
liminf L log yN(L, € O) > — inf H(v|p) VO C P(S) open,
n—00 veo
where the rate function H(-|u): P(S) — [0, 00] is given by
H(v|p) = v(s) log V(z)
| sze:s wls) (1.3)
= relative entropy of v w.r.t. p.
What (1.2) says is that for all v € P(S) where H is continuous:
pN(Ly, =~ v) =exp | — H(v|u)n + o(n)], n — 0o. (1.4)

Thus, Sanov’s Theorem gives us a precise description of the large deviation probabilities of
L, away from its typical value p in terms of the rate function H. It is important to note
that H(v|p) > 0 with equality if and only if v = u. Moreover, v — H(v|u) is strictly convex,
lower semi-continuous, and has compact level sets (see [8], Lemma I1.39). We may think of
H(v|p) as a kind of distance between v and u: the larger this distance the more costly the
large deviation.

1.b. Branching random walk in random environment. In Sections 1.b to 1.f we describe
the work in [1], [4].

With each xz € Z is associated a random probability measure F, on Ny = N U {0}, called
the offspring distribution at site z. The sequence

F= {Fm}meZ (15)

is i.i.d. with common distribution «. For fixed F, define a discrete-time Markov process
(7n)nen, on NZ, with the interpretation

in = {nn(x)}l'eza (1 6)
() = number of particles at site = at time n, '



by specifying its one step transition mechanism as follows. Start from initial state ng = 1.
Given the state 7, at time n:

(i) Each particle is independently replaced by a new generation. The size of a new gen-
eration descending from a particle at site x has distribution Fj. All particles branch
independently.

(ii) Immediately after creation, each new particle decides to jump one lattice spacing to the
right with probability h or stand still with probability 1 — h, with A € (0, 1).

The resulting sequence of particle numbers after steps (i) and (ii) make up the state 7,41 at
time n + 1, etc.

The sequence F' plays the role of a random environment and stays fixed during the evo-
lution. The parameter h is the drift of the migration. We write P,E and P, E to denote
probability and expectation for the environment resp. the migration process.

Let b, denote the average offspring at site z and let § denote the distribution of b, induced
by a. Write B to denote the support of 3. We assume that

B is countable and not a singleton,

B is bounded away from 0 and oo, (1.7)

and write
M = supremum of B. (1.8)

l.c. Particle densities and growth rates. We will consider the following two particle
densities:

dp, = (Ex E)(nn(0)) = global particle density at time n, (1.9)
do(F) = E(n,(0)|F) = local particle density at time n. ’

Here, note that for each n the sequence 7, is stationary and ergodic under P x P, so that by
the ergodic theorem we have

d, = lim

Am o 2o @ (PxP)-as, (1.10)

showing that indeed d,, is the particle density in a large box. We will be interested in computing
the exponential growth rates

A = lim 1logdy,

n—oo
. R (1.11)
A(F) = lim llogd,(F).

n—oo

These are identified in Theorems 1 and 2 below.

For 6 € [0,1], let By and 7y denote the Bernoulli distribution resp. the geometric distri-
bution with parameter 6 given by

B@(O) =1-0, Ba(l) =0,

mo(i) = 0(1 — 0)L, i e N. (1.12)



Theorem 1 [1] For h € (0,1) and B as in (1.7):

A= X8, h) (1.13)
with
ABh) = sup |0 sup [F(v) = H(vIm)] | — H(Bo|By)|. (1.14)
0€(0,1] VvEMy
where
My = {yepm&.zimnzgk
N (1.15)
fv) = X uli)log X BG)I
1EN JjEB

Theorem 2 [4] For h € (0,1) and B as in (1.7):

MF)=XB,h) P—a.s. (1.16)
with R R
A ) = sup [0 sup [f(v) = Hlmo x 9]} — H(BoBy)] (1.17)
‘96(071} VGMQ,B
where

Moy = {vePNxB: 3 ivlij) =4, X v(i.5) = BU) Vi € B,
1€EN,jeB 1€EN

fv) = ¥ w(ij)logj'.

1€EN,jEB

(1.18)

Note that the variational problems in (1.14) and (1.17) are similar in structure, but different.
In Section 1l.e. we will explain where they come from.

The link between the global and the local growth rate is expressed by the following theorem.
Theorem 3 [1], [4] For h € (0,1) and 8 as in (1.7):

A(B,h) = sup [A(y,h) — H(~|B)] (1.19)
YEP(B)

Also this relation will be explained in Section 1.e.

1.d. Solution of the variational problems. The variational problems in Theorems 1 and
2 can be solved explicitly. Indeed, they involve maximization of functionals containing relative
entropy under linear constraints, which can be achieved with the help of exponential families
of probability measures via the Gibbs-Jaynes principle cited in [3], Section 4.

Define, for r > 0,

Gy = ¥ 86)(+n).

jEB
B (1.20)
. B : e "[j/M]
G(r) = eXP[]%Bﬁ(])IOg(I—eT[j/M])}
Define i 1
he = ITIEJIH—G(T)’
- 1 (1.21)
b = lim —rgarmy
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and similarly for G. Note that
—[log G)'(r) > 1+ G(r) = =[log G'(r) > 1+ G(r) Vr >0, (1.22)

implying that R R
0. < 0.=h. < he. (1.23)

To express our solution in a compact form we need two more quantities, r* = r*((3,h) and

0* = 0*(5,h), defined as follows:

h<h.: r*=0,
h > h.: r*is the unique solution of A = 1+é‘(r)’
(1.24)
h<h.: 0*=0,
. * __ 1
h>he: 07 = —mgarmey
and similarly for G.
Theorem 4 [1], [4] (See Figs. 1 and 2.) Fiz B subject to (1.7).
(1) For h € (0,1):

B, h) = log[M(1—h)] +#*(3,h).

(1) h — X(B, h) is continuous and strictly decreasing on (0,1), analytic on (0,h.) and (he, 1),
while at the boundary points:

A(B,0) =logM,  A(B,1) =log > _ B(j) . (1.26)

jEB

(iii) h — M(B, h) is continuous and strictly decreasing on (0,1), analytic on (0,h.) and (he, 1),
while at the boundary points:

A(B,0) =logM,  X(B,1) =) B(j) logj. (1.27)

JjEB

(iv) A(B,h) > 5\(,8, h) with strict inequality if and only if h > he.
(v) If he > 0, then
Oc

0 0
%A(ﬂ, hc+) - %A(ﬂa hc—) = m (1.28)

~

Similarly for X(ﬁ, h),izc, .

(vi) For h € (0,1), 6*(8,h) and 6*(8,h) are the mazimizers of the outer variational problem

in (1.14) resp. (1.17).

(vii) On (he, 1), b — 6%(B, h) is strictly increasing, analytic and satisfies 6. < 0*(8,h) < h.
0.

Similarly for 0*(3, h), he,



log M

[ log X BU) §

' en B() log

Fig. 1 Qualitative picture of h — A(3,h) (upper solid curve), h — 5\(5, h) (lower solid curve)
and h — log[M (1 — h)] (dotted curve). The solid curves split off the dotted curve at h resp.
he.

0 he  he 1

Fig. 2 Qualitative picture of h — 0*([3, h) (upp(ir solid curve)A and h — é*(ﬂ, h) (lower solid
curve). The solid curves jump from 0 to 0, and 6. at h, resp. he.

l.e. Interpretation of Theorems 1 and 2. What drives Theorems 1 and 2 is a close
interplay between the migration process and the environment. The idea is that, for large
n, the population predominantly consists of those particles whose history happens to be best
adapted to the environment. Here, best adapted means that the particles have a path of descent
that spends a lot of time on sites  where b, is large, little time on sites « where b, is small,
and does so in a way that is not too unlikely. Indeed, such particles are part of a family that
produces the most offspring and therefore dominates the population (“survival of the fittest”).



Note that when we say population, we must distinguish between two types of population:

the global population (= the population in a large box),

the local population (= the population at the origin). (1.29)

Two particles drawn randomly from these two populations will have different paths of descent.

We now explain where the two variational problems in Theorems 1 and 2 come from. We
give only the main idea. The details will be explained in Section 2.

Let us first look at the global variational problem. Note that this variational problem has
a two-layer structure: it consists of an outer and an inner variational problem. The reason
for this is as follows. What happens is that the path of descent of a particle may assume any
empirical drift 8 and any empirical local time low v, i.e., the empirical measure for the steps
in the path resp. for the time spent at the sites that are visited successively. These are the
two variables appearing in (1.14). The cost of adopting 6 is H(By|B},), the cost of adopting v
given 6 is H(v|my). Conditioned on adopting v, the path of descent produces offspring at rate
f(v) in (1.15), which is the growth factor on a site whose local time law is ¥ when averaged
over the local environment at that site. Thus we see where (1.14) comes from: the growth
rate is determined by the optimal choice for # and v in a competition between cost and gain.
Note that the constraint in My in (1.15) says that the average local time at a site must be
compatible with the drift, so we have a constrained variational problem.

For the local variational problem the structure is the same, except that the environment is
fixed. In this case v plays the role of the empirical joint local time law and local environment
law, keeping track of which local time occurs on top of which local environment. The cost of
adopting v given 0 is H (v|my x ), and conditioned on v the path of descent produces offspring
at rate f(v) in (1.18), which is the growth factor on a site whose joint local time law and
local environment law are v. This explains (1.17). Note that the set Mg,g in (1.18) has two
constraints: the first again says that the average local time at a site must be compatible with
the drift, the second says that the projection onto the environment coordinate must equal .

The explanation of the link established in Theorem 3 is as follows. The global particle
density is the average over the random environment of the local particle density (recall (1.9)).
Effectively, this means that for the global growth rate the random environment participates in
the competition between cost and gain, while for the local growth rate it does not. The cost
for the environment of adopting an empirical local environment law -y is H(~y|3). Conditioned
on adopting v, the growth rate is A(y,k). Thus, (1.19) says that the global growth rate is
determined by the optimal choice for : most of the population in a large box comes from
those stretches in the box where the environment is optimal.

It turns out that (1.14) and (1.17) have unique maximizers. In fact, it can be proved that
the path of descent of a typical particle drawn from the global resp. the local population has an
empirical drift and an empirical local time law resp. an empirical joint local time law and local
environment law that converges to the unique maximizers of the variational problems. This is
related to Csiszar’s conditional limit theorem cited in [3], Section 5. Also (1.19) has a unique
maximizer, and along the path of descent the empirical local environment law converges to
this maximizer.

1.f. Phase transitions. Theorem 4 shows that our system exhibits various interesting phase
transitions. We now interpret these phase transitions for the case where §, in addition to
(1.7), has the following properties (already assumed in Figs. 1 and 2):

(I) log M >0 >log3 ;-5 B(j) j: both solid curves in Fig. 1 cross zero.
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(IT) log[M (1 — h.)] > 0: both solid curves in Fig. 1 split off the dashed curve before crossing
zero.

(IT1) 3 B(5)(1 — [j/m])~2 < oo: both solid curves in Fig. 2 jump.
JEB

(I) Survival vs. extinction: Fig. 1 shows that there is a critical value for h at which A(53,h)
changes sign. Below this value the population grows (= global survival), above this value the
population decays (= global extinction). The same interpretation applies for A(3, h).

(IT) Clumping: Fig. 1 shows that there is an intermediate range of h-values where A\(3,h) >
0> 5\(5, h), i.e., global survival but local extinction. This means that the particles are
strongly clustering together (= clumping): the density of populated sites decays to zero, but
the population on these sites grows so fast that the overall particle density still grows.

(III) Localization wvs. delocalization: Fig. 2 shows that for h < h. we have 6*(8,h) = 0,
meaning that the typical path of descent moves at sublinear speed (= global localization),
while or A > h, we have 6*(3,h) > 0, meaning that the typical path of descent moves at
linear speed (= global delocalization). At h = h, the speed makes a jump of size 6, > 0.
The dashed curve in Fig. 1 corresponds to the strategy where the typical path of descent of
a particle drawn from the global resp. the local population spends most of its time on sites
where the environment is maximal. The cost of this strategy is H(By|By) = log(1/(1—h)), the
gain is log M. Below h, this strategy is optimal, above h, it is not. The random environment
has the tendency to slow down the path where it is large and to speed up the path where it
is small. Since 0*(/3,h) < h, as shown in Fig. 2, the overall effect of the random environment
apparently is to slow down the path. The same interetation applies for é*(ﬂ, h), he, ..

1.g. Outline. The remainder of this paper is organized as follows. In Section 2 we sketch
the derivation of Theorems 1, 2 and 3 given in [1], [4], which is based on Sanov’s Theorem
in Section l.a. In Section 3 we discuss two extensions: one described in [5] where the initial
state is a step function and one described in [2], [6], [7] where the migration runs both
forward and backward. In Section 4 we close by formulating some open problems and making
some philosophical remarks. The proof of Theorem 4 relies on a straightforward calculus of
variations applied to the two variational problems in (1.14) and (1.17), and will be omitted.
We refer the reader to [1], [4] for details.

2 Sketch of the derivation of Theorems 1, 2 and 3

2.a. Local times of random walk. Let
S=0,5,=X1+...X,,n €N, 2.1)
(X;) iid. with Py(X; =1) =1 — Py (X; =0) = h '

denote the random walk with drift A that serves as the underlying migration process of the
particles. For z € Ny and n € Ny, let

ly(z) ={0<i<n: S; =z} (2.2)

denote its local time at site z up to time n. The following representation of the local particle
density in (1.9) is the starting point for our explanation. We write P, and Ej} to denote
probability and expectation w.r.t. the random walk.



Lemma 1 dy(F) = Eh( I [b_y]én(y)>_
yeNy

Proof. Fix F. From the evolution mechanism of our process (recall steps (i) and (ii) in Section
1.b) we obtain the recursion relation

E(n (2)|F) = (1 = h)bp E(1n—1(2)|F) + hbg 1 E(np—1 (z — 1)|F). (2.3)

In the notation of (2.1) this may be rewritten as

d,(z, F) = By, (bI,XIJn,l(x ' F)), (2.4)

where d,(z, F) is the local particle density at time n at site z. Iteration of (2.4) gives

dn(, F) = By (T] ba-sido(z — S, F)). (2:5)
i=1
Finally, put x = 0, substitute cZO(- ,F)=1and write [[}_, b g, = HyENo [b,y]en(y). |

Next, we rewrite Lemma 1 in a form that is more appropriate for the large deviation
analysis to be carried out in Section 2.b. For z € Ny, let

l(z)= lim 4,(z) = |{0 <i< o0 S; =z} (2.6)
denote the total local time at site z.
Lemma 2 For h € (0,1):

dn(F) =" Py(Sn = z)Ep(z,n, F), (2.7)
€Ny

where F is the reversed environment defined by F'y =F_y,y€Z,and
x T
Ey(w,n, F) = By [T, |3 ly) = n). (2.8)
y=0 y=0
Proof. Rewrite the representation in Lemma 1 as in (2.7) with
Ep(2,n, F) = Eh( T, | 5, = x) (2.9)
y=0

using that £,,(y) = 0 for all y > = on the event {S,, = z}. Add Sp4+1 =z + 1 to the condition
in (2.9), note that {S, = #,Sp11 = v + 1} = {3/ £(y) = n}, and use that on this event
lo(y) = L(y) for all 0 <y < z. |

2.b. Large deviations and growth rates. Lemma 2 is the starting point for our large
deviation analysis.



Local growth rate: We begin by writing (2.7) as an integral:

dn(F) = n/ 6 Py (S, = [6n])En([6n],n, F) + (1 — h)"[bo]" (2.10)
0€(0,1]

The last term is harmless because A > log[M (1 — h)] (recall (1.8), (1.11), (1.16) and (1.25)).
Next, under the integral we may replace Ej, by Ejy, i.e.,

En([6n],n, F) = Eg([0n],n, F). (2.11)

Indeed, the condition {S,, = [#n]} fixes the number of steps to the right up to time n at [6n],
which makes the conditional probability independent of the drift. Next, Sanov’s Theorem in
Section 1l.a tells us that

lim - log Py (S, = [0n]) = —H (By|By). (2.12)

n—oo N

Indeed, pick S = {0,1}, p = By, L, = %Z?:l dx, and note that {S, = [On]} = {L, =
Bign)/n}- Next, we will show that

1 _
lim —log Ey([On],n, F) = —Jg(0) P—a.s., (2.13)

n—oo N

where jg(@) is the inner variational problem in (1.17). Theorem 2 follows from (2.10), (2.12)
and (2.13) with the help of Varadhan’s Lemma (see [8], Theorem III.13).

To prove (2.13), we again use Sanov’s Theorem. For N € N, let

1 N-1
Ly = 2 deam) (2.14)
=0

denote the empirical distribution over the N-interval of the total local time process and the
random environment jointly. In terms of this quantity, we may write

o] [on]
[11,)® = exp| 3 ely) logh,]
y=0 y=0
= e [Kn ¥ L, (i) ilog ] (2.15)
i€N,j€B
with f defined in (1.18) and K,, = [#n] + 1. Let
o NPT n
An:{yeP(NxIEB). X i) _fn}' (2.16)
i€N,j€B
Since {32174 £(y)} = {Lk, € Au}, we get from (2.8), (2.11) and (2.15) that
By ([0n],n, ) = /eK”f(V) Py(Li. € dv | Lic. € Ay). (2.17)

Now, under P the sequence (4(x),bs)zen, is i.i.d. with state space S = N x B and marginal
law p = myp x 3. Therefore (Ly)nen satisfies the large deviation principle on P(N x B) with
rate function H (v|my x (3). Hence (2.13) follows from (2.17) via Varadhan’s Lemma.
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There are two technical points here that need consideration. First, we are in fact using
Sanov’s Theorem under two conditions, namely,

> iLlk,(4,5) = &,
€N, EB
y e 218
> Lk, (4,7) = = 2 0, (4) Vi€EB,
i€EN =0

with the last empirical measure fixed because F' is fixed. However, as n — oo the right-hand
sides of (2.18) tend to 1/0 resp. 5(j) (by the ergodic theorem applied to F'). The fact that this
translates into the two restrictions in Mg,g defined in (1.18) requires some continuity argu-
ments. Second, the application of Varadhan’s Lemma requires certain regularity properties,
which can be obtained via approximation. We refer the reader to [1], [4] for details.

Global growth rate: Since, by (1.9),

dyp = E(Cin (F))a (2'19)

Lemma, 1 also gives us a representation of the global particle density. We can therefore follow
the same line of argument as above. Because of (2.19), we put

Ey(16m1,n) = B Ea([0n],n, F)). (2.20)
It suffices to show that the analogue of (2.13) holds:

lim — log By([6n],n) = —J5(0) (2.21)

n—oo N

with Jg(#) the inner variational problem in (1.14). For N € N, let

L N1
Ly = D_ ) (2.22)
=0
We have
= B (E( yHU[by]z(y)> | yg’o ) = n) (2.23)

[on] [on]
= B 11 % 86" | S ty) =n)
y=0

y=0j€B
= [efflr)Py(Ly, €dv | Ly, € Ay)
with f defined in (1.15), K, = [6n] + 1 and
Ap = {u ePM): S iv(i) = i} (2.24)

K
ieN n

Under Py the sequence (4(x))zen, is i.i.d. with state space S = N and marginal law p = .
Therefore (Ly)nen satisfies the large deviation principle on P(N) with rate function H (v|mp).
Hence (2.21) follows from (2.20) and (2.23) via Varadhan’s Lemma.

11



This completes the sketch of the proof of Theorems 1 and 2.

2.c. Relation between the global and the local growth rate. The proof of Theorem 3
runs as follows. For any v € My ,, we have the identity

H(v|mg x v) + H(y|B) = H(v|mg x ) (2.25)

because ) ;- v(i,5) = v(j) Vj € B. Hence the right-hand side of (1.19) equals

sup sup [f(v) — H(v|my x B)]. (2.26)
’YGP(B) I/E/\;lo,,y

Let v(i) = > ,cpv(1,7). A little computation gives

[/(v) = H(v|mg x B)] = [f () — H(P|rp)] = D (2.27)

with
D =" o) H(pl), (2.28)

1€EN
where 1;(j) = v(i,5)/7(i) and 1} () = B(j)5"/ X jen B(5)J"- Since

{ U Moy} =M, (2.29)

YEP(B)

there is no constraint on (u;), only on v. Hence the supremum in (2.26) after we substitute
(2.27) is taken at (u;) = (uf) where D = 0. Therefore the right-hand side of (1.19) equals

sup [f (7) — H(7|m)], (2.30)

vEMy

which is the same as the left-hand side of (1.19).

3 Two extensions

(1) In [5] the same model as in Sections 1 and 2 is considered, but with a different initial state,
namely,
no(z) = 1 forz <0,

= 0 forxz>0. (3.1)

In this situation we get wave front propagation. The exponential growth rate at a site moving
at speed 7 > 0 is computed, again in terms of a variational problem arising via Sanov’s
Theorem. The result reveals two characteristic wave front speeds: 71, the speed of the front of
zero growth (= the speed of the right-most particle) and 79, the speed of the front of mazimal
growth (= the speed up to which the growth rate equals X(ﬁ, h)). The latter speed exhibits
a phase transition, changing from zero to positive as the drift in the migration crosses a
threshold.

(2) In [2], [6], [7] the same model as in Sections 1 and 2 is considered, but with the migration
running both forward and backward: particles jump one lattice spacing to the right with
probability %(1 +h) or one lattice spacing to the left with probability %(1 —h), where h € (0,1)
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is again the drift parameter. The analogues of Theorems 1, 2, 3 and 4 are proved, but the
analysis is considerably more complex than in the one-sided case. The reason is that the local
time process no longer has an i.i.d. structure. The global and the local growth rate come out
as variational problems, but this time a more refined version of Sanov’s Theorem is needed,
where the empirical measure in (1.1) is replaced by the so-called empirical process, i.e., the
empirical measure built on a sequence of random variables rather than single random variables
(see [3], Section 6). It turns out that the variational problems can be solved in terms of certain
random continued fractions. Though the latter may seem a bit prohibitive, they can actually
be used to derive a phase diagram similar to Figs. 1 and 2.

4 Conclusion

The model described in this paper is an example of an interacting particle system in a random
medium. It is closely related to the class of problems studied in Sznitman’s book [9], which
revolves around large deviation theory for Brownian motion among Poissonian obstacles. The
distinction between local and global corresponds to what in the physics literature is often
called quenched and annealed, namely, in a fixed medium resp. an averaged medium.

An interesting open problem is to prove the law of large numbers

1(0)
E(nn(0)|F)

Indeed, only then does A(F) in (1.11) truly deserve the name of local growth rate, like A in
(1.11) deserves the name of global growth rate because of (1.10). No doubt (4.1) holds true
because the particles at the origin at time n come from many different ancestors at time 0,
but the proof has not been worked out.

-1 (P x P) —a.s. as n — oo. (4.1)

One of the major challenges is to extend the results described above to higher dimension:
particles migrate and branch on Z¢ with d > 2. Qualitatively, we expect a phase diagram
similar to Figs. 1 and 2, but it is not a priori clear that all the phase transitions survive in
higher dimension. In any case, the variational study has not been carried through in any
detail.

Large deviation theory is the crossroad of probability theory, ergodic theory and statistical
physics. The sketch in Section 2 shows that both the global and the local growth rate are the
result of an optimal selection from possible growth strategies (parametrized by € and v) for
the path of descent of a typical particle (i.e., a particle drawn randomly from the global resp.
the local population). Relative entropy is the key notion, since it determines the weight of the
different growth strategies and leads to the variational problems embodying the selection.

As is evident from some of the other contributions in this volume, relative entropy shows
up in various different contexts, but each time its role is one of selection. The model described
in the present paper is but one illustration of this role. The rich behavior seen in Figs. 1 and
2 shows that relative entropy is capable of catching subtle phenomena like phase transitions,
which makes it a versatile tool indeed.
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