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ESTIMATES FOR THE DISTRIBUTION OF
SUMS AND MAXIMA OF SUMS OF RANDOM

VARIABLES WITHOUT THE CRAMER CONDITION
A. A. Borovkov UDC

§ 1. Introduction

1.1. Let X4, X5,... be identically distributed independent random variables with distribution
function F(t) = P(X; < t), and let

Sp=Y_Xj, Sn(a) =max(S; —ak), Sp=35n(0),
j=1

(1.1)

Bj(v) = {X; <y+wvg(j)}, Bv)=[]Bjv), v=>0,
j=1

where the function g will be chosen in dependence on F'.
The main purpose of this article consists in evaluating the probabilities

P(S, > 1), P(Su(a)>1), and P(S,(a) > z; B(v)) (1.2)

as ¢ — oo. The probabilities P(Sy(a) > z; B(v)) play an important role in finding the exact asymp-

totics of P(Sy(a) > ) (see, for instance, [1-4]).
Concerning the distribution of X;, we assume that the “tails”

F(—t):P(Xj<—t), 1—F(t):P(Xth), t >0,

are majorized or minorized by a regularly varying or semiexponential function.
Here a function V'(¢), t > 0, is called reqularly varying or regular if

V() =t"PL(t), B >0, (1.3)

where L(t) is a slowly varying function as ¢t — oo.
A function V (¢) is called semiexponential if

V() =e MO e (0,1), (1.4)

with L(t) having the same meaning.
Majorants (or minorants) for the positive tails 1 — F'(t) are denoted by V(¢) and those for the
negative tails F'(—t), by W (t). Moreover, W (t) is assumed to belong to the class (1.3):

W(t) =t Ly (). (1.5)

Use of the same symbol a here and in (1.4) does not lead to misunderstanding, since the corresponding
considerations belong to different sections.
Henceforth we use the following conditions:
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(MT] 1-F@) <V(), t>0;
M) 1-F(t) > V() £ >0,
[M™] F(=t) <W(t), t>0;
M| P(-)> W), >0,
where V'(¢) has the form (1.3) or (1.4), and W (¢) has the form (1.5).

Studying the exact asymptotics of P(S,, > z) and P(Sy,(a) > z), we will also use the tail regularity
condition:

[R] 1—-F(@)=V(), t>0,
that is the intersection of conditions [M ] and [M4].

Since we study large deviation probabilities on the positive half-axis ¢ > 0, the main parameter
by which we classify different cases is the parameter 8 of the majorants V() in (1.3) or the presence
of majorants like (1.4).

In §2-§5 we obtain upper estimates for the probabilities under study in the following four cases:

1. f<lor a<l,;

2. pe(l,2), E|X;|< oo;

3. B>2 EX?<oo; (1.6)
4. the dominant V'(¢) is semiexponential and EXJ2 < 00.

In § 6 we obtain lower estimates and derive some corollaries for the exact asymptotics of P(S,, > )

and P(S,(a) > 7).

In §7 we find out conditions for uniform relative convergence to a stable law and establish the law
of the iterated logarithm for the sums S, in the case of EXJ2 = 0.

Inequalities for sums of random variables, close to those of §3 and §4, were obtained in [5] and
6] (EXJ2 < oo in [5]). However, in some sense the inequalities of [5] and [6] are in a “less final”
form and require extra efforts for deriving simple explicit estimates. Some of these inequalities were
extended in [7-10] to the maxima of successive sums in the case of EXJ2 < 0o. As D. A. Korshunov

communicated to the author, the asymptotics of P(Sy(a) > z) for a > 0 and under rather general
assumptions was obtained in [11]. Thus, some results of the present article are known (this mainly
concerns corollaries to the main assertions). We still exhibit them to make exposition more complete
and systematic. More precise bibliographical comments are made in due course.

The results of the present article have been used and will be used for finding approximations for
P(S, > z) and P(S,(a) > ), asymptotic expansions inclusively, in much the same manner as in
[1-4]. See §6 for bibliographical comments on the exact asymptotics found in the article.

Now, we say a few words about the methods for obtaining some of the main inequalities. The
upper estimates of §2-§5 differ essentially, still having much in common. In particular, they rest
upon inequalities of the same type for truncated random variables. The scheme of the proof of these
inequalities is the same (see also [5] and [7]) and proceeds as follows:

Consider the random variables X J(-y) “truncated” at level y > 0 and having the distribution function
w _ £

Denote by Sr(ly) and Eﬁly) the sums and maxima of these sums corresponding to X](-y). Then it is obvious

that the probability B
P=P(S, >z, B(0)) (1.7)

in (1.2) for v = 0 equals
P=F"()PEY > 1),
By [8, Chapter 4, Theorem 16], for every p > 0 we have

P(E(y) > z) < e M[max(1, Ee“Xl(y))]".
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Since
y

(v)
EerX” = p-1(y) / MR (1),
oo

we come to the following inequality that underlies many of the forthcoming considerations:
P < e " max(F(y), R(u,y)]" < e”* max(1, R"(k, y)), (1.8)

where

R(u,y) = / )

The problem is thus reduced to estimating R(u,y). Estimates differ in each of the cases (1.6).
Throughout the sequel, the letter ¢ with or without indices stands for constants which are not the
same if used in different places. The relation a, ~ b, as n — oo means that lim, ‘g—: =1.

§ 2. Upper Estimates in the Casesof 3 < lora < 1

In the case when 8 < 1 or @ < 1 (on assuming [M™] or [M_] respectively), estimates for the
probabilities (1.2) may essentially differ depending on the interrelation between the negative and
positive tails. Therefore, we distinguish the two possibilities:

1. 8 < 1 and the tail F/(—t), t > 0, is arbitrary.

2. a < 1 and the tail F/(—t) is essentially “heavier” than the tail 1 — F'(¢), ¢ > 0.

Estimates in the first case are factually estimates for the sums S, when X,, > 0 (F(0) = 0).

2.1. The case in which the negative tail is arbitrary and 8 < 1. As mentioned, this and
many subsequent sections rest on estimates for the probability P in (1.7).
In §2-85 we choose the truncation level y in (1.8) such that y < z and the ratio
T

r=—
)

is bounded, so that the growth of z and y as y — oo is the same up to a bounded factor.

Theorem 2.1. Assume that condition [M ] is satisfied and 3 < 1. Then there exists a constant c
such that the following inequality holds for the probability P in (1.7):

P<cnV(y)l, r= g (2.1)

The constant ¢ in (2.1) can be replaced by (f)r +¢e(nV (y)), where ¢(-) is a bounded function such
that e(v) L 0 asv | 0.

Note that (2.1) makes sense only for bounded nV (y), say, nV(y) < 1, and we assume without
loss of generality that this inequality is always satisfied. If nV (y) — 0 (nV(z) — 0) then we deal
with the domain of large deviations of S,. This follows from the fact that, by Corollary 2.1 below,
P(S, > z) — 0 whenever nV(z) — 0. The domain of large deviations can also be characterized
immediately in terms of inequalities for x. To this end, we introduce the inverse function VED of v
and put N(n) = V=) (1/n), so that N = N(n) is a solution to the equation nV (z) = 1. Now, we
put z = sN(n) and observe that the increase of s amounts to the decrease of nV (z). Indeed, put for

brevity
I =1(z) = nV(x).

Then for a fixed s
(sN(n)) ~ s PII(N(n)) = s7#



and the domain Il < ¢ is equivalent to the domain s 2> e~1/B_ By the properties of slowly varying
functions, as s increases the value of II(x) for every fixed § > 0 lies within the bounds

sTAT0 < M(x) < 5P,

Similar “reverse” inequalities are valid for s.
Thus, in our case the order of large deviations is determined by the parameter s = %

n)
value of IT = nV ().

Corollary 2.1. Assume that condition [M ] is satisfied and 8 < 1. Then there exists a function
()} 0,¢] 0, such that

or the

P(Sn
sup PS> 1) <14¢p(e), IT=nV(z), (2.2)
x:11<e I

or equivalently

PrRoOOF. Put

Then for II < & we have

1 1
r=1+——, Hr_lgexp{ o C }:exp{—\/|ln6|}—>0
V|1ne| |Ine|

as € — 0. Moreover,
L(y)

251, > (nV(2) 7Y as ¢ — oo,
L(z)
Hence, there is a function ¢;(¢) | 0, ¢ | 0, such that for II < e
L(y) V(y) ( L )ﬂ
—= <1+ p1(e), < |1+ (14 ¢1(e)) =14 p2(e).
(z) V(z) V| 1neg|

By Theorem 2.1, we then have

P(S, > x) < P(B(0) + P < nV(y) + c[nV (y)]"
<TI1+ g + "L (1 4 3)"] < TI[1+ oy + ce Ve,

completing the proof of the corollary.
ProoOF or THEOREM 2.1. We have to evaluate

n
P=P(S,>xB), B=B(0)=()B;, Bj={X;<y}
j=1
(cf. (1.7)). As mentioned, our arguments base on (1.8). To use this inequality, we have to estimate

Y
R, y) = / eMdF(t) = I + I + I3, (2.3)
—00



Whereforuz()andM:%<y

0
L= /e“tdF(t)gF(O),

" o (2.4)
I, = /e“tdF(t) <1-F(0)— eszF(M) + ,u/V(t)e“t dt.
0 0
For 8 < 1, the last integral increases unboundedly as 4 — 0 but does not exceed
MV (M 1
67()(1 +0(1)) < Cy (—) ;
p+1 AN
SO
1
I, <1—-F(0)+cV (—) . (2.5)
1
(Observe that for 5 > 1 we have Iy <1 — F(0) + cp (see below), so that (2.5) fails for 5 > 1.)
Now, we evaluate
y y
I3 = / eMdF (t) < V(M)e? + p / V(t)ertdt = V(M)e? + ull. (2.6)
M M
To this end, we first consider the ratio of the values of the integrand of Ig at the points ¢t € [M, y| and
t+ 1/
V(t)er 1 1\’ _ 1\ )
~ 1+—) < 1+—) <e'2<1.
Vit et ~¢ M) = (ag) <°
This means that the integrals I3 ; defined like Ig but calculated over the subintervals (y — %, Yy — %) ,
k=0,1,..., of [M,y] are dominated by a geometric progression with denominator e~1. Therefore,

the main contribution to Ig is made by the first integrals I3, I31,....
Henceforth we choose p so that A = py — oo (y > 1/p). Substituting (¢ — y)u = u, we obtain

(y—M)p
p,fg = el / V (y — E) e "du,
1
0

where V(y—u/u) ~ V(y) for u/p = o(y) (or u = o(\)) and so by the Lebesgue dominated convergence
theorem we have
pls ~ eV (y).

Furthermore, it is easy to indicate a function ¢(\) | 0, A 1 oo, such that

pls < eV (y)(1+ (V). (2.7)
Summing up (2.4)—(2.7), we obtain
1

R(p,y) < 1—|—CV<
w

) LV + o). (2.8



Hence,
1
B < oxp {nev (1) 4V @)A1+ o)} (29)
Now, choose p (or A) as “almost minimizing”

—pz +(y)e*  (Il(y) = nV (y)).
To this end, put

r
A=In——=1InT, 2.10
() (210
where for brevity we introduce the notation
r r
T = = .
I(y)  nV(y)

Observe that, with this choice of A (or p = InT/y) and for nV(y) — 0, we have T — o0,
A = py — 00; so the above-made assumption y > 1/p is satisfied. From (1.8), (2.9), and (2.10) we
deduce that

InP < —zp+cenV <%> + I(y)eM1 + o(N)), (2.11)

where II(y)e = r, and for every § > 0 and sufficiently large y

(InT)B+9

1
" <ﬁ> <anV <L> < eV (y)[lnnV ()P < e

| InnV (y)]

Therefore, (2.11) implies that
InP < —rInT+7r+¢i(T),

where ¢1(T") | 0 as T — oo, and without loss of generality we may assume that In7" > 1. This finishes
the proof of the theorem.

REMARK 2.1. If the function L(t) is differentiable, L'(t) = o (@), and 1 — F(t) = V(t), then
the estimate for I3 in (2.6) can be refined:

for every v > f and all y large enough. This allows us to strengthen Theorem 2.1 and obtain the

estimate .
P<ec¢ [7nV(y) ] .
~ [IInnV(y)|

2.2. The case when the negative tail admits a minorant with exponent a < 1 and is
much “heavier” than the positive tail. If in this section we had again used inequalities like

P(S,>z)<P(B)+P

for the sets B = B(0) (cf. the proof of Corollary 2.1) then we would fail in obtaining the desired
estimates for P(S,, > x) with the right-hand side independent of n. For this reason, we turn to using

these inequalities for the sets B(v) with v > 0 and for g(j) = 51/, v € (e, B) (see (1.1)).
To simplify calculations, in this section we additionally assume that in (1.3) and (1.5)

Lt) = L+o(1), Lw(t) = Ly +o(1) (2.12)

as t — oo.



Theorem 2.2. Assume that conditions [M ] and [M_] are satisfied and that V (t) and W (t) are
defined by (1.3) and (1.5) with a < min(1, ) and satisfy (2.12). Then for a suitable v, y — oo, and
for all n

P(w)=P(S, >z, B()) <y B p =2, (2.13)
)
where the fixed y € («, ) can be chosen arbitrarily close to «.
Moreover, B
P(S, > z) < ez’ min(n, z7) (2.14)

for every fixed v > «.
Corollary 2.2. If conditions [M "] and [M_] are satisfied, o« < min(1, 3), and the functions V (t)
and W (t) have the form (1.3) and (1.5) respectively, then S is a proper random variable.

The claim of the corollary is obvious from (2.14).
We first obtain estimates for the probability P = P(0) in (1.7).

Lemma 2.1. Suppose that the conditions of Theorem 2.2 are satisfied. Then for all n

—r(B—a —ra —r(B—a —ra z
P<c(l-V(y)y P (ny)™ < cy "B D (Iny)™, =

J (2.15)

PROOF. In view of inequalities (1.8), the problem is again reduced to evaluating R(u,y) in (2.3)
for the same splitting of this integral into the subintegrals I, Is, and I3. Here for p — 0 and a < 1

0 00
L= F(0)—p / Ft)ett dt < F(0) — O/e—uw <%> du;

Zoe“W <%> du ~ W (%) Zoe“ua du=T(1— )W G) ,

I < F(0)—T(1 — )W G) (14 0(1)), (2.16)

where T'(+) is the I-function. Estimates for the integrals I and I3 for f < 1 remain the same as in
(2.5) and (2.7). Therefore,

so that

R(uy) < 1-T(1— )W (%) (14 0(1)) + v (i) V@t e(),  (217)

where V(%) = O(W(%))

If 8 > 1 then instead of the summand with V(%) in (2.17) we have cu (see a remark on (2.5)).
Since p = O(W(%)), all subsequent arguments relying on (2.17) are preserved. For = 1, instead
of the summand with V(%) in (2.17) we have culn %, again with the obvious validity of the relation
p,ln% = o(W(%)) and preservation of the subsequent considerations.

Now, we choose p so that

Tl — )W (i) — V(). (2.18)

To simplify search for a solution p, we use conditions (2.12). Then for y > 1/u equation (2.18) takes
the form
yPu® = cet (14 o(1)). (2.19)
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Put py = A. Then (2.19) can be written down as
alnA+ (f—a)lny =A+c1 +o(1).
Whence we see that we “almost satisfy” (2.19) by setting

A=(f—-—a)lny+alnlny +c.

With this choice of A (or u) we have R(u,y) < 1+o0 (W (%)) It is easy to see that ¢y can always

be chosen so that .
R(p,y) <1-V <;> <1-V(y).

Therefore, by (1.8)
P < (1 N V(y))ne—r[(ﬂ—a) Iny+alnlny+e] _ C(l N V(y))ny—r(ﬂ—a) (ln y)—ra’

which completes the proof of Lemma 2.1.
PRrROOF OF THEOREM 2.2. We first evaluate

P(v) = P(S,, >z, B(v)). (2.20)

We put

my =g V(@) =27, mp=2"p"", p>1, My=0,

k pk—l
M= mj=a"py, p=

P >pF 7 k=12, (2.21)

j=1
1 1
o=+ g(My_1) = (14 p ). ye =y + vg(My) = y(1+ vrpy).
Then for n > M7 we have

m1 Mq
P(v) < P<§m1 > 21; ﬂ{Xj < y1}> +P<SM1 > —Mll/ﬂ/; ﬂ{Xj < y1}>
j=1 j=1
+P(S, > 2, Sy <, Sy, < M B(v)). (2.22)

For the same reasons, the last probability for n > M, does not exceed

mao M2
P(?m2 > r9; ﬂ{XJ < yz}) —|—P<SM2 > —M21/’y; ﬂ{XJ < y2}>

j=1 J=1
—i—P(gn >z, Sy, <z, S, < _le/v; B(v)),

etc. To evaluate P(v), we thus have to estimate

>p (gmk > ap [{XG < yk}) (2.23)
k=1

j=1
and
v M,
ZP(sMk > M (X < yk}> (224
k=1 j=1



for v = min{k : My > n}. In view of Lemma 2.1, for y large enough the first sum does not exceed
Sy, (2.25)
k

where

1 1/7
rk:%:—x( +p’“1—/17) >r—¢, e>0,
Yk y(l—i—vpk )

for all k£ and a suitable v = v(r, p,€). Therefore, the sums in (2.23) and (2.25) do not exceed

Zyk_(r_E)(ﬁ_a)' (226)
k

However, py increases faster than a geometric progression (see (2.21)), and the same can be said about
the sequence 1+ rvp,i/ﬂ/ (see the definition of y). Therefore, the sums in (2.23), (2.25), and (2.26) do
not exceed cy_("_e)(ﬂ_a).

Now, we estimate the sum in (2.24). For brevity, put M,ih = 2. Denote by n the number of the
events {X; <0} in My, trials. Then

M M M
P(&@>—%;ﬂL@SyH)ZE:PW:ﬂP<&@>—%;ﬂﬂ@éyﬁﬂFﬂ)
j=1 i=1 j=1

[M}.po]

- ¥ +o(e—5Mk>, (2.27)

i=[M},p1]

where p1 = F(0)— ¢, po = F(0)+¢, ¢ > 0, and § = §(p) > 0. From now on, let n =i € [p1 My, po Mj]
be fixed. Then
Sm, =S; + S]‘L/Ik_z-,
F(t)

where S; is the sum of the independent random variables X i with the distribution function 70)’

t < 0, and S’IT/Ik is the similar sum of the random variables X;L with the distribution function

—1

%ﬁf){)), t > 0. Therefore, the ith summand in (2.27) does not exceed
My —i
P(S; > —2z)+P (S;Jk_i > 21 ﬂ {Xj < yk}>. (2.28)
j=1

By Theorem 2.1, the second summand does not exceed [MV (y;,)]"*, where (see (2.21))

1/v 1y
M zp
x _ Tk _ k —
e N i S Tror | C
Yk y(1+wrp, ")

for v < £. Hence, the second summand in (2.28) does not exceed
— 1 _ _ _ _ _
MV () < e[ i (o) ") = ey PPt

uniformly in i. However, p;, > p*~1, p > 1, and 4 < 8. Therefore, the sum of these & summands (see
(2.27) and (2.24)) does not exceed cyy(¥—P)r=e),



Now, we evaluate the first summand in (2.28), setting for brevity My=n and i = np, p € [p1, p2)-
For the event under the probability sign we have the inclusion

np
{Spp > —2n1/7} C ﬂ{Xj > —2n1/7};
j=1

hence,

o

P(Sy, > —2nt/7) < (1 — W (2n!/7))" < (1 —en™ 7)™ < emomn' (2.29)

uniformly in ¢ € [np;,nps]. Again using the fact that the numbers n = M} grow as a geometric
progression, M; = z7, and that 1 — a/y > 0, we conclude that the sum in (2.24) does not exceed
e~oy’ ®

Now, observe that, for ¢ small enough, (y — 8)(r — €) can be written down as (7 — 8)r, where
7' < a, as well as 7, can be chosen arbitrarily close to a.

Combining the above estimates, we arrive at (2.13).

To derive the second assertion of Theorem 2.2, we have to evaluate

n

P(B(v)) < Enj P(X; > y+vj/) = f: Viy+ vt < / V(y + vt/7) dt. (2.30)
j=1 j=1 0

If n < y” then the integral does not exceed cny™P. If n > y” then we should write the integral in

(2.30) as the sum foy7 + fynw where the first integral has been already estimated and is at most cy? 7.
The second integral does not exceed

oo

c/t_ﬂmdt = ey 7P,
y"/
Thus, B
P(B(v)) < ey P min(y?, n). (2.31)
On putting r = ﬂ’% + ¢ in (2.13), we obtain the same estimate for P(S,, > z) as in (2.31):

P(S, > z) < cz P min(z7, n).

The proof of the theorem is over.

REMARK 2.2. It is easy to see that, by slightly complicating calculations, we can make estimates
(2.13) and (2.14) more precise. If we put g(j) = j/*In"°j and m; = z®In®z, then the parameter
v in (2.13) and (2.14) can be replaced with «, but the right-hand sides of these inequalities then
acquire a logarithmic factor. Indeed, the only place in the proof of Theorem 2.2 which is sensible of
the approximation of the parameter v to « is the estimate for the first summand in (2.28). However,
this estimate is exponential (see (2.29) and below). Therefore, we can achieve a power-like character
of decay of the estimate by a suitable choice of b in the definition of the function g. The estimates for
P(B(v)) change accordingly. Therefore, in fact we have the estimate

P(S, > z) < cz? min(n, 2% In" z) (2.32)

for a suitable b; > 0.

We can eliminate conditions (2.12) but again for the price of complicating calculations; moreover,
the right-hand sides in (2.13), (2.14), and (2.32) change slightly. Since inequalities (2.13) suffice for
the further derivation of the exact asymptotics of P(S, > ), we refrain from implementing the
mentioned complications in the proof of the theorem.
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§3. The Case of 8 € (1,2) and E|X;| < oo

Here we assume without loss of generality that EX; = 0. We introduce into consideration the
“weakest” among the conditions [M ~] in the case of the existence of EX;. It corresponds to a = 1:

[Ml_] W(t) = t(lilt)2‘

3.1. Estimates for the distribution of S,,.
Theorem 3.1. Assume that conditions [M*] are satisfied with B € (1,2), a > 1, and that

W(t) < cV(t). (3.1)

Then inequality (2.1) of Theorem 2.1 and inequality (2.2) of Corollary 2.1 remain true.
If (3.1) fails then (2.1) remains valid for all n and y such that

nW(nE%@m><L (3.2)

For validity of (3.2), either of the following two conditions is sufficient:

nW(y) <1, |[lnnV(y)| < [nW(y)] = (3.3)

for some € > 0 and ¢y, c3 < 00, or

nW<iL><L (3.4)

Iny

If conditions [M ™| and [M; ] are satisfied then (2.1) and (2.2) are valid for n < cz.

We can replace 1 on the right-hand sides of (3.2)—(3.4) with an arbitrary fixed constant ¢;. How-
ever, for the values of y such that, say, nW(y) > 1, nV(y) > 1, inequality (2.1) is as a rule triv-
ial; after the replacement of 1 in (3.2) with ¢;, the constant ¢ in (2.1) admits the representation

(%)Tecl +e(nV(y)) (cf. Theorem 2.1).
Corollary 3.1. If conditions [M¥] are satisfied then the analog of Corollary 2.1 looks like

sup P(S, > )

< 14 ¢(e), (3.5)
w:Il<e, My <1 II

where I = nV (z), Iy = nW(W), and p(e) L 0 ase | 0.

The proof repeats that of Corollary 2.1 with obvious modifications.

Corollary 3.2. Under the conditions [M*] and n < 27, 1 < v < min(e, 8), inequalities (2.1)
and (2.2) are valid always. They are also valid under the conditions [M ], [M[ ], and n < cx.

This corollary is obvious because

y'V(y) =0, wW<i>%0
Iny

as y — oo. Without loss of generality we may assume that y > e. Therefore, inequality (3.4) and, in
consequence, (3.2) and (3.5) are satisfied.

REMARK 3.1. Conditions (3.2)—(3.4) seem essential for (2.1) and (2.2), since for W(y) > V(y)
and under regularity conditions like [R] the deviations y for which nW (y) > 1 even in the case of
nV (y) — 0 fall into the region of “normal deviations,” where for the distribution of the normalized
sums Sy, effective is the approximation by the limit stable law with parameters (o, —1).

11



PROOF OF THEOREM 3.1 repeats mostly that of Theorem 2.1. To use (1.8), we again estimate
R(p,y) in (2.3), where under the new conditions

0 0 0
L = / eMdF (t) = F(0) + p / tdF(t) + /(e“t —1— pt)dF(t).

Here
0 0
/(e“t 1= ) dE () = / (1— M) B (1)dr.

Since the integrand of the last integral is negative for p > 0, the integral does not exceed
oo oo
/J,/W )(1 — e P dt = 12 /W(t)e_”tdt,
0 0

where for o > 1

a—l

oo

t
/W () as t — oo,
t

o0 o0
2 et —ut 1 —u —a+1 W( )
W2 Wtye M dt ~ uW (= du ~ F(Q—a) as u — 0.
I
0 0

Thus,

()

W
L <F0)4p / tF (t) + ——2T(2 — a)(1 +o(1)).

With the same choice of M = ﬂ , we have the estimate

M 00 M
I2z/e”tdF(t)§1— +u/tdF +/e”t—1—ut)dF(t),
0 0 0
where
M M
[ =1-maro < [ (@ - Ve i < e - 7O,
0 0
r Vv
~ t)t
V(t) = /V(u) du ~ %
t
Therefore,
%0 (€26 — 1)V (%)
B <1=FO) +p [ dF(O) +
0
1 1
LH+ DL <1+4+cW <—> + oV (—) . (3.6)
I I

12



Here the estimate for I3 (see (2.6) and (2.7)) is the same as in Theorem 2.1. As a result, under the
conditions of the current section we obtain

Blng) < 1+t (&) +eav (1) + V0014 o) (3.7)

where A = py (cf. (2.8)). Here the choice of an optimal y is implemented by analogy to the preceding
case (see (2.10)). Therefore, by analogy to (2.11) we obtain

1 1
InP < —zp+cinW (—) + conV <—
0

M)+&mmu+wu»

Yy
< —rlnT T Wl ———].
<—rlnT+7+¢1(T)+c3n (|lnnV(y)|>

If (3.1) is satisfied then we can eliminate the last summand on the right-hand side (ascribing it to
©1(T)). If (3.2) holds then
InP<-—rInT +ec.

This proves (2.1) and so (2.2).
Verify that (3.3) and (3.4) are sufficient for (3.2). Assume (3.3). Then

Yy a+e/2 1— atﬁéz = In a+€
nw(EEWEOSnW@mmwwn+/smwwn HE W (y)] T < 1.

If (3.4) holds then

" () < () <o (i) <

Moreover, as mentioned, all above arguments remain valid after replacement of 1 on the right-hand
side of (3.2) with c.
Now, suppose that condition [M; | (o = 1) is satisfied. In this case, it is only the estimate for I;

that is changed,
oo
W (u
/ lnt
t

and the summand ¢;W(1/p) in (3.7) is replaced with pW (1/p) = |fr11‘;|. Moreover, the sufficient

conditions (3.2)—(3.4) transform into n < cy (n < cx).
The proof of the theorem is over.

3.2. Estimates for the distribution of S,(a), a > 0. Now, we evaluate
P(S,(a) > x) and P(S,(a) > z, B(v)),
where as before EX; = 0 and

Spla) = r]?g;{(sk —ak), a >0, B(v)= O Bj(v

Under the conditions of the current section, we put g(j) = 7, so that
Bj(v) ={X; <y+wj}, v>0.
Clearly, Sy, (a) is nothing but the value of S, for the summands with a negative mean.

13



Theorem 3.2. Assume that conditions [M*] and [M; | are satisfied. Then for all n and for

a
’Uéﬂ

P(S,(a) > z; B(v)) < c[mV (z)]™, (3.8)

where m = min(n,x) and r = 1lm« 2 1+7;/2'

Corollary 3.3. Assume that conditions [M "] and [M{ ] are satisfied. Then for all n
P(Sp(a) > z) < emV(z). (3.9)

As D. A. Korshunov informed us, a more precise result was obtained in [11], wherein it was
established that, for all so-called strongly subexponential tails 1 — F'(t) = V(¢), we have

an

P(S,(a) > 7) ~ 2/1/(35 +u)du (3.10)
0

for £ — oo and all n (for n = oo this relation follows also from [12] and partially from [8]). Using
the sufficient conditions of [11], one can show that distributions (1.3) belong to the class of strongly
subexponential distributions. If we also account for the asymptotics of the integral in (3.10) then we
found out that (3.9) ensues from (3.10).

A still more precise asymptotic representation for P(S,(a) > ) was obtained in [4], wherein
Theorem 3.2 was also established. Nevertheless, we exhibit the proof of this theorem below to make
exposition systematic.

PROOF OF COROLLARY 3.3. Inequality (3.9) follows from (3.8) and the relations

P(S,(a) > ) < P(B(v)) + P(Su(a) > z; B(v)),

P(B(v)) < ZV(y + ju) < /V(y +u) du < emV (z).
Jj=1 0

PrROOF OF THEOREM 3.2. First of all, observe that, estimating P(Sy(a) > x), without loss of
generality we may assume that condition [M ~] is satisfied. Indeed, introduce the random variables
W) X; = max(—y, Xj) + ay, a; = B(X; +y; X; < —y) < a, that are the centered “cuts” of X; at the
level —y, y > 0, and furnish the notations Sy (a) corresponding to the quantities (y)Xj with the left
superscript (y). Then it is obvious that

Sn(a) < WS, (a+ ay),

where a, — 0 as y — 00, and all conditions like [M ~] for (y)Xj are satisfied. We thus obtain a sought

estimate for P(Sy(a) > z) if we assume that [M~] is satisfied and “slightly decrease” the value of a.

Now, we turn to the proof of the theorem. For n < z the claim follows from Theorem 3.1 and
Corollary 3.2. Now, suppose that z > n. Without loss of generality, we assume that x is an integer.
Then

P(w,y,n) = P(Su(a) > 2; B(v)) < P(Sula) > z: B(v) + P (S5 > T3 B(v))
+P (E,c(a) <z 8 < %,?n(a) > B(v)) = p1 + pa + ps. (3.11)

Here
xr

B(v) C ﬂ{Xj <y-+wvz} = B,
j=1

14



and Theorem 3.1 yields

p1 =P(Sz(a) > 2, B(v)) <P(Sp > 2,B") < (aV(2))", 1= yﬁ y1 =y +vz.
1

Similarly,
ax ar\\1
= — < — < . .
py=P (Sx > B(v)) < (xv( . )) < c(aV(x))™; (3.12)
p3 < P(S,_z(a) > x1; Xi<wm+jv,j=1,... ,.n—2z)=Pz1,y1,n — x), (3.13)

where 1 = (1 +a/2) = zA and y; = y+vzx = y(1 +or). If n < z + 21 then the estimates are
accomplished by applying Theorem 3.1 to P(z1,y1,n —x). If n > 2 4+ x1 then we should continue the
recurrent estimation by using the inequalities (here we may again assume without loss of generality
that 7 is an integer)

P(z,y,n) < (1+¢)(zV(z))™ + P(z1,y1,n — T)

that follow from (3.11) and (3.12).
As a result, for some v > 1 we obtain

v

P(J?, Y, n) < (1 + C) (xkv(xk))rkJrla
k=0

where

T = xAk,

Ak —1
yk:yk—1+v:pk_1:y+vx(Ak_1+Ak_2+...+1):y<1+m,A_1>,

-1 zAMlA-1) r(A—1)
yr  y(A—1+rvAk —vr)  wrA+ (A—1—vr)AlF

Ty =

If v < 5= then 7, does not decrease and min ry, coincides with

_r T
Cl+wr T 1+a/2 A

™

Since

1> 2 V(zg) ~ AFOP) v ()
as r — 00, it follows that
(14 ¢)(zV (z))™

Playyn) < LI (14 o1),

which completes the proof of the theorem.

§4. The Case of 3 > 2 and EX]2 < oo
Under the conditions of the current section, we may assume without loss of generality that
EX; =0, EX?=1
Conditions on the negative tails are not needed in this section.

4.1. Estimates for the distribution of S,,. In the sequel we need the values N = N(n) that
characterize the region of deviations of S, where the asymptotics of P(S,, > z) changes from the
“normal” asymptotics 1 — @(%) to the asymptotics nV (z) describing P (S, > z) for z large enough.

15



x2
More precisely, we define N as a deviation for which the asymptotics e~z (1to(1) and nV(z) “almost
coincide”; i.e., we put
N=+/(-2)nlnn

2
which is a main part of a solution to the equation —7- =Inn — flnz = InnV (z).

Under the conditions of the previous sections, the role of deviations N at which the approximation
by a stable law is replaced with the approximation by the quantity nV (z) was played by deviations

of order n'/7, 4 = min(a, B) (a solution to the equation nV (z) = 1 or nW(z) = 1). We also note
that in this section we always assume that z — oo (y — 00); moreover, the deviations z (or y) always
exceed 4/n, so that we always have

nV(z) -0 (nV(y) —0)

as r — 00.

REMARK 4.1. To avoid a confusion for n = 1, it would be more convenient to put N =

V(B —2)nIn(n + 1) (the value n = 1 is not excluded). Since P =0 for n = 1 in the most interesting
case of r > 1, we can assume that n > 2 wherever a confusion with Inn may arise.

Theorem 4.1. Assume that condition [M 1] is satisfied, 3 > 2, EX; = 0, and EX? < co. Then

1. For every fixed h > 1 and all sufficiently large y = sN, s> > %,
P<T (4.1)
where
r h Ins 26 x
T=—— 60=— (14— b=——, N= —2)nl = -,
nV(y)’ 452 < * lnn)7 g—2 (6 =2)nlnn, v Yy
2. For every fixed h > 1, y = x, ﬁ <s?< %, and all sufficiently large n
w2
P <e 2k, (4.2)
Corollary 4.1. (a) If s — oo then for every ¢ > 0
P <T7TrE (4.3)
(b) If s> > Inn then
P<cr. (4.4)
Corollary 4.2. (a) If s — oo then for every § > 0 and all sufficiently large x
P(S, > z) <nV(z)(1+4). (4.5)
(b) If s > h/2 then B
P(S, > z) < enV (z). (4.6)
(¢) For every fixed h > 1, 1/Inn < s?> < h/2, and all sufficiently large n
J— w2
P(S, >z) <e 2mn (4.7)

REMARK 4.2. It is easy to verify that, as in Corollary 2.1, there exists a function ¢(t) | 0, ¢t T oo,
such that the following relation holds alongside (4.5):

sup P(S, > z)

S V) <1+ ().
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PROOF OF COROLLARY 4.1. The first assertion is obvious from (4.1). Prove the second. Since
y = sN, the following estimates for 7" are obvious:

B+
T < clsﬂ+6nTg_1

for every € > 0. Whence we obtain

1
InT? < 4i <1+b£> [lncl +(B+e)lns+ <@ - 1) lnn} .

s2 Inn 2

Clearly, for s> > Inn the right-hand side of this inequality is bounded. This completes the proof of
Corollary 4.1.

PrROOF OF COROLLARY 4.2. The proof rests again on the inequality
P(S, >z) <nV(y)+ P

Item (a) follows from (4.3) on putting r =1 +¢.
Prove (b). If s — oo then (b) follows from (a). If s is bounded then by necessity n — oo as

x — oo and # < % On putting r =1+ %, we obtain

_ T
< — | < .
P(S, >xz) <2nV (1 n h/282) < enV(x)

Item (c) follows from the inequalities (see (4.2))

_ 2

P(S, > z) < nV(z) 4 e 37, (4.8)

where for s? < h/2

2? h(B—2)nl -
e 2nh > exp {—5%} = n_¥, nV(z) < cn1_§+5

for every € > 0 and all n large enough. Therefore, the second summand on the right-hand side of (4.8)
is dominating. Slightly changing h if need be, we arrive at (c), finishing the proof of Corollary 4.2.

Proor or THEOREM 4.1. We proceed along the same lines as in the proofs of the preceding
theorems. The proof bases again on inequality (1.8) and estimates for R(u,y). However, here we
partition R(u,y) into subintegrals otherwise (cf. (2.3)). Put M (v) = &> 80 that M = M(2p) (cf. (2.4)).
Then

R(p,y) = I + I,

where
M(e) M(e) 22 o
L = / et dF (t) = / (1 + put + “TMU)) dF(t), 0< % <1. (4.9)
Here
M(e)
/)dF@)zl—WKAMQ)gL
M(e) 00
/ tdF(t) = — / tdF(t) <0, (4.10)
—00 M (e)
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Hence,

Now, we estimate

We first consider

Iyi=p

=
Ol
=
=
i3
S

for M(e) < M < y. For ¢ = & we have

V(e = v <%> eV G) g(v),

where the function g(v) = v=Pe? is convex on (0, 00). Therefore,
1
) )+ g(28)) < cV (—) .
1

V(t)etdt

121<2(M M <

T+

Estimation of

Ins = p

E\@

[\]

is carried out in the same way as that of IY in (2.6) and (2.7), and yields

Lo <V(y)e(1+ (), A= py,

©(A) } 0 as A 1T co. Summing up (4.12)—(4.14), we obtain

12h 1
R(p,y) <1+ otV <;> + V(y)e (1 + ),

nu2h

R"(p,y) < exp { a

As p we first take the value (see (2.10))
1
p=—InT,
Y

where T' = nVT(y)' Then by analogy to (2.9) we obtain

2h 1
R"™(u,y) < exp {m; +cenV (;) +r(1+ 4,0)} ,

18

+enV (%) oV (y)et (1 + <,0)} |

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)



where as before

1 Yy Yy B+e
‘/ — ~ ‘/ —— ~ ‘/ _ < ‘/ l ‘/ O
" (M) " (lnl ) o (|lnni (?J)|> VIV = 0

since nV (y) — 0. Therefore (cf. (2.11)),
InP < —rlnT+r+n—hln2T+ (T)=InT |—r+ n—hlnT + ¢1(T)
>~ 2y2 ¥1 - 2y2 ¥1 )
where ¢1(T) L 0 as T 1 0o. For y = sN, N = /(2 — f)nlnn, we have
InT=—-InnV(y)+O(1) = —Inn+ flns + glnn—i— O(InL(sN)) + O(1)
g —2

Ins
= lnn[l—i—bm} (1+0(1)),

where b = ;—_ﬂz Hence,

Y Inn 442 Inn

2y

for every h' < h < 1 and all y large enough. This proves the first assertion of Theorem 4.1.

Now, we consider “mild” values of s, for example, such as

1 < 2<h
—<s —.
Inn — 2

This corresponds to the following range of the values of y:

Wnlnn >y2 > (8- 2)n.

Here we take as p the value

x
p=——0asn— oo.
nh

Then
2

h 1
InP < —pz+ n;; +cnV <—> +nV(y)et(1+ ¢).
1

nV<l> §ch< L) —0
I Inn

as n — oo. Next, from (4.20) we easily derive that

Here for z = y it is obvious that

2-8
nV(y) <n7 .
Moreover,
y>  s*(B—2)Inn
nh h
Therefore,

ynV (y)er < Cnl—ﬁ/2+—52(i‘2)
©y N

—0

1 / 1
n—f;lnT h {1+b£} (1+o(1)), lnPg—lnT[r L<1+b£>]

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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for s> < h/2.
Summing up (4.15)-(4.17), we obtain

2

T
InP<——o- 1).
nes 2nh+0()

The summand o(1) can be eliminated by changing h > 1. This proves (4.2) and finishes the proof of
the theorem.

4.2. Estimates for the distribution of S,,(a), a > 0. This section differs slightly from
Section 3.2. As in that section, here we put

B(v) = () Bj(v), Bj(v)={X; <y+uvj}, v>0.
j=1

Theorem 4.2. Assume that condition [M™] is satisfied, > 2, EX; = 0, and EX]2 < 00. Then

for all n and z .
P(Sp(a) > z; B(v)) < ¢mV(x)]™, (4.24)

where m = min(n, x), rq r=2 andv < Z.
Y 2r

__r
- 14wr

Corollary 4.3. Assume that condition [M*] is satisfied. Then for all n and x
P(S,(a) > z) < emV (). (4.25)

See also a remark on Corollary 3.3.

The proof of Corollary 4.3 is the same as that of Corollary 3.3. We merely note that (4.24) and
(4.25) should be considered only at large z when mV (z) < 1. The remarks of §3 on Corollary 3.3
remain completely valid.

The proof of Theorem 4.2 as well almost completely repeats that of Theorem 3.2. We merely have
to note that here the proof of (4.24) uses Theorem 4.1 for n < cx and so the condition s? > Inn in
item (b) of Corollary 4.1 is satisfied; P < ¢T'~". In other aspects the consideration remains the same.

§ 5. Semiexponential Tails, EX12 < oo

In this section we consider semiexponential tails V' (z) of the form (1.4):
V(t)=e 'O 1) =t L(¢),

where a € (0,1) and L(t) is a slowly varying function.
We need a smoothness condition on [(t), although it seems unessential for the final results.
[D]. The function l(z 4+ t) as x — oo and t = o(x) admits the representation

l(z +t) =1(x) +tI'(z)(1 + o(1)), (5.1)
where I'(z) ~ @
For simplicity, we may assume that the function L(#) is differentiable and L'(t) = o (@) Then
[D] is always satisfied and I'(x) can be identified with the derivative of [.
5.1. Estimates for the distribution of S,,. We again introduce into consideration the function
2

N = N(n) (see §4) that characterizes the region of deviations  where the “normal” asymptotics e~ 2x
and the asymptotics nV (z) give just about the same result. More precisely, we define N as a solution
to the equation

— = —InnV(N). (5.2)
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From the standpoint of the asymptotics of N(n), this is the same as a solution of the equation

N v =i,

2n

It is slightly more convenient to consider the equation
N? =nl(N) (5.3)

whose solution differs from a solution of the original equation by a bounded factor. It is easy to see
that in our case N = N(n) has the form

N =n== Ly (n), (5.4)
where Li(n) is a slowly varying function.

The domain of deviations z < N(n) can be called “Cramer-type” (or normal); the domain N(n) <
z < Na(n), where Nao(n) is defined below, is intermediate; and the domain z > Nz(n) is the domain

wherein effective is the “mazimal jump principle” (in this domain the asymptotics of P(S, > )
coincides with the asymptotics of P(maxj<, X; > x) ~ nV (z); see [1] for more details).
Put
w(t) = —t"2InV(t) = t721(t) = t*2L(¢). (5.5)
We may assume without loss of generality that w(t) |. Then equation (5.3) can be written as w(N) =
1 and N(n) is nothing but the value of the inverse function w1 of w at the point 1.

N(n) = wD (%) |

It is easy to see that if L satisfies the condition
L(tL== (t)) ~ L(t) as t — oo, (5.6)

then w(~Y)(u) has the form
1 1 1
w(_l) (u) ~ UYa—2 L2—oz ('u,a—2),

so that Li(n) ~ LT= (nﬁ)

Observe that condition (5.6) is rather loose but it is valid not always. For example, it fails for the
slowly varying function L(t) = exp{Int/InInt}.

Since the boundary N(n) of the Cramer-type domain of deviations depends on n, it can be

equivalently characterized in terms of n: n > ﬁ for the Cramer-type domain, and n < ﬁ for the

intermediate domain. Thus, as a characteristics of deviations we can take both the number s = %

(cf. §4; s < 1 for the Cramer-type domain) and the number o = o(z) = nw(x) (¢ > 1 for the Cramer-
type domain); o ~ %72 as n — co. In some cases it is more convenient to use the characteristics o
(we often omit the argument z; if it differs from = then we will indicate it).

Theorem 5.1. Assume that condition [M™] is satisfied, the function [ satisfies condition [D],
and the function w is defined by (5.5). Then there exists a constant ¢ (whose explicit form can be
easily found from the proof) such that for every fixed h > 1, all n, and all sufficiently large y

ho(y) T

P<cnV(yl~ "2, r= y (5.7)

If for arbitrary fixed h > 1 and € > (0 we have oh > 1+¢ then for y = = and all sufficiently large n

22
P < e zm, (5.8)
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If the deviations y are characterized by the relation y = sN(n) then (5.7) holds with o(y) replaced
by s*72(1 +o(1)). If y = z, s>~ < h, then (5.8) holds.

We state some corollaries to Theorem 5.1.

Alongside the function w(t) (see (5.5)), define the function

wa(t) = w(t)l(t) = t721%(t) = 2> 2L2(¢), (5.9)
considering it like w(t) monotone decreasing, so that the inverse function w(_l)(-) is well defined. Put

Na(n) = wy " (l> = 7% Ly(n), (5.10)

n

where Lo is a slowly varying function which, like L;, can be found explicitly under the additional
assumption (5.6).
Next, let 79 be a minimal solution to the equation

oh o_
_1,,2 «a

1=7r—
T

which exists always if ch < 2471 Put o* =rg—1 ~ %h, equivalence as 0 — 0. Here and below A > 1
is as before an arbitrary fixed number.

Corollary 5.1. 1. If och < 2*~! then

[e3

P(S, > 1) < ch(x)(H“*)i : (5.11)

If ol(x) < ¢ or, which is the same, x > caNy(z) then

P(S, > z) < cinV(x).
If ol(z) — 0 (x > Na(n)) then
P(Sp > z) <nV(z)(1+0(1)).

2. If oh > 2°~1 then
— 1
P(S, > z) < enV (z)2h. (5.12)

Let h > 1 and ¢ > 0 be arbitrary fixed numbers. If ch > 1+ ¢ then [(x) > 2Inn and for all

sufficiently large n
2

P(S, > z) < e~ 3uk = V(z)%5. (5.13)
The condition I(z) > 2Inn in the last assertion seems redundant.

REMARK 5.1. As in Corollaries 2.1 and 4.2 (see also Remark 4.1), it is easy to verify that there
exists a function ¢(t) | 0, ¢ T 0o, such that for z = sNa(n)

P(S, > )
T:8>t nV(iL') =1+ (P(t)-

PROOF OF THEOREM 5.1. The scheme of the proof is former. Again inequality (1.8) plays the
main role. The estimate for the integral I; in (4.9) remains the same as in Theorem 4.1 for M (e) =¢/p
(see (4.9)). Put e = h. Then (see (4.12))

2

h
<1+ “’7 (5.14)
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The estimate for

Yy Y
I = / AR () < V(M(E)h + / V(t)ett (5.15)

(see (4.13)) changes slightly.
Put

f(t) = —1(@) + pt.

If [D] holds then for ¢ < /j,ﬁ (p is small) this function decreases; for ¢ > ,uﬁ it increases.
Assume for simplicity that [ is a continuously differentiable function and I'(t) | (by [D] I'(t) ~
al(t)

——). Then the minimum of f(t) is attained at the point to = ((), where ¢ = (1YY is the inverse

function of I'(-) on the interval (tg,00), so that I'(¢(p)) = p, ((s) = sﬁL*(s), and L*(s) is a slowly
varying function. Put
1=l (), (5.16)

where v > 1 will be specified later. Clearly, for v > 1 we have ((u) < y. Observe that forv ~ 1/a > 1

the value
fly) = —ly) +ol'(y)y = 1(y) (va — 1)

can be made small and ef®) “comparable with 1.”
Also, observe that

y=C(8) ~omsc), v (5.17)
v
In the forthcoming considerations, we will bear in mind the fact that v > 1 +¢, ¢ > 0. Put

M = bC(p),

1
where b is an arbitrary point in the interval (1,a-T), for example, its midpoint. Then, on the one
hand, for t > M

F1(@6) > /(M) = =071 (C(n) + p o~ p(1 = 6271) = ep, >0, (5.18)

On the other hand, putting ((u) = ¢ for brevity, we have

/ a—1
FOM) ~ —100) + ¢ ~ P e (1 - ) i, (5.19)

(07

where 52~ > . Since
_o 9 _
pC(p) > pa=tt 1(M(e)) = (;) > pmot0

for every > 0 and all 4 small enough; in view of the above-mentioned properties of the function f,

the integral
M

/ OP

M(e)

which is a part of the integral on the right-hand side of (5.15), is estimated by

M
_ ., —atd

[ 1< den " b e " = o (5.20)

M (e)
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as u — 0. Obviously, the summand V(M (g))h in (5.15) admits a similar estimate.
To calculate the other part f]z, ef®Wdt of the integral in (5.15) in the case of y > M (or, which

is the same, vTE > b), we use inequality (5.18) which means that, while calculating the integral,
it suffices to consider only its part over a “neighborhood” of the point y. For t = y — u, u = o(y),
U =o(y), and U > p~ !, by (5.16) we have

F(0) — Fy) = 1) — Uy —w) — jiu = L (gu(l + o(1)) — jiu ~ o (1 _ 1) .

Therefore,

Y U
w / ! Odt ~ pel W /e““ Vo= gy, < ef®) ° T (5.21)
/l) j—
U 0

Y

The integral [ AZfI_U is estimated similarly and gives o(e/®)).
We can now estimate R(u,y). Combining (5.14), (5.15), (5.20), and (5.21), we obtain

2 vel W)

Riny) < 1+ 214 0(1) + 201 4+ 0(1),
. on (5.22)
B ) < oxp { (14 of1) 4 M1 of1)
Put
1 r(1— ) c

,u:—lnT, T =

nV(y) — nV(y)

and note that for o(y) = nw(y) > 2 inequality (5.7) becomes trivial (its right-hand side increases
unboundedly). For the deviations y satlsfying o(y) < %’", we have n < ¢1y?>~*t¢ for all € > 0, and so

r

LN ULt M) (1 4 o1y ~ 1)
= T~ V(y)zy(1+(1)) ot

This means that in (5.16) v ~ 1/a > 1 and all assumptions imposed on p and v are satisfied. As
before, we now find that

h 2
P < —pz+ "0 4 o1)) + VW) iy o)), (5.23)
r(1— )
nV(y) nhy®
r(l—a)e T, px + 9 (—r+p)InT,
where WInT  nh(lnnV(y) +lnc)
nhln nh(lnnV(y) +1lnc
Py 2 , c=71(l-aq)
Here for nw(y) = o(y) we have (see (5.5))
InV(y _ o
—% = (y)y~* = w(y) = % (5.24)

(5.25)
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ho(y)
2

P <enV(y)l™

(if en < 1 then we should add o(1) to the right-hand side of (5.25), removing this summand afterwards
by slightly increasing h). This proves the first part of the theorem.

Now, consider the Cramer-type domain of deviations where ¢ = nw(z) may be large. Here we
put y =z,

M:E7

so that
zw(z) () N I'(z) 1

och  zoh «oh’ ach

(see (5.16)) and the assumption v > 1 presumed in (5.16) may fail at large o. If v > b~ (or, which
is the same, x = y > M, see (5.17)) then all above-obtained estimates for R(u,y) are preserved and
we again have (5.22). However, if v < b1~ then f]\z ef®Mdt in the preceding calculations disappear
together with the last summand on the right-hand side of (5.22). In this case we readily come to the
second assertion of the theorem.

Thus, we are left with settling the case of v = ﬁ > b7 > 1 and estimating in this case the last
summand in (5.22) whose logarithm for y = % = L equals

H = py+ InnV(y) + O(1) = x_; (% —w(y)n) Flan +O(1) = x_; <% _ 0) +lnn +O(1).

If oh > 1+¢ and 22 > nlnn then H — —oo as n — oo. However, if ey/n < 2 < n'/?*¢ for
a sufficiently small ¢ > 0 then

1,'20'

o=nw(r) — oo, = 2?w(z) > Inn — oo

n
and hence H — —oo again. Thus, the last summand in (5.22), (5.23) is negligible and

2

InP < —M(l +0(1)) + o(1),

where the summand o(1) can be eliminated by slightly increasing h. The proof of the theorem is over.
PrROOF OF COROLLARY 5.1. We have

_ ho(y)

P(S, > z) <nV(y)+cnV(y)] ™ 2 (5.26)

Our purpose is to choose y (or r = %) as optimal as possible. Observe that for + — oo and r
comparable with 1 we have
x

oly)=o0 (;) ~ 1%, U(y) ~ ().

The second summand in (5.26) has the exponent

—1(z) [rl—a - %”r?—za] (1+0(1)), o=oz),

1
attaining its minimum in a neighborhood of the point 7 = (oh)==T and equal to

4@)%(1 +o(1)).
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Therefore, if 7 = = (oh) o a1 > h or, which is the same, oh > 2971, then the exponent of the
second summand in (5.26) is greater than or equal to the exponent of the ﬁrst summand, and a sought
ro can be taken to be rg = 7. Furthermore, the power of n in the second summand of (5.26) equals
s < 27 < 1. Hence, from (5.26) we obtain
_ (1+0(1))
P(S, > z) < cnV(x) 2oh

where the factor 1+ o(1) can be eliminated by slightly increasing h. This proves (5.12).

If oh < 2%~1 then as ry we should take a number for which the summands on the right-hand side
of (5.26) become approximately the same; i.e., we should take 7y to be equal to a minimal solution of
the equation

lzr—a—hr2_a;
2
namely, )
h h
r0:1+%+(2—a) <%> +---=1+0",

o* ~ U—h as 0 — 0. In this case

P(gn > x) < enV ( ) _ CTLV(:L')(1+U*)7Q(1+O(1)),

1+ o*

where the factor 1+ o(1) can be eliminated again by slightly changing h. This proves (5.11). The last
two inequalities of Corollary 5.1 are obvious consequences of (5.11), since in the first of them

V(z)1Ho) ™" = g Ho)(1407) ™ < p=l@)+0U=)o)
where [(z)o* ~ l(x)%h < %, while [(z)o* — 0 in the second.
Assertion (5.13) follows from (5.26) with z =y, (5.8), and the fact that for ch > 1+4¢

22 =)

e 2k = ¢ 20h > V(x)el(aj)% > nV(z)
when [(z) > 21nn.

5.2. Estimates for the distribution of Sy (a). Like in Sections 3.2 and 4.2, the purpose of
this section is to evaluate B
P(a,v) = P(Sp(a) > z, B(v)),

where
= B (v) ={X; <y+vj}
=1
Put ’ ] .
z=2z(x) = = o(x). (5.27)

I(z) " ol(a)
Then, by [D], z(z) is the increment of z for which I(z + zt) — I(z) ~ t or, which is the same,
V(z + zt) ~ etV (x). If the argument of the function z(-) differs from x then we indicate it.

( 9)

) are fixed and v < ©
Wr(y), r=—. (5.28)

Y

We note that estimate (5.28) is not uniprovable and that 2" (y) can be replaced with z(y)". This
circumstance relates to the fact that in the proof of the theorem we use coarse inequalities (5.33).
The proof of a precise estimate requires extra effort. On the other hand, in the sequel for searching
a precise asymptotics for P(S,(a) > ) (see [1]), inequality (5.28) turns out to be sufficient.

In connection with the indicated shortcoming of inequality (5.28), we cannot extract from it the
following assertion whose proof is arranged otherwise.

Theorem 5.2. Assume that § € (0,1) and ¢ € (0,1

P(a,v) < emin(2" T (y), n"

. Then for y > ex

1"+1(
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Theorem 5.3. B
P(Sp(a) > z) < emV(z), m = min(z,n), z = z(x). (5.29)

To prove Theorem 5.2, we need an auxiliary assertion. Put

S(kyr) =Y V7 (y + vj). (5.30)
j=1
Lemma 5.1.
e 1N 5.31
< ck! mi " .
S(kvr) < cktmin (4441, ) V) (5.31)

where A = (y) , and c can be chosen arbitrarily close to 1 as n — 0o.

PROOF. Obv10usly,
S(k,r) <cl(k,r),

where

n
I(k,r):/t’“v’"(ervt U/H-l/ "(y +u)d
0 0

For v < nv = o(y) we have

VI (y +u) = V" (y)e S0,

4 Ak+1
/tke_tdt < min <k!, P 1) :
0

Since

it follows that

nv 2(y)

Z(y) k+1
/uer(y +u)du < V'(y) <—> / the—t(1+o()) gy
0

r
0

< eV (y) <@>k+l min [k;!, (%)kﬂ %H

Clearly, this estimate, while proving (5.31), persists for arbitrary nv. The proof of the lemma is over.
PROOF OF THEOREM 5.2. For n < z(y) we have

o(y) = nw(y) < z(y)y 2l(y) ~ —.

Therefore, Theorem 5.1 yields
n
P(a,v) <P (Sn >a, (X <y+ vn}) < c[nV(y)]',
j=1
where y; = y + vn < y + vz(y) ~ y. This implies that
P(a,v) < c[nV(y)]"
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Now, let n be arbitrary. We first evaluate

P(S, —an > z; B(v)) SP(Sn>x+an; ﬂ{Xj §y+vn}>.
j=1

Apply Theorem 5.1, taking 1 = r+an as x and taking as y and r the respective quantities y; = y+vn
and r; = % so that

1-9¢
g mhan o, =0)
z+a(l—0)n r

(5.32)

ry >

By Theorem 5.1
ho

P(S, —an > z; B(v)) <c[nV(y1)]"™ T :

where o1 = nw(y;) = nyla_QL(yl) =0 (%) for y > ex, x — o0o. On the other hand,
nzr(1+f(3)),

1+at atod
- % 4= =7
IO = 1 =3 1+ at(l —9)

Therefore, for all  large enough

where by (5.32)
> c¢min(1,1).

0=t B8, an > ;B <V + o))

This allows us to evaluate

n n
P(a,v) < ZP(Sk —ak > z; B(v)) < CZ 'V (y 4 vk) < er[min(z(y), n)] TV (y). (5.33)
k=1 k=1
In the last inequality we have used Lemma 5.2. The proof of Theorem 5.2 is over.
PROOF OF THEOREM 5.3. For n < z the claim of the theorem follows from Corollary 5.1. Indeed,
in this case

ol(z) < z%(x)z™2 ~ % — 0

and hence the conditions of the third assertion in item 1 of Corollary 5.1 are satisfied. Therefore,
P(S,(a) > z) <P(S, >z) <nV(z)(1+0(1)).
For n > z we use the results of [12] which imply that for 1 — F(t) = V(¢)

o0

P(Sx(a) > z) = 2/V(x +t)dt(1 + o(1)).
0

But we only increase Sy (a) in distribution if instead of [M*] we assume that 1 — F(t) = V(¢).
Therefore (see Lemma 5.1),

P(Sy(a) > 2) < P(Sx(a) > z) < 2V (z),

which completes the proof of the theorem.

The claim of Theorem 5.3 can also be derived as a corollary to the results of [11], wherein relation
(3.10) was established for the so-called strongly subexponential distributions. As was communicated
to me by D. A. Korshunov, sufficient conditions for the membership in the class of subexponential
distributions are satisfied whenever [R] and [D] are valid.
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§ 6. Lower Estimates. Some Consequences for Regular Tails

In Sections §2-§5 we gave estimates for the distributions of S,, and S, (a) from above. We now
obtain estimates for the distributions of S), from below. They are essentially simpler and more general.

6.1. A general lower estimate. Lower estimates in the case of EX]2 = o0o0. Here we do
not need the assumptions of existence of regularly varying majorants or minorants. We put

F(t)=1— F(t).

Theorem 6.1. Let K(n) be an arbitrary sequence and let Qn(t) = P(KS(%) < —t). Then for
y=z+tK(n—-1)

P(S, > #) > nF(y) (1 Qe - "= 1%)) .

Proor. Put G, = {S,, > =} and B; = {X; < y}. Then

j:

j=1 2
Here for y =z + tK(n — 1)
/dF ne1>2 —u) >P(Sp_1 >z —y)F(y) = Fy)(1 — Qu_1(t)).
Y

The proof of the theorem is over.

Now, we find out conditions guaranteeing explicit estimates for K(n) and @Q,(¢) in the case of
EXJ2 = 00.

We say that condition [M] is satisfied if for some ¢ > 1

V(t)<1—F(t) <cV(t), (6.1)

where V(t) is defined by (1.3). (If ¢ = 1 then [M] coincides with [R].)

Also, we will use the condition

[R,]. Condition [R] is satisfied for < 2; moreover,

lim F(=1)

= < .
Ly T Vsesee

For p = 0 we assume condition [M ™| satisfied.
When condition [R,] is satisfied, the normalized sums %, N(n) = V=D (1), converge in
distribution to the stable law Fjg with parameter 8 (see [13]; recall that we assume that EX; = 0 for

g>1):
P(Sn >:>F t 6.2
N(t) ﬂ() ()
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Theorem 6.2. 1. Assume that condition [M™] is satisfied with o < 1 and that Ny (n) =
W(_l)(%). Then for y = z + tNw(n — 1)

P(S, > z) > nF(y) (1 — et nT_lnF(y)> (6.3)

for every fixed d > 0 and a suitable ¢ < oco.
Additionally assume satisfied conditions [M[]. Then for W(t) < ¢;V(t) and z = sN(n) — oo
(N(n) =V(ED (1)) we have
P(S, > z) > nV(z)(1 — ¢(s)), (6.4)
where ¢ | 0 as s 1 oco.
2. Assume that conditions [M*] are satisfied for a € (1,2), EX; = 0, and W (z) < ¢V (). Then

(6.3) holds fory = z +tNw(n—1),t > (a+9) N]\:‘E?;_li), and every fixed 6 > 0. If moreover condition
(M) is satisfied then for x = sN(n)
Inn
P(S, >xz)>nV (:1: <1 + 97>> (1—p(s)), (6.5)
where 0 = %. For a = 8 the summand 01nn should be replaced with o(Inn).

3. If condition [R,] is satisfied with p > 0 and 3 < 2 then (6.4) holds. If condition [R,] is satisfied
with p=0 and 3 € (1,2), and EX; = 0 then for x = sN(n), n — oo,

P(Sn > :(:) >nV (z)[1 = Fg(0)(1 + o(1)) — ¢(s)], (6.6)

where Fg(0) < 1.

PrOOF. We first assume that o < 1. Put in Theorem 6.1 K(n) = Ny (n). Then by Corollary 2.1
applied to the sums —S,,, we obtain

Qn(t) = P(— S, > tNw(n)) < cxnW (tNw(n)) < ct™ (6.7)

for every fixed 6 > 0 and all ¢ > 1. This proves (6.3).

Now, suppose additionally that condition [M ] is satisfied, W (t) < ¢1V(t), and = sN(n). Then
Nw (n) < caN(n). Hence, for t = s'7°, § > 0, we have y = sN(n) + s Ny (n — 1) < z(1 + c257°),
F(y) > V(z)(1 + ¢(s)), and ¢(s) | 0 as 5 1 co.

Choosing 0 so as to have (—a +d)(1 — ) < —§ and using (6.1) for § < «, from (6.3) we deduce
(6.4).

Now, suppose that conditions [M*] are satisfied with « € (1,2), EX; = 0, and W (z) < ¢,V (z).
In view of Corollary 3.1, (6.3) then holds only for ¢ such that

tNw (n)
v <| lnnW(tNW(n))|> =L (6.8)

Since nW (tNyy (n)) > 779, § > 0, as tNy (n) — oo; it follows that |InnW (ENw (n))| < (a + 0) Int
and (6.8) is satisfied if

t N(n)
i 5
Int (o +9) Ny (n)
This proves (6.3).
Observe that the last equality implies
Int ~ p Inn
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(for « = 8 we understand this relation to be Int = o(Inn)).
Now, we derive relations like (6.4). First, assume that o # . Then

y = sN(n) +tNw(n — 1) < sN(n) + (a + 6)N(n) Int < sN(n) (1+ (a+d)(a—P) lnn> |

aff S

This proves (6.5).
For a = f3, by the above #Inn should be replaced with o(Inn).
Now, consider the third assertion of the theorem when condition [R,] is satisfied.
If p > 0 then W(t) ~ pV(t), Nw(n) ~ p*N(n), and by Corollaries 2.1 and 3.1 relations (6.7),
(6.3), and (6.4) hold again.
If p=0and 8 > 1 then
Qu(t) < P(Sn < 0) = Fy(0)

as n — 0o, where Fg(0) < 1 for 3 > 1, since the mean of the distribution Fj in this case equals 0.
The proof of the theorem is over.
We now derive some corollaries for regular tails.

Corollary 6.1. 1. Assume that condition [R))] is satisfied; moreover, either p > 0 or &« < 1. Then
for x = sN(n) and 11 = II(z) = nV (x)

g P(S, > x)

> 1 — .
z:8>t II =1 (p(t)’ (6 9)

e(t) L 0ast 0.
2. Assume that condition [R))| is satisfied with p =0, o € (1,2), and EX; = 0. Then

inf w >1—g <i> . (6.10)

zis>t Inn

This corollary is obvious from Theorem 6.2.

Corollary 6.2. Suppose that the conditions of item 1 of Corollary 6.1 are satisfied. Then there
exists a function (t) | 0, t 1 oo, such that

sup [ 2G>0l oo, (6.11)
r:s>t H
sup |EEn > 4| o oy (6.12)
xr:s>t H

If the conditions of item 2 of Corollary 6.1 are satisfied then we cannot derive the convergence

w — 1 as s — 00, s < clnn, from the obtained inequalities, since in this case the right-hand
side of (6.10) does not converge to 1 in general.

ProoOF. The claim of Corollary 6.2 ensues from Corollaries 2.1, 3.1, and 6.1.
The equivalence relation P(S,, > z) ~ nV(z) for z = ¢, N(n), t, — oo, and under the condition
Sn

[R,] of convergence of Moy I distribution to a stable law was obtained in [14-16]. A similar assertion

for S, follows from [17] but under more stringent assumptions on F' (under the condition F € &,
where % is defined in the next section).

6.2. Lower estimates in the case of Eij < o0o. Corollaries for regular tails with power
B > 2 and for semiexponential tails.
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Theorem 6.3. Assume that EX; = 0 and EX]2 =1. Then fory=z +uyn —1

n—1—

—F()|. (6.13)

P(S, > ) >nF(y) [1—u"?—

PRrROOF. The claim follows from Theorem 6.1 on putting K(n) = y/n and using the Chebyshev
inequality which implies
Qnlu) <u™2
Corollary 6.3. Assume that the regularity condition [R)] is satisfied with > 2, EXJ2 < 00,
and x = sN(n), N(n) = /(2 — f)nlnn. Then there exists a function ¢(t) | 0, t 1 0o, such that
P(S, > x)

sup |———= — 1| < p(t), 6.14
S V@) < o(t) (6.14)

P(S,
sup (Sp > x)

x>t TLV(:L') —li= ('O(t)' (615)

PROOF. Put in Theorem 6.3 y = z + u+/n, u = 4/s. Then for every § > 0 and z large enough we

have
u
=x |1+ ,
Y ( sv/(8—2)In n)
V(y)><1+ ucy >_ﬂ_6>1_ cu__
V(z) — svVinn - svVinn Vslnn
Furthermore,

56

nV(y) < nV(z) =nV(s\/(2—B)nlnn) < ens P (nlnn)~ "= .
Choosing 6 < 8 — 2, by Theorem 6.3 we obtain

P(S, > 1) > nV () <1 . %) (1 . %2) .

It remains to use Corollary 4.2 (see also Remark 4.1). The proof of the corollary is over.
A bibliography on the asymptotic equivalence relations

P(S, > z) ~nV(z), P(Sp>z)~nV(r)

under the conditions [R] and # > 2 can be found, for instance, in [9, 18-20].
An analog of Corollary 6.3 is also valid for semiezponential tails.

Corollary 6.4. Assume that condition [R)] is satisfied for semiexponential functions V (t) of the
form (1.4) and that EXJ2 < oo. Let wé_l)(-) be the inverse function of wy(t) = t**72L2(t) and
Ni(n) = wi™Y (L) (see (5.9), (5.10)). Put z = sNy(n). Then there exists a function ¢(t) | 0, t 1 oo,
such that relations (6.14) and (6.15) hold.

The equivalence relation P(S,, > x) ~ nV (z) for z > Na(n) was earlier established in [21].

Corollaries 6.2-6.4 establish uniform convergence in the corresponding limit theorems in the do-
main of all values n and z such that £ > tN(n), where ¢ — oo is an arbitrary fixed sequence tending
to oo and N(n) is an appropriate function defined above in each concrete case.

Proof of Corollary 6.4 is perfectly analogous to that of Corollary 6.3. We have to use Theorem 6.3
and Corollary 5.1 (also see Remark 5.1).
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6.3. Lower estimates for the distribution of S, (a). Consider the case in which

—E|X;’ <00, 1<b<2, EX;=0. (6.16)
Put "
Zy(z,t) =Y F(z+aj+td(j —1)'/).
j=1
Obviously, Zy(z,t) — 0 as £ — co.
Theorem 6.4. For alln, x, and t
P(Sn(a) > z) > Zy(z, t)[1 — (1 + ()t — Zy(z, 1)], (6.17)

where ¢(t) =0 for b =2 and p(t) — 0 ast — oo for b < 2.

Put
n+1

Iy(z 1) = / Flz + au + td(u — 1)'1%) < Zy(x,1).
1
It is easy to indicate values ty > 1 and zg = 2z¢(t9) > 0 such that for Zy(z,t) < zp and ¢t > tg

P(Su(a) > ) 2 Iz, O)[1 = (L + p()t™" — L(z,1)]. (6.18)

Indeed, the function g(z) = 2(1 —ct™® — 2) for t > to > 1 and ¢ = maxy(1 + ¢(t)) is monotone
increasing on [0, zp], where zp = 29(t9) > 0. Hence, for Zy(z,t) < zo the right-hand side of (6.17) is
greater than
Ib(mat)(l - (1 + Qo(t))t_b - Ib(mat))

The values tg and zy can be evaluated explicitly. For example, for b = 2 we can take tp = 2 and
zZ0 — 3/8

Corollary 6.5. Assume that (6.16) is satisfied together with condition [M|, where the function
V' is of the form (1.3) or (1.4) and [ satisfies [D]. Then

r+an

P(Sn(a) > o) > ~ / V(w) du(1+ o(1)) (6.19)

a
T

as r — 00.
PROOF OF COROLLARY 6.5. Put in (6.18) ¢ = Inz. Then

n+1 T+an
Iy(z.1) > / V(e +au + d(u— 1) Inz) du = 2 / V(w) du(1+ o(1))
1 T

as £ — 00. Since ly(z,t) — 0 as x — oo, (6.18) implies (6.19).
PROOF OF THEOREM 6.4. Put

Gn={Sn(a) >z}, B;={X;<z+aj+tdj—1)""}.

Using the same arguments as in Theorem 6.1, we then obtain

>ZPGB ZPE . (6.20)
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Here

P(GyBj) > P(Sj-1 > —t(d(j — 1))'/* B))
= F(z+aj+td(j — 1)1 - P(S;_1 < —td(j — 1)}/*)]. (6.21)

If b = 2 then Chebyshev’s inequality yields
P(S;_1 < —td(j — 1)/?) <72,

If b < 2 then conditions [M¥] are satisfied with o = 8 = b and V (t) = W (t) = d’t~°. Therefore, by
Corollary 3.1

P(Sj1 < —td(j — D'/*) < (1+ () (7 — YW (td(j — 1)) = (1 + o)1,

where ¢(t) — 0 as t — oo. From (6.20), (6.21), and what was said above, we infer that

>_P(GuBj) > Zy(w, ) (1 = (14 p(0)t™"),

n

ZP(EJ) = Zy(x,t), P(Gn) 2 Zy(z, t)(1 — (L+ o))" — Zy(x,1)),

completing the proof of the theorem.

Corollary 6.5 can also be derived from [11]. As mentioned, the results of [11] imply that if
condition [R] is satisfied and the functions V are of the form (1.3) or (1.4), where [ satisfies [D], then
the asymptotic representation (3.10) is valid and implies (6.19).

§ 7. Uniform Relative Convergence to a Stable Law. The
Law of the Iterated Logarithm in the Case of EX]2 = 00

In this section we give some consequences of the estimates of §2, §3, and §6.

7.1. Uniform relative convergence to a stable law. Denote by £ the class of distributions
F satistying [R,] and such that L(t) — L = const as ¢ — oo. For the distributions in .Z, the inverse

function V(=1 has a simple explicit asymptotics:

v <l> = N(n) ~ (In)"/%. (7.1)

n

Clearly, the stable distribution Fj in (6.1) also belongs to .Z’; moreover, for every F' € &
nV (vN(n)) ~ nv=P(Ln) 'L = vP. (7.2)

The class £ is nothing but the domain of normal attraction of the stable law Fg (see [13]).
Property (7.2) enables us to obtain the following assertion about uniform relative convergence to
a stable law.

Theorem 7.1. Assume that [R,] is satisfied; moreover, p > 0 or o < 1. In this case F' € £ if
and only if

I(A}gn > t)

(n)

sup|—————=——-1| — 0 7.3
tZIO) 1 — Fp(t) (7:3)
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as n — o0

The claim of the theorem means that for F' € £ the problem of large deviations for P(S, > z)
is in a sense absent: the limit law 1 — F(t) guarantees the good approximation

P(S, >x) ~1— Fg(z/N(n))

uniformly in all z > 0. This is possible in the central limit theorem on convergence to a normal law
only if X; have exactly a normal distribution.

An assertion like (7.3) (with an estimate for the convergence rate) follows also from the results of
[22], but under the considerably more stringent assumption of existence of the pseudomoments

[ 18718 = Fylgat) < oc

of order v > 3, which necessitates a high rate for the convergence of F'(t) — Fg(t) to 0.

PROOF OF THEOREM 7.1. Sufficiency: Suppose that F' € Z. Corollary 6.2 implies (see (6.11))
that for every sequence t — oo and z = sN(n)

P(S, > x)

P nV(x)

s>t

- 1‘ — 0. (7.4)

If ' = Fp then by (6.2) for every fixed s
1—Fﬂ(8)NP(Sn>8N(n))7 n — 00,

where by (7.2) and (7.4) the right-hand side is close to s for large s. This implies that 1—Fp(s) ~ s=7

as s — 0o, and (7.4) can also be written down as

P(S, > sN(n))
1 — F(s)

sup — 1‘ — 0 (7.5)

s>t

as n — 00, t = t, — 00. On the other hand, from the weak convergence (6.2) and continuity of Fj it

follows that for every ¢ > 0

P(S, > sN(n))
1 — Fpg(s)

This means that there exists an increasing sequence t, — oo of sufficiently slow growth such that

(7.6) remains valid after the replacement of ¢ with ¢,,. Together with (7.5), this proves (7.3).
Necessity: From (7.3) and (7.4) we have

sup
s<t

- 1‘ 0. (7.6)

nV (tN(n)) ~ ct=#

or, which is the same,
V(tN) ~t=PV(N), L(tN) ~ L(N) (7.7)

for arbitrary sequences of ¢ and N. But this is possible only when L(N)—L = const. If we assume
the contrary, for example, assume that L(N)—o0 as N — oo, then we can choose a sequence N’ such
that

L(N') > L*(N). (7.8)

On putting in (7.7) t = %I, we obtain L(N') ~ L(N), which contradicts (7.8). The proof of the
theorem is over.

REMARK 7.1. From the proof of the theorem and Corollary 6.1 we see that in the case of p = 0,
a € (1,2), and EX; = 0 relation (7.3) persists if in it we replace sup;>( with sup;cp, , where B, =
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(0,00) \ (tn, ty Inn) and ¢, — oo sufficiently slowly. Seemingly, convergence in the interval (¢, ¢, Inn)
can be obtained by using estimates for the rate of the convergence of P(S,/N(n) > v) to Fg(v)
(cf. [22]). B
An analog of Theorem 7.1 can be obtained for the distribution of S,, as well.
First of all, observe that the “invariance principle” in the domain of convergence to stable laws
implies that _
Sn =
— = ((1 7.9
i = S, (7.9
where ((u) is the stable process corresponding to the distribution Fjg (((1) & Fg), ((t) = sup,<; ((u).
Denote the distribution function of (1) by Hg. Then, by analogy to the above, Corollary 6.2,

Theorem 7.1, (7.2), and the fact that S,, > S,, imply that

1— Hg(t) ~t™" ast— oco. (7.10)

Note that convergence (7.9) can be also deduced from the results of [23]; an explicit form of Hpg is
found in the same article.

Theorem 7.2. Suppose that the conditions of Theorem 7.1 are satisfied. In this case F € £ if
and only if B
P(S, >tN
| PG> N ()

-1 —0
t>0 1 —Hﬂ(t)

as n — 00.

The proof of Theorem 7.2 repeats that of Theorem 7.1. We merely have to replace S, with S,
and Fg with Hg throughout.

7.2. Laws of the iterated logarithm in the case when the second moment is infinite.
The above-established upper and lower estimates for the distributions of S,, and S,, allow us to obtain
assertions like the law of the iterated logarithm for the sequence {S,} in the case when EXJ2 = 00.

Theorem 7.3. 1. Assume that condition [M™] is satisfied with o < 1. Then for every € > 0

n

lim sup o <1 as (7.11)

n=o0  N(n)(lnn) ?

2. Assertion (7.11) persists if the conditions [M*], 8 > 1, EX; = 0, and W(t) < ¢V (t) are
satisfied.

3. Assume that conditions [M~] with o < 1 and [M] are satisfied and that W(t) < 1V (t).
Then for every ¢ > 0

n

limsup—" > 1 as. (7.12)
n=0  N(n)(lnn) 7
4. Assertion (7.12) persists if the conditions [R,), B > 1, and EX; = 0 are satisfied.

Denote InT ¢ = Inmax(1,t). Theorem 7.3 yields

Corollary 7.1. 1. Assume that the conditions [M~], [M{] with a < 1, and W (t) < ¢,V (t) are
satisfied. Then N )
In" S, —InN(n 1
li =— a.s. 7.13
fETITT R (719

2. Assertion (7.13) persists if the conditions [R,], f > 1, and EX; = 0 are satisfied.
Relation (7.13) can be rewritten as

. Sn Inlnn 1
lim sup N =ef as. (7.14)

n—oo
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If V(t) = tPL(t), |InL(t)] < Inlnt, then the function L;(n) in the representation N(n) =
n'/B L1 (n) possesses a similar property and we can replace N(n) in relations (7.11)—(7.14) with n'/8.

The statement (7.13) to some extent justifies the term “law of the iterated logarithm,” since it
involves the normalizing factor Inlnn (in (2.23) and (2.24) for the very sums S, (rather than for
In* S,) it is absent). There are many articles devoted to the law of the iterated logarithm in the
case of Eij = oo (see a bibliography, for example, in [24,25]; however, for derivation of (7.14) they
presume rather rigid conditions on Xj, for example, membership in the domain of normal attraction
to a stable law (F' € .Z) (see [25]). Theorem 7.1 generalizes these results.

ProOF oF THEOREM 7.3. If we follow the classical scheme of the proof of the laws of the repeated
logarithm which are based on the use of the Borel-Cantelli lemma (see, for instance, [26]), then the
problem is reduced to the following (see Chapter 19 of [26]): to prove (7.11), we have to demonstrate

that B
ZP(Snk > 1) < 00, (7.15)

e
where ny, = [A¥] (A > 1) and 2, = N(ng)(In nk) 5. To prove (7.12), we have to establish that
Z P(Snk NE—1 > yk) o0

or, which is the same, that
3" P (S, > m) = oo, (7.16)
k

1—¢
where my, = ng — njp_1 = [n(1 — A™1)] + 4, i takes the values 0 and 1, and y = N(ng)(Inng) 7 .

Prove (7.15) and (7.11). By Corollary 2.1, for x > N(n)
P(S, > z) < cnV(z).

1+4e
5", we obtain
— 14e
P(S, > ) <c¢(In n)_%(ﬂ_é)
for n — oo and every fixed § > 0. Putting § = ¢/3, for € small enough we have
1+e¢

p
This means that the series (7.15) converges and (7.11) holds.
The proof of the second assertion proceeds in exactly the same way but on using Corollary 3.1
whose conditions are satisfied.
Now, prove (7.16) and (7.12). By assertion (6.3) of Theorem 6.2, for z > N(n) and m = [n(1 —
A~1)] we have

Putting z = N(n)(Inn)

(B—0)>1+¢/2, P(Sp, >ux;) < k-T2,

P(Sy, > x) > enV(x).
1—¢

Putting x = N(n)(Inn) 7

, we obtain

P(S,, > z) > (lnn)_%(ﬁﬂs),
where 12€ 5 (B+0) <1—¢/2for § =e/2 and € small enough. This gives

P(Smk > yk) > Clk_(l_s/z)

which implies convergence of the series (7.16) and validity of (7.12).

The last assertion of the theorem is proved in exactly the same manner on using the third assertion
of Theorem 6.2.

The proof of the theorem is over.

The author appreciates useful remarks by D. A. Korshunov.

The results of this article were obtained during the author’s stay in Eindhoven, EURANDOM,
from December, 1999 to March, 2000.
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