ANNEALED SURVIVAL ASYMPTOTICS FOR BROWNIAN MOTION
IN A SCALED POISSONIAN POTENTIAL
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Abstract

We consider d-dimensional Brownian motion evolving in a scaled Poissonian
potential B 2(t)V. B > 0 is a constant, ¢ is the scaling function, and V is
obtained by translating a fixed non-negative compactly supported shape function
to all the particles of a d-dimensional Poissonian point process. We are interested in
the large ¢ behavior of the annealed partition sum of Brownian motion up to time
t under the influence of the natural Feynman-Kac weight associated to Sy 2(t)V.
We prove that for d > 2 there is a critical scale ¢ and a critical constant §.(d) > 0
such that the annealed partition sum undergoes a phase transition if 5 crosses f.(d).
In d =1 this picture does not hold true, which can formally be interpreted that on
the critical scale ¢ we have f.(1) = 0.
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0 INTRODUCTION AND RESULTS

In the present article we study the behavior of d-dimensional Brownian motion under the
influence of a scaled random soft potential, d > 1. The random soft potential is obtained
by translating a fixed shape function W to all the points of a Poissonian cloud. Let P
stand for the law of a Poissonian point process w = ). ¢,, € Q with fixed intensity v =1
(2 is the set of all simple pure locally finite point measures on R%). For w € Q, x € R,

the (unscaled) soft Poissonian potential is then defined as

V(z,w) of /W(x —y)w(dy), (0.1)

where we assume that the shape function W > 0 is measurable, bounded, compactly sup-
ported and [ W (y)dy = 1. For x € R?, let P, stand for the standard Wiener measure on
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C(R,,R%) starting from x (its canonical process is denoted by Z.). Then it is well known
that the Feynman-Kac functional u(x,t,w) = FE, [exp { fo (Zs,w ds}] represents the
bounded solution in a classical sense when V(-,w) is regular and in a generalized sense
else of the random potential parabolic equation:

{ Ou = FAu—V(-,whu, (0.2)
Ut=0 — ]_
We know that the annealed large ¢ behavior of that solution is

E[u(0,t,w)] = exp {—&(d, 1)t (1 4+ 0(1))}, ast — oo, (0.3)

where ¢(d, 1) is the constant defined in (0.10), below. This result goes back to Donsker-
Varadhan [4], who used large deviation theory for occupation local times on Brownian
motion on a torus. In a later version, Sznitman [12], Theorem 4.5.3, has proved the same
result with the help of the method of enlargement of obstacles. Formula (0.3) is also true if
one replaces the soft obstacles W by hard obstacles, which immediately kill the Brownian
particles if they hit such an obstacle (traps) (see [12], Theorem 4.5.3). In the setting of
rarified traps results have been obtained by Bolthausen [2], Sznitman [11], Bolthausen-
den Hollander [3] and van den Berg-Bolthausen-den Hollander [1] (by scaling arguments
the situation of rarified traps can be viewed to be equivalent to that of shrinking hard
obstacles). Here we study a slightly different problem, instead of rarifying hard obstacles
we scale the soft obstacles: For a scaling function ¢ : Ry — R, and # > 0, we examine

the asymptotic behavior of

E® E, [exp {—ﬁw(tﬂ /OtV(Zs,w)dsH , ast — 00, (0.4)

This immediately motivates the study of the annealed problem for the principal Dirichlet
eigenvalue of the random Schrédinger operator Hpg, -2y dof —%A + Bp(t)2V: let us
give a heuristic argument for the leading order in (0.4) being determined by a principal

eigenvalue:

B e {7 [ tv<zs,w>ds}] = o) = T a0, 09

where the \; > 0 are the “eigenvalues” of Hg,;)-2v and ¢; the corresponding “eigenfunc-
tions”. So let us consider the bottom Ag,-24)y(U) of the spectrum of Hpg, -2y over a
non-empty open subset U of R?; more generally, for any measurable function F : R? — R
which is bounded from below the ground state energy with potential F' is defined by
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For [ : Ry — Ry and t > 0 we define 7y o (—1(t),1(t))%. The logarithmic moment

generating function of a Poissonian point process is defined as follows (5 > 0):

As(=B) ¥ logE {exp{—ﬁ 2 dw}] :/ (e 7% — 1) dx, (0.7)
Rd Rd
for p € L {¢ € HY2(R?) : ¢ is compactly supported, continuous, and ||¢||, = 1}. Then
2
def . 1 2
1) 2 int {5 17615 - A5 : 0 € @} (0.)

Finally we define the constant ¢(d,1): Let A; be the principal Dirichlet eigenvalue of
—A/2 on the d-dimensional unit ball B;(0). Then

1
_ def 2Ma a+2
= | —— 0.9
(o) (09)
. def. . (Ad | 4 A
c(d, 1) = gg (ﬁ + 7 |B1(0)|> =7 + 79| B1(0)]. (0.10)

These quantities have already been introduced by Sznitman [12], formulas (4.5.30)-
(4.5.32).

Our first main result is the following theorem (“a(t) > b(t)” means that a(t)/b(t) — oo
as t — oo):

Theorem 0.1 For d > 1, we choose p : Ry — Ry and | : Ry — Ry such that I(t) >
(p(t) v /42 and log I(t) < t (p(t) v tl/(d“))f?. For 3> 0 we have:

a) If tY(2) < o(t) < tY2, then

. t)?
tlirglo _(p(t) logE [exp (—tAgp-2v(Tiw)) ] = B- (0.11)
b) If o(t) = tY/(4+2)  then
lim —t =2 1og E [exp (—tAspi-2v(Tiwy)) ] = J(B). (0.12)

t—o0

c) If o(t) < Y42 then

lim —t =Y 1og E [exp (—tAspn-2v(Tin)))] = é(d, 1). (0.13)

t—oo

This result tells us that the critical scale, on which we may observe a phase transition,
is o(t) = t'/(4+2)_ Tt should be contrasted with the results obtained in the quenched case
(see formulas (0.7), (0.15) and (0.16) in [10]). As the special case p(t) = 1, (0.13) contains
the result (0.3) by Donsker-Varadhan.

For the annealed partition sum we obtain a similar behavior:

3



Theorem 0.2 Ford > 1 and [ > 0 we have:
a) If YD) < o(t) < (t/logt)/?, then

lim —%)2 logE @ By [exp (—ﬁgo(t)_2 /OtV(Zs) d5>] = 0. (0.14)

t—o0

b) If p(t) =t/ then

lim —t~ Y og B @ E, [exp <—ﬂ<p(t)2 /0 t V(Z,) ds)] = J(B). (0.15)

t—oo

c) If o(t) < Y42 then

t
Jim —t D Noe B @ E, [exp <—5¢(t)2 / V(Z,) ds)] = ¢(d,1).  (0.16)
The upper bound in (0.16) is already contained in the proof of the upper bound in (0.3).
Our next results prove that on the scale ¢(t) = tY/(**2) we have a phase transition in

dimensions d > 2 but not in dimension d = 1.

Theorem 0.3 For d > 2, there is a critical point 5.(d) > 0 such that

B for0< B < Be(d), (0.17)
J(B) < B for B> B(d). (0.18)

However, this phase transition picture does not hold in dimension d = 1, as the following

theorem shows:

Theorem 0.4 Assumed = 1. Then for all 5 > 0, J() < 5. There are positive constants
Cy < Cy and by such that for all B € (0,b1):

B—CB* < J(B) < B—CiB (0.19)

As a consequence, J(f) in dimension d = 1 is not proportional to 3 for small values of
f: formally we may write (.(1) = 0. One should compare Theorems 0.3 and 0.4 with
Theorems 0.3 and 0.4 of [10]. The remarkable thing is that in the annealed case we observe
the critical dimension d = 2 for having a phase transition, while the critical dimension in
the quenched case equals d = 4.

The next theorem plays an analogous role for the annealed problem as Theorem (0.2)

in [10] does in the quenched context:



Theorem 0.5 For any dimension d > 1 there are positive constants Cs(d), Cs(d), and
ba(d) such that for all B > by the following bounds hold:

G
75

This theorem shows that in the limit f — oo one asymptotically approaches the Donsker-

log 3

(1) = Oy [ =5

< J(B) <éd,1) (0.20)

Varadhan picture for unscaled potentials; one may compare this with (0.16) and (0.3).
Let us explain how this article is organized: Formulas (0.11) and (0.12) are proved in
Section 1, Lemmas 1.1 and 1.2. The claims (0.13) and (0.16) are also proved in Section 1.
In Section 2 we show (0.14) and (0.15). The proof of the Theorems 0.3 - 0.4 is prepared
in Section 3.1, but it is completed at the end of Section 3, whereas the proof of Theorem

0.5 is given in Section 3.2 (Lemmas 3.3 and 3.4).

1 ASYMPTOTIC BEHAVIOR OF THE PRINCIPAL DIRICHLET
EIGENVALUE

In this section we prove Theorem 0.1 and the lower bound in (0.16). For r > 0, y € R?,

and a function ¢ the scaling operator S; is defined by

(Sy6)(x) = r=o((x — ) /7). (1.1)
Lemma 1.1 For all positive scaling functions [(t) > (t) and 3 > 0:
: p(t)*
111;11 sup — ; log E [exp <—t)\ﬁ¢(t)—2v('fl(t)))] < 4. (1.2)

For the special scaling function o(t) = tY/\4+2) the following bound holds:

lim sup —¢—/(d+2) logE [exp (—t)\ﬁt72/(d+2)v(,]i(t)))} < J(pB). (1.3)
t—o00
Remark: For the special scaling function o(t) = t'/(4+2) the inequality (1.3) is stronger
than the general inequality (1.2) at least in some cases; see Theorem 0.3. The inequality
(1.2) can be proven using Jensen’s inequality. We do not proceed in this way, but treat
instead (1.2) and (1.3) at the same time below.

Proof of Lemma 1.1. Choose ¢ € ®. Since ¢ is compactly supported and I(t) > p(¢)
we have for all sufficiently large ¢ that the function Sff(t)qb is supported in Zy;. We



estimate for these large ¢ > 0, using the notation * for the convolution operator, and
_ def
W, () = r'W(-ra):

r

logE [eXp (—t)\mo(t)*ZV(Z(t)))]

exp (—g |vesso|| - 2

2
_ S‘P(t) QVd
9 (p(t)Q L(t)( 0 ¢) 37)

t ¢
iy i)

> logE

IV6I2 + log E {exp (

2p(1)?

t
207

- Q@Et) Vol + /(exp(—%wmsa@%)?)—l) 0
t
(

ﬁt
LA et R

- = (3 ||v¢||2+5);

we used ||¢|l5 = 1, W > 0, [|[W|l, = [[W]|, = 1 in the last step. The estimate (1.4)

implies

o)
t

. 1
lim sup — logE [exp (—tAgp-2v(Tiry)) ] < 5 IV + 3. (1.5)

t—o0
The gradient term ||V@||> can be made arbitrarily small; hence (1.5) implies the claim
(1.2). To derive (1.3) in the case ¢(t) = t'/(4*2) we proceed as follows: Using that ¢ is
continuous, and W >0, [|[W"[|; = [[W]|; =1, we get W, = ¢? == ¢? pointwise. Using

the dominated convergence theorem one sees

[ (oo (=W, 67) = 1) d = (-0, (1.6)
Rd
and hence, using the fifth line in (1.4):

. _ 1

111;11 sup —t Y 10g E [exp (—tAso-2v (Tiw))] < 5 Vo5 — Ag(—13). (1.7)

Using the definition (0.8) of .J, the claim (1.3) of Lemma 1.1 follows from (1.7).

|

Lemma 1.2 Assume that the scaling function ¢ satisfies either t'/(442) < o(t) < t'/?
or p(t) = Y2 Further assume that the scaling function | fulfills log1(t) < t/p(t)2.



Then for all > 0:

t 2
lim inf —99( )

t—oo t

J(B) for o(t) = t'/(4+2)
6 for tY/(0+2) < (1) < 12,
(1.8)

o e (-0 7)] > |

Proof of Lemma 1.2. We use some notations from [10], Section 2.1: for M > 0, VM of
V A M, and for ¢ >0, j € CZ we set K;(¢) = j+[0,¢)* and w¢ = 3. pu L2136
here 6; means the Dirac measure located at j. We set V<(x,w) & Jea Wz — y) w(dy),
this is the Bernoulli version of the Poissonian potential V (-, w). Finally for ¢ € H?(R?)
and a measurable function F we abbreviate £r(¢) & ||Ve|12/2 + [ Fy?dx (whenever
the right-hand side is well-defined). The following notation deviates a little form the one
chosen in [10], since we have now [(¢) instead of ¢ as the length scale of the universe box:
Y}‘éf (g e dV2Rp(1)Z7 Brew(y) N Ty # 0}. Lemma 2.3 and Lemma 2.4 in [10],
especially the estimate (2.40) there, show: For positive 3, n and ( there are M > 0,
R > 1, a finite set ¥ C {¢p € CY(Bg41(0)) : ||¢]|l2 = 1} and ¢, > 0 such that for all ¢ > t,

and w € Q:

Asoy-2v (D) > inHl gﬂ@(t)—QVM(S;(t)¢) — 3p(t)?n, (1.9)
ye If?,o,,t
PYew

and

P07 ma (0027 (S770) = Eggravm (S5O0
yerpt
Yew

< 28max(([¢l + V¥l VA R By (0)] () < n. (1.10)

We emphasize the following fact: ¢y, does not depend on w € €2, since the first estimate in
(1.10), which coincides with the last estimate in (2.40) in [10], is uniform in the Poissonian
configuration w. (1.9) and (1.10) yield

Asey-2v (Zuey) = yreﬂyiil,l gﬂw(t)—Qf/c(S;f(t)lb> — dop(t) . (1.11)
R,t
Yew



Therefore (again for ¢t > ty):

logE [exp ( tAspty-2v (L) ))]

< logE max exp <_t€,&p(t)*2f/c(55(t)¢)> + 4tp(t)n

Y‘P
wexp
< log Y E [eXp( W(t)-WC(S;"(%))] +dtp(t) (1.12)
yevy,
;be\y
< suplogE [exp ( tE5, zvg(S‘p( WJ))] + log |Y]§’tl| + log |W| + 4tp(t)*n.
yeR?
bew

To estimate the expectation in the last expression, we proceed analogous to the quenched

case, see Lemma 2.5 in [10: We define the discretized version 16 < (¢ > ecza 0y of the

Lebesgue measure, abbreviate m 41— e e 1, and use the bound (2.45) in

[10], which is the following estimate for the Laplace transform of a Bernoulli process
(discretized Poissonian point process): logE [exp ([ fdw®)] < m [(ef — 1) dve.
We get for all ©) € U (compare with (2.46) in [10]):

p(t)? B -
sup og E [exp (161 25<(550))
p(t)? 2 p(t)? Bt / N
= — §e) loe | — SeN217¢ g
5;1]15 2 Hv Y ¢H2+ t 0og exXp @(t)Q Rd( Y ¢) X
1 2 | p(t)? St / -
- 3 log K - SEOP)? Wy dwt 1.13
2||V¢||2—|— t ;;5 08 L | XD o(t)? Rd( )T R W dw (1.13)
1 t 2 t
< Sywu e My [ (e {- D spouremy L) s
2 t yerd Jrd ()2
_ 2 me(t)T —Bt @ ¢/elt)
B _§va“2+f‘5§]@ RY exp (p(t)dﬂ(s /(1) w) *W¢(t — 1) dv*?
— —§||w||§+m/\¢(—ﬂ) for p(t) = ¢1/(d+2),
_% V[l —mp for o(t) > t1/(4+2),



The assumptions logI(t) < t/o(t)? and o(t) < /2 imply log |Y;7{| + log [¥| < t/p(t)>.
Combining (1.12) and (1.13) we obtain

b e 97 T
im inf —— logE[exp (—t)\w(t)dv( l(t)))]

minges L |VY]2 — mAy(=B) — 4y for p(t) = /442,
mingey 3 VO[3 +ms — 4y for t1/2 > () > t1/(d+2)

mJ(B) —4n for p(t) = t/(+2),
mB —4n  for /2> o(t) > /(@)

(1.14)

The claim (1.8) of Lemma 1.2 now follows by taking the limits  — 0 and { — 0, i.e.
m T 1. Lemma 1.2 is proved.

|

Proof of (0.13) and (0.16). For p(t) < t'/(442) we have for all 3, 3" > 0 and all large ¢:

B s B

S0 (1.15)

By monotonicity, this implies Ag -2y (Zyey) > Agr-2/a+2y (Tyr)). Hence, using (0.12) and
Theorem 0.5 (which is proven in Section 3, below):

lim inf —t~" log E [exp (—tAsp0)-2v(Tiry)) ] > T () U2 Hd, 1), (1.16)

t—o0

An analogous monotonicity estimate also holds true for the partition sums; this proves
the lower bounds in (0.13) and (0.16).

To prove the upper bounds, we set r(t) = t/(97, and choose a length scale [(t) >
r(t). Then we have (where a denotes the minimal radius such that the support of W is
contained in the ball B,(0)):

lim sup —t~ ¥4+ Jog E [exp (—tAsp(0-2v(Tiwy)) ]

t—o0

< liin sup —t /(D Jog B [exp (—tAgpt)-2v(Tu)))  w(Bir)+a(0)) = 0]

< limsup —¢~#(4+2) logE [exp (—t)\VEU(Br(t)(O))) , W(Br(t)14(0)) = 0] (1.17)
t—oo

= limsupt~ ¥+ (tAar(t)™? = log P [w(By(1)44(0)) = 0])

t—o0

= N7, 2+ 74B1(0)| = &(d, 1).

The proof of the upper bound (0.16) is the same as in [12], Theorem 4.5.3, (4.5.33)—
(4.5.36). This finishes the proofs.
O



2 ASYMPTOTIC BEHAVIOR OF THE PARTITION SUM

In this section, we prove (0.14) and (0.15) of Theorem 0.2. The main tool to obtain
upper bounds in (0.14) and (0.15) is a change of measure, which transforms Brownian
motion into a (stationary) diffusion process: Using this diffusion process as “strategy” for
the Brownian particle turns out to be optimal (at least in the leading order) for survival
among scaled Poissonian obstacles.

Proof of the upper bounds in (0.14) and (0.15). We treat both cases at the same
time. Alternatively, the proof of (0.14) could be treated separately, simply using Jensen’s
inequality.

Let ¢ € @, ¢ > 0. We first introduce a modification ¢ of ¢ which is positive everywhere
with an exponential decay at infinity: Let 6; € C*(R?) denote a fixed positive function
with exponential decay at infinity and with ||61]|, = 1, to be explicit, say 6;(z) = cye™ 1!
with a positive constant ¢, for all z outside a compact subset of R?. For every multiindex
n, we get the following bound on the n-th derivative: There is a constant c5(n) > 0 such
that |D,61] < e5(n)d;. For e > 0, we define the following approximation to Dirac’s 6:
be(x) & =5y (x/e). Let f(k) = [e ™ f(x)dx denote the Fourier transform. Using the

dominated convergence theorem we see:

9% 83 = )~ [ombien) |, =2 em || =Ieli =1, @)

2

and similarly

IV 8.]l5 == | Volls. (2.2)

e—»O

Consequently ¢ < ||qb>k(5 17" (6 % 6.) satisfies |[Vo<||2 == ||[Vo|l2, ¢¢ > 0, and there
exist €g > 0, ro > 0 and ¢g > 0 such that for all € € (0,¢) and x € R? with |z| > 7¢:
¢°(z) < cge”1”l. We get for all 3 > 0, using the dominated convergence theorem once

more:

1 . _ e—0 1 342
IVl = [ —ar Lol - [ @ -nan @3

For e > 0, ¢t > 0, we set ¢ o S“O(t)# With ¢, ¢t being fixed for the moment, we define
p Vlog ¢.:. By a change of measure, we introduce a diffusion process with drift b(Z;)

over the finite time horizon ¢ < oo: the bounds on the derivatives of ¢; imply

sup | D,b(z)| < oo (2.4)

r€R4

10



for every mulitindex n; especially the Novikov condition (see e.g. [7], Corollary 3.5.13)

. e (5 [ wzoras)] < (25)

is satisfied. By the Cameron-Martin-Girsanov theorem,
Zy=17, — / b(Z,) du (2.6)
0

is a d-dimensional Brownian motion with respect to the probability measure

Q. = exp {/Otb(Zs) dz, — % /Ot b(Z,)|” ds} P,. (2.7)

We denote the expectation operator with respect to Q, by E?, while the symbol E,
is reserved for expectations with respect to P,. We claim that ¢?,dz is an invariant
distribution with respect to the transformed diffusion process, i.e. for every non-negative

measurable test function f: R? — R we have for all s € [0, ]:
OB (Z)]dr = | deelw) f(2) da. (28)
R R

It suffices to prove (2.8) for f € C>°(R?): In this case, the bounds (2.4) on the derivative
of the drift imply that

def

g(,5) = EZf(Z,)] (2.9)

is a classical solution of the Cauchy problem

% = %Ag+b Vg, (2.10)
g(x,0) = f(x), (2.11)

with bounded derivatives in x and s of every order (see e.g. [5], §5.3, Theorems 3.1 and
3.2, and [6], §6.4, §6.5). We use the heat equation (2.10) and integrate partially to get:

% Rd 9w, 8)pep(1)* do = /Rd %(% $)Pei(x)? do
= 1 x,s M . . 2)2 do
B /Rd (2Ag( )+ e t() Vgl )> Per(x)” d (2.12)

= [ Vo000 (Vi) = Tougla) do = 0.

The boundary terms of the partial integration vanish, since ¢.; and its derivatives decay
exponentially at infinity, while g and its derivatives are bounded. Our claim (2.8) is a

consequence of (2.12).

11



The measure P, is absolutely continuous with respect to @), with the Radon-Nikodym

ZSZ - {— /Otb(Zs) dZ; + % /Ot b(Z,)|? ds}
_ exp{—/otb(Zs)dZs - %/Otw(zs)pds} 2.13)

We remark that the stochastic integral in (2.13) remains unchanged when the underly-

derivative

ing probability measure P, is replaced by the equivalent measure @),. By translational

invariance of the Poisson process we get

E ® Ey {exp <— @5)2 /UtV(Zs) ds)]
= E {/Rd E, {exp <—¢£)2 /OtV(Zs)dsﬂ ¢E,t(a;)2da;] : (2.14)

Define Q & Jra Qal-] dei(x)? dz to be the probability measure which makes (Z,)o<s< a
(stationary) diffusion process with starting distribution ¢?, and drift b. We use (2.13),

Jensen’s inequality, and the fact that ( fo dZ Jo<s<t is a Q-martingale in the following
estimate:

/Rd b [EXP ( / iz ds)] Ge(r)” dx
- E° [exp( / a7, — —/0t|b(Zs)|2 ds — @5)2
/ 5

t
EQ{ b(Z,)dZ, ——/ 0(Z,)|* ds —
0

=l
— exp{ /EQ[ ?+ b V(Zs)] ds} (2.15)
5

v

exp

p(t)?

2 exp t/R( 5)2%;)) ¢€,t(x)2dx}

t
_ exp{—§||V¢€‘t||;—%/ﬂ§dv¢)ztdw}.

Combining (2.15) with (2.14), we obtain, using the dominated convergence theorem (recall

12



that ¢¢ decays exponentially fast at infinity) and (2.1)—(2.3):

_qo(tt)2 logE & Ef [exp (- /Ut ¢£)2V(Zs)ds>]

t)? t)? Bt _
A 1ol - 25 [ (o {- Tt e} -1) o
1 . td+2 ﬁt
= 5Ive ||§_99(2 /R (exp{—W(qb) *W@(t)}—1> dr  (2.16)
— {lnwni feo (e {=3(69%) = 1) o for (1) = /442,

IN

% ||V¢E||2 + ﬂfRd )2 dx for p(t) > t1/(4+2)
o [ IV = As(=B) for p(t) = /),
3 IVoll; + 8 for p(t) > /(42

When we optimize over ¢ € ®, we get the two upper bounds in (0.14) and (0.15).
(]

Proof of the lower bounds in (0.14) and (0.15). We treat both cases at the same time.
We choose any scaling function [ : Ry — R, with logl(t) < t/o(t)? and I(t) > t/o(t) as
t — oo; one possible choice is [(t) = t.

Let Ty o inf{s: Z, ¢ Ty} denote the exit time from the box 7. Since the potential
V is bounded on compact domains, the random Schrodinger operator —A/2 + (p(t) 2V
is essentially self-adjoint on C2°(7y)); for fixed 3 > 0 and scaling functions ¢ and [ we
denote its closure by H;. The self-adjoint operator H; is bounded from below: H, >
Aspt)-2v (Tyy)1; hence e "t o L*(Tyy)) — L*(Tyy) is a bounded, self-adjoint operator
with

ey < ), 217

we also refer to [12], Proposition 1.3.3. Let f € C*(R%), f > 0, ||f]|, = 1 be any fixed

test function. We choose a fixed r > 0 such that f is supported in 7,.. We get for [(t) > r

using the Feynman-Kac representation of e~#t:

o on{ - e o

< /Rdf(x) (Px [Ty < t] + E, {exp{—wg)z /OtV(Zs)ds},Tl(t) >t]> dx

f( )Py [Tiay < 1] da:+<1:r,(t), ‘“L“f> (2.18)

i <1+ [ | e 150
< ddexp{—(I(t) — r)2/(2t)} + 2UL)"* || fll exp { =t \sgry-2v (Tie)) } -

IN
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Using Lemma 1.2 and I(t)?/t > t/@(t)?, we see that the first summand in the last sum
is negligible as t — oo compared to the expected value of the second one. We get, using

translation invariance of the Poisson process, Lemma 1.2, and log(t) < t/p(t)*:

hfﬂg)lf —99(5)2 logE @ Ej {exp {—@5)2 /Ut VI(Zy) ds}]

= h{ﬂi{jf 10 E[/ f(z)E, {exp{ nE /tV(Z)dS}” dx
> litrginf— () logE [exp { —tAgo0-2v (Tir)) }] (2.19)

_JIB) for p(t) = /),
| B for VD) < o(t) < (t/logt) /2.

This finishes the proof of the lower bounds in (0.14) and (0.15).

3 ANALYSIS OF THE VARIATIONAL PRINCIPLE

In this section, we prove Theorems 0.3 — 0.5. We start with some easy facts:
Lemma 3.1 J is a concave, monotonically increasing function with J(3) < 3.

Proof of Lemma 3.1. Forall ¢ € @, the functions Rt 5 § — 5 IV o||5—Ay(—f) are concave
and monotonically increasing. Consequently the infimum over ¢ € ® has these properties,
too. Furthermore, the fact —Ay4(—3) < § implies J(3) < infycq % ||V¢||§ + 05 =0.

|

For ¢ € ®, r > 0 we introduce the scaled version ¢, (x) o r~42¢(x/r); its basic properties
are collected in (3.26)—(3.27) in [9]. We get for every > 0 and every dimension d > 1:

10 =t {LIV6 - A (57 > 00e @ Vol =1} ()

. 1 _
:lﬂf{ﬁ - TdAd)(_T d/B) Lr> 07¢ € (D, ||v¢||2 = ]‘} :

Finally we denote by r4 the radius of a d-dimensional ball of volume d. We set ¢(d, 1) = o
r;*\g; this is the principal Dirichlet eigenvalue of —A/2 on such a ball B,,(0). These
c(d, 1) and r, play an analogous role in the quenched case as ¢(d, 1) and 74 in the annealed
problem (see [10]).
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3.1 The phase transition picture

Lemma 3.2

a) For d =1, there are positive constants ¢y < Cy and c; such that for all > 0:
B—Cpt<J(B) < B -+ cf (3.2)
b) For d > 2, there is by(d) > 0 such that for all 5 € (0,b3(d)] we have J(5) > 3.

Remark: We write the upper bound in (3.2) in this form, since it naturally arises in the
proof.

Proof of Lemma 3.2. Let ¢ € ® with ||[V¢|l, =1, and » > 0. For y = f¢,(x)* > 0
we integrate the inequalities y — y?/2 <1 —e ¥ <y —y?/2+ y3/6 over & € R? and use
96 =7 o = 1 ol = =l i = ol o g o 50

2 2

= Dol < LIVal - a0 < - el + Dol )
The upper bound in (3.2) in the case d = 1 follows from the upper bound in (3.3) and
from (3.1) when we set r = 2|[o[l;* 372, c1 = ||8ll} /8, and ¢; = |||5]|¢|lS /24 for any

fixed ¢. To derive the lower bounds in the dimensions d < 3, we use the bound (3.8) in
[10], which tells us (for d < 4)

cs(d) L sup {[o]lt: b € @, |Vg||, = 1} < 0. (3.4)

We insert this bound into the lower bound in (3.3) and minimize over r > 0 (in view of
(3.1)):
e For d =1 we get the lower bound in (3.2) with C} = cg(d)?/8 and the minimizing
radius 7 = 2¢g(1)7' 372,

o For d =2 and 3 < b3(2) & ¢5(2)~Y/2 we get J(3) > 3; here the infimum over r of

the lower bound in (3.3) is reached in the limit r — oo.

e For d = 3 we distinguish 2 cases:
Case 1. If r < (23)7Y/2, then we get, using A¢(—r—d5) <0

1
Case 2. We suppose r > (23)71/2. For 3 < by(3) & 271/5¢4(3)=2/5 we get
1 d o p
2—742—7’A¢( 5)_22+5 —Cs()
1
>+ 55 (1= 2 e(3)8°%) > . (3.6)
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For d > 4, the case r < (23)~"/? is treated the same way as in the case d = 3. In the
case r > (23)71/% we proceed as follows: Equation (3.19) in [10] tells us for o < 0 (recall

2d—2

d > 4): A(0) < 0 + colo] @2, where co(d) & (2)FF (d — 2)Zan a1 (4 + )72 hence

TdAd)(—Tidﬁ) < —ﬁ—FCgT%ﬁ%- (37)

2—d

We define b3(d) o 2d__+d20§iw. We use the bound (3.7), the hypothesis 3 < b3, and the
assumption r > (23)7Y2 to get

oz~ a9 2 7 (3= corsta s (39

272

> /3.

The claim of Lemma 3.2 now follows for all dimensions using (3.1).

3.2 Asymptotics in the large-3-region

Lemma 3.3 There are positive constants C3(d) and by(d) such that for all 5 > by the
following upper bound holds:

Cs
J(B) <é(d, 1) — —=. (3.9)

Vi
Proof of Lemma 3.3. By the upper bound in Lemma B.1 in Appendix B of [10] there are
positive constants b5 and ¢y such that for all 5; > b5 there is a test function ¢ € & that

fulfills

1 2
SIVEIE + B [, o, < old.1) - . (3.10)

We define Cs ] (Td/f“d):;cm, by ] (Td/fd)2b5- Given 3 > by, we set 3; = (fd/rd)Qﬁ > bs,
choose ¥ € ® as in (3.10), and scale: ¢(x) = (14/74)Y?*(21r4/74). We obtain

z < o(d, 1) (T—d> - (3.11)

Lo
S IV OIS + 8 | 61k0 5,0 .
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Using the inequality —(e ¢ — 1) < £ A1 we get, using (0.9), (0.10), and the definition of
rq and of ¢(d, 1) in the last step:

16 < 5 IVl = [ (7 = 1)da

Rd
1 5 2 2
< 5 IVoll; + 5 ‘ Plga\ B (0) , + HIB;d(O) , (3.12)
N N d
Tq Cs Td . Cs
<ec(d, 1) | — —— 4+ (=) d=¢d,1) - —=.
<can () =75+ (7)==
Lemma 3.3 is proved.
(|

Lemma 3.4 There are positive constants Cy(d) and bg(d) such that for all 3 > bg the

following lower bound holds:

log

J(ﬁ) > 6(d7 1) - C2 ﬂ

(3.13)

Proof of Lemma 3.4. This time we use the lower bound in Lemma B.1 in Appendix B
of [10]. By the same scaling argument as the one leading to (3.11) we obtain: There are
positive constants ¢y;(d) and br(d) such that for every radius s > 0, every 3; > s~2b7, and

every test function ¢ € ® we have

1 2 _ —1/2
3 Vo5 + B [|olray soy || = e(d,1)r3s™ — e1a By /%572, (3.14)

For fixed /1 and ¢, the left-hand side in (3.14) is a monotonically decreasing function of

s. We choose a constant radius p; > 0 so small that
co(d, V)rip;* > é(d, 1), (3.15)
and then a constant bg(d) > p,?b; so large that
c(d, 1)r2p72 — ciibg P p7% > @(d, 1), (3.16)

Hence we get for all 3; > bg and all » > 0, using (3.14) and (3.16):

c(d, 1) for r < pa,

3.17
c(d, 1)rir—2 — 01161_1/27“*3 for r > py. ( )

1
3 IVoll; + 5 qule\B,,(O)H; > {

We choose a constant by > 4 so large that by /logbg > bs. Let 3 > by and ¢ € ®. As in the

quenched case (Lemma 3.6 in [10]) we use a rearrangement inequality: Let ¢° € ® denote

17



the radially symmetric non-increasing rearrangement of ¢ € ® (see [8], Section 3.3). Then
Ay = Ago, and [|V°]|, < [|V@]|,; see Lemma 7.17 in [8]. Let » > 0 denote the maximal
radius such that $¢°(x)? > $log 3 holds for all 2 € B,(0); consequently 5¢°(x)? < ;log 3
holds for all z € R? \ B,(0), since ¢° is radially symmetric non-increasing. We use the

inequality

B2 for —3log 3 <y <0,
1—e¥ > { Slogp Bhsys (3.18)

1— 3712 for y < —3log f;

and we abbreviate 3, = w > B> (recall § > by > 4) in the following

estimate:
1 1 (o) . o
SIVOl; = Ao(=8) = 5 V65 +/Rd(1 e B g
1 N ) B

(3;7) c(d, 1) for r < pa,
e(d, D)r2r=2 — ey 87573 4 (1 = B7Y2)|By(0)r¢ for 1 > pa.

We estimate the last expression for sufficiently large  in the case r > p,;: We abbreviate

c12(d) def cripyte(d, 1)~ %) ei3(d) def c19 V 1, and Cy(d) def ¢(d,1)c13. Then we choose

be > by so large that cy3(logbg)'/?bg /2 < 1. Assume 3 > bs. We estimate (recall the
definition (0.10) of ¢(d, 1)):

e(d, 1)r3r™ —0115_1/2 (1= 57Y)[B1(0))r
(1= iy *)e(d, Dy + (1= “”)IB (0)[r (3.20)
(1 — c1s(log B)Y25712) (e(d, 1)r2r 2 + |Bl(0 |7 d)

> (1= cisllog )25 W)a( 1) = i(d, 1) ~ Callog )25

S8

AVARIY

/\\_/

We used in the last inequality 1 — c3(log 3)%/2371/2 > 0, which follows from the choice of
bs and from (log 3)3~" < (logbg)bs '; recall 3 > bg > 4. The estimates (3.19), (3.20) and
the definition (0.8) of J together yield the claim (3.13) of Lemma 3.4.

|

Proof of Theorem 0.3. On the one hand, Lemma 3.2 and Lemma 3.1 imply J(§) =
for 0 < f < b3, d > 2. On the other hand, Lemma 3.3 has the consequence J(f) < [
for large 3. These two facts together with the the concavity of J (see Lemma 3.1) imply
Theorem 0.3.
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Proof of Theorem 0.4. It only remains to show J(3) < [ for all # > 0 in dimension
d = 1. To see this, we observe J(/3) 00 and J() < f for sufficiently small 5 > 0 as a

consequence of the bounds (3.2), and use the concavity of .J.

|
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