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Abstract� We consider the random �uctuations of the free energy in the p�spin version of

the Sherrington�Kirkpatrick model in the high temperature regime� Using the martingale

approach of Comets and Neveu as used in the standard SK model combined with truncation

techniques inspired by a recent paper by Talagrand on the p�spin version� we prove that �for

p even� the random corrections to the free energy are on a scale N��p����� only� and after

proper rescaling converge to a standard Gaussian random variable� This is shown to hold

for all values of the inverse temperature� �� smaller than a critical �p� We also show that

�p �
p
� ln � as p � 	�� Additionally we study the formal p � 	� limit of these models� the

random energy model� Here we compute the precise limit theorem for the partition function

at all temperatures� For � �
p
� ln �� �uctuations are found at an exponentially small scale�

with two distinct limit laws above and below a second critical value
p

ln ���
 For � up to

that value the rescaled �uctuations are Gaussian� while below that there are non�Gaussian

�uctuations driven by the Poisson process of the extreme values of the random energies� For

� larger than the critical
p
� ln �� the �uctuations of the logarithm of the partition function

are on scale one and are expressed in terms of the Poisson process of extremes� At the critical

temperature� the partition function divided by its expectation converges to ����
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� Section �

�� Introduction�

In recent years it has become increasingly clear that a problem of central importance for

the understanding of disordered spin systems is the control of random �uctuations of ther�

modynamic quantities �AW�NS�BM�T��� Unfortunately� a precise control of such quantities

is very hard to come by� Concentration of measure techniques �T�� have been realized to

be e�cient tools to get upper bounds �BGP��BG��� but lower bounds or exact limit theo�

rems are scarce� One of these examples is the Sherrington�Kirkpatrick �SK� model in the

high�temperature phase� where a central limit theorem for the free energy was proven �rst

by Aizenman� Lebowitz and Ruelle �ALR�� using cluster expansion techniques� and later by

Comets and Neveu �CN�� making use of martingale methods and stochastic calculus� Their

methods have been extended to a few related cases �Tou�B�� later� In the present paper we

want to continue this e�ort by investigating a large class of natural generalisation of the SK

model� the so called p�spin SK models� and their p � 	� limit� the random energy model

�REM��

For our present purposes it is natural to consider the class of models we study as Gaussian

processes on the hypercube SN � f��� �gN � We will always denote the corner of SN by ��

for historical reasons they are called spin con�gurations� A Gaussian process X on SN is

characterized completely by its mean and covariance function� The processes we consider

will always be assumed to have mean zero and covariance

EX�X�� � f�RN ��� ����� �����

where f depends on the so�called overlap�� RN ��� ��� � N����� ��� � N��
PN

i�� �i�
�
i� In

this note we will concentrate on the case where f�x� � fp�x� 
� xp� with p even�� In this

case� X� can be represented in the form

X� � N�p�� X
i��i����� �ip

Ji��i������ip�i��i� � � � �ip �����

with Ji������ip a family of i�i�d� normal random variables� Since for p � � we obtain the classical

SK model� this representation justi�es the name p�spin SK model� Note that as p increases�

the process gets more and more de�correlated� and in the limit p � 	� we arrive at the case

where X� are i�i�d� normal random variables�

�The overlap is related to the Hamming distance dHam by dHam��� �
�� � N���RN ��� �

�����

�The case p odd can also be treated� but presents considerable additional computational problems
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Given such a Gaussian process� our main object of interest is the so called partition func�

tion�

Z��N � E� e
�
p
NX� � ��N

X
��SN

e�
p
NX� � �����

The quantities e�
p
NX� are called Boltzmann weights and the parameter � � R	 is known

as the inverse temperature� and HN ��� � p
NX� as �minus� the Hamiltonian in statistical

mechanics� Z��N are random variables� and we are primarily interested in their behaviour as

N tends to in�nity� In statistical mechanics� it is customary to introduce the so�called free

energy

F��N � � �

�N
lnZ��N � ����

It is easy to prove in all the models we consider here� that for all values of �� F��N is a

self�averaging quantity� i�e� that

lim
N�	�

jF��N � EF��N j � � a�s� �����

It is� however� not known in general whether the so called quenched free energy EF��N con�

verges to a limit as N tends to in�nity� This has� however� been proven for su�ciently small

values of �
 more precisely� one knows that

Theorem ���� De�ne ��� � �� and for p � �

���p � inf

�m��

�� 	m�p�	�m� �����

where 	�m� � ��� �m� ln���m� 	 �� 	m� ln�� 	m����� Then for all � � ��p

lim
N�	�

F��N�p � ����� �����

Remark� For p � � this result was �rst proven in �ALR�� A very simple proof has later

been given by Talagrand �T�� Comets �C� has shown that the value � � � is optimal in the

sense that ����� fails for � � �� The result for p � � is due to Talagrand �T��� It is clear

that in all cases ����� will fail for � � p
� ln � which by a more elaborate computation can

be improved to � � p
� ln ��� � ��cpp� with cp � �� for p large �B��� On the other hand� a

simple calculation shows that ��p 	
p
� ln ���� ��p�� ln ��� One should note that to get �����

up to a value so close to
p
� ln � required a substantial modi�cation of the original argument

of �T��� namely the use of a �truncated� second moment method� Such a truncation will also

be the main di�culty in obtaining our results��

�For similar reasons� slightly di�erent truncations were also used by Toubol �Tou� �and probably �rst� in
the study of the CLT for the SK model with vector valued spins
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In the case of the REM� it is well known that the critical inverse temperature ��REM �p
� ln � and that �D��

lim
N�	�

F��N�REM �

�
����� if � 
 p� ln �

�p� ln � 	 ��� ln �� if � � p� ln ��
�����

As a consequence one has that �this result is essentially contained in �D��� a rigorous proof

follows easily from the results contained in �T����

lim
p�	�

lim sup
N�	�

F��N�p � lim
p�	�

lim inf
N�	�

F��N�p � lim
N�	�

F��N�REM � �����

In this note we will control the �uctuations of the free energy in �essentially� all of the domain

of parameters �� p �even� where the limit is known to exists� i�e� the high temperature regions

of the p�spin models� and the entire temperature range in the REM� Although the REM is

rather singular and the techniques used for that case are totally di�erent from those we will

use for the p�spin models� we felt it would be instructive to include this singular limiting

case in this paper� Moreover� it turns out that in spite of the heavy investigation the REM

has enjoyed over the years �D��D��OP�GMP�Ru�� no precise �uctuation results for the free

energy are available in the literature� Finally� we are convinced that the reader will be rather

surprised by the rich structure the �uctuation behaviour this model exhibits�

Let us now state our results� We begin with the p�spin SK models�

Theorem ��� Consider the p�spin SK�model with p � �k � �� There exists �p � � such

that for all � � �p

N �p����� ln
Z��N
EZ��N

D�M��
p
�� ������

in distribution as N � 	�� where M��t� is the centered Gaussian process with mean zero

and covariance

E �M��t��M��s��� � �t� s�
�
�p� ����

�
� ������

The value of �p can be estimated reasonably well� To state lower bound on �p we need�

however� some notation� We de�ne the functions

I�m��m��m�� �
�



�
�� 	m� 	m� 	m�� ln�� 	m� 	m� 	m��

	 ���m� �m� 	m�� ln���m� �m� 	m��

	 �� 	m� �m� �m�� ln�� 	m� �m� �m��

	 ���m� 	m� �m�� ln���m� 	m� �m��
�
�

������

�Private communication by M
 Talagrand
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Sp�m��m��m�� �
h�

� 	
mp

� �mp
�m

p
�

��m�p
�

��
	
�
� 	

mp
� �mp

�m
p
�

��m�p
�

��
	 �mp

�

�
� 	

mp
� �mp

�m
p
�

��m�p
�

��
� 	

mp
� �mp

�m
p
�

��m�p
�

�i���
�

������

Rp�m��m��m�� �
�mp

�m
p
�m

p
� �m�p

� �m�p
�

����m�p
� �

� �����

and

Up�m��m��m�� �I�m��m��m���� 	mp
��
h
Sp�m��m��m��

q
� 	 �mp

�

	Rp�m��m��m���� 	mp
��� �� 	mp

��
i��

������

on the set

A ��m��m��m� � ���� ��� j ��m� �m� 	m� � �� � �m� 	m� �m� � ��

� 	m� �m� �m� � �
�
�

������

Note that the function I�m��m��m�� is symmetric inm��m� andm�� and that Sp�m��m��m���

Rp�m��m��m�� and Up�m��m��m�� are symmetric in m� and m�� Let

Yp�m��m��m�� �max
n
I�m��m��m��

	
�

�
	

�

mp
� 	mp

� 	mp
�



�

Up�m��m��m��� Up�m��m��m��� Up�m��m��m��
o
�

������

With this notation we have

Theorem ��� Let p � �k � �� Then

inf
m��m��m��A

Yp�m��m��m�� 
 ��p � � ln �� ������

In particular

lim
p�	�

��p � � ln �� ������

We see that the scale on which the partition functions �uctuate decreases rapidly as p

increases� One might guess that the scale becomes exponentially small in N in the limiting

random energy model� This is indeed true� but more surprising things happen� as the following

theorem states


Theorem ��� The free energy of the REM has the following �uctuations�

�i	 If � �
p

ln ���� then

e
N
� �ln ����� ln

Z��N
EZ��N

D� N ��� ��� ������
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�ii	 If � �
p

ln ���� then
p
�e

N
� �ln ����� ln

Z��N
EZ��N

D� N ��� ��� ������

�iii	 Let 
 � ��
p
� ln �� If

p
ln ��� � � �

p
� ln �� then

e
N
� �
p
� ln �����	�

� ln�N ln ��	ln ��� ln
Z��N
EZ��N

D�
Z �

��
e	z�P�dz� � e�zdz�� ������

where P denotes the Poisson point process on R with intensity measure e�xdx�

Theorem ��� covers the high temperature regime� However� in the REM we can also

compute the �uctuations in the low temperature phase�

Theorem ���

�i	 If � �
p
� ln �� then

e
�
� ln�N ln ��	ln ���

� Z��N
EZ��N

��

�
	
ln�N ln �� 	 ln �


p
�N ln �

� D�
Z 


��
e	z�P�dz��e�zdz�	

�Z



ezP�dz��

������

�ii	 If � �
p
� ln �� then

e�N �
p
� ln ��ln ��	�

� ln�N ln ��	ln ���Z��N
D�

�Z
��

e	zP�dz� �����

and

lnZ��N � E ln Z��N
D� ln

�Z
��

e	zP�dz� � E ln

�Z
��

e	zP�dz�� ������

Remark� Note that expressions like
R 


�� e	z�P�dz� � e�zdz� are always understood as

limy���
R 


y e
	z�P�dz� � e�zdz�� We will see that all the functionals of the Poisson point

process appearing are almost surely �nite random variables�

Remark� Note that the Poisson integral
R�
�� e	zP�dz� is the partition function of Ruelle�s

version of the REM �Ru�� Thus ������ a�rms that above the critical temperature� the �uc�

tuations of the free energy of the REM converge in distribution to those of Ruelle�s model�

While this connection was surely evident for Ruelle and motivated the introduction of his

model� we have not been able to �nd a rigorous statement of this connection in the literature�

In �GMP� the scale on which �uctuations take place has been established� but no actual limit

theorem was proven�
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Remark� It is interesting to observe that in the REM there is a second �phase transition�

within the high�temperature phase at which the �uctuations become non�Gaussian� In fact�

in the REM the main phase transition can be interpreted as a breakdown of the Law of

Large Numbers� while the second transition corresponds to a breakdown of the Central Limit

Theorem�

The remainder of this paper is organized as follows� In the next section we present the

proofs of Theorems ��� and ���� They are based on an adaptation of the martingale method of

Comets and Neveu� The essential new ingredient is the rather involved truncation procedure

inspired by Talagrand�s work� However� in the proof of the CLT� the computational aspects

become even more involved and require the consideration of truncated third moment of the

partition function� For this reason Section � is rather long and quite technical� However� the

proof is organized in such a way that the CLT is �rst proven for �very high� temperatures

where no truncations are necessary� while the more technical aspects needed to approach

the critical temperature are dealt with separately later� Section � is devoted to proving

Theorems �� and ��� for the REM� It is technically completely di�erent and independent

from Section �� It can therefore be read independently from the rest of the paper� In an

appendix we explain some of the technical di�culties that appear in the case p odd and we

explain the result to be expected in that case�

�� The CLT in the p�spin model

The proof of the central limit theorem in the p�spin SK model relies on a martingale

central limit theorem which uses that fact that a Gaussian random variable can always

be seen as the marginal distribution of a Brownian motion� Thus we follow Comets and

Neveu and introduce the p�parameter family of independent standard Brownian motions

�Ji��i����� �ip�t�� t � R
	�i��i����� �ip�N with EJi� �i����� �ip�t� � � and EJ�

i� �i����� �ip
�t� � t� The Hamil�

tonian of the p�spin SK model can then be written as HN ��� t� �
p
NX��t�� where

X��t� �
�p
Np

X
��i��i����� �ip�N

Ji��i����� �ip�t��i��i� � � � �ip � �����

Note that we can also consider it as a Gaussian process on f��� �gN � R
	 with mean zero

and correlation function

cov �X��t�� X�� �s�� � �s � t� fp
�
RN ��� ���

�
� �����

where fp�x� � xp� In particular� we have EH�
N ��� t� � Nt and E expfHN �t� ��g � expfNt��g

for all �� For later convenience we introduce the normalized partition function

 ZN �t� � E� expfHN �t� ���Nt��g� �����
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It is related to the partition function Z��N of Section � by  ZN ���� � Z��N�EZ��N � with

equality holding in law� The important point of this construction is that that for all �xed

N � ��  ZN �t� is a continuous martingale in the variable t with E  ZN �t� � ��

We begin the proof with some preliminary steps along the lines of �CN�� Let us �nd the

bracket �  ZN �t� � of the martingale  ZN �t�� i� e� the unique increasing process vanishing at

zero� such that  Z�
N �t�� �  ZN �t� � is the continuous martingale �see �RY��� By Ito�s formula�

 ZN �t� satis�es the following stochastic di�erential equation


d  ZN �t� � E� expfHN �t� �� �Nt��gdHN �t� ��� ����

Then due to well�known properties of martingale brackets

�  ZN �t� ��E���� �

tZ



eHN �s����Ns�� dHN �s� ���

tZ



eHN �s�����Ns�� dHN�s� ��� �

�E����

tZ



eHN �s���	HN �s�����Ns d � HN �s� ���HN �s� ��� �

�E����

tZ



eHN �s���	HN �s�����NsNfp

�
RN ��� ���

�
ds�

�����

Since

E

tZ



 Z��
N �s� d �  ZN �s� ��E

tZ



E���� e
HN �s���	HN �s�����NsNfp

�
RN ��� ���

�
E���� eHN �s���	HN �s�����Ns

ds 
 Nt ���

�����

we may introduce a continuous local martingale MN �t� �
R t


 Z��
N �s� d  ZN �s�� Thus  ZN �t�

solves the stochastic di�erential equation

d  ZN �t� �  ZN �t� dMN �t�

and the following fundamental representation of  ZN �t� holds


 ZN �t� � expfMN �t�� ��� � MN �t� �g� �����

Here � MN �t� � is the bracket of MN �t� and � MN �t� ��
R t


 Z��
N �s� d �  ZN �s� � � Let us

note that

d

dt
� MN �t� ��  Z��

N �t�
d

dt
�  ZN �t� �

�  Z��
N �t�

	
E���� e

HN �t���	HN �t�����NtNfp

�
RN ��� ���

�

�

�����
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Note also that MN �t� is locally square integrable� In fact� by �����

EM�
N �t� � E � MN �t� �� E

tZ



 Z��
N �s� d �  ZN �s� �
 Nt ��� �����

To prove Theorems ��� and ���� we will show that for all t satisfying

t � inf
m��m��m��A

Yp�m��m��m��� ������

the bracket of the local martingale N �p�����MN �t�� which is N �p����� � MN �t� �� converges

to tE�p in probability as N � 	�� Here � is a Gaussian random variable with E� � ��

E�� � �� Then by the martingale convergence theorem �see Theorem ����� in �JS�� the local

martingale N �p�����MN �t� converges to M��t� in law as N � 	�� This fact together with

the representation ����� implies immediately the statement of Theorem ����

Sketch of the proof of Theorems ��� and ���� We will now outline further steps of

the proof� First� we show the convergence N �p����� � MN �t� �� tE�p on a more restricted

interval of t� Lemma ��� reduces this problem to the convergence of

N �p�����
E jVN �t�j � �� as N � 	�� ������

where

VN �t� 
� N� p��
� E����

�
Np��fp

�
RN ��� ���

�
� E�p

�
eHN �t���	HN �t�����Nt�

The proof of this lemma is based on the fact that

N �p����� d

dt
� MN �t� � �E�p � N �p����� VN �t�

 Z�
N �t�

� ������

and is performed via integration� It almost mimics the proof proposed in �CN�� In particular�

we use the fact that  Z�
N �t� is not small on events of large probability� The convergence ������

is proved in Proposition ���� Let us give some intuition for it� One can write

EVN �t� �
X

m�
����N���� ���

�Nfp�m��N ���p���
E�p �etNfp�m�

P�� � �� � mN�� ������

By Stirling�s formula

P�� � �� � mN� 	 �p
���� 	m����m�N

e�N
�m��
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where 	�m� � ��� 	m� ln�� 	m� 	 ���m� ln���m����� �here and in the sequel we use the

symbol 	 to denote asymptotic equivalence� i�e� aN 	 bN  limN�	� aN
bN

� ��� Note that

	�m� � �m����� 	 o���� as m� �� Now split the right�hand side of ������ into two terms


the summation in the �rst one will be over m with jmj �small enough� and in the second !

over all other m� It is not di�cult to treat the �rst term� Since p � �� we have for any �xed

t

tfp�m� 	 	�m� � �m����� 	 o����� m� �� �����

Then putting m
p
N � s� the �rst term becomes

�p
��N

X
s�m

p
N

�N ���p���sp �N ���p���
E�p �e�s

��� 	 �N ���p���
p
��

�Z
��

�sp � E�p �e�s
��� ds�

from where the normalisation N �p����� is immediate� To ensure the convergence to zero of

the second term �the one with correlations m not close to zero�� the power of the exponent

in it should be negative


sup
m�
���

�tfp�m�� 	�m�� � ��

Thus for all t � inf
�m�� 	�m�m�p� we get N �p�����
EVN �t�� �� Note that� Proposition ���

states a stronger result ������� To get rid of the absolute value of VN �t� in ������� we follow an

idea suggested in �CN� to apply the Cauchy�Schwartz inequality� Thus� instead of E jVN �t�j�
we get WN�t� �see the proof of Proposition ���� which refers to the third moment of  ZN �t��

This makes technical computations slightly tougher and leads to the bound on t ������ given

in Lemma ��� below�

Note also that these arguments are valid only for p � �� The case p � � of �CN� and

�Tou� is di�erent� since there� ����� does not hold� This case is treated in �CN� by the

multi�dimensional Central Limit Theorem for N independent vectors ��i�
�
i� �

�
i�
��
i � �i�

��
i ��

Next� we will extend the bound ������ to the full regime announced in ������� We have

seen� that ������ was imposed by con�gurations of spins with rather big correlations m in

the sum ������� We will reduce their contribution� using Talagrand�s idea to truncate the

Hamiltonian� Consider instead of VN �t�

eVN �t� � �E����
�
Nfp

�
RN ��� ���

�
�N ���p���

E�p
�
eHN �t���	HN �t�����Nt

� �IfHN �t������	��tN�HN �t�������	��tNg
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for some  � �� Then

E eVN �t� � �
X

m�
����N���� ���

�Nfp�m�� tN ���p����P�� � �� � mN�

� Ee
p
Nt��	

p
Nt���Nt�If���

p
Nt��	������

p
Nt��	��g�

������

where ��� �� are standard Gaussians with cov ���� ��� � m� Let us again split E eVN �t� � into

two terms with �small� and �large� m in the sum ������� The analysis of the �rst term is

completely analogous to the one in the case of VN �t�� We can neglect the truncation here�

since �� and �� are almost independent� In the second term� �� and �� are more correlated�

But due to the truncation� the expectation of the exponent involved in this term is much

smaller than etm
pN � In fact� by the elementary estimate ����� for Gaussian random variables

E e
p
Nt��	

p
Nt���Nt�If���

p
Nt��	������

p
Nt��	��g


 Ee
p
Nt��	�mp���Nt�If���

p
Nt��	����	�mp���g


 expf��Nt�� 	 ���� 	 mp��� 	 �Nt�� 	 ��Ntg
� expf�Ntmp�� 	 ���Nt���� 	mp���g�

Then for any

t � inf

�m��

�� 	m�p�	�m� ������

and for an appropriate choice of  all terms of the sum ������ with m not close to zero are

exponentially small� This implies N �p�����
E eVN �t� � � �� The bound ������ is Talagrand�s

bound for the critical temperature in the p�spin SK model� see ������ It tends to � ln � as

p � 	��

In order to incorporate this idea into our proof� we reduce the problem of convergence

N �p����� � MN �t� �� tE�p to the following statements


N �p�����
E jeVN �t� �j � �� ������

and

N �p�����
E j�VN �t�� eVN �t� ��  Z��

N �t�j � �� ������

for all  � �� This is derived in Lemma ��� again from ������� In Proposition �� we show

������� Again� because of the absolute value� we must apply the Cauchy�Schwartz inequality

and pass to the third moment of  ZN �t�� This makes technical computations much harder�

Namely� we get three standard Gaussian random variables ��� ��� �� with covariances m�� m��
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m�� To bene�t from the truncation for obtaining a good bound on t� we have to take into

account four di�erent cases
 one when all m��m��m� are large and others when two of these

correlations are large and the third is small� Then the analogue of ������ is the minimum of

four estimates of this kind� Therefore� the bound ������ is the minimum of four functions�

The convergence ������ is the subject of Proposition ���� Its proof uses ideas of M� Talagrand

and a concentration of measure inequality�

Lemma ���� Let

T � inf
A

I�m��m��m��

mp
� 	mp

� 	mp
�

� ������

Then

sup

�t�T

jN �p����� � MN �t� � �tE�p j � � ������

in probability� where � is a Gaussian random variable with E� � �� E�� � ��

Proof� Let us denote by

VN �t� �
d

dt
�  ZN �t� � �N ���p���  Z�

N �t�E�p �

Then

d

dt
N �p����� � MN �t� � �E�p �N �p�����VN �t�  Z��

N �t�

�N �p�����VN �t� expf��MN �t�	 � MN �t� �g�
Let us introduce the events

AN
a�b 
� f�MN �t� 
 a	 �b��� � MN �t� � for all t � �g�

Note that by an appropriate choice of a � � and b � �� their probabilities can be made

arbitrarily close to �� In fact� the process BN �t� � MN �St�� where St � minfs j� MN �s� ��

tg� is a standard Brownian motion and MN �t� � BN �� MN �t� ��� By the well�known fact

for Brownian motion

PfAN
a�bg � Pf�BN �t� 
 a	 �b���t for all t � �g � �� expf�abg� ������

We have
 ����N �p����� d

dt
� MN �t� � �E�p

�
�IfAN

a�bg
���

�N �p�����jVN �t�j expf��MN �t�	 � MN �t� �g�IfAN
a�bg


N �p����� expf�agjVN �t�j expf�� 	 b� � MN �t� �g�

������
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Let us also introduce the function �b�x� 
� �� � expf�� 	 b�xg��� 	 b���� Then by ������ for

all t 
 T

jN �p������b�� MN �t� � �tN ���p���
E�p ��IfAN

a�bgj

�N �p�����
��� tZ



� d

ds
� MN �s� � �N ���p���

E�p
�
�IfAN

a�bg

� expf��� 	 b��� MN �s� � �sN ���p���
E�p �gds

���

N �p�����

tZ



��� d
ds

� MN �s� � �N ���p���
E�p

����IfAN
a�bg

� expf��� 	 b��� MN �s� � �sN ���p���
E�p �gds


N �p����� expf�a	 TN ���p����� 	 b�g
tZ




jVN �s�jds�

������

This yields
N �p����� sup


�t�T
j�b�� MN �t� � �tN ���p���

E�p �j�IfAN
a�bg


N �p����� expf�a	 TN ���p����� 	 b�g
TZ



jVN �s�jds�
�����

We will show in Proposition ��� that

lim
N�	�

N �p�����
E jVN �t�j � �

uniformly in t � ��� T �� Consequently supN��t�T N
�p�����

E jVN �t�j ��� Then by the domi�

nated convergence theorem

lim
N�	�

E
�
N �p����� sup


�t�T
j�b�� MN �t� � �tN ���p���

E�p �j�IfAN
a�bg

�
� ��

It follows that for all a� b � �

N �p����� sup

�t�T

j�b�� MN �t� � �tN ���p���
E�p �j�IfAN

a�bg � � as N � 	�

in probability� Then also N �p����� sup
�t�T j�b�� MN �t� � �tN ���p���
E�p �j � �� as

N �� since by ������ the probability of the events AN
a�b can be made arbitrarily close to ��

This last fact implies ������ and the lemma is proved��

It remains to prove the following proposition�
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Proposition ����Assume that T satis�es �
���	� Then

lim
N�	�

N �p�����
E jVN �t�j � � ������

uniformly in ��� T ��

Proof� It follows from ����� and the de�nition of VN �t� that

N �p�����VN �t� �E����
�
Np��fp

�
RN ��� ���

�
� E�p

�
eHN �t���	HN �t�����Nt�

By the Cauchy�Schwartz inequality


N �p�����
E jVN �t�j �E

���E� eHN �t����Nt��
E��

�
Np��fp

�
RN ��� ���

�
� E�p

�
eHN �t�����Nt��

���


h
EE � e

HN �t����Nt��
i���

�
h
EE � e

HN �t����Nt��
h
E��

�
Np��fp

�
RN ��� ���

�
� E�p

�
eHN �t�����Nt��

i�i���
�
h
E���� ����

�
Np��fp

�
RN ��� ���

�
� E�p

��
Np��fp

�
RN ��� ����

�
� E�p

�
� exp

n
Nt
�
fp

�
RN ��� ���

�
	 fp

�
RN ��� ����

�
	 fp

�
RN ������ ����

��oi���
�

Then it su�ces to prove that

WN�t� �E���� ����
�
Np��fp

�
RN ��� ���

�
� E�p

��
Np��fp

�
RN ��� ����

�
� E�p

�
� exp

n
Nt
�
fp

�
RN ��� ���

�
	 fp

�
RN ��� ����

�
	 fp

�
RN ������ ����

��o
tends to zero uniformly in ��� T � as N � 	�� We represent it as

WN�t� �
X

m��m��m��AN

�
Np��fp�m��� E�p

��
Np��fp�m��� E�p

�
eNt�fp�m��	fp�m��	fp�m���

� Pf� � �� � m�N� � � ��� � m�N� �
� � ��� � m�Ng

where the set AN � A � f�����N����N� � � � ���g�� A standard combinatorial calculation

yields

Pf� � �� � m�N�� � ��� � m�N��
� � ��� � m�Ng

� ���N

	
N

N�� 	m����


	
N�� 	m����

N�� 	m� 	m� 	m���


	
N���m����

N�� 	m� �m� �m���



�

������

By Stirling�s formula we obtain

Pf� � �� �m�N�� � ��� � m�N��
� � ��� � m�Ng

�
�� expf�NI�m��m��m��gp

�����N�
��� 	m� 	m� 	m���� �m� �m� 	m���

����

� ��� 	m� �m� �m���� �m� 	m� �m���
����

�
� 	O

� �

N

��
as N � 	��

������
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for any given m��m��m� � AN � Let us remark that

t�mp
� 	mp

� 	mp
�� 	 �m�

� 	m�
� 	m�

����� I�m��m��m�� � O
�
�jm�j	 jm�j	 jm�j��


������

as m��m��m� � � uniformly in ��� T �� Then for all su�ciently small  � � there exists a

constant h � � such that

sup
t�
�T �

�
t�mp

� 	mp
� 	mp

��� I�m��m��m��
�
� �h�m�

� 	m�
� 	m�

���� ������

for all m��m��m� � A � fjm�j 	 jm�j 	 jm�j � g� Let us �x such a small  � � and an

arbitrary constant � � � � ��� and then split WN �t� into four terms


WN�t� � I�N 	 I�N �t� 	 I�N �t� 	 I�N �t��

where

I�N �
��p

���N��

X
m��m��m��AN

jm�j�jm�j�jm�j�N������

�
Np��fp�m��� E�p

��
Np��fp�m��� E�p

�
e�N�m�

�	m
�
�	m

�
����

I�N �t� �
X

m��m��m��AN
jm�j�jm�j�jm�j�N������

�
Np��fp�m��� E�p

��
Np��fp�m��� E�p

�

�
�
eNt�fp�m��	fp�m��	fp�m���P�� � �� � m�N� � � ��� � m�N� �

� � ��� � m�N�

� ��p
���N��

e�N�m�
�	m

�
�	m

�
����

�
�

I�N �t� �
X

m��m��m��AN
jm�j�jm�j�jm�j�N������

jm�j�jm�j�jm�j��

�
Np��fp�m��� E�p

��
Np��fp�m��� E�p

�
eNt�fp�m��	fp�m��	fp�m���

� P�� � �� � m�N� � � ��� � m�N� �
� � ��� � m�N��

I�N �t� �
X

m��m��m��AN
jm�j�jm�j�jm�j��

�
Np��fp�m��� E�p

��
Np��fp�m��� E�p

�
eNt�fp�m��	fp�m��	fp�m���

� P�� � �� � m�N� � � ��� � m�N� �
� � ��� � m�N��

We will prove that all four terms I�N � I
�
N �t�� I�N �t�� I�N �t� tend to zero uniformly in ��� T � as

N � 	��

To show this for I�N � let us put m�

p
N � s��m�

p
N � s��m�

p
N � s�� Then

lim
N�	�

I�N � lim
N�	�

��p
���N��

X
s��s��s�

	�����
p
N����

p
N����

js�j�js�j�js�j�N��
��

�sp� � E�p ��s�p � E�p �e��s��	s
�
�	s

�
����

�
��p
�����

�Z
��

�Z
��

�Z
��

�xp � E�p ��yp � E�p �e��x�	y�	z����dxdydz � ��
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To treat I�N �t�� we rewrite it using ������ as

I�N �t� �
��p

���N��

X
m��m��m��AN

jm�j�jm�j�jm�j�N������

�
Np��fp�m��� E�p

��
Np��fp�m��� E�p

�
e�N�m�

�	m
�
�	m

�
����

�
h
eN t�fp�m��		fp�m��	fp�m���	�m�

�	m
�
�	m

�
�����I�m��m��m���

� ��� 	m� 	m� 	m�����m� �m� 	m���
����

� ��� 	m� �m� �m�����m� 	m� �m���
����

�
� 	O

� �

N

��
� �

i
�

������

Moreover� here O��� is bounded uniformly in AN � fjm�j 	 jm�j 	 jm�j � g by Stirling�s

formula� It follows from ������ that

lim
N�	�

sup
t����T �

jm�j�jm�j�jm�j�N������

N jt�mp
� 	mp

� 	mp
�� 	 �m�

� 	m�
� 	m�

����� I�m��m��m��j � ��

Then

lim
N�	�

sup
t����T �

jm�j�jm�j�jm�j�N������

���eN t�fp�m��	fp�m��	fp�m���	�m�
�	m

�
�	m

�
�����I�m��m��m���

� ��� 	m� 	m� 	m�����m� �m� 	m���
����

� ��� 	m� �m� �m�����m� 	m� �m���
����

�
� 	O

� �

N

��
� �

��� � ��

while

lim
N�	�

��p
���N��

X
m��m��m��AN

jm�j�jm�j�jm�j�N������

����Np��fp�m��� E�p
��

Np��fp�m��� E�p
����e�N�m�

�	m
�
�	m

�
����

� lim
N�	�

��p
���N��

X
s��s��s�	�����

p
N����

js�j�js�j�js�j�N��
��

����sp� � E�p
��

sp� � E�p
����e��s��	s

�
�	s

�
����

�
��p
�����

�Z
��

�Z
��

�Z
��

j�xp � E�p ��yp � E�p �je��x�	y�	z����dxdydz ���

Thus I�N �t�� � uniformly in ��� T � as N � 	��
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To estimate I�N �t�� we rewrite it in the same way using ������


I�N �t� �
��p

���N��

X
m��m��m��AN

jm�j�jm�j�jm�j�N������
jm�j�jm�j�jm�j�	

�
Np��fp�m��� E�p

��
Np��fp�m��� E�p

�

eN t�fp�m��	fp�m��	fp�m����I�m��m��m���

� ��� 	m� 	m� 	m�����m� �m� 	m���
����

� ��� 	m� �m� �m���� �m� 	m� �m���
����

�
� 	O

� �

N

��
������

Due to ������� there exists a constant h� � � such that for all su�ciently large N

sup
t����T �

jm�j�jm�j�jm�j�N������
jm�j�jm�j�jm�j�	

expf�N �t�mp
� 	mp

� 	mp
��� I�m��m��m���g


 sup
jm�j�jm�j�jm�j�N������

jm�j�jm�j�jm�j�	

expf�Nh�m�
� 	m�

� 	m�
����g 
 expf�h�N������g�

The sum X
m��m��m��AN

jm�j�jm�j�jm�j�N������
jm�j�jm�j�jm�j�	

�
Np��fp�m��� E�p

��
Np��fp�m��� E�p

�

has polynomial growth as N � 	� and the uniform convergence I�N�t�� � in ��� T � is proved�

Finally� let us consider I�N �t�� By Stirling�s formula there exists a constant C such that

for all �m��m��m�� � AN � fjm�j	 jm�j	 jm�j � g

Pf� � �� � m�N�� � ��� � m�N��
� � ��� � m�Ng
C

p
Nexpf�NI�m��m��m��g� ������

Then by the assumption ������� for given T there exists a constant h�� � � such that

sup
t����T �

jm�j�jm�j�jm�j�	

expfNt�mp
� 	mp

� 	mp
��gPf� � �� � m�N�� � ��� � m�N��

� � s�� �m�Ng


C
p
N sup

t����T �
jm�j�jm�j�jm�j�	

expf�N �t�mp
� 	mp

� 	mp
��� I�m��m��m���g � C

p
N expf�h��Ng�

The remaining sum in this term has again polynomial growth� whence I�N �t� � � uniformly

in ��� T �� The lemma is proved��

Remark� Let us note that the restriction ������ on T was essential only for the analysis

of the fourth term I�N �t�� This means that the convergence N �p�����
E jVN �t�j � � breaks
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down for larger T only because of the con�gurations of spins with rather big correlations

� � �� � m�� � � ��� � m�� �
� � ��� � m�� To extend our result to the whole interval ������

of admissible T � we need to reduce the contribution of these con�gurations into WN �t�� For

that purpose we will follow the idea of M� Talagrand �T� to truncate the Hamiltonian�

Now we prove the statement of the previous lemma for all T satisfying �������

Lemma ���� Let

T � inf
m��m��m��A

Y �m��m��m���

Then

sup

�t�T

j � N �p�����MN �t� � �tE�p j � � ������

in probability�

Proof� Let us �x  � � such that for some constants h�� h� � �

sup
t����T �

m
p
�
�m

p
�
�m

p
�
��	

�
t�mp

� 	mp
� 	mp

��� I�m��m��m��
�
� �h��m�

� 	m�
� 	m�

�� �����

and

sup
t����T �

m��m��m��A
m
p
�
�m

p
�
�m

p
�
��	

t
�
minfQp�m��m��m�� �� Lp�m��m��m�� ��

Lp�m��m��m�� �� Lp�m��m��m�� �g
�� I�m��m��m�� � �h�

������

where

Qp�m��m��m�� � ����� 	 ��� 	 ���mp
� 	mp

� 	mp
������� 	 �mp

� 	 �mp
� 	 �mp

���
���

Lp�m��m��m�� � �
h
� ��mp

� � �� 	 �� 	 �� 	 �Sp�m��m��m��
q

� 	 �mp
�

	Rp�m��m��m���� 	mp
��
i
�� 	mp

��
���

Condition ����� is the same as ������ and� due to ������� for any given T � � it is possible to

�nd an appropriate  � � such that ������ is satis�ed� However�  � � ensuring ������ does

exist� if and only if T satis�es the assumption ������� The meaning of ������ will become

clear in the proof of a further Proposition ��� Let us introduceeVN �t� � �E����
�
Nfp

�
RN ��� ���

�
�N ���p���

E�p
�
eHN �t���	HN �t�����Nt

� �IfHN �t������	��tN�HN �t�������	��tNg
 VN �t� � �E����

�
Nfp

�
RN ��� ���

�
�N ���p���

E�p
�
eHN �t���	HN �t�����Nt

� �IfHN �t�����	��tN� or HN �t������	��tNg

�VN �t�� eVN �t� ��
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Let us also �x some T
 � � satisfying the assumption ������ of the previous lemma� Proceed�

ing along the lines of the proof of Lemma ���� we get for all t � �T
� T �


N �p�����jFb�� MN �t� � �tN ���p���
E�p �j�IfAN

a�bg


 N �p����� expf�a	 T
N
���p����� 	 b�g

T�Z



jVN �s�jds

	N �p����� expf�a	 tN ���p����� 	 b�g
tZ

T�

jeVN �s� �jds

	N �p�����

tZ
T�

j  VN �s� �j  Z��
N �s� expf��� 	 b��� MN �s� � �sN ���p����g�IfAN

a�	g ds�

Then
N �p����� sup

T��t�T
jFb�� MN �t� � �tN ���p���

E�p �j�IfAN
a�bg


 N �p����� expf�a 	 T
N
���p����� 	 b�g

T�Z



jVN �s�jds

	N �p����� expf�a	 TN ���p����� 	 b�g
TZ

T�

jeVN �s� �jds

	N �p����� expfTN ���p����� 	 b�g
TZ

T�

j  VN �s� �j  Z��
N �s�ds�

It was proved in Lemma ��� that N �p�����
E jVN �t�j � � uniformly in ��� T
� as N � 	��

Proposition �� shows that for  � � satisfying ����� and ������� N �p�����
E jeV �t� �j � �

uniformly in t � �T
� T �� Proposition ��� proves that N �p�����
E j  V �t� �Z��

N �t�j � � uniformly

in �T
� T � for all  � �� Then

lim
N�	�

E � sup
T��t�T

jN �p�����Fb�� MN �t� � �tN ���p���
E�p �j�IfAN

a�bg� � ��

Then sup
�t�T jN �p�����Fb�� MN �t� � �tN ���p���
E�p �j converges to zero in probability�

since the probability of the events AN
a�b can be made arbitrarily close to � by ������� This

implies ������ and the proof of the lemma is complete�

Proposition ����Assume that T � � satis�es �
��	� Let us �x � �  � ��� such that

�
���	 and �
���	 hold� Then for any T
 � �� T
 � T �

lim
N�	�

N �p�����
E jeVN �t� �j � � ������
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uniformly in t � �T
� T ��

Proof� Let us estimate N �p�����
E jeVN �t� �j by the Cauchy�Schwartz inequality as in the

proof of Proposition ��� for N �p�����
E jVN �t�j� After that we split it into four terms


N �p�����
E jeVN �t� �j 
�EfWN �t� ����� � �eI�N �t� �� eI�N �t� � 	 eI�N �t� � 	 eI�N �t� ������

where

fWN �t� � �EE ���� ����
�
Np��fp

�
RN ��� ���

�
� E�p

��
Np��fp

�
RN ��� ����

�
� E�p

�
� eHN �t���	HN �t����	HN �t�������tN��

� �IfHN �t����Nt��	���HN �t�����Nt��	���HN �t������Nt��	��g

eI�N �t� � �
X

m��m��m��AN
m
p
�
�m

p
�
�m

p
�
�	��

�
Nfp�m���N ���p���

E�p
��

Nfp�m���N ���p���
E�p

�
� Pf� � �� � m�N� � � ��� � m�N� �

� � ��� � m�Ng
� EeHN �t���	HN �t����	HN �t�������tN��

eI�N �t� � �
X

m��m��m��AN
m
p
�
�m

p
�
�m

p
�
�	��

�
Nfp�m���N �p�����

E�p
��

Nfp�m���N �p�����
E�p

�
� Pf� � �� � m�N� � � ��� � m�N� �

� � ��� � m�Ng
� E �eHN �t���	HN �t����	HN �t�������Nt��

� �IfHN �t���	Nt��	�� or HN �t����	Nt��	��� or HN �t�����	Nt��	��g�eI�N �t� � �
X

m��m��m��AN
	���mp

�
�m

p
�
�m

p
�
��	

�
Nfp�m���N ���p���

E�p
��

Nfp�m���N ���p���
E�p

�
� Pf� � �� � m�N� � � ��� � m�N� �

� � ��� � m�Ng
� E �eHN �t���	HN �t����	HN �t�������Nt��

� �IfHN �t����Nt��	���HN �t�����Nt��	���HN �t������Nt��	��g�eI�N �t� � �
X

m��m��m��AN
m
p
�
�m

p
�
�m

p
�
��	

�
Nfp�m���N �p�����

E�p
��

Nfp�m���N �p�����
E�p

�
� Pf� � �� � m�N� � � ��� � m�N� �

� � ��� � m�Ng
� E �eHN �t���	HN �t����	HN �t�������tN��

� �IfHN �t���	Nt��	�� or HN �t����	Nt��	�� or HN �t�����	Nt��	��g��

We will prove the uniform convergence to zero in �T
� T � as N � 	� of all these four terms�
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The �rst term eI�N�t� is not truncated and it refers to the con�gurations of spins with small

correlations m�� m� and m�� The proof of its uniform convergence to zero in �T
� T � relies

on ����� and it is completely analogous to the proof of the uniform convergence to zero of

the sum I�N 	 I�N �t� 	 I�N �t� in the proof of Proposition �� Therefore� we omit the details�

The second term eI�N �t� also contains only con�gurations of spins with very small cor�

relations� If these correlations were zero� i� e� if HN �t� �� HN�t� ��� and HN�t� ���� were

independent� then� indeed� the expectation involved in this term satis�es

E �eHN �t���	HN �t����	HN �t�������Nt���If
g� 
 �E �e
p
Nt��Nt���If�pNt��	��g� 
 expf�Nt���g

�� is a standard Gaussian� by a well�known estimate for Gaussian random variables ������

We show that very small correlations m�� m�� m� do not destroy the exponential convergence

to zero of the corresponding expectation� Considering the third term eI�N �t�� we neglect the

truncation and use the asymptotic expansion ������ and condition ������ So we prove that

the expectation EeHN �t���	HN �t����	HN �t�������Nt�� multiplied by the probability of any given

correlations goes to zero exponentially fast� Finally eI�N �t� refers to the con�gurations of

spins with rather big correlations� Here� applying the estimate ������ we bene�t from the

truncation� The choice of  � � according to ������ plays a crucial role in the analysis of this

term� �Remember that this choice was possible only for T satisfying ��������

Now we proceed with the detailed proof� To treat the second term eI�N �t� �� we write

E �eHN �t���	HN �t���	HN �t�������Nt���IfHN �t���Nt��	�� or HN �t����Nt��	�� or HN �t�����Nt��	��g�

� E �e
p
Nt���	��	�����Nt�� �If��

p
Nt��	�� or ��

p
Nt��	�� or ��

p
Nt��	��g��

where ��� �� and �� are Gaussian random variables with zero mean� variance � and covari�

ances cov ���� ��� � fp�RN ��� ���� � mp
�� cov ���� ��� � fp�RN ��� ����� � mp

�� cov ���� ��� �

fp�RN ���� ����� � mp
�� m

p
� 	mp

� 	mp
� 
 ��� One gets

E �e
p
Nt���	��	�����Nt���If��

p
Nt��	��g� �e

��Nt��
E
�
e
p
Nt���If��

p
Nt��	��gE �e

��	�� j ���
�

�eNt���Nt��
E �e

p
Nt��	�����If��

p
Nt��	��g��

where � � � 	mp
� � �mp

� 	mp
��

���� � � mp
� 	mp

�� Since mp
� 	mp

� 
 �� � � we may use

the estimate for standard Gaussian random variables ������ It implies

E �e
p
Nt���	��	�����Nt���If��

p
Nt��	��g� 
C� expfNt�mp

� 	mp
� 	mp

� � ��mp
� 	mp

��
����g


C� expf�NT

���g
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for some constant C� � �� all t � �T
� T � and all N � �� if mp
�	mp

�	mp
� � ��� � �  � ����

Thus

sup

�mp

�	m
p
�	m

p
������

E �eHN �t���	HN �t���	HN �t�������Nt��

� �IfHN �t���Nt��	�� or HN �t����Nt��	�� or HN �t�����Nt��	��g�


 �C� expf�NT

���g

for all t � �T
� T �� Since the other terms in eI�N �t� � have polynomial growth� the uniform

convergence eI�N �t� �� � in �T
� T � follows�

Let us turn to eI�N �t� �� By the expansion ������ and condition ������

sup
�����mp

�	m
p
�	m

p
����

E
�
eHN �t���	HN �t����	HN �t�������Nt��

� �IfHN �t����Nt��	���HN �t�����Nt��	���HN �t������Nt��	��g�

� Pf� � �� �m�N�� � ��� � m�N�� � ��� � m�Ng

 C� sup

�����mp
�	m

p
�	m

p
����

expfN �t�mp
� 	mp

� 	mp
��� I�m��g


 C� sup
mp

�	m
p
�	m

p
�	����

expf�h�N�m�
� 	m�

� 	m�
��g 
 C� expf�h���pN�g

for all t � �T
� T �� where C� � �� h� � � are constants� All other terms in eI�N �t� � have

polynomial growth� hence I�N �t� �� � uniformly in �T
� T ��

Finally� consider eI�N �t� �� We have

E

h
eHN �t���	HN �t����	HN �t�������Nt�� �IfHN �t����Nt��	���HN �t�����Nt��	���HN �t��������	��Ntg

i

 E

h
e
p
Nt��	�mp

�	�mp
�	�mp

�� ���Nt���If
p

�	�mp
�	�mp

�	�mp
� ���Nt��	��g

i
�

where � is a standard Gaussian�m� � fp�RN ��� �����m� � fp�RN ��� ������m� � fp�RN ���� ������

Since mp
� 	mp

� 	mp
� � �� we may apply the estimate ������ It yields

E

h
eHN �t���	HN �t����	HN �t�������Nt�� �IfHN �t����Nt��	���HN �t�����Nt��	���HN �t��������	��Ntg

i

 C� expfNtQp�m��m��m�� �g�

for some constant C� � �� all t � �T
� T �� N � � and mp
�	mp

� 	mp
� � �� On the other hand�
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we also have


E

h
eHN �t���	HN �t����	HN �t�������Nt�� �IfHN �t����Nt��	���HN �t�����Nt��	���HN �t��������	��Ntg

i

 E

h
eHN �t���	HN �t����	HN �t�������Nt�� �IfHN �t�����Nt��	���HN �t������Nt��	��g

i
� E

h
e
p
Nt��	

p
Nt����Nt��

E�e
p
Nt�� j ��� ����If���pNt��	������

p
Nt��	��g

i
� e�Nt	Nt	

E

h
e
p
Nt��	�����	

p
Nt��	������If���

p
Nt��	������

p
Nt��	��g

i

 e�Nt	Nt	

E

h
e
p
Nt���	����	��	����	�mp

���	�����	������If
p

�	�mp
� ���

p
Nt��	��g

i
�

where ��� ��� �� are the same as in the analysis of the second term� � is standard Gaussian

and

 ���mp

�m
p
�m

p
� �m�p

� �m�p
� ���� � �m�p

� �

�� ��mp
� �mp

�m
p
����� �m�p

� �

�� ��mp
� �mp

�m
p
����� �m�p

� ��

One checks that q
�� 	 ���� 	 �� 	 ���� 	 �mp

��� 	 ����� 	 ���

� ��� 	mp
� 	 �mp

� 	mp
�����p

� 	 �mp
�

� ��� 	 ����p
� 	 �mp

�

�

when mp
� 	mp

� 	mp
� � �� So� we are again in the position to apply ������ This yields

E

h
eHN �t���	HN �t����	HN �t�������Nt�� �IfHN �t����Nt��	���HN �t�����Nt��	���HN �t��������	��Ntg

i

 C� expftNLp�m��m��m�� �g�

where C� � � is a constant� Permutingm��m� andm�� we can derive in the same way that the

same expectation does not exceed expftNLp�m��m��m�� �g and expftNLp�m��m��m�� �g
multiplied by some constant� Thus� taking into account ������� we obtain

sup
mp

�	m
p
�	m

p
���

E
�
eHN �t���	HN �t����	HN �t�������Nt��

� �IfHN �t����Nt��	���HN �t�����Nt��	���HN �t������Nt��	��g
�

� Pf� � �� � m�N�� � ��� � m�N�� � ��� � m�Ng

 sup

mp
�	m

p
�	m

p
���

C�

p
N exp

n
tN min

�
Qp�m��m��m�� �� Lp�m��m��m�� ��

Lp�m��m��m�� �� Lp�m��m��m�� �
��NI�m��m��m��

o
������

for all t � ��� T
�� where C� � � is a constant� Now the relevance of the assumption ������

becomes clear� Due to ������� the right�hand side of ������ tends to zero exponentially fast�
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as one can estimate it by C�

p
N expf�h�Ng� The other terms in eI�N �t� � have polynomial

growth� Thus I�N �t� � � 	� uniformly in �T
� T �� This concludes the proof of the proposition�

Proposition ����For all T � � satisfying �
��	 and all  � �

lim
N�	�

N �p�����
E j  VN �t� �  Z��

N �t�j � � ������

uniformly in any interval �T
� T �� where � � T
 � T �

Proof� It follows from the de�nition of  VN �t� that

N �p�����
E j  VN �t� �  Z��

N �t�j 
  CNE
E � e

HN �t����IfHN �t���Nt��	��g
E� eHN �t���

������

for all t � �� where  C � � is a constant� We will show that the expectation of this last

fraction tends to zero exponentially fast� First of all� we observe that by �����

EE � e
HN �t����IfHN �t���Nt��	��g

EE � eHN �t���
� EE � e

HN �t����Nt���IfHN �t���Nt��	��g 
 e�Nt����� �����

Let us represent the fraction in the right�hand side of ������ as

E
E � e

HN �t����IfHN �t���Nt��	��g
E� eHN �t���

� E
E� e

HN �t����Nt���IfHN �t���Nt��	��g
expfln E� eHN �t��� � E ln E� eHN �t��� 	 E ln E� eHN �t��� �Nt��g �

�����

To expand this formula� we will use the concentration of measure as in ������ The random

variable E� e
HN �t��� has the same distribution as 	�J�� � � � � JNp�� where the function

	�x�� � � � � xNp� � ln E� exp
np

tN��p
X

i����� �ip

xi��i����� �ip�i��i� � � � �ip
o

is de�ned on Z
Np

� J�� � � � � JNp are standard Gaussian random variables� The Lipschitz

constant of 	�x�� � � � � xNp� is at most
p
tN��ppNp �

p
tN � Substituting this function and

u � Nt�� into ������ we derive


Pfj ln E� eHN �t��� � E ln E� e
HN �t���j � Nt��g 
 expf�Nt����g� �����

Let us introduce the events ON
t�� 
� fj ln E�eHN �t��� � E ln E� e

HN �t���j � Nt��g� Conse�
quently by ����� and �����

E
E� e

HN �t����IfHN �t���Nt��	��g
E� eHN �t���

� E

�IfON
t�	gE� e

HN �t����Nt���IfHN �t���Nt��	��g
expfln E� eHN �t��� � E ln E� eHN �t��� 	 E ln E� eHN �t��� �Nt��g 	 PfON

t��g


 eNt����
E
E � e

HN �t����Nt���IfHN �t���Nt��	��g
expfE ln E� eHN �t��� �Nt��g 	 e�Nt����

�����
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Observe that for any T satisfying ������ and any � � T
 � T � there exists a constant K � �

such that

�K
p
N � E ln E� e

HN �t��� �Nt�� 
 � ����

for all t � �T
� T �� The upper bound in ���� is immediate by Jensen inequality� Whenever

the second moment of  ZN �t� truncated is �nite� the left�hand side of ���� was established

by Talagrand �T�� in the analysis of the critical temperature� We will outline his proof in

our situation� For given T satisfying ������� let us �x e � �� such that ����� and ������ hold�

Let us de�ne after

 ZN �t�e� � E� e
HN �t����Nt���IfHN �t����Nt��	e��g

By ����� there exists a constant K� � � such that

E  ZN �t�e� � K� �����

for all t � �T
� T �� Moreover� there exists a constant K� � � such that

E  Z�
N �t�e� 
 K� �����

for all t � �T
� T �� The proof of ����� is analogous to the proof of the uniform convergence

to zero of fWN �t� � in Proposition �� We decompose  ZN �t�e� into four terms like it was forfWN �t� �� The last three of them go to zero uniformly in t � �T
� T � and exponentially fast

by the same arguments as eI�N �t�� eI�N �t� and eI�N �t� do� We work out the �rst term similarly

to the sum IN� 	 IN� �t� 	 IN� �t� in Proposition �� The only di�erence is that IN� tends to the

integral along R
� of the density of three independent standard Gaussians� which equals ��

Thus� in fact�  ZN �t�e� converges to � uniformly in �T
� T � and ����� is obvious� Hence� for

all t � �T
� T �

E  Z�
N �t�e��

E  ZN �t�e�� 

�
E  Z�

N �t�e�����
E  ZN �t�e�� 
 K

���
�

K�
�


� K�� �����

Then starting from the Paley�Zygmund inequality and �nally applying the concentration of

measure inequality ����� with u � Nt��� E ln E� e
HN �t��� 	 ln�K����� we deduce

��K� 
 E  Z�
N �t�e�


�
E  ZN �t�e�� 
 Pf  ZN �t�e� � E  ZN �t�e���g 
 PfE� eHN �t��� � K�e

Nt����g

� Pfln E� eHN �t��� � E ln E� e
HN �t��� � Nt��� E ln E� e

HN �t��� 	 ln�K����g

 expf�Nt�� � E ln E� e

HN �t��� 	 ln�K�����
���Ntg�
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from where ���� follows� Finally� ������ ����� and ���� together imply

E
E� e

HN �t����IfHN �t���Nt��	��g
E� eHN �t���


eNt����	K
p
N
EE � e

HN �t����Nt���IfHN �t���Nt��	��g 	 e�Nt����


e�Nt���	K
p
N 	 e�Nt�����

�����

and the proposition is proved��

Proof of �����	� To complete the proof of Theorem ���� it remains to show that

lim
p�	�

inf
m��m��m��A

Yp�m��m��m�� � � ln �� �����

After elaborating the functions Sp�m��m��m�� and Rp�m��m��m��� we get


Up�m��m��m�� �I�m��m��m���� 	mp
��

�
h�


�
� 	mp

� 	
mp

� 	mp
�

�

��
	

�mp
� �mp

��
��� 	mp

��

���mp
��

����
� �mp

� �mp
��

�

����mp
��

�mp
�m

p
� � �� 	mp

��
i��

�

������

It follows from ������ that for any p � �k � � and any sequence �m��n�m��n�m��n� � A such

that m��n � �� m��n � �� m��n � �� as n���

lim
n�	�

Yp�m��n�m��n�m��n� � � ln �� ������

�In fact� by the de�nition of A we have jjm�j � jm�jj 
 � � jm�j for all �m��m��m�� � A�

whence �mp
��n �mp

��n�
� � o���mp

��n��� Thus

lim sup
p�	�

inf
m��m��m��A

Yp�m��m��m�� 
 � ln ��

This fact and the next Proposition ��� together imply ������ �

Proposition ��	�Let fpng be a sequence of positive even numbers� pn � 	�� Assume that

the sequence �m��n�m��n�m��n� � A satis�es one of the following conditions�

�i	 jm��nj � �� jm��nj � �� jm��nj � ��

�ii	 there exist � � � and a pair i and j� i� j � �� �� �� i �� j� such that jmi�nj � � and

jmj�nj 
 �� � for all su�ciently large n�
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�iii	 there exists � � � such that jm��nj 
 ���� jm��nj 
 ���� jm��nj 
 ��� for all su�ciently

large n� Then

lim inf
n�	�

Ypn�m��n�m��n�m��n� � � ln �� ������

Proof� In the cases �i� and �iii� it su�ces to substitute the sequence �m��n�m��n�m��n� into

the function I�m��m��m������	�mp
�	m

p
�	m

p
��
���� In case �ii� assume that e� g� jm��nj � �

and jm��nj 
 ���� Thenmpn
��n � o���� By de�nition of the set A we obtain jjm��nj�jm��njj 


��jm��nj � � as n � 	�� thus mpn
��n � o��� and �mpn

��n�mpn
��n�

�����mpn
��n� � o���� Moreover�

if m��n � �� then m��n �m��n � � and if m��n � ��� then m��n 	m��n � � and therefore

in both of these cases lim infn�	� I�m��n�m��n�m��n� � ln �� This yields

lim inf
n�	�

Ypn�m��n�m��n�m��n�

� lim inf
n�	�

Upn�m��n�m��n�m��n� � lim inf
n�	�

ln �
� 	mpn

��n

mpn
��n 	 o���

� � ln �

and the proposition is proved� �

�� The 	uctuations of the partition function in the REM�

Amazingly enough� the simplest of all our models� the REM� will be seen to o�er in some

sense the most interesting behaviour with regard to the �uctuations of the free energy� The

main surprise here will be the existence of an intermediate region of temperatures where a

CLT does not hold� but there a non�standard limit theorem will be proven�

We begin with the proof of �i� of Theorem ���

Proposition ����Whenever � 
 � �
p

ln ����

e
N
� �ln ����� ln

Z��N
EZ��N

D� N ��� ��� �����

Proof� This result will follow from the standard CLT for triangular arrays� Let us �rst write

ln
Z��N
EZ��N

� ln
�
� 	

Z��N � EZ��N
EZ��N

�
� �����

We will show that the second term in the logarithm properly normalized will converge to a

normal random variable� To see this� write

Z��N � EZ��N
EZ��N

�
X
��SN

e�N�ln �	�����
�
e�
p
NX� � eN����

�
�

X
��SN

YN ���� �����
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Note that EYN ��� � � and EY�
N ��� � e�N�� ln �������� e�N�� � and thus

E

�Z��N � EZ��N
EZ��N

��
� e�N�ln �������� e�N�� �� ����

Therefore we can write

Z��N � EZ��N
EZ��N

� e�
N
� �ln �����

p
�� e�N��

�

�N��

X
��SN

eYN ���� �����

where eYN ��� � e
N
� �� ln ������� � e�N�� �����YN ��� has mean zero and variance one� By the

CLT for triangular arrays �see �Shi��� it follows readily that

�

�N��

X
��SN

eYN���
D� N ��� �� �����

if the Lindeberg condition holds� that is in this case if for any  � ��

lim
N�	


E eY�
N ����IfjeYN ���j	��N��g � �� �����

But

E eY�
N ����IfjeYN ���j	��N��g �

�p
����� e�N���

e��N��
�Z

p
N� ln �

�
 	��	 ln 	p
N


	o� �p
N
�

e�
p
N�z� z�

� dz 	 o���

�
�p

����� e�N���

�Z
p
N� ln �

�
 ���	 ln 	p
N


	o� �p
N
�

e�
z�

� dz 	 o����

�����

It is easy to check that the latter integral converges to zero if and only if �� � ln ���� Using

now the fact that ex � �	x	o�x� as x� �� it is now a trivial matter to deduce the assertion

of the proposition� �

Since the Lindeberg condition clearly fails for ��� � ln �� it is clear that we cannot expect a

simple CLT beyond this regime� Such a failure of a CLT is always a problem related to �heavy

tails�� and results from the fact that extremal events begin to in�uence the �uctuations of

the sum� It appears therefore reasonable to separate form the sum the terms where X� is

anomalously large� For Gaussian r�v��s it is well known that the right scale of separation is

given by uN �x� de�ned by

�N
�Z

uN �x�

dzp
��

e�z
��� � e�x �����
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which �for x � � lnN� ln �� is equal to �see e�g� �LLR��

uN �x� �
p
�N ln � 	

xp
�N ln �

� ln�N ln �� 	 ln �

�
p
�N ln �

	 o���
p
N�� ������

x � R is a parameter� Let us now de�ne

Zx
N�� � E� e

�
p
NX��IfX��uN �x�g� ������

We may write

Z��N
EZ��N

� � 	
Z
x
��N � EZx

��N

EZ��N
	
Z��N � Zx

��N � E �Z��N � Zx
��N �

EZ��N
������

Let us �rst consider the last summand� We introduce the random variable

WN �x� �
Z��N � Zx

��N

EZ��N
� e�N�ln �	�����

X
��SN

e�
p
NX��IfX�uN �x�g ������

It will be convenient to rewrite this as �we ignore the subleading corrections to uN �x� and

only keep the explicit representation �������

WN �x� � e�N�ln �	�����
X
��SN

e�
p
NuN �u��

N �X����Ifu��
N �X��xg

� e�N�ln �	�����e
�N

p
� ln ��� ln�N ln ���ln �

�
p
� ln �

X
��SN

e

p
� ln �

u��
N �X���Ifu��

N �X��xg�
�����

Let us now introduce the point process on R given by

PN �
X
��SN

�u��
N �X��

� ������

A classical result from the theory of extreme order statistics �see e�g� �LLR�� asserts that the

point process PN converges weakly to a Poisson point process on R with intensity measure

e�xdx� We can� of course� write

X
��SN

e

p
� ln �

u��
N �X���Ifu��

N �X��xg �

�Z
x

e	zPN �dz�� ������

where we set 
 � ��
p
� ln �� Clearly� the weak convergence of PN to P implies convergence

in law of the right hand side of ������� provided that e	x is integrable on �x��� w�r�t� the

Poisson process with intensity e�x� This is� in fact never a problem
 the Poisson point

process has almost surely support on a �nite set� and therefore e	x always a�s� integrable�
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Note� however� that for � � p� ln � the mean of the integral is in�nite� indicating the passage

to the low temperature regime� Note also that the variance of the integral is �nite exactly

if 
 � ���� i�e� �� � ln ���� i�e� when the CLT holds� On the other hand� the mean of the

integral diverges if x � �� note that at minus in�nity the points of the Poisson point process

accumulate� and there is no �nite support argument as before that would assure the existence

if x is taken to ��� The following lemma provides the �rst step in the proof of part �ii� of

Theorem �� and of Theorem ���


Lemma ���� Let WN �x�� 
 be de�ned above� and let P be the Poisson point process with

intensity measure e�zdz� Then

e
N
� �
p
� ln �����	�

� ln�N ln ��	ln ���WN �x�
D�

�Z
x

e	zP�dz�� ������

Remark� Note that the mean of the right hand side is �nite if and only of � �
p
� ln �� Thus

only in that case does this lemma also allow to deal with the centered variable appearing in

�������

We now need to turn to the remaining term�

Zx
��N � EZx

��N

EZ��N
�
VN �x�

EZ��N
� ������

where

VN �x� � Zx
��N � EZx

��N � ������

One might �rst hope that this term upon proper scaling would converge to a Gaussian�

however� one can easily check that this is not the case �the Lindeberg condition will not be

veri�ed�� However� it will not be hard to compute all moments of this term


Lemma ���� Let VN �x� be de�ned by �����	� Then for 
 � ��� and any integer k � �

lim
N�	�

E �VN �x��kh
��NeN�

p
� ln ���

� ln�N ln ��	ln ���
ik �

kX
i��

�

i�

X
����������i��P

j
�j	k

k�

��� � � � �i�

e�k	�i�x

���
� �� � � � ��i
� ��
�

������

For 
 � ���� we have for k even

lim
N�	�

E �VN �x��kh
��NeN�

p
� ln �

ik �
k�

�k���� �k
�

�k � ����

�k�� ������
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and for k odd

lim
N�	�

E �VN �x��kh
��NeN�

p
� ln �

ik � � ������

�which are the moments of the normal distribution with variance ���	�

Proof� This is a pure computation� Set TN ��� � e�
p
NX��IfX��uN �x�g� Note that for

� �
p
� ln �

ETN ��� �

uN �x�Z
��

dzp
��

e�
z�

� 	�
p
Nz � eN����

�
��

�Z
uN �x���pN

dzp
��

e�
z�

�

�
	 e�

�N��� ������

while for � �
p
� ln � and all k � �� and for � �

p
ln ��� and for k � ��

E �TN ����k �

uN �x�Z
��

dzp
��

e�
z�

� 	k�
p
Nz � eNk�����

uN �x��k�pNZ
��

dzp
��

e�
z�

�

	 eNk����� e��uN �x��k�pN����

p
���k�

p
N � uN �x��

	 ��Ne�x

k
� �
ek�

p
� ln �N		x��

� ln�N ln ��	ln �����

�����

Formula ����� is also valid for � �
p
� ln � with k � � and for � �

p
ln ��� with k � ��

It is easy to see from the computations above that for � �
p
� ln � with k � � and also for

� �
p

ln ��� with k � � we have

E �TN ����k 	 ek
���N��

�
�

��Ne�x

�
ek�

p
� ln �N		x�� ������

We set eTN ��� � ��NTN ���� by ����� we get for � �
p

ln ��� with k � � and also for

� �
p
� ln � with k � �

E � eTN ����k �
��Ne�x

k
� �
ek�

p
� ln �N�ln �		x��

� ln�N ln ��	ln ����� ������

This formula is also true for � �
p
ln ���� k � � and � �

p
� ln �� k � �� For � �

p
� ln �

and k � � and also for � �
p

ln ��� and k � � by ������

E � eTN ����k �
��Ne�x

�
ek�

p
� ln �N�ln �		x�� ������

Now

E �VN �x��k � E

� X
��SN

� eTN ���� E eTN ����
�k

�
X

��������k�SN
E

kY
i��

� eTN ��i�� E eTN ��i�
�

�

kX
i��

X
��������i��P

j
�j	k

k�

��� � � � �i�

	
�N

i



E � eTN ���� E eTN ������ � � � E � eTN ��� � E eTN �����i �

������
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Note �nally that for l � � and � �p
ln ���

E
� eTN ���� E eTN ���

��
�

�X
j��

����j
	
�

j



E eTN �����j �E eTN ����j 	 E eTN ����� ������

In fact� if
p

ln ��� 
 � �
p
� ln �� l � �� j � �� j �� l � �� l� then by ������ and ������� ������

E �T l�j
N �����ETN ����j

E �T l
N ����

�� eNj�������p� ln ���O
�
N	j��

�
������

For l � �� j � l � �� l

E �T l�j
N �����ETN ����j

E �T l
N ����

eNl�������p� ln ��	N ln �O
�
N	l��

�

 e�N ln ����N	 ������

For � � p� ln �� l � � and j � � by ������ and ������

E �T l�j
N �����ETN ����j

E �T l
N ����

� O���Nj�� ������

Thus for l � � and � �
p

ln ��� and also for l � � and � �
p

ln ���

E
� eTN ���� E eTN ���

��
�

��Ne�x

k
� �

�
��NeN�

p
� ln �e	xe�

�
� ln�N ln ��	ln ���

��
� ������

Inserting this result into ������ gives the assertion of the lemma �������

For � �
p

ln ��� and l � � by ������ we have

E
� eTN ��� � E eTN ���

��
�

��Ne�x

�

�
��NeN�

p
� ln �e	x

��
� �����

Inserting this formula into ������ we see� that the term with l�� � � � � li � �� i � k�� brings the

main contribution to the sum� and all others are of smaller order� because of the polynomial

terms e�l
�
� ln�N ln �� in ������� This implies ������ and ������ and the lemma is proved� �

Remark� One sees that if we let x � ��� and rescale properly� the corresponding moments

converge to that of a centered Gaussian r�v� This could alternatively be seen by checking

that the Lindeberg condition holds for the truncated variables provided x 
 �� ln ln �N �

A standard consequence of Lemma ��� is the weak convergence of the normalized version

of VN �x�
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Corollary ���� For
p

ln ��� � ��

e
N
� �
p
� ln �����	�

� ln�N ln ��	ln ��� VN �x�

EZ��N

D� V�x� 
�� ������

where V�x� 
� is the random variable with mean zero and kth moments given by the right

hand side of ���
	� For � �
p

ln ���

p
�e

N
� �
p
� ln ����� VN �x�

EZ��N

D� N ��� ��� ������

The next proposition will imply �ii� of Theorem ���

Proposition ����Let
p

ln ��� � � �
p
� ln �� Then for x � R chosen arbitrarily�

e
N
� �
p
� ln �����	�

� ln�N ln ��	ln ��� ln
Z��N
EZ��N

D� V�x� 
� 	
�Z
x

e	zP�dz� �
�Z
x

e	ze�zdz� ������

where V�x� 
� and P are independent random variables�

Proof� ������ would be immediate from Lemma ��� and Corollary ��� if WN �x� and VN �x�

were independent� However� while this is not true� they are not far from independent� To

see this� note that if we condition on the number of variables X�� nN�x�� that exceed uN �x��

the decomposition in ������ is independent� On the other hand� one readily veri�es that

Corollary �� also holds under the conditional law P��jnN �x� � n�� for any �nite n� with the

same right hand side V�x� 
�� But this implies that the limit can be written as the sum of

two independent random variables� as desired� �

Since for �� � ln ���� 
 � ���� one sees that EV�x� 
�� � ex��	������
 � �� tends to zero

as x � ��� Therefore we see that

V�x� 
� �D lim
y�	�

xZ
�y

e	zP�dz� �
xZ

�y
e	ze�zdz ������

which means that we can give sense to the Poisson integral
R�
�� e	z�P�dz� � e�zdz� We see

that Propositions ��� and ��� imply Theorem ��� ��

Remark� The appearance of the intermediate region with non�Gaussian �uctuations may

appear surprising in view of the fact that in the p�spin models� we could prove the CLT up

to a much higher value of �� in fact up to almost the critical value� The reason� however�

lies in the fact that in the p�spin model the Gaussian part of the �uctuation is always on a
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polynomial scale in N � while the truncation error ��Z��N � ZT
��N ��EZ��N � is exponentially

small even when we truncate at ���	 �
p
N � way below where we truncate in the REM� This

means that the CLT contribution will always dominate the extremal �uctuations� In the

REM everything is exponentially small� and while a su�ciently truncated partition function

gives a Gaussian contribution� this is dominated by the larger extremal �uctuations in the

intermediate regime� In other words� the extra correlations in the p�spin models strengthen

the Gaussian �uctuations more than the extremal ones which sounds intuitive�

We now turn to the

Proof of Theorem ��
� We will see that the computions above almost su�ce to conclude

the low temperature case as well� With the notations from above� we write

Z��N � Zx
��N 	 �Z��N � Zx

��N � ������

Clearly for � � p� ln �

Z��N � Zx
��N � eN��

p
� ln ��ln ����

� ln�N ln ��	ln ���
X
��SN

�Ifu��
N ���xge

	u��
N �X�� �����

so that for any x � R�

�Z��N � Zx
��N �e�N��

p
� ln ��ln ��	�

� ln�N ln ��	ln ��� D�
�Z
x

e	zP�dz�� �����

Now write

Zx
��N � EZx

��N

�
� 	

Zx
��N � EZx

��N

EZx
��N

�
� �����

Let us �rst treat the case � �
p
� ln �� By ����� we have

EZx
��N 	 ��Ne�x


� �
e�
p
� ln �N		x��

� ln�N ln ��	ln ���� �����

Thus

e�N��
p
� ln ��ln ��	�

� ln�N ln ��	ln ���Zx
��N �

ex�	���


� �

�
� 	

Zx
��N � EZx

��N

EZx
��N

�
�� 	 o����� ����

Using Lemma ��� we see that now
Zx

�N�EZx


�N

EZx

�N

ex�����

	�� converges in distribution to a random

variable with moments given by the right hand side of ������� Moreover� as x � ��� this

variable converges to zero in probability� Since the same is true for the prefactor� the assertion

of the theorem is now immediate�
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Let us consider now the case � �
p
� ln �� Proceeding as in ������

EZ

��N �

�Np
��

uN �
��p�N ln �Z
��

e�z
���dz � �N

��
�
� ln�N ln �� 	 ln �


p
N� ln �

	O
� �lnN��

N

��
� �����

We use the decomposition

Z��N � Z��N � Z

��N 	 EZ


��N 	 �Z

��N � EZ


��N �� �����

By ������ EZ

��N �EZ��N 	 ���� By ������ we see easily that

Z��N � Z

��N

EZ��N
�WN �x�� � a�s� �����

even though EWN ��� � ���� Thus the more precise statement consists in saying that

e
�
� ln�N ln ��	ln ���WN���

D�
�Z



ezP�dz�� �����

Note that of course the limiting varaible has in�nite mean� but is a�s� �nite� Finally� by

Corollary ���

e
�
� ln�N ln ��	ln ���

Z

��N � EZ


��N

EZ��N

D� V��� �� �����

The same arguments as those given after Proposition ��� allow us to identify V��� �� with

the Centered Poisson integral
R 


�� ez �P�dz� � e�zdz� � From this one deduces easily ������

������ is an immediate corollary� This concludes the proof of Theorem ������

Appendix �� Some remarks on the case p odd

Conjecture ����Let p � �k 	 �� k � �� There exists �p � � such that for all � � �p

N �p����� ln
Z��N
EZ��N

�M��
p
�� ����

in distribution as N � 	�� where M��t� is a centred Gaussian process with independent

increments and

E �M��t��M��s��� �
�t� � s�����p � �����

�
�

Moreover �p �
p
� ln �� as p � 	��

Discussion� Let us try to adapt the martingale method in this case� This leads to

VN �t� �E����
�
N
�
RN ��� ���

�p
�N��ptE��p

�
eHN �t���	HN �t�����Nt�
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Then

Np��
EVN �t� �

X
m�
����N���� ���

�
Np��mp � tE��p

�
etNmp

P�� � �� � mN�� ����

It is easy to show thatNp��
EVN �t�� � asN � 	� for all t such that t � inf
�m�� 	�m�m�p�

As in the proof for p even� we can concentrate only on con�gurations of spins with corre�

lations m close to zero� since others bring an exponentially small contribution� Note that

P�� � �� � mN� � P�� � �� � �mN� and consequently I�m� � I��m� � �m����� 	 o�����

m� �� Summing up the terms in ���� with correlations m and �m� we get

Np��
EVN �t� �

�p
��N

X
m���

jmj�N������

Np��mp�etNmp � e�tNmp

�e�NI�m� � �tE��p 	 o���

�
p
�N�

X
m���

jmj�N�����

Np��mp
�
tNmp


�� 	 o����e�NI�m� � �tE��p 	 o���

�
tp
��

�Z



s�pe�s
���ds� �tE��p 	 o���� �� N � 	��

Moreover� as for p even� it is also not di�cult to show that the truncated valueN �p���
E eVN �t� �

tends to zero for all t up to Talagrand�s bound �������

Let us now try to perform a rigorous proof of Conjecture ��� Proceeding along the lines

of the proof for p even� we come to the problem of convergence Np��
E jVN �t�j � �� To get

rid of the absolute value of VN �t�� let us �rst apply the Cauchy�Schwartz inequality in the

same way as it was in the proof of Proposition ���� We obtain�
N �p���

E jVN �t�j�� 
 X
m��m��m�

�Np��mp
� � tE�p ��Np��mp

� � tE�p �eNt�mp
�	m

p
�	m

p
��

� P�� � �� � m�N�� � ��� � m�N��
� � ��� � m�N��

����

Surprisingly� the right�hand side of ���� does not converge to zero� The problem arises from

the fact that

I�m��m��m�� � I��m���m��m�� � I�m���m���m�� � I��m��m���m���

but

I�m��m��m�� �� I�m��m���m���

In fact� opening the brackets in �Np��mp
� � tE��p ��Np��mp

� � tE��p � one can split the right�

hand side of ���� into four terms� Let us elaborate the �rst one summing up together
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the terms with correlations� having the same absolute values jm�j� jm�j� jm�j and the same

probability
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This term is of order N �p�����t�E�p	� ���� 	 o���� 	 t�E��p � since in the expansion of

�e�NI�m��m��m��	N�m�
�	m
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���� � e�NI�m��m���m��	N�m�

�	m
�
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the main term is of order Nm�m�m�� The sum of all other three terms in ���� tends to

�t��E��p ��� Thus the right�hand side of ���� is of order N �p�����t�E�p	� �� and it does not

converge to zero for N � 	�� Therefore the proof for p even is not suitable at this point for

p odd�

A possible solution for this problem is to apply the Cauchy�Schwartz inequality in a dif�

ferent way passing to the fourth moment of ZN �t�


�
N �p���

E jVN �t�j�� 
 EE ���� ���������
�
Np��

�
RN ��� ���

�
� tE��p

����� � ����
N

�
� tE��p

�
� eHN �t���	HN �t����	HN �t�����	HN �t��������Nt�

It can be proved that the right�hand side of this last inequality tends to zero for all t up to

some bound� But technical details are very tedious� We will only say that six parameters

m�� � � � �m� have to be considered� The group of � correlations with �xed absolute values

jm�j� � � � � jm�j splits into eight groups of correlations having the same probabilities�

Furthermore� it will be technically even much harder to extend the bound of t by the

truncation of the Hamiltonian� We will have to take into account �ve di�erent cases and

their permutations where some of correlations are large and some are small� Each of these

cases will require very tough computations�
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Appendix �� Two useful theorems

Proposition ����Let � be a Gaussian random variable with E� � �� E�� � �� Then for all

a� b � �

E �expfa�g�If�bg� 
 �p
���b� a�

expf�b��� 	 abg� if b � a� �����

E �expfa�g�If��bg� 
 �p
���a� b�

expf�b��� 	 abg� if b � a� �����

Theorem ���� Assume that f�x�� � � � � xd� is a function on Rd with a Lipschitz constant

L� Let J�� � � � � Jd be independent standard Gaussian random variables� Then for any u � �

Pfjf�J�� � � � � Jd�� Ef�J� � � � � � Jd�j � ug 
 expf�u����L��g� �����
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