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Abstract

We consider d�dimensional Brownian motion evolving in a scaled Poissonian

potential �����t�V � � � � is a constant� � is the scaling function� and V is

obtained by translating a �xed non�negative compactly supported shape function

to all the particles of a d�dimensional Poissonian point process� We are interested in

the large t behavior of the annealed partition sum of Brownian motion up to time

t under the in	uence of the natural Feynman�Kac weight associated to �����t�V �

We prove that for d � 
 there is a critical scale � and a critical constant �c�d� � �

such that the annealed partition sum undergoes a phase transition if � crosses �c�d��

In d � � this picture does not hold true� which can formally be interpreted that on

the critical scale � we have �c��� � ��
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� INTRODUCTION AND RESULTS

In the present article we study the behavior of d�dimensional Brownian motion under the

in�uence of a scaled random soft potential� d � �� The random soft potential is obtained

by translating a �xed shape function W to all the points of a Poissonian cloud� Let P

stand for the law of a Poissonian point process � 	
P

i �xi � 
 with �xed intensity � 	 �

�
 is the set of all simple pure locally �nite point measures on R
d�� For � � 
� x � R

d �

the �unscaled� soft Poissonian potential is then de�ned as

V �x� ��
def
	

Z
W �x� y���dy�� �
���

where we assume that the shape function W � 
 is measurable� bounded� compactly sup�

ported and
R
W �y�dy 	 �� For x � R

d � let Px stand for the standard Wiener measure on
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C�R� �R
d� starting from x �its canonical process is denoted by Z��� Then it is well known

that the Feynman�Kac functional u�x� t� �� 	 Ex

h
exp

n
� R t

�
V �Zs� ��ds

oi
represents the

bounded solution in a classical sense when V ��� �� is regular and in a generalized sense

else of the random potential parabolic equation��
�tu 	 �

�
�u� V ��� ��u�

ut�� 	 ��
�
���

We know that the annealed large t behavior of that solution is

E �u�
� t� ��� 	 exp
���c�d� ��td��d����� � o����

�
� as t��� �
���

where �c�d� �� is the constant de�ned in �
��
�� below� This result goes back to Donsker�

Varadhan ���� who used large deviation theory for occupation local times on Brownian

motion on a torus� In a later version� Sznitman ����� Theorem ������ has proved the same

result with the help of the method of enlargement of obstacles� Formula �
��� is also true if

one replaces the soft obstacles W by hard obstacles� which immediately kill the Brownian

particles if they hit such an obstacle �traps� �see ����� Theorem ������� In the setting of

rari�ed traps results have been obtained by Bolthausen ���� Sznitman ����� Bolthausen�

den Hollander ��� and van den Berg�Bolthausen�den Hollander ��� �by scaling arguments

the situation of rari�ed traps can be viewed to be equivalent to that of shrinking hard

obstacles�� Here we study a slightly di�erent problem� instead of rarifying hard obstacles

we scale the soft obstacles� For a scaling function � � R� � R� � and 	 
 
� we examine

the asymptotic behavior of

E � E�

�
exp

�
�	��t���

Z t

�

V �Zs� ��ds

��
� as t��� �
���

This immediately motivates the study of the annealed problem for the principal Dirichlet

eigenvalue of the random Schr�odinger operator H���t���V
def
	 ��

�
� � 	��t���V � let us

give a heuristic argument for the leading order in �
��� being determined by a principal

eigenvalue�

E�

�
exp

�
� 	

��t��

Z t

�

V �Zs� ��ds

��
	 e��tH���t���V ���
� �	�

X
i

�i�
�h�i� �ie�t�i � �
���

where the �i � 
 are the �eigenvalues� of H���t���V and �i the corresponding �eigenfunc�

tions�� So let us consider the bottom ������t�V �U� of the spectrum of H���t���V over a

non�empty open subset U of Rd � more generally� for any measurable function F � Rd � R

which is bounded from below the ground state energy with potential F is de�ned by

�F �U�
def
	 inf

�
�

�
kr�k�� �

Z
U

F�� dx � � � C�
c �U�� k�k� 	 �

�
� �
���

�



For l � R� � R� and t 
 
 we de�ne Tl�t� def
	 ��l�t�� l�t��d� The logarithmic moment

generating function of a Poissonian point process is de�ned as follows �	 
 
��

����	� def
	 log E

�
exp

�
�	

Z
Rd

�� d�

��
	

Z
Rd

�e���
� � �� dx� �
���

for � � �
def
	 f� � H����Rd� � � is compactly supported� continuous� and k�k� 	 �g� Then

J�	�
def
	 inf

�
�

�
kr�k�� � ����	� � � � �

�
� �
� �

Finally we de�ne the constant �c�d� ��� Let �d be the principal Dirichlet eigenvalue of

��
� on the d�dimensional unit ball B��
�� Then

�rd
def
	

	
��d

djB��
�j

 �

d��

� �
�!�

�c�d� ��
def
	 inf

r��

	
�d
r�

� rdjB��
�j



	
�d
�r�d

� �rddjB��
�j� �
��
�

These quantities have already been introduced by Sznitman ����� formulas ������
�"

���������

Our �rst main result is the following theorem ��a�t�� b�t�� means that a�t�
b�t� ��
as t����

Theorem ��� For d � �� we choose � � R� � R� and l � R� � R� such that l�t� ��
��t� 	 t���d���

�
and log l�t�
 t

�
��t� 	 t���d���

���
� For 	 
 
 we have�

a� If t���d��� 
 ��t�
 t���� then

lim
t��

���t�
�

t
log E



exp

��t����t���V �Tl�t��
��

	 	� �
����

b� If ��t� 	 t���d���� then

lim
t��

�t�d��d��� log E


exp

��t����t���V �Tl�t��
��

	 J�	�� �
����

c� If ��t�
 t���d���� then

lim
t��

�t�d��d��� log E


exp

��t����t���V �Tl�t��
��

	 �c�d� ��� �
����

This result tells us that the critical scale� on which we may observe a phase transition�

is ��t� 	 t���d���� It should be contrasted with the results obtained in the quenched case

�see formulas �
���� �
���� and �
���� in ��
��� As the special case ��t� 	 �� �
���� contains

the result �
��� by Donsker�Varadhan�

For the annealed partition sum we obtain a similar behavior�

�



Theorem ��� For d � � and 	 
 
 we have�

a� If t���d��� 
 ��t�
 �t
 log t����� then

lim
t��

���t�
�

t
log E � E�

�
exp

	
�	��t���

Z t

�

V �Zs� ds


�
	 	� �
����

b� If ��t� 	 t���d���� then

lim
t��

�t�d��d��� log E � E�

�
exp

	
�	��t���

Z t

�

V �Zs� ds


�
	 J�	�� �
����

c� If ��t�
 t���d���� then

lim
t��

�t�d��d��� log E � E�

�
exp

	
�	��t���

Z t

�

V �Zs� ds


�
	 �c�d� ��� �
����

The upper bound in �
���� is already contained in the proof of the upper bound in �
����

Our next results prove that on the scale ��t� 	 t���d��� we have a phase transition in

dimensions d � � but not in dimension d 	 ��

Theorem ��� For d � �� there is a critical point 	c�d� 
 
 such that

J�	� 	 	 for 
 � 	 � 	c�d�� �
����

J�	� � 	 for 	 
 	c�d�� �
�� �

However� this phase transition picture does not hold in dimension d 	 �� as the following

theorem shows�

Theorem ��� Assume d 	 �� Then for all 	 
 
� J�	� � 	� There are positive constants
�C� � C� and b� such that for all 	 � �
� b���

	 � C�	
� � J�	� � 	 � �C�	

�� �
��!�

As a consequence� J�	� in dimension d 	 � is not proportional to 	 for small values of

	� formally we may write 	c��� 	 
� One should compare Theorems 
�� and 
�� with

Theorems 
�� and 
�� of ��
�� The remarkable thing is that in the annealed case we observe

the critical dimension d 	 � for having a phase transition� while the critical dimension in

the quenched case equals d 	 ��

The next theorem plays an analogous role for the annealed problem as Theorem �
���

in ��
� does in the quenched context�

�



Theorem ��� For any dimension d � � there are positive constants C��d�� C	�d�� and

b��d� such that for all 	 � b� the following bounds hold�

�c�d� ��� C�

s
log 	

	
� J�	� � �c�d� ��� C	p

	
� �
��
�

This theorem shows that in the limit 	 �� one asymptotically approaches the Donsker�

Varadhan picture for unscaled potentials� one may compare this with �
���� and �
����

Let us explain how this article is organized� Formulas �
���� and �
���� are proved in

Section �� Lemmas ��� and ���� The claims �
���� and �
���� are also proved in Section ��

In Section � we show �
���� and �
����� The proof of the Theorems 
�� � 
�� is prepared

in Section ���� but it is completed at the end of Section �� whereas the proof of Theorem


�� is given in Section ��� �Lemmas ��� and �����

� ASYMPTOTIC BEHAVIOR OF THE PRINCIPAL DIRICHLET

EIGENVALUE

In this section we prove Theorem 
�� and the lower bound in �
����� For r 
 
� y � R
d �

and a function � the scaling operator Sr
y is de�ned by

�Sr
y���x�

def
	 r�d�����x� y�
r�� �����

Lemma ��� For all positive scaling functions l�t�� ��t� and 	 
 
�

lim sup
t��

���t�
�

t
log E



exp

��t����t���V �Tl�t��
�� � 	� �����

For the special scaling function ��t� 	 t���d��� the following bound holds�

lim sup
t��

�t�d��d��� log E


exp

��t��t����d���V �Tl�t��
�� � J�	�� �����

Remark� For the special scaling function ��t� 	 t���d���� the inequality ����� is stronger

than the general inequality ����� at least in some cases� see Theorem 
��� The inequality

����� can be proven using Jensen#s inequality� We do not proceed in this way� but treat

instead ����� and ����� at the same time below�

Proof of Lemma ���� Choose � � �� Since � is compactly supported and l�t� � ��t�

we have for all su$ciently large t that the function S
��t�
� � is supported in Tl�t�� We

�



estimate for these large t 
 
� using the notation � for the convolution operator� and

W�
r �x�

def
	 rdW ��rx��

log E


exp

��t����t���V �Tl�t��
��

� log E

�
exp

�
� t

�

���r�S
��t�
� ��

����
�
� 	t

��t��

Z
Tl�t�

�S
��t�
� ���V dx

��

	 � t

���t��
kr�k�� � log E

�
exp

	
� 	t

��t��

Z
Rd

W�
� � �S��t�

� ��� d�


�

	 � t

���t��
kr�k�� �

Z
Rd

	
exp

	
� 	t

��t��
W�

� � �S��t�
� ���



� �



dx �����

	 � t

���t��
kr�k�� � ��t�d

Z
Rd

	
exp

	
� 	t

��t�d��
W�

��t� � ��


� �



dx

� � t

���t��
kr�k�� �

	t

��t��

Z
Rd

W�
��t� � �� dx

	 � t

��t��

	
�

�
kr�k�� � 	



�

we used k�k�� 	 �� W � 
� kW�
r k� 	 kWk� 	 � in the last step� The estimate �����

implies

lim sup
t��

���t�
�

t
log E



exp

��t����t���V �Tl�t��
�� � �

�
kr�k�� � 	� �����

The gradient term kr�k�� can be made arbitrarily small� hence ����� implies the claim

������ To derive ����� in the case ��t� 	 t���d���� we proceed as follows� Using that � is

continuous� and W � 
� kW�
r k� 	 kWk� 	 �� we get W�

��t� � ��
t���� �� pointwise� Using

the dominated convergence theorem one seesZ
Rd

�
exp

�
�	W�

��t� � ��
�
� �

�
dx

t���� ����	�� �����

and hence� using the �fth line in ������

lim sup
t��

�t�d��d��� log E


exp

��t����t���V �Tl�t��
�� � �

�
kr�k�� � ����	�� �����

Using the de�nition �
� � of J � the claim ����� of Lemma ��� follows from ������

�

Lemma ��� Assume that the scaling function � satis�es either t���d��� 
 ��t� 
 t���

or ��t� 	 t���d���� Further assume that the scaling function l ful�lls log l�t� 
 t
��t���

�



Then for all 	 
 
�

lim inf
t��

���t�
�

t
log E



exp

��t����t���V �Tl�t��
�� �

�
J�	� for ��t� 	 t���d����

	 for t���d��� 
 ��t�
 t����

��� �

Proof of Lemma ���� We use some notations from ��
�� Section ���� for M 
 
� V M def
	

V 
M � and for � 
 
� j � �Zd we set Kj���
def
	 j � �
� ��d and �	 def

	
P

j�	Zd �f
�Kj���g�j�

here �j means the Dirac measure located at j� We set �V 	�x� ��
def
	
R
Rd
W �x � y��	�dy��

this is the Bernoulli version of the Poissonian potential V ��� ��� Finally for � � H����Rd�

and a measurable function F we abbreviate EF ��� def
	 kr�k��
� �

R
F�� dx �whenever

the right�hand side is well�de�ned�� The following notation deviates a little form the one

chosen in ��
�� since we have now l�t� instead of t as the length scale of the universe box�

Y ��l
R�t

def
	 fy � d����R��t�Zd � BR��t��y� � Tl�t� �	 �g� Lemma ��� and Lemma ��� in ��
��

especially the estimate ����
� there� show� For positive 	� � and � there are M 
 
�

R � �� a �nite set % � f� � C�
c �BR���
�� � k�k� 	 �g and t� 
 
 such that for all t 
 t�

and � � 
�

����t���V �Tl�t�� � min
y�Y ��l

R�t

��


E���t���VM �S��t�
y ��� ���t����� ���!�

and

��t�� max
y�Y ��l

R�t

��


�
E���t��� �V � �S��t�

y ��� E���t���VM �S��t�
y ��

�

� �	max
��


�k�k� � kr�k���
p
d���dRdjB��
�j��t��� � �� ����
�

We emphasize the following fact� t� does not depend on � � 
� since the �rst estimate in

����
�� which coincides with the last estimate in ����
� in ��
�� is uniform in the Poissonian

con�guration �� ���!� and ����
� yield

����t���V �Tl�t�� � min
y�Y ��l

R�t

��


E���t��� �V ��S��t�
y ��� ���t����� ������

�



Therefore �again for t � t���

log E


exp

��t����t���V �Tl�t��
��

� log E

�
�� max
y�Y ��l

R�t

��


exp
�
�tE���t��� �V � �S��t�

y ��
����� �t��t����

� log
X

y�Y ��l
R�t

��


E

h
exp

�
�tE���t��� �V � �S��t�

y ��
�i

� �t��t���� ������

� sup
y�Rd

��


log E
h
exp

�
�tE���t��� �V � �S��t�

y ��
�i

� log jY ��l
R�t j� log j%j� �t��t�����

To estimate the expectation in the last expression� we proceed analogous to the quenched

case� see Lemma ��� in ��
�� We de�ne the discretized version �	
def
	 �d

P
j�	Zd �j of the

Lebesgue measure� abbreviate m
def
	 ��d�� � e�	

d
�

	���� �� and use the bound ������ in

��
�� which is the following estimate for the Laplace transform of a Bernoulli process

�discretized Poissonian point process�� log E


exp

�R
f d�	

�� � m
R
�ef � �� d�	 �

We get for all � � % �compare with ������ in ��
���

��t��

t
sup
y�Rd

log E
h
exp

�
�tE���t��� �V � �S��t�

y ��
�i

	 sup
y�Rd

���t�
�

�

��rS��t�
y �

���
�
�
��t��

t
log E

�
exp

	
� 	t

��t��

Z
Rd

�S��t�
y ��� �V 	 dx


�

	 ��

�
kr�k�� �

��t��

t
sup
y�Rd

log E

�
exp

	
� 	t

��t��

Z
Rd

�S��t�
y ��� �W�

� d�	


�
������

� ��

�
kr�k�� �

m��t��

t
sup
y�Rd

Z
Rd

	
exp

�
� 	t

��t��
�S��t�

y ��� �W�
�

�
� �



d�	

	 ��

�
kr�k�� �

m��t�d��

t
sup
y�Rd

Z
Rd

	
exp

� �	t
��t�d��

�S�
y���t���

� �W�
��t�

�
� �



d�	���t�

t����
�
��

�
kr�k�� �m����	� for ��t� 	 t���d����

��
�
kr�k�� �m	 for ��t�� t���d����

 



The assumptions log l�t� 
 t
��t�� and ��t� 
 t��� imply log jY ��l
R�t j � log j%j 
 t
��t���

Combining ������ and ������ we obtain

lim inf
t��

���t�
�

t
log E



exp

��t����t���V �Tl�t��
��

�
�

min��

�
�
kr�k�� �m����	�� �� for ��t� 	 t���d����

min��

�
�
kr�k�� �m	 � �� for t��� � ��t�� t���d����

������

�
�

mJ�	�� �� for ��t� 	 t���d����

m	 � �� for t��� � ��t�� t���d����

The claim ��� � of Lemma ��� now follows by taking the limits � � 
 and � � 
� i�e�

m � �� Lemma ��� is proved�

�

Proof of 	
���� and 	
����� For ��t�
 t���d��� we have for all 	� 	 � 
 
 and all large t�

	

��t��
V � 	 �

t���d���
V� ������

By monotonicity� this implies ����t���V �Tl�t�� � ���t����d���V �Tl�t��� Hence� using �
���� and

Theorem 
�� �which is proven in Section �� below��

lim inf
t��

�t�d��d��� log E


exp

��t����t���V �Tl�t��
�� � J�	 ��

������ �c�d� ��� ������

An analogous monotonicity estimate also holds true for the partition sums� this proves

the lower bounds in �
���� and �
�����

To prove the upper bounds� we set r�t�
def
	 t���d����rd and choose a length scale l�t� �

r�t�� Then we have �where a denotes the minimal radius such that the support of W is

contained in the ball &Ba�
���

lim sup
t��

�t�d��d��� log E


exp

��t����t���V �Tl�t��
��

� lim sup
t��

�t�d��d��� log E


exp

��t����t���V �Tl�t��
�
� ��Br�t��a�
�� 	 


�
� lim sup

t��
�t�d��d��� log E



exp

��t�V���Br�t��
��
�
� ��Br�t��a�
�� 	 


�
������

	 lim sup
t��

t�d��d��� � �t�dr�t��� � log P


��Br�t��a�
�� 	 


��
	 �d�r

��
d � �rddjB��
�j 	 �c�d� ���

The proof of the upper bound �
���� is the same as in ����� Theorem ������ ��������"

��������� This �nishes the proofs�

�

!



� ASYMPTOTIC BEHAVIOR OF THE PARTITION SUM

In this section� we prove �
���� and �
���� of Theorem 
��� The main tool to obtain

upper bounds in �
���� and �
���� is a change of measure� which transforms Brownian

motion into a �stationary� di�usion process� Using this di�usion process as �strategy� for

the Brownian particle turns out to be optimal �at least in the leading order� for survival

among scaled Poissonian obstacles�

Proof of the upper bounds in 	
��
� and 	
����� We treat both cases at the same

time� Alternatively� the proof of �
���� could be treated separately� simply using Jensen#s

inequality�

Let � � �� � � 
� We �rst introduce a modi�cation �� of � which is positive everywhere

with an exponential decay at in�nity� Let �� � C��Rd� denote a �xed positive function

with exponential decay at in�nity and with k��k� 	 �� to be explicit� say ���x� 	 c�e
�jxj

with a positive constant c� for all x outside a compact subset of Rd � For every multiindex

n� we get the following bound on the n�th derivative� There is a constant c��n� 
 
 such

that jDn��j � c��n���� For � 
 
� we de�ne the following approximation to Dirac#s ��

���x�
def
	 ��d���x
��� Let 'f�k� 	

R
e�ikxf�x� dx denote the Fourier transform� Using the

dominated convergence theorem we see�

k� � ��k�� 	 �����d
���'��k�'����k�����

�

����� �����d
���'�����

�
	 k�k�� 	 �� �����

and similarly

kr� � ��k�� ����� kr�k�� � �����

Consequently ��
def
	 k� � ��k��� �� � ��� satis�es kr��k��

����� kr�k��� �� 
 
� and there

exist �� 
 
� r� 
 
 and c
 
 
 such that for all � � �
� ��� and x � R
d with jxj 
 r��

���x� � c
e
�jxj� We get for all 	 
 
� using the dominated convergence theorem once

more�

�

�
kr��k�� �

Z
Rd

�e����
��� � �� dx

����� �

�
kr�k�� �

Z
Rd

�e���
� � �� dx� �����

For � 
 
� t 
 
� we set ���t
def
	 S

��t�
� ��� With �� t being �xed for the moment� we de�ne

b
def
	 r log���t� By a change of measure� we introduce a di�usion process with drift b�Zs�

over the �nite time horizon t ��� the bounds on the derivatives of �� imply

sup
x�Rd

jDnb�x�j �� �����

�




for every mulitindex n� especially the Novikov condition �see e�g� ���� Corollary �������

Ex

�
exp

	
�

�

Z t

�

jb�Zs�j� ds

�

�� �����

is satis�ed� By the Cameron�Martin�Girsanov theorem�

�Zs 	 Zs �
Z s

�

b�Zu� du �����

is a d�dimensional Brownian motion with respect to the probability measure

Qx 	 exp

�Z t

�

b�Zs� dZs � �

�

Z t

�

jb�Zs�j� ds
�
Px� �����

We denote the expectation operator with respect to Qx by EQ
x � while the symbol Ex

is reserved for expectations with respect to Px� We claim that ����t dx is an invariant

distribution with respect to the transformed di�usion process� i�e� for every non�negative

measurable test function f � Rd � R we have for all s � �
� t��Z
Rd

���t�x�
�EQ

x �f�Zs�� dx 	

Z
Rd

���t�x�
�f�x� dx� ��� �

It su$ces to prove ��� � for f � C�
c �Rd�� In this case� the bounds ����� on the derivative

of the drift imply that

g�x� s�
def
	 EQ

x �f�Zs�� ���!�

is a classical solution of the Cauchy problem

�g

�s
	

�

�
�g � b � rg� ����
�

g�x� 
� 	 f�x�� ������

with bounded derivatives in x and s of every order �see e�g� ���� x���� Theorems ��� and

���� and ���� x���� x����� We use the heat equation ����
� and integrate partially to get�

d

ds

Z
Rd

g�x� s����t�x�
� dx 	

Z
Rd

�g

�s
�x� s����t�x�

� dx

	

Z
Rd

	
�

�
�g�x� s� �

r���t�x�
���t�x�

� rg�x� s�


���t�x�

� dx ������

	

Z
Rd

rg�x� s����t�x� �r���t�x��r���t�x�� dx 	 
�

The boundary terms of the partial integration vanish� since ���t and its derivatives decay

exponentially at in�nity� while g and its derivatives are bounded� Our claim ��� � is a

consequence of �������

��



The measure Px is absolutely continuous with respect to Qx with the Radon�Nikodym

derivative

dPx
dQx

	 exp

�
�
Z t

�

b�Zs� dZs �
�

�

Z t

�

jb�Zs�j� ds
�

	 exp

�
�
Z t

�

b�Zs� d �Zs � �

�

Z t

�

jb�Zs�j� ds
�
� ������

We remark that the stochastic integral in ������ remains unchanged when the underly�

ing probability measure Px is replaced by the equivalent measure Qx� By translational

invariance of the Poisson process we get

E � E�

�
exp

	
� 	

��t��

Z t

�

V �Zs� ds


�

	 E

�Z
Rd

Ex

�
exp

	
� 	

��t��

Z t

�

V �Zs� ds


�
���t�x�

� dx

�
� ������

De�ne Q
def
	
R
Rd
Qx������t�x�� dx to be the probability measure which makes �Zs���s�t a

�stationary� di�usion process with starting distribution ����t and drift b� We use �������

Jensen#s inequality� and the fact that �
R s

�
b�Zu� d �Zu���s�t is aQ�martingale in the following

estimate�Z
Rd

Ex

�
exp

	
� 	

��t��

Z t

�

V �Zs� ds


�
���t�x�

� dx

	 EQ

�
exp

	
�
Z t

�

b�Zs� d �Zs � �

�

Z t

�

jb�Zs�j� ds� 	

��t��

Z t

�

V �Zs� ds


�

� exp

�
EQ

�
�
Z t

�

b�Zs� d �Zs � �

�

Z t

�

jb�Zs�j� ds� 	

��t��

Z t

�

V �Zs� ds

��

	 exp

�
�
Z t

�

EQ

�
�

�
jb�Zs�j� � 	

��t��
V �Zs�

�
ds

�
������

��
��
	 exp

�
�t
Z
Rd

	
�

�
jb�x�j� � 	

��t��
V �x�



���t�x�

� dx

�

	 exp

�
� t

�
kr���tk�� �

	t

��t��

Z
Rd

V ����t dx

�
�

Combining ������ with ������� we obtain� using the dominated convergence theorem �recall

��



that �� decays exponentially fast at in�nity� and �����"������

���t�
�

t
log E � E�

�
exp

	
�
Z t

�

	

��t��
V �Zs� ds


�

� ��t��

�
kr���tk�� �

��t��

t

Z
Rd

	
exp

�
� 	t

��t��
����t �W�

�

�
� �



dx

	
�

�
kr��k�� �

��t�d��

t

Z
Rd

	
exp

�
� 	t

��t�d��
����� �W�

��t�

�
� �



dx ������

t����
�

�
�
kr��k�� �

R
Rd

�exp f�	�����g � �� dx for ��t� 	 t���d����
�
�
kr��k�� � 	

R
Rd
����� dx for ��t�� t���d���

�����
�

�
�
kr�k�� � ����	� for ��t� 	 t���d����

�
�
kr�k�� � 	 for ��t�� t���d����

When we optimize over � � �� we get the two upper bounds in �
���� and �
�����

�

Proof of the lower bounds in 	
��
� and 	
����� We treat both cases at the same time�

We choose any scaling function l � R� � R� with log l�t�
 t
��t�� and l�t�� t
��t� as

t��� one possible choice is l�t� 	 t�

Let Tl�t�
def
	 inffs � Zs 
� Tl�t�g denote the exit time from the box Tl�t�� Since the potential

V is bounded on compact domains� the random Schr�odinger operator ��
� � 	��t���V

is essentially self�adjoint on C�
c �Tl�t��� for �xed 	 
 
 and scaling functions � and l we

denote its closure by Ht� The self�adjoint operator Ht is bounded from below� Ht �
����t���V �Tl�t���� hence e�tHt � L��Tl�t�� � L��Tl�t�� is a bounded� self�adjoint operator

with ��e�tHt
��
L��L�

� e�t����t���V �Tl�t��� ������

we also refer to ����� Proposition ������ Let f � C�
c �Rd�� f � 
� kfk� 	 � be any �xed

test function� We choose a �xed r 
 
 such that f is supported in Tr� We get for l�t� 
 r�

using the Feynman�Kac representation of e�tHt�Z
Rd

f�x�Ex

�
exp

�
� 	

��t��

Z t

�

V �Zs� ds

��
dx

�
Z
Rd

f�x�

	
Px


Tl�t� � t

�
� Ex

�
exp

�
� 	

��t��

Z t

�

V �Zs� ds

�
� Tl�t� 
 t

�

dx

	

Z
Rd

f�x�Px


Tl�t� � t

�
dx�

D
�Tl�t�� e

�tHtf
E

���� �

� P�



Tl�t��r � t

�
�
����Tl�t����

�

��e�tHt
��
L��L�

kfk�
� �d expf��l�t�� r��
��t�g� ��l�t��d�� kfk� exp

��t����t���V �Tl�t��
�
�

��



Using Lemma ��� and l�t��
t � t
��t��� we see that the �rst summand in the last sum

is negligible as t�� compared to the expected value of the second one� We get� using

translation invariance of the Poisson process� Lemma ���� and log l�t�
 t
��t���

lim inf
t��

���t�
�

t
log E � E�

�
exp

�
� 	

��t��

Z t

�

V �Zs� ds

��

	 lim inf
t��

���t�
�

t
log E

�Z
Rd

f�x�Ex

�
exp

�
� 	

��t��

Z t

�

V �Zs� ds

���
dx

� lim inf
t��

���t�
�

t
log E



exp

��t����t���V �Tl�t��
��

����!�

	

�
J�	� for ��t� 	 t���d����

	 for t���d��� 
 ��t�
 �t
 log t�����

This �nishes the proof of the lower bounds in �
���� and �
�����

�

� ANALYSIS OF THE VARIATIONAL PRINCIPLE

In this section� we prove Theorems 
�� " 
��� We start with some easy facts�

Lemma ��� J is a concave� monotonically increasing function with J�	� � 	�

Proof of Lemma ���� For all � � �� the functions R� � 	 �� �
�
kr�k�������	� are concave

and monotonically increasing� Consequently the in�mum over � � � has these properties�

too� Furthermore� the fact �����	� � 	 implies J�	� � inf���
�
�
kr�k�� � 	 	 	�

�

For � � �� r 
 
 we introduce the scaled version �r�x�
def
	 r�d����x
r�� its basic properties

are collected in ������"������ in �!�� We get for every 	 
 
 and every dimension d � ��

J�	� 	 inf

�
�

�
kr�rk�� � ��r��	� � r 
 
� � � �� kr�k� 	 �

�
�����

	 inf

�
�

�r�
� rd����r�d	� � r 
 
� � � �� kr�k� 	 �

�
�

Finally we denote by rd the radius of a d�dimensional ball of volume d� We set c�d� ��
def
	

r��d �d� this is the principal Dirichlet eigenvalue of ��
� on such a ball Brd�
�� These

c�d� �� and rd play an analogous role in the quenched case as �c�d� �� and �rd in the annealed

problem �see ��
���

��



��� The phase transition picture

Lemma ���

a� For d 	 �� there are positive constants c� � C� and c� such that for all 	 
 
�

	 � C�	
� � J�	� � 	 � c�	

� � c�	
�� �����

b� For d � �� there is b	�d� 
 
 such that for all 	 � �
� b	�d�� we have J�	� � 	�

Remark� We write the upper bound in ����� in this form� since it naturally arises in the

proof�

Proof of Lemma ���� Let � � � with kr�k� 	 �� and r 
 
� For y 	 	�r�x�
� � 


we integrate the inequalities y � y�
� � � � e�y � y � y�
� � y	
� over x � R
d and use

kr�rk�� 	 r��� k�rk�� 	 �� k�rk�� 	 r�d k�k��� k�rk

 	 r��d k�k

 to get for 	 
 
�

�

�r�
� 	 � 	�

�rd
k�k�� �

�

�
kr�rk�� � ��r��	� �

�

�r�
� 	 � 	�

�rd
k�k�� �

		

�r�d
k�k

 � �����

The upper bound in ����� in the case d 	 � follows from the upper bound in ����� and

from ����� when we set r 	 � k�k��� 	��� c� 	 k�k�� 
 � and c� 	 k�k�� k�k

 
�� for any

�xed �� To derive the lower bounds in the dimensions d � �� we use the bound ��� � in

��
�� which tells us �for d � ��

c��d�
def
	 sup

�k�k�� � � � �� kr�k� 	 �
�
��� �����

We insert this bound into the lower bound in ����� and minimize over r 
 
 �in view of

�������

� For d 	 � we get the lower bound in ����� with C� 	 c��d�
�
 and the minimizing

radius r 	 �c����
��	���

� For d 	 � and 	 � b	���
def
	 c����

���� we get J�	� � 	� here the in�mum over r of

the lower bound in ����� is reached in the limit r ���

� For d 	 � we distinguish � cases�

Case �� If r � ��	������ then we get� using ����r�d	� � 
�

�

�r�
� rd����r�d	� � �

�r�
� 	� �����

Case �� We suppose r 
 ��	������ For 	 � b	���
def
	 �����c����

���� we get

�

�r�
� rd����r�d	� � �

�r�
� 	 � 	�

�r	
c����

� 	 �
�

�r�
��� ����c����	

���� � 	� �����

��



For d � �� the case r � ��	����� is treated the same way as in the case d 	 �� In the

case r 
 ��	����� we proceed as follows� Equation ����!� in ��
� tells us for � � 
 �recall

d � ��� ����� � � � c�j�jd��d���� where c��d� def
	 ��

d
�
�d��
d�� �d� ��

�
��d�

d��
��d(�d

�
� �

�
�

�
d�� � hence

rd����r�d	� � �	 � c�r
�d
��d	

d
d�� � �����

We de�ne b	�d�
def
	 �

�d
d�� c

��d
d��

� � We use the bound ������ the hypothesis 	 � b	� and the

assumption r 
 ��	����� to get

�

�r�
� rd����r�d	� � 	 � r��

	
�

�
� c�r

�
��d	

d
d��



��� �

� 	 � r��
	
�

�
� c���	�

�
d��	

d
d��



	 	 �

�

�r�

�
��

	
	

b	


 d��
d��

�

� 	�

The claim of Lemma ��� now follows for all dimensions using ������

�

��� Asymptotics in the large					region

Lemma ��� There are positive constants C	�d� and b��d� such that for all 	 � b� the

following upper bound holds�

J�	� � �c�d� ��� C	p
	
� ���!�

Proof of Lemma ���� By the upper bound in Lemma B�� in Appendix B of ��
� there are

positive constants b� and c�� such that for all 	� � b� there is a test function � � � that

ful�lls

�

�
kr�k�� � 	�

�����RdnBrd
���

����
�
� c�d� ��� c��p

	�
� ����
�

We de�ne C	
def
	 �rd
�rd�

	c��� b�
def
	 �rd
�rd�

�b�� Given 	 � b�� we set 	� 	 ��rd
rd�
�	 � b��

choose � � � as in ����
�� and scale� ��x� 	 �rd
�rd�
d����xrd
�rd�� We obtain

�

�
kr�k�� � 	

�����RdnB�rd
���

����
�
� c�d� ��

	
�rd
rd


��

� C	p
	
� ������

��



Using the inequality ��e�� � �� � � 
 � we get� using �
�!�� �
��
�� and the de�nition of

rd and of c�d� �� in the last step�

J�	� � �

�
kr�k�� �

Z
Rd

�e���
� � �� dx

� �

�
kr�k�� � 	

�����RdnB�rd
���

����
�
�
����B�rd

���

����
�

������

� c�d� ��

	
�rd
rd


��

� C	p
	
�

	
�rd
rd


d

d 	 �c�d� ��� C	p
	
�

Lemma ��� is proved�

�

Lemma ��� There are positive constants C��d� and b
�d� such that for all 	 � b
 the

following lower bound holds�

J�	� � �c�d� ��� C�

s
log 	

	
� ������

Proof of Lemma ��
� This time we use the lower bound in Lemma B�� in Appendix B

of ��
�� By the same scaling argument as the one leading to ������ we obtain� There are

positive constants c���d� and b��d� such that for every radius s 
 
� every 	� � s��b�� and

every test function � � � we have

�

�
kr�k�� � 	�

����RdnBs���

���
�
� c�d� ��r�ds

�� � c��	
����
� s�	� ������

For �xed 	� and �� the left�hand side in ������ is a monotonically decreasing function of

s� We choose a constant radius �d 
 
 so small that

c�d� ��r�d�
��
d 
 �c�d� ��� ������

and then a constant b��d� � ���d b� so large that

c�d� ��r�d�
��
d � c��b

����
� ��	d � �c�d� ��� ������

Hence we get for all 	� � b� and all r � 
� using ������ and �������

�

�
kr�k�� � 	�

����RdnBr���

���
�
�
�

�c�d� �� for r � �d�

c�d� ��r�dr
�� � c��	

����
� r�	 for r � �d�

������

We choose a constant b� � � so large that b�
 log b� � b�� Let 	 � b� and � � �� As in the

quenched case �Lemma ��� in ��
�� we use a rearrangement inequality� Let �	 � � denote

��



the radially symmetric non�increasing rearrangement of � � � �see � �� Section ����� Then

�� 	 ���� and kr�	k� � kr�k�� see Lemma ���� in � �� Let r � 
 denote the maximal

radius such that 	�	�x�� 
 �
�
log 	 holds for all x � Br�
�� consequently 	�

	�x�� � �
�
log 	

holds for all x � R
d n Br�
�� since �

	 is radially symmetric non�increasing� We use the

inequality

�� ey �
�

�������
�
�
log �

y for ��
�
log 	 � y � 
�

�� 	���� for y � ��
�
log 	�

���� �

and we abbreviate 	� 	 ����������
�
�
log �

� �
log�

� b� �recall 	 � b� � �� in the following

estimate�

�

�
kr�k�� � ����	� � �

�
kr�	k�� �

Z
Rd

��� e����
���� dx

� �

�
kr�	k�� � 	�

���	�RdnBr���

���
�
� ��� 	�����jBr�
�j ����!�

�	
���

�
�

�c�d� �� for r � �d�

c�d� ��r�dr
�� � c��	

����
� r�	 � ��� 	�����jB��
�jrd for r � �d�

We estimate the last expression for su$ciently large 	 in the case r � �d� We abbreviate

c���d�
def
	 c���

��
d c�d� ����r��d � c�	�d�

def
	 c�� 	 �� and C��d�

def
	 �c�d� ��c�	� Then we choose

b
 � b� so large that c�	�log b
�
���b

����

 � �� Assume 	 � b
� We estimate �recall the

de�nition �
��
� of �c�d� ����

c�d� ��r�dr
�� � c��	

����
� r�	 � ��� 	�����jB��
�jrd

� ��� c��	
����
� �c�d� ��r�dr

�� � ��� 	�����jB��
�jrd ����
�

� ��� c�	�log 	�
���	�����

�
c�d� ��r�dr

�� � jB��
�jrd
�

� ��� c�	�log 	�
���	������c�d� �� 	 �c�d� ��� C��log 	�

���	�����

We used in the last inequality �� c�	�log 	�
���	���� � 
� which follows from the choice of

b
 and from �log 	�	�� � �log b
�b
��

 � recall 	 � b
 � �� The estimates ����!�� ����
� and

the de�nition �
� � of J together yield the claim ������ of Lemma ����

�

Proof of Theorem 
��� On the one hand� Lemma ��� and Lemma ��� imply J�	� 	 	

for 
 � 	 � b	� d � �� On the other hand� Lemma ��� has the consequence J�	� � 	

for large 	� These two facts together with the the concavity of J �see Lemma ���� imply

Theorem 
���

�

� 



Proof of Theorem 
�
� It only remains to show J�	� � 	 for all 	 
 
 in dimension

d 	 �� To see this� we observe J�	�
�
��� 
 and J�	� � 	 for su$ciently small 	 
 
 as a

consequence of the bounds ������ and use the concavity of J �

�
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