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Abstract

We consider a fluid system in which during off times the buffer content increases
as a piecewise linear process according to some general semi-Markov process and
during on times it decreases with a state dependent rate (or remains at zero). The
lengths of off times are exponentially distributed. We show that such a system
has a stationary distribution which satisfies a decomposition property where one
component in the decomposition is associated with some dam process and the
other with a clearing process. For the cases of constant and linear decrease rate the
steady state Laplace Stieltjes transform (LST) and moments of the buffer content

are computed explicitly.
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1 Introduction

We consider a fluid inventory system of which flow rates are functions of some
semi-Markov process (SMP). This SMP is quite general other than the fact that
there is a special state in which the sojourn time is exponentially distributed and
is independent of the following state. When the SMP is in this special state, the
inventory decreases according to some rate function, which may depend on the
inventory content, as long as it is positive (otherwise it stays at zero). When the
system is in any other state, it increases linearly with a rate depending on the state.

We apply PASTA (see [7]) and results from [4] to establish a decomposition
result for the steady state distribution of the inventory content. In particular,
the stationary distribution is a convolution of two distributions. The first is the
steady state distribution of some dam process with compound Poisson input, and
the second is a mixture of an atom at zero and the steady state distribution of
some clearing process. The Laplace-Stieltjes transform (LST) and moments of the
clearing process are completely characterized. For the dam process component we
characterize the jump distribution. The complete steady state distribution of the
inventory content can only be characterized when the steady state distribution of
such a dam can be computed. Two such cases are when the release rate is constant
and when the release rate is linear. For the first case the dam becomes the workload
in an M/G/1 queue and in the second case the dam becomes a shot noise process.
For both, the steady state distribution is well understood.

For earlier directly related papers see [4, 2] as well as further references in these
papers. In [2] the busy period and the maximum buffer content for the present
model are discussed, but the content process is only considered for the case where
the SMP has three states. For the case with two increasing states and one decreasing
state, the results in Theorem 3.3 of [2] (which were obtained via a different method)
can be easily reproduced as a special case of the results established in the current
paper.

The paper is organized as follows. In Section 2 we introduce the model and main
notations. In Section 3 the main decomposition result is established. In Section 4
the steady state LST of the associated clearing process is determined. In Section 5
the jump size LST of the associated dam process is given. The special cases of
constant and linear release rates are handled in Section 6. In Section 7 the busy
period is considered and finally in Section 8 we discuss a generalization for the case
of constant decrease rate but general decrease times.



2 The Model

Consider a Markov renewal process {(X,,7,+1)| n > 0}, with finite state space
{0,..., K}, that is, satisfying

PlXpi1 =7, g1 <t (Xo, 715, X1, ) € A, X = d] = pijFy5(t)  (2.1)
where P = {p;;| 0 <4,j < K} is a stochastic matrix and
Fl(t) = P[Tl S t| X() :’i,Xl :]]

is some distribution function for any given ¢, j. We will use the following notations:
o Fi(t) =i opijFi(t),

o mi) = o okdFj(z),

o Bij() = BL Xo =i, X1 =,
o 7ij(e) = Ejje ™,

° Ti(a) = FE,e % = Z]K:opijTij(a)’

o 7°

fla) = 1_07—7;1(0‘) (LST of the associated stationary forward recurrence time).

i

We assume that P is irreducible and that 0 is a special state. In particular, for

every j,
o Fyj(t) =Fo(t)=1—e

That is, the sojourn time in state 0 is distributed exp()A) independently from the
following state.

With Tp = 0 and T;, = >} 7 set N(t) = sup{n| T,, < ¢} and define the
SMP (semi-Markov process) X(t) = Xy(;). Now, let a(0),...,a(K) be positive
numbers (input rates) and let r : [0, 00) — [0, 00) (output rate) where 7(0) = a(0),
r(w) > a(0) for w > 0 and r is almost surely continuous (w.r.t. Lebesgue measure).
The buffer content process is of the following form

W) = W)+ [ Ta(X(6)) ~ ¥ (6)) 1 gx oy s (22

That is, the buffer content decreases only when the system is in state zero. Since
r(w) > a(0) for w > 0 and r(0) = a(0) we can without loss of generality assume
that a(0) = 0, so that 7(0) = 0 and r(w) > 0 for w > 0. Also since the number
of consecutive transitions that we make from 0 to 0 is geometric with probability

of success 1 — pgp, the total amount of time we spend in state 0 before there is a



transition to a different state is also exponential. Thus there is no loss of generality
in assuming that pgp = 0. From this point on we make these two assumptions
(a(0) = poo = 0) in order to simplify notations.

We assume that the process is stable, that is, has a steady state distribution.
For the special case of r(w) = r for w > 0 we will provide conditions for stability

and for the special case of r(w) = rw the process is always stable.

3 A Decomposition Result

We see that our process increases piecewise linearly when in states 1,..., K and
decreases according to some release rate when in state 0. It is easy to modify the
results of [4] so that they apply to the case at hand. The reason why they do
not apply directly is that in [4] it is assumed that during times when the process
decreases, the decrease is not state dependent. To make the paper more self con-
tained we observe that if we look at the process only during times of decrease, then
we obtain a dam process with release rate (), with compound Poisson input and
jumps which are distributed like the amount of work which is accumulated from
the instant the process leaves state 0 until the first instant thereafter when it enters
it again. We denote the Laplace transform of the steady state distribution of this
process by V(«).

From PASTA (see [7]) it follows that the steady state distribution of the discrete
time process embedded right before jumps also has the LST V(). If we look at
our original process, this is precisely the distribution of the discrete time process
embedded at instants where the SMP leaves state 0 (instants where the sample
path has local minima).

If we look at our process only during times of increases, an identical approach
as in [4] gives that the stationary distribution of this process is a convolution of the
distribution of the state of the process at the beginning of the cycle (i.e., with LST
V(«)) and the steady state distribution determined by

D t
R(a) — %E/O e~ fo a(X(s))dsdt (3‘1)

where D = inf{t| X (¢) = 0} and E is the expected value when we assume that the
distribution of the initial state is {po;| 1 < j < K}. This stationary distribution is
the stationary distribution of a clearing process, where during each cycle the process
increases according to SMP and the clearing times are the times when SMP first
reaches state 0.

With these observations it is now evident that the steady state distribution of

the buffer content process is given by the following.

Theorem 3.1 With d = ED, the LST of the steady state distribution of the buffer
content process is given by
14+ AdR
w(a) = V(o) 24

2
1+ Ad (32)



Proof: According to the above observations, the LST of the steady state distri-
bution of the process embedded during times of decrease is V(a) and that of the
process embedded during times of increase is V(«)R(«). The fraction of time the
process spends in the former is A=!/(A™! + d) = 1/(1 + A\d) and, thus, in the latter
Ad/(1 + Ad). Therefore,

1 Ad 1+ MR(a)
V() + 1o )\dV(a)R(a) = V(a)i1 T

(3.3)

and we are done. [
1+AdR(a)

We note that —x;
steady state distribution of the associated clearing process. In light of Theorem 3.1
it remains to identify R(«), d = ED and V(«). We begin with the first two, since

this can be done without any further assumptions.

is the LST of the mixture of an atom at zero and the

Finally it is clear that the mean of the steady state distribution is given by

Ad
1+ Ad

(=V'(0) + (—R'(0)) (3-4)

where —V'(0) is the mean of the dam part and —R'(0) is the mean of the clearing
part.

4 The Steady State LST and Moments of the
Associated Clearing Process

In this section we determine the steady state LST R(«) of the clearing process as
introduced in (3.1). For 1 <14 < K, denote

D t
Bi(a) = E; /0 e Jo X (e)ds gy (4.1)
where we recall that D = inf{¢| X (¢) = 0}. Then,

T D
,81(01) = Ez/ 1 efaa(i)tdt_i_ Ez/ e—afot a(X(s))dsdt
0 "

1— Eie—aa(i)n K

= T(’L) + jz::lpijEijeaa(i)Tl /B] (Oé) (42)
K

= mitf(a(i)) + ) pijmij(ea(i))Bi(a) .
j=1

Denoting P = {pij| 1 <4,5 < K}, since P is irreducible, it follows that P" = 0
as n — oo and thus, letting B(a) = {pi;7ij(ca(i))] 1 <i,5 < K}, it follows that
B"(ar) = 0 as n — oo. Therefore, I — B(«) is invertible and so (4.2) has a unique
solution (see the paragraph following (5.2)).



In order to compute d = ED we first compute d; = F;D. For this we simply
set @« = 0 in (4.2) and obtain

K
d; =m; + Zpijdj . (4.3)
J=1

This, of course, may be obtained via a direct argument. Since I — P is invertible,
(4.3) has the unique solution (I — P)~'/n where m = {m;| 1 < i < K} (column

vector).

Clearly,
E / —a Jy a(X(s)ds gy _ Z p0i3;() (4.4)
0 j=1
and similarly
K
ED = po;d; (4.5)
7j=1
so that K
R(a) = —ijl(p i) (4.6)
>_j=1DPojd;

Differentiating (4.2) n times gives

K n
B (0) = ma(rH)™ (0)a" () + Y piy 3 @ OB a6, @)

j=1 k=0

thus, if we denote b =
1)m;) and (— )k(—l) —k

[

(=1)"8™(0), note that (7)™ (0) = (=1)"m{" ™V /((n +
= (—1)", we obtain

pm e an ) f: pi 3 () m®ak (iypn (4.8)
i n + 1 - 1] k 1) j . .

Since this can be rewritten as

o _ mi"Van(i) () ey (k) L N~ ()
n - n— n
b = +mez ( )m” a" (D)0 + > pijb; (4.9)
7=1 k=1 j=1

then, given {bg-k)| 1 <j<K,0<k<n-—1}, we can uniquely determine bg-n) for
1 < j < K. The nth moment of our clearing process is thus given by

K (n)

AP AC

Ly=1posby (4.10)

11 pojd;
We complete this section by noting that the equation for determining the mean
becomes

(1) ( 2 K
b; + ) a(i)pigmijd; +me . (4.11)
7j=1 7=1



5 Jump Size LST for the Associated Dam Pro-

cess

As was observed in Section 3 one component in the decomposition is the stationary
distribution of a Dam process with release rate r(-) and compound Poisson jumps.
It is easy to see that the jump rate for this process is A\. Therefore, in order to
characterize the process it suffices to determine the LST of the jump sizes. The

jump sizes are distributed like
D
/ a(X(1))dt | (5.1)
0

so that, denoting 7v;(«) = E;je”

a [ a(X (1)dt
Yile) = ZEe J Lix =4}

(5.2)
K

= pioTio(ca(i)) + szﬂ'z] (aa(i))yj () -
7j=1
Due to precisely the same reasons as in (4.2), (5.2) has a unique solution. In
particular, both equations have a solution of the form (I — B(a)) 'v(a) for an

appropriate vector v(a). As in (4.9), the moments can be determined via

K
™ = pom{Man (i) + Z Pij Z <k> Wak @)l 43 pyyel™ (5.3)

7=1 k=1

where cgn) = (—1)"')/2-(71)(0), so that the LST and moments of the jump size distri-

bution are given by (4.6) and (4.10), respectively, except that 3; are replaced by v;
and bg-n) are replaced by cg-n)

by C(«).

. Let us denote the LST of the jump size distribution

6 The Cases of M/G/1 and Shot Noise

As discussed in the introduction, there are two choices of release rates where the
steady state distribution of the Dam process (and thus of the process discussed in
this paper) is readily available. The first is when r(w) = r for w > 0. For this case
the dam process becomes the workload process in some M/G/1 queue with service
rate r. This is a special case of a reflected Lévy process with no negative jumps
and the steady state LST for this process is well known (e.g., see [5]) and is given
by the following Pollaczek-Khinchin formula:

a(r — Ae) __1-p
ar— A1 —-C(a)) 1—-pCa)

Via) = (6.1)

7



where ¢ = —C’(0) is the mean jump size, p = A¢/r and C¢(a) = L-C(a)  The

ac

stability condition for this process is well known to be p < 1. The mean

(2) Ac®
V=P ¢ _ A
Vi) = l—p2c 2(r—2\) (6:2)

where ¢?) = C"(0) is the second moment of the jump size distribution.
For the case r(w) = rw the dam process becomes a shot noise process (e.g., see
page 212 of [6]) . For such a process it is well known that
@ A1=C(@) 4,

Vie)=e Jo = (6.3)

and the mean is given by Ac/r.

7 Busy Period for the M /G /1 Case

It turns out that for the case of constant release rate, the LST of the busy period
may be identified. This busy period is defined as the time that elapses from the
first instant when the content process is at zero and the SMP makes a transition
from state 0 to some other state, until the first time the content is zero again. Let
us denote this LST by #(«). This LST has already been determined in even greater

generality in [2]. In particular, 6(«) is the unique solution of

0(a) = Ee~ P~ (etA(1-0())AD)/r (7.1)

on [0, 1], where A(D) = fOD a(X (t))dt. Upon differentiation, this immidiately im-
plies that the expected value is given by

where . O
EA(D) = M (7.3)

ZkK:1 Pojd;
In order to compute higher moments it is evident that it is necessary to first compute
mixed moments of the form E; D™ A(D)™. For this purpose we note that in a similar
way as for (4.2) and (5.2),

K

3i(er, B) = Eie™®PPAD) = porig(a+a(i)B) + Y pijrij(a+a(i)B)d;(c, B) . (7.4)
=1

Differentiation immediately implies that

E;D™A(D)" = piom%”")a”(i)

K m n
+>.> > (m> (71)Pz'jmz(-f“)a‘(i)EjDm"“z‘l(D)”‘Z :
Lo\ )\y
7=1k=0¢=0
(7.5)

As before these equations may be solved uniquely.



8 Linear Release Rate with General Decrease
Durations

In this section we no longer assume that the period where the process is decreasing
is exponential. Rather, we still assume that there is a single state for which the
slope is —1 (without loss of generality), but now Fy; = Fy is general but still
independent of j. We still assume without loss of generality that pgo = 0. For this
case, it follows from [4] that the steady state distribution of the inventory content
is given by

mT—T— SFu(t) + m0d+ ~Fa(t) (8.1)
Here, F, is the distribution of W,, = (W + A(D) —7¢§)" and F} is the distribution of
W4 = W+A(D)* where A(D) has the jump distribution, A(D)* has the steady state
distribution of the associated clearing process, 7§ has the forward recurrence time
distribution with respect to Fy (that is, with density (1 —Fy(-))/mo) and W has the

steady state distribution of the random walk embedded at instants where the sample

path has local minima. W is actually the steady state distribution of the waiting
time in a GI/GI/1 queue with interarrival times with distribution F and service
times distributed like A(D). In fact, it is well known that W,, (steady state workload
in a GI/GI/1 queue) has the alternative representation W,, = &(W + A(D)¢) where
¢ is an independent indicator with P[§¢ = 1] = 1 — P[¢ = 0] = p = EA(D)/my
and A(D)® has the stationary forward recurrence time distribution with respect to
A(D) (e.g., see page 296 of [3] or Theorem 3.5 on page 189 of [1]). Thus the LST
of the full process is given by

m() —aW m[] ]_ - Ee_aA(D) d 70¢A(D)*
1-— E E 2
motdL TP T Ee <m0+dp QEAD) motd ° (82)

or alternatively, by

mg — ¢ + B oW (1 -C(a))/a+ dR(c)

8.3
mo +d mo +d (8:3)

and we note that everything in this equation with the exception of the LST of W
was computed in earlier sections. Thus, whenever the steady state distribution of
W can be determined, then so can the steady state distribution for our intermittent
process. Clearly when Fj is the exponential distribution (as was the case before)
the steady state distribution of W is well known (and discussed in Section 6).
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